1
|
Li K, Liu Y, Wei S, He B, Yan R, Zhang R, Liu R. Constructing homo/hetero-nuclear carbon and oxygen atoms co-doped graphitic carbon nitride assisted by ionic liquid for photothermal synergistic catalytic oxidation of cyclohexane. J Colloid Interface Sci 2025; 677:756-768. [PMID: 39173509 DOI: 10.1016/j.jcis.2024.08.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
The adoption of photothermal synergistic catalysis for cyclohexane oxidation can balance the advantages of high conversion of thermal catalysis and high selectivity of photocatalytic technology to achieve better catalytic performance. Here, we prepared functional carbon nitride (BCA-CN) by self-assembly strategy of ionic liquid [Bmim]CA (1-Butyl-3-methylimidazole citrate) with melamine and cyanuric acid utilizing abundant elements and anionic/cationic hydrogen bonding interactions. The introduction of [Bmim]CA embeds C-C (carbon and carbon band) and C-O-C (ether bond) structures into graphitic carbon nitride (g-C3N4) framework, significantly improving light absorption capacity and migration of photo generated charge carriers. Compared to g-C3N4, both BCA-CN increases cyclohexane conversion and KA oil (the mixture of cyclohexanol and cyclohexanone) selectivity by 1.3 times under photothermal catalysis. The surface reactions are facilitated by changing adsorption sites of cyclohexane to increase adsorption energy and obtaining more hydroxyl radicals and superoxide radicals. Furthermore, the enhanced selectivity is attributed to the difficulty in generating cyclohexanone radicals. This work offers the reference scheme for the development of efficient photothermal catalysts in the selective oxidation of cyclohexane.
Collapse
Affiliation(s)
- Kexin Li
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yumei Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing 100190, PR China
| | - Shuang Wei
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing 100190, PR China
| | - Bin He
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing 100190, PR China
| | - Ruiyi Yan
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing 100190, PR China
| | - Ruirui Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing 100190, PR China.
| | - Ruixia Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing 100190, PR China.
| |
Collapse
|
2
|
Hu Y, Fang Z, Yao B, Ye Z, Peng X. Ferrocene Derivatives for Photothermal Applications. CHEMSUSCHEM 2024; 17:e202400829. [PMID: 38884174 DOI: 10.1002/cssc.202400829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/18/2024]
Abstract
Ferrocene (Fc) and Fc derivatives have gained popularity in recent years due to their unique structure and characteristics. Among Fc's diverse performances, photothermal conversion, as a primary source of energy conversion, has sparked substantial study attention. This Review summaries Fc and Fc derivatives with photothermal characteristics, as well as their applications developed recently. First, methods for the synthesis of Fc-based materials are systematically discussed. Then, the photothermal conversion mechanism based on nonradiative relaxation is summarized. Furthermore, the most recent advances in Fc-based materials in photothermal applications are described, including photothermal degradation, photothermal antibacterial, photothermal therapies, photothermal catalysis, solar-driven water production, and photothermal CO2 separation. Finally, a summary and insights on the photothermal application of Fc-based materials are provided. This paper seeks to provide researchers with a better knowledge of photothermal behavior while also highlighting the potential of Fc and its derivatives in photothermal fields.
Collapse
Affiliation(s)
- Yue Hu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Zhou Fang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Bing Yao
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Zhizhen Ye
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Xinsheng Peng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| |
Collapse
|
3
|
He Z, Yang J, Liu L. Design of Supported Metal Catalysts and Systems for Propane Dehydrogenation. JACS AU 2024; 4:4084-4109. [PMID: 39610729 PMCID: PMC11600159 DOI: 10.1021/jacsau.4c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024]
Abstract
Propane dehydrogenation (PDH) is currently an approach for the production of propylene with high industrial importance, especially in the context of the shale gas revolution and the growing global demands for propylene and downstream commodity chemicals. In this Perspective article, we comprehensively summarize the recent advances in the design of advanced catalysts for PDH and the new understanding of the structure-performance relationship in supported metal catalysts. Furthermore, we discuss the gaps between fundamental research and practical industrial applications in the catalyst developments for the PDH process. In particular, we overview some critical issues regarding catalyst regeneration and the compatibility of the catalyst and reactor design. Finally, we make perspectives on the future directions of PDH research, including the efforts toward achieving a unified understanding of the structure-performance relationship, innovation in reactor engineering, and translation of the knowledge accumulated on PDH studies to other important alkane dehydrogenation reactions.
Collapse
Affiliation(s)
- Zhe He
- Engineering Research Center of Advanced
Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jingnan Yang
- Engineering Research Center of Advanced
Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lichen Liu
- Engineering Research Center of Advanced
Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Jin M, Yang X, Wang X, Zhang Z. UV-visible-infrared light driven photothermal synergistic catalytic reduction of CO 2 over Cs 3Bi 2Br 9/MoS 2 S-scheme photocatalyst. J Colloid Interface Sci 2024; 680:235-245. [PMID: 39566411 DOI: 10.1016/j.jcis.2024.11.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Photothermocatalytic CO2 reduction has been considered as a green and sustainable strategy for solar-to-fuel conversion, since it can utilize the solar energy to simultaneously provide heat input and produce photogenerated charge carriers. To this end, exploring photothermal catalysts with broad-band absorption, high photo-heat conversion and charge separation efficiency is highly desirable. In this work, an innovative Cs3Bi2Br9/MoS2 (CBB/MoS2) composite has been elaborately constructed to investigate the photothermocatalytic performance towards CO2 reduction. In this composite, MoS2 plays dual roles: with photoinduced self-heating effect, it can act as an extra heater to accelerate the catalytic reaction, and meanwhile serves as a cocatalyst to promote charge separation by forming S-scheme heterojunction with CBB. As expected, the developed CBB/MoS2 composite delivered outstanding photothermocatalytic activity for CO2 reduction without any extra heat input, with the CO production rate reaching 172.79 μmol g-1h-1. As confirmed by experimental tests and theoretical calculations, the superior photothermocatalytic CO2 reduction performance of CBB/MoS2 was attributed to the synergetic effect of high photo-thermo transformation efficiency and highly improved charge separation. The present work offers a potential strategy for developing highly-efficient photothermal catalysts used in artificial photosynthesis.
Collapse
Affiliation(s)
- Min Jin
- College of Materials, Shanghai Dianji University, Shanghai 201306, China
| | - Xiaotang Yang
- College of Materials, Shanghai Dianji University, Shanghai 201306, China
| | - Xuesheng Wang
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Zhijie Zhang
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
5
|
An Y, Li F, Di Y, Zhang X, Lu J, Wang L, Yan Z, Wang W, Liu M, Fei P. Hydrophobic Modification of Cellulose Acetate and Its Application in the Field of Water Treatment: A Review. Molecules 2024; 29:5127. [PMID: 39519768 PMCID: PMC11547652 DOI: 10.3390/molecules29215127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
With the inherent demand for hydrophobic materials in processes such as membrane distillation and unidirectional moisture conduction, the preparation and application development of profiles such as modified cellulose acetate membranes that have both hydrophobic functions and biological properties have become a research hotspot. Compared with the petrochemical polymer materials used in conventional hydrophobic membrane preparation, cellulose acetate, as the most important cellulose derivative, exhibits many advantages, such as a high natural abundance, good film forming, and easy modification and biodegradability, and it is a promising polymer raw material for environmental purification. This paper focuses on the research progress of the hydrophobic cellulose acetate preparation process and its current application in the water-treatment and resource-utilization fields. It provides a detailed introduction and comparison of the technical characteristics, existing problems, and development trends of micro- and nanostructure and chemical functional surface construction in the hydrophobic modification of cellulose acetate. Further review was conducted and elaborated on the applications of hydrophobic cellulose acetate membranes and other profiles in oil-water separation, brine desalination, water-repellent protective materials, and other separation/filtration fields. Based on the analysis of the technological and performance advantages of profile products such as hydrophobic cellulose acetate membranes, it is noted that key issues need to be addressed and urgently resolved for the further development of hydrophobic cellulose acetate membranes. This will provide a reference basis for the expansion and application of high-performance cellulose acetate membrane products in the environmental field.
Collapse
Affiliation(s)
- Yaxin An
- College of Textile Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Fu Li
- College of Textile Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Youbo Di
- College of Textile Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | | | - Jianjun Lu
- College of Textile Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Le Wang
- College of Textile Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Zhifeng Yan
- College of Textile Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Wei Wang
- College of Textile Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Mei Liu
- College of Textiles and Apparel, Quanzhou Normal University, Quanzhou 362000, China
| | - Pengfei Fei
- College of Textile Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| |
Collapse
|
6
|
Liu P, Dai W, Shen X, Shen X, Zhao Y, Liu JJ. Recent Advances in the Utilization of Chiral Covalent Organic Frameworks for Asymmetric Photocatalysis. Molecules 2024; 29:5006. [PMID: 39519648 PMCID: PMC11547512 DOI: 10.3390/molecules29215006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The use of light energy to drive asymmetric organic transformations to produce high-value-added organic compounds is attracting increasing interest as a sustainable strategy for solving environmental problems and addressing the energy crisis. Chiral covalent organic frameworks (COFs), as porous crystalline chiral materials, have become an important platform on which to explore new chiral photocatalytic materials due to their precise tunability, chiral structure, and function. This review highlights recent research progress on chiral COFs and their crystalline composites, evaluating their application as catalysts in asymmetric photocatalytic organic transformations in terms of their structure. Finally, the limitations and challenges of chiral COFs in asymmetric photocatalysis are discussed, with future opportunities for research being identified.
Collapse
Affiliation(s)
- Peng Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China; (P.L.); (X.S.); (X.S.)
| | - Weijun Dai
- School of Ethnic Medicine, Yunnan Minzu University, Kunming 650504, China;
| | - Xianfu Shen
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China; (P.L.); (X.S.); (X.S.)
| | - Xiang Shen
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China; (P.L.); (X.S.); (X.S.)
| | - Yuxiang Zhao
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China; (P.L.); (X.S.); (X.S.)
| | - Jian-Jun Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China; (P.L.); (X.S.); (X.S.)
| |
Collapse
|
7
|
Shi Y, Wang Y, Meng N, Liao Y. Photothermal Conversion Porous Organic Polymers: Design, Synthesis, and Applications. SMALL METHODS 2024; 8:e2301554. [PMID: 38485672 DOI: 10.1002/smtd.202301554] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/15/2024] [Indexed: 10/18/2024]
Abstract
Solar energy is a primary form of renewable energy, and photothermal conversion is a direct conversion process with tunable conversion efficiency. Among various kinds of photothermal conversion materials, porous organic polymers (POP) are widely investigated owing to their controllable molecular design, tailored porous structures, good absorption of solar light, and low thermal conductivity. A variety of POP, such as conjugated microporous polymers (CMP), covalent organic frameworks (COF), hyper-crosslinked porous polymers (HCP), polymers of intrinsic microporosity (PIM), porous ionic polymers (PIP), are developed and applied in photothermal conversion applications of seawater desalination, latent energy storage, and biomedical fields. In this review, a comprehensive overview of the recent advances in POP for photothermal conversion is provided. The micro molecular structure characteristics and macro morphology of POP are designed for applications such as seawater desalination, latent heat energy storage, phototherapy and photodynamic therapy, and drug delivery. Besides, a probe into the underlying mechanism of structural design for constructing POP with excellent photothermal conversion performance is methodicalized. Finally, the remaining challenges and prospective opportunities for the future development of POP for solar energy-driven photothermal conversion applications are elucidated.
Collapse
Affiliation(s)
- Yu Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuzhu Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Nan Meng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
8
|
Lei D, Wang L, Lv Y, Luo N, Wang Z. A Comprehensive Review of Solar Photocatalysis & Photothermal Catalysis for Hydrogen Production from Biomass: from Material Characteristics to Engineering Application. Chemistry 2024; 30:e202401486. [PMID: 38865111 DOI: 10.1002/chem.202401486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
Biomass photoreforming is a promising way of producing sustainable hydrogen thanks to the abundant sources of biomass feedstocks. Solar energy provides the heat and driven force to initial biomass oxidation coupled with H2 evolution. Currently, biomass photoreforming is still far from plant-scale applications due to the lower solar energy utilization efficiencies, the low H2 yield, and the lack of appropriate photoreactors. The production of H2 from photoreforming of native biomass and platform molecules was summarized and discussed with particular attention to the prospects of scaling up the catalysis technology for mass hydrogen production. The types of photoreforming, including photocatalysis and photothermal catalysis, were discussed, consequently considering the different requirements for photoreactors. We also reviewed the photoreactors that support biomass photoreforming. Numerical simulation methods were implemented for the solid-liquid two-phase flow and inter-particle radiative transfer involved in the reaction process. Developing concentrated photothermal catalytic flowed reactors is beneficial to scale-up catalytic hydrogen production from biomass.
Collapse
Affiliation(s)
- Dongqiang Lei
- Institute of Electrical Engineering, Chinese Academy of Sciences, No.6 Beiertiao, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Rd, Shijingshan District, Beijing, 100049, China
- Laboratory of Long-Duration and Large-Scale Energy Storage, Chinese Academy of Sciences, Beijing, China
| | - Linhao Wang
- Institute of Electrical Engineering, Chinese Academy of Sciences, No.6 Beiertiao, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Rd, Shijingshan District, Beijing, 100049, China
- Laboratory of Long-Duration and Large-Scale Energy Storage, Chinese Academy of Sciences, Beijing, China
| | - Yue Lv
- School of Energy & Power Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Nengchao Luo
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Rd, Shijingshan District, Beijing, 100049, China
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Zhifeng Wang
- Institute of Electrical Engineering, Chinese Academy of Sciences, No.6 Beiertiao, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Rd, Shijingshan District, Beijing, 100049, China
- Laboratory of Long-Duration and Large-Scale Energy Storage, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Zhang Z, Qian J, Wang X, Chu Y, Xu J. A Three-in-One Integrated Cs 3Bi 2Br 9@Co 3O 4 Heterostructure with Photoinduced Self-Heating Effect for Synergistically Enhancing the Photothermal CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401601. [PMID: 38554021 DOI: 10.1002/smll.202401601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Indexed: 04/01/2024]
Abstract
Photothermal catalysis, which applies solar energy to produce photogenerated e-/h+ pairs as well as provide heat input, is recognized as a promising technology for high conversion efficiency of CO2 to value-added solar fuels. In this work, a "shooting three birds with one stone" approach is demonstrated to significantly enhance the photothermal CO2 reduction over the Cs3Bi2Br9@Co3O4 (CBB@Co3O4) heterostructure. Initially, Co3O4 with photoinduced self-heating effect serves as a photothermal material to elevate the temperature of the photocatalyst, which kinetically accelerates the catalytic reaction. Meanwhile, a p-n heterojunction is constructed between the p-type Co3O4 and n-type Cs3Bi2Br9 semiconductors, which has an intrinsic built-in electric field (BEF) to facilitate the separation of photogenerated e-/h+ pairs. Furthermore, the mesoporous Co3O4 matrix can afford abundant active sites for promoting adsorption/activation of CO2 molecules. Benefiting from these synergistic effects, the as-developed CBB@Co3O4 heterostructure achieves an impressive CO2-to-CO conversion rate of 168.56 µmol g-1 h-1 with no extra heat input. This work provides an insightful guidance for the construction of effective photothermal catalysts for CO2 reduction with high solar-to-fuel conversion efficiency.
Collapse
Affiliation(s)
- Zhijie Zhang
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, P. R. China
| | - Junyi Qian
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, P. R. China
| | - Xuesheng Wang
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, P. R. China
| | - Yaoqing Chu
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, P. R. China
| | - Jiayue Xu
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, P. R. China
| |
Collapse
|
10
|
Li Y, Li J, Yu T, Qiu L, Hasan SMN, Yao L, Pan H, Arafin S, Sadaf SM, Zhu L, Zhou B. Rh/InGaN 1-xO x nanoarchitecture for light-driven methane reforming with carbon dioxide toward syngas. Sci Bull (Beijing) 2024; 69:1400-1409. [PMID: 38402030 DOI: 10.1016/j.scib.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/05/2024] [Accepted: 02/04/2024] [Indexed: 02/26/2024]
Abstract
Light-driven dry reforming of methane toward syngas presents a proper solution for alleviating climate change and for the sustainable supply of transportation fuels and chemicals. Herein, Rh/InGaN1-xOx nanowires supported by silicon wafer are explored as an ideal platform for loading Rh nanoparticles, thus assembling a new nanoarchitecture for this grand topic. In combination with the remarkable photo-thermal synergy, the O atoms in Rh/InGaN1-xOx can significantly lower the apparent activation energy of dry reforming of methane from 2.96 eV downward to 1.70 eV. The as-designed Rh/InGaN1-xOx NWs nanoarchitecture thus demonstrates a measurable syngas evolution rate of 180.9 mmol gcat-1 h-1 with a marked selectivity of 96.3% under concentrated light illumination of 6 W cm-2. What is more, a high turnover number (TON) of 4182 mol syngas per mole Rh has been realized after six reuse cycles without obvious activity degradation. The correlative 18O isotope labeling experiments, in-situ irradiated X-ray photoelectron spectroscopy (ISI-XPS) and in-situ diffuse reflectance Fourier transform infrared spectroscopy characterizations, as well as density functional theory calculations reveal that under light illumination, Rh/InGaN1-xOx NWs facilitate releasing *CH3 and H+ from CH4 by holes, followed by H2 evolution from H+ reduction with electrons. Subsequently, the O atoms in Rh/InGaN1-xOx can directly participate in CO generation by reacting with the *C species from CH4 dehydrogenation and contributes to the coke elimination, in concurrent formation of O vacancies. The resultant O vacancies are then replenished by CO2, showing an ideal chemical loop. This work presents a green strategy for syngas production via light-driven dry reforming of methane.
Collapse
Affiliation(s)
- Yixin Li
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinglin Li
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tianqi Yu
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang Qiu
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Syed M Najib Hasan
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Lin Yao
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China.
| | - Hu Pan
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shamsul Arafin
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, 43210, USA.
| | - Sharif Md Sadaf
- Centre Energie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique (INRS)-Université du Québec, Varennes J3X 1E4, Canada.
| | - Lei Zhu
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Baowen Zhou
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
11
|
Wei J, Yang S, Xiao X, Wang J. Hydrophobic Solid Photothermal Slippery Surfaces with Rapid Self-repairing, Dual Anti-icing/Deicing, and Excellent Stability Based on Paraffin and Etching. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7747-7759. [PMID: 38526417 DOI: 10.1021/acs.langmuir.4c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Ice and snow disasters have greatly affected both the global economy and human life, and the search for efficient and stable anti-icing/deicing coatings has become the main goal of much research. Currently, the development and application of anti-icing/deicing coatings are severely limited due to their complex preparation, structural fragility, and low stability. This work presents a method for preparing hydrophobic solid photothermal slippery surfaces (SPSS) that exhibit rapid self-repairing, dual anti-icing/deicing properties, and remarkable stability. A photothermal layer of copper oxide (CuO) was prepared by using chemical deposition and etching techniques. The layer was then impregnated with stearic acid and solid paraffin wax to create a hydrophobic solid photothermal slippery surface. This solves the issue of low stability on superhydrophobic surfaces caused by fragile and irretrievable micro/nanostructures. In addition, the underlying photothermal superhydrophobic surface provides good anti-icing/deicing properties even if the paraffin on the surface evaporates or is lost during operation. The findings indicate that when subjected to simulated light irradiation, the coating's surface temperature increases to 80 °C within 12 min. The self-repair process is completed rapidly in 170 s, and at -15 °C, it takes only 201 s for the ice on the surface to melt completely. The surface underneath the paraffin exhibited good superhydrophobic properties, with a contact angle (CA) of 154.1° and a sliding angle (SA) of 6.8° after the loss of paraffin. Simultaneously, the surface's mechanical stability and durability, along with its self-cleaning and antifouling properties, enhance its service life. These characteristics provide promising opportunities for practical applications that require long-term anti-icing/deicing surfaces.
Collapse
Affiliation(s)
- Jue Wei
- Key Laboratory of Materials and Surface Technology (Ministry of Education), School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Siqi Yang
- Key Laboratory of Materials and Surface Technology (Ministry of Education), School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Xin Xiao
- Key Laboratory of Materials and Surface Technology (Ministry of Education), School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Jian Wang
- Key Laboratory of Materials and Surface Technology (Ministry of Education), School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| |
Collapse
|
12
|
Schuurmans JHA, Masson TM, Zondag SDA, Buskens P, Noël T. Solar-Driven Continuous CO 2 Reduction to CO and CH 4 using Heterogeneous Photothermal Catalysts: Recent Progress and Remaining Challenges. CHEMSUSCHEM 2024; 17:e202301405. [PMID: 38033222 DOI: 10.1002/cssc.202301405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023]
Abstract
The urgent need to reduce the carbon dioxide level in the atmosphere and keep the effects of climate change manageable has brought the concept of carbon capture and utilization to the forefront of scientific research. Amongst the promising pathways for this conversion, sunlight-powered photothermal processes, synergistically using both thermal and non-thermal effects of light, have gained significant attention. Research in this field focuses both on the development of catalysts and continuous-flow photoreactors, which offer significant advantages over batch reactors, particularly for scale-up. Here, we focus on sunlight-driven photothermal conversion of CO2 to chemical feedstock CO and CH4 as synthetic fuel. This review provides an overview of the recent progress in the development of photothermal catalysts and continuous-flow photoreactors and outlines the remaining challenges in these areas. Furthermore, it provides insight in additional components required to complete photothermal reaction systems for continuous production (e. g., solar concentrators, sensors and artificial light sources). In addition, our review emphasizes the necessity of integrated collaboration between different research areas, like chemistry, material science, chemical engineering, and optics, to establish optimized systems and reach the full potential of this technology.
Collapse
Affiliation(s)
- Jasper H A Schuurmans
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Tom M Masson
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D A Zondag
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Pascal Buskens
- The Netherlands Organization for Applied Scientific Research (TNO), High Tech Campus 25, 5656 AE, Eindhoven, The Netherlands
- Design and Synthesis of Inorganic Materials (DESINe), Institute for Materials Research, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Zhai J, Xia Z, Zhou B, Wu H, Xue T, Chen X, Jiao J, Jia S, He M, Han B. Photo-thermal coupling to enhance CO 2 hydrogenation toward CH 4 over Ru/MnO/Mn 3O 4. Nat Commun 2024; 15:1109. [PMID: 38321049 PMCID: PMC10847166 DOI: 10.1038/s41467-024-45389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/19/2024] [Indexed: 02/08/2024] Open
Abstract
Upcycling of CO2 into fuels by virtually unlimited solar energy provides an ultimate solution for addressing the substantial challenges of energy crisis and climate change. In this work, we report an efficient nanostructured Ru/MnOx catalyst composed of well-defined Ru/MnO/Mn3O4 for photo-thermal catalytic CO2 hydrogenation to CH4, which is the result of a combination of external heating and irradiation. Remarkably, under relatively mild conditions of 200 °C, a considerable CH4 production rate of 166.7 mmol g-1 h-1 was achieved with a superior selectivity of 99.5% at CO2 conversion of 66.8%. The correlative spectroscopic and theoretical investigations suggest that the yield of CH4 is enhanced by coordinating photon energy with thermal energy to reduce the activation energy of reaction and promote formation of key intermediate COOH* species over the catalyst. This work opens up a new strategy for CO2 hydrogenation toward CH4.
Collapse
Affiliation(s)
- Jianxin Zhai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, Shanghai, 202162, China
| | - Zhanghui Xia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, Shanghai, 202162, China
| | - Baowen Zhou
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
- Institute of Eco-Chongming, Shanghai, 202162, China.
| | - Teng Xue
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, Shanghai, 202162, China
| | - Xiao Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, Shanghai, 202162, China
| | - Jiapeng Jiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, Shanghai, 202162, China
| | - Shuaiqiang Jia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, Shanghai, 202162, China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
- Institute of Eco-Chongming, Shanghai, 202162, China.
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
- Institute of Eco-Chongming, Shanghai, 202162, China.
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
14
|
Wang M, Lin CY, Sagara Y, Michinobu T. Enhanced Photothermal Property of NDI-Based Conjugated Polymers by Copolymerization with a Thiadiazolobenzotriazole Unit. ACS MATERIALS AU 2024; 4:82-91. [PMID: 38221926 PMCID: PMC10786135 DOI: 10.1021/acsmaterialsau.3c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 01/16/2024]
Abstract
Solar steam generation (SSG) is a promising photothermal technology to solve the global water storage issue. The potential of π-conjugated polymers as photothermal materials is significant, because their absorption range can be customized through molecular design. In this study, naphthalenediimide (NDI) and thiadiazolobenzotriazole (TBZ) were employed as bifunctional monomers to produce conjugated polymers. There are two types of polymers, P1 and P2. P1 is based on NDI, while P2 is a copolymer of NDI and TBZ in a ratio of 9:1. Both polymers had high molecular weights and sufficient thermal stability. UV-vis-near-infrared (NIR) absorption spectra revealed that both polymers have large extinction coefficients ascribed to the NDI and TBZ chromophores. Notably, the absorption spectrum of P2 exhibited a significant red shift compared to P1, resulting in a narrow optical bandgap and absorption in the NIR range. This result suggested that P2 has a higher light absorption than P1. Photoluminescence (PL) spectra were measured to elucidate the conversion of the absorbed light into thermal energy. It was found that P2 has a reduced fluorescence quantum yield as a result of the TBZ unit, signifying a proficient conversion of the photothermal energy. Based on the results, it appears that the P2 film has a greater photothermal property compared to that of the P1 film. The surface temperature of the P2 film reached approximately 50 °C under the investigated conditions. In addition, copolymer P2 exhibited an impressive SSG efficiency of 72.4% under 1 sun (1000 W/m2) irradiation. All the results suggested that narrow bandgap conjugated polymers containing the TBZ unit are highly effective materials for achieving optimal performance in SSGs.
Collapse
Affiliation(s)
- Mingqian Wang
- Department of Materials Science and
Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Chia-Yang Lin
- Department of Materials Science and
Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yoshimitsu Sagara
- Department of Materials Science and
Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Tsuyoshi Michinobu
- Department of Materials Science and
Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
15
|
Mascaretti L, Chen Y, Henrotte O, Yesilyurt O, Shalaev VM, Naldoni A, Boltasseva A. Designing Metasurfaces for Efficient Solar Energy Conversion. ACS PHOTONICS 2023; 10:4079-4103. [PMID: 38145171 PMCID: PMC10740004 DOI: 10.1021/acsphotonics.3c01013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 12/26/2023]
Abstract
Metasurfaces have recently emerged as a promising technological platform, offering unprecedented control over light by structuring materials at the nanoscale using two-dimensional arrays of subwavelength nanoresonators. These metasurfaces possess exceptional optical properties, enabling a wide variety of applications in imaging, sensing, telecommunication, and energy-related fields. One significant advantage of metasurfaces lies in their ability to manipulate the optical spectrum by precisely engineering the geometry and material composition of the nanoresonators' array. Consequently, they hold tremendous potential for efficient solar light harvesting and conversion. In this Review, we delve into the current state-of-the-art in solar energy conversion devices based on metasurfaces. First, we provide an overview of the fundamental processes involved in solar energy conversion, alongside an introduction to the primary classes of metasurfaces, namely, plasmonic and dielectric metasurfaces. Subsequently, we explore the numerical tools used that guide the design of metasurfaces, focusing particularly on inverse design methods that facilitate an optimized optical response. To showcase the practical applications of metasurfaces, we present selected examples across various domains such as photovoltaics, photoelectrochemistry, photocatalysis, solar-thermal and photothermal routes, and radiative cooling. These examples highlight the ways in which metasurfaces can be leveraged to harness solar energy effectively. By tailoring the optical properties of metasurfaces, significant advancements can be expected in solar energy harvesting technologies, offering new practical solutions to support an emerging sustainable society.
Collapse
Affiliation(s)
- Luca Mascaretti
- Czech
Advanced Technology and Research Institute, Regional Centre of Advanced
Technologies and Materials, Palacký
University Olomouc, Šlechtitelů 27, 77900 Olomouc, Czech Republic
- Department
of Physical Electronics, Faculty of Nuclear Sciences and Physical
Engineering, Czech Technical University
in Prague, Břehová
7, 11519 Prague, Czech Republic
| | - Yuheng Chen
- Elmore
Family School of Electrical and Computer Engineering, Birck Nanotechnology
Center, and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States
- The
Quantum Science Center (QSC), a National Quantum Information Science
Research Center of the U.S. Department of Energy (DOE), Oak Ridge, Tennessee 37931, United States
| | - Olivier Henrotte
- Czech
Advanced Technology and Research Institute, Regional Centre of Advanced
Technologies and Materials, Palacký
University Olomouc, Šlechtitelů 27, 77900 Olomouc, Czech Republic
| | - Omer Yesilyurt
- Elmore
Family School of Electrical and Computer Engineering, Birck Nanotechnology
Center, and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States
- The
Quantum Science Center (QSC), a National Quantum Information Science
Research Center of the U.S. Department of Energy (DOE), Oak Ridge, Tennessee 37931, United States
| | - Vladimir M. Shalaev
- Elmore
Family School of Electrical and Computer Engineering, Birck Nanotechnology
Center, and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States
- The
Quantum Science Center (QSC), a National Quantum Information Science
Research Center of the U.S. Department of Energy (DOE), Oak Ridge, Tennessee 37931, United States
| | - Alberto Naldoni
- Department
of Chemistry and NIS Centre, University
of Turin, Turin 10125, Italy
| | - Alexandra Boltasseva
- Elmore
Family School of Electrical and Computer Engineering, Birck Nanotechnology
Center, and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States
- The
Quantum Science Center (QSC), a National Quantum Information Science
Research Center of the U.S. Department of Energy (DOE), Oak Ridge, Tennessee 37931, United States
| |
Collapse
|
16
|
Guo C, Tang Y, Yang Z, Zhao T, Liu J, Zhao Y, Wang F. Reinforcing the Efficiency of Photothermal Catalytic CO 2 Methanation through Integration of Ru Nanoparticles with Photothermal MnCo 2O 4 Nanosheets. ACS NANO 2023. [PMID: 37982387 DOI: 10.1021/acsnano.3c07630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Carbon dioxide (CO2) hydrogenation to methane (CH4) is regarded as a promising approach for CO2 utilization, whereas achieving desirable conversion efficiency under mild conditions remains a significant challenge. Herein, we have identified ultrasmall Ru nanoparticles (∼2.5 nm) anchored on MnCo2O4 nanosheets as prospective photothermal catalysts for CO2 methanation at ambient pressure with light irradiation. Our findings revealed that MnCo2O4 nanosheets exhibit dual functionality as photothermal substrates for localized temperature enhancement and photocatalysts for electron donation. As such, the optimized Ru/MnCo2O4-2 gave a high CH4 production rate of 66.3 mmol gcat-1 h-1 (corresponding to 5.1 mol gRu-1 h-1) with 96% CH4 selectivity at 230 °C under ambient pressure and light irradiation (420-780 nm, 1.25 W cm-2), outperforming most reported plasmonic metal-based catalysts. The mechanisms behind the intriguing photothermal catalytic performance improvement were substantiated through a comprehensive investigation involving experimental characterizations, numerical simulations and density functional theory (DFT) calculations, which unveiled the synergistic effects of enhanced charge separation efficiency, improved reaction kinetics, facilitated reactant adsorption/activation and accelerated intermediate conversion under light irradiation over Ru/MnCo2O4. A comparison study showed that, with identical external input energy during the reaction, Ru/MnCo2O4-2 had a much higher catalytic efficiency compared to Ru/TiO2 and Ru/Al2O3. This study underscores the pivotal role played by photothermal supports and is believed to engender a heightened interest in plasmonic metal nanoparticles anchored on photothermal substrates for CO2 methanation under mild conditions.
Collapse
Affiliation(s)
- Chan Guo
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Yunxiang Tang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Zhengyi Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Tingting Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fenglong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
- Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong 518057, China
| |
Collapse
|
17
|
He Q, Jin Q, Chen C, Wang J, Yuan S, Le S, Yang F, Yin Y, Du F, Xu H, Zhu C. Ternary dual S-scheme In 2O 3/SnIn 4S 8/CdS heterojunctions for boosted light-to-hydrogen conversion. J Colloid Interface Sci 2023; 650:416-425. [PMID: 37418892 DOI: 10.1016/j.jcis.2023.06.211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/18/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023]
Abstract
Developing artificial S-scheme systems with highly active catalysts is significant to long-term solar-to-hydrogen conversion. Herein, CdS nanodots-modified hierarchical In2O3/SnIn4S8 hollow nanotubes were synthesized by an oil bath method for water splitting. Benefiting from the synergy among the hollow structure, tiny size effect, matched energy level positions, and abundant coupling heterointerfaces, the optimized nanohybrid attains an impressive photocatalytic hydrogen evolution rate of 110.4 µmol/h, and the corresponding apparent quantum yield reaches 9.7% at 420 nm. On In2O3/SnIn4S8/CdS interfaces, the migration of photoinduced electrons from both CdS and In2O3 to SnIn4S8via intense electronic interactions contributes to the ternary dual S-scheme modes, which are beneficial to promote faster spatial charge separation, deliver better visible light-harvesting ability, and provide more reaction active sites with high potentials. This work reveals protocols for rational design of on-demand S-scheme heterojunctions for sustainably converting solar energy into hydrogen in the absence of precious metals.
Collapse
Affiliation(s)
- Qiuying He
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Qijie Jin
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Chuanxiang Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| | - Jin Wang
- College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Saisai Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Shukun Le
- Chemical Engineering College, Inner Mongolia University of Technology, Huhhot, 010051, China.
| | - Fu Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Yu Yin
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Feng Du
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Haitao Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Chengzhang Zhu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 210009, China.
| |
Collapse
|
18
|
Matter ME, Čamdžić L, Stache EE. Photothermal Conversion by Carbon Black Facilitates Aryl Migration by Photon-Promoted Temperature Gradients. Angew Chem Int Ed Engl 2023; 62:e202308648. [PMID: 37579057 DOI: 10.1002/anie.202308648] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 08/16/2023]
Abstract
The Newman Kwart Rearrangement (NKR) offers an efficient and high-yielding method for producing substituted thiophenols from phenols. While an industrially important protocol, it suffers from high activation energy barriers (35-43 kcal/mol), requiring the use of extreme temperatures (>200 °C) and specialty equipment. This report details a highly efficient and straightforward method for facilitating the NKR using photothermal conversion. This underused, unique reactivity pathway arises from the irradiation of nanomaterials that relax via a non-radiative decay pathway to generate intense thermal gradients. We show carbon black (CB) can be an inexpensive and abundant photothermal agent under visible light irradiation to achieve a facile NKR under mild conditions. The scope includes a wide array of stereo- and electronically diverse substrates with increasing difficulty of rearrangement, including BHT and BINOL as effective substrates. Furthermore, we demonstrate the unique application for temporal control in a thermal reaction and tunability of thermal gradients by modulating light intensity. Ultimately, photothermal conversion enables high-temperature reactions with simple, visible light irradiation.
Collapse
Affiliation(s)
- Megan E Matter
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY, 14850, USA
| | - Lejla Čamdžić
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY, 14850, USA
| | - Erin E Stache
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY, 14850, USA
| |
Collapse
|
19
|
Zhang L, Zhang X, Mo H, Hong J, Yang S, Zhan Z, Xu C, Zhang Y. Synergistic Modulation between Non-thermal and Thermal Effects in Photothermal Catalysis based on Modified In 2O 3. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39304-39318. [PMID: 37556407 DOI: 10.1021/acsami.3c07041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
To promote the solar-energy cascade utilization, it is necessary to increase the thermal effect of irradiation in the catalytic reactions, while simultaneously augmenting the non-thermal effect, so as to fulfill photothermal coupling. Herein, the non-thermal and thermal effect of light radiation on the surface of In2O3-based catalysts are explored and enhanced by the modification of transition metals Fe and Cu. Optical characterizations combined with water-splitting experiments show that Fe doping greatly broadens the radiation response range and enhances the absorption intensity of semiconductors' intrinsic portion, and Cu doping facilitates the absorption of visible-infrared light. The concurrent incorporation of Fe and Cu offers synergistic benefits, resulting in improved radiation response range, carrier separation and migration, as well as higher photothermal temperature upon photoexcitation. Collectively, these advantages comprehensively enhance the photothermal synergistic water-splitting reactivity. The characterizations under variable temperature conditions have demonstrated that the reaction temperature exerts a significant influence on the process of radiation absorption and conversion, ultimately impacting the non-thermal effect. The results of DFT calculations have revealed that the increasing temperature directly impacts the chemical reaction by reducing the energy barrier associated with the rate-determining step. These findings shine new light on the fundamental mechanisms underlying non-thermal and thermal effect, while also imparting significant insights for photo-thermal-coupled catalyst designing.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Xuhan Zhang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Hongfen Mo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Jianan Hong
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Shunni Yang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Zhonghua Zhan
- Reaction Engineering International, Salt Lake City, Utah 84047, United States
| | - Chenyu Xu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Yanwei Zhang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
20
|
Zhu Z, Tang R, Li C, An X, He L. Promises of Plasmonic Antenna-Reactor Systems in Gas-Phase CO 2 Photocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302568. [PMID: 37338243 PMCID: PMC10460874 DOI: 10.1002/advs.202302568] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/26/2023] [Indexed: 06/21/2023]
Abstract
Sunlight-driven photocatalytic CO2 reduction provides intriguing opportunities for addressing the energy and environmental crises faced by humans. The rational combination of plasmonic antennas and active transition metal-based catalysts, known as "antenna-reactor" (AR) nanostructures, allows the simultaneous optimization of optical and catalytic performances of photocatalysts, and thus holds great promise for CO2 photocatalysis. Such design combines the favorable absorption, radiative, and photochemical properties of the plasmonic components with the great catalytic potentials and conductivities of the reactor components. In this review, recent developments of photocatalysts based on plasmonic AR systems for various gas-phase CO2 reduction reactions with emphasis on the electronic structure of plasmonic and catalytic metals, plasmon-driven catalytic pathways, and the role of AR complex in photocatalytic processes are summarized. Perspectives in terms of challenges and future research in this area are also highlighted.
Collapse
Affiliation(s)
- Zhijie Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Rui Tang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Chaoran Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xingda An
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Le He
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
21
|
Niche Applications of MXene Materials in Photothermal Catalysis. CHEMISTRY 2023. [DOI: 10.3390/chemistry5010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
MXene materials have found emerging applications as catalysts for chemical reactions due to their intriguing physical and chemical applications. In particular, their broad light response and strong photothermal conversion capabilities are likely to render MXenes promising candidates for photothermal catalysis, which is drawing increasing attention in both academic research and industrial applications. MXenes are likely to satisfy all three criteria of a desirable photothermal catalyst: strong light absorption, effective heat management, and versatile surface reactivity. However, their specific functionalities are largely dependent on their structure and composition, which makes understandings of the structure–function relationship of crucial significance. In this review, we mainly focus on the recent progress of MXene–based photothermal catalysts, emphasizing the functionalities and potential applications of MXene materials in fields of photothermal catalysis, and provide insights on design principles of highly efficient MXene–based photothermal catalysts from the atomic scale. This review provides a relatively thorough understanding of MXene–based materials for photothermal catalysis, as well as an in–depth investigation of emerging high-prospect applications in photothermal catalysis.
Collapse
|
22
|
Tan S, Han X, Cheng S, Guo P, Wang X, Che P, Jin R, Jiang L, Heng L. Photothermal Solid Slippery Surfaces with Rapid Self-Healing, Improved Anti/De-Icing and Excellent Stability. Macromol Rapid Commun 2023; 44:e2200816. [PMID: 36691371 DOI: 10.1002/marc.202200816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/22/2022] [Indexed: 01/25/2023]
Abstract
Icing phenomenon that occurs universally in nature and industry gets a great impact on human life. Over the past decades, extensive efforts have been made for a wide range of anti-icing/deicing surfaces, but the preparation of anti-icing/deicing interfaces that combine stability, rapid self-healing and excellent anti-icing/deicing performance remains a challenge. In this study, a photothermal solid slippery surface with excellent comprehensive performance is prepared by integrating cellulose acetate film, carbon nanotubes with paraffin wax (CCP). Apart from the excellent anti-icing and deicing properties at -17 ± 1.0 °C under 1 sun illumination, the surface can further achieve deicing at temperatures as low as -22 ± 1.0 °C under infrared light. The fabricated surface also exhibits great stability when placed in harsh conditions such as underwater or ultra-low temperature environments for over 30 days. Even when suffering from physical damage, the prepared surface can rapidly self-repair under 1 sun illumination or near-infrared (NIR) illumination within 16.0 ± 1.5 s. Due to the rapid and repeatable self-healing performance, the lubricating properties of the interface material do not deteriorate even after 50 repeated abrasing-repairing cycles. The photothermal solid slippery surface possesses wide-ranging applications and commercial value at high latitude and altitude regions.
Collapse
Affiliation(s)
- Shengda Tan
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Xiao Han
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Shuman Cheng
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Pu Guo
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Xuan Wang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Pengda Che
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Rongyu Jin
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Liping Heng
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| |
Collapse
|
23
|
Design of hollow nanostructured photocatalysts for clean energy production. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
24
|
Yan K, Wu D, Wang T, Chen C, Liu S, Hu Y, Gao C, Chen H, Li B. Highly Selective Ethylene Production from Solar-Driven CO 2 Reduction on the Bi 2S 3@In 2S 3 Catalyst with In–S V–Bi Active Sites. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Ke Yan
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang310018, P. R. China
| | - Donghai Wu
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan450006, P. R. China
| | - Ting Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang310018, P. R. China
| | - Cong Chen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang310018, P. R. China
| | - Shoujie Liu
- Guangdong Laboratory of Chemistry and Fine Chemical Engineering, Shantou, Guangdong515063, P. R. China
| | - Yangguang Hu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui230026, P. R. China
| | - Chao Gao
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui230026, P. R. China
| | - Houyang Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing400714, P. R. China
- Chongqing College, University of Chinese Academy of Sciences, Chongqing400714, P. R. China
| | - Benxia Li
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang310018, P. R. China
| |
Collapse
|
25
|
Lin CY, Michinobu T. Conjugated photothermal materials and structure design for solar steam generation. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:454-466. [PMID: 37091288 PMCID: PMC10113523 DOI: 10.3762/bjnano.14.36] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
With the development of solar steam generation (SSG) for clean water production, conjugated photothermal materials (PTMs) have attracted significant interest because of their advantages over metallic and inorganic PTMs in terms of high light absorption, designable molecular structures, flexible morphology, and solution processability. We review here the recent progress in solar steam generation devices based on conjugated organic materials. Conjugated organic materials are processed into fibers, membranes, and porous structures. Therefore, nanostructure design based on the concept of nanoarchitectonics is crucial to achieve high SSG efficiency. We discuss the considerations for designing SSG absorbers and describe commonly used conjugated organic materials and structural designs.
Collapse
Affiliation(s)
- Chia-Yang Lin
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Tsuyoshi Michinobu
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
26
|
Yang S, Yin Q, Lian J, Li G, Wei Y, Zhu Q. Porous Surface-Induced Growth of HCl-Doped PANi Flexible Electrode for High Performance Zn-Ion Batteries with Convertible Storage Sites. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Wang Z, Yang Z, Kadirova ZC, Guo M, Fang R, He J, Yan Y, Ran J. Photothermal functional material and structure for photothermal catalytic CO2 reduction: Recent advance, application and prospect. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Balou S, Shandilya P, Priye A. Carbon dots for photothermal applications. Front Chem 2022; 10:1023602. [PMID: 36311416 PMCID: PMC9597315 DOI: 10.3389/fchem.2022.1023602] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Carbon dots are zero-dimensional nanomaterials that have garnered significant research interest due to their distinct optical properties, biocompatibility, low fabrication cost, and eco-friendliness. Recently, their light-to-heat conversion ability has led to several novel photothermal applications. In this minireview, we categorize and describe the photothermal application of carbon dots along with methods incorporated to enhance their photothermal efficiency. We also discuss the possible mechanisms by which the photothermal effect is realized in these carbon-based nanoparticles. Taken together, we hope to provide a comprehensive landscape highlighting several promising research directions for using carbon dots for photothermal applications.
Collapse
Affiliation(s)
- Salar Balou
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Pooja Shandilya
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Aashish Priye
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
29
|
Guan Q, Zhou LL, Dong YB. Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chem Soc Rev 2022; 51:6307-6416. [PMID: 35766373 DOI: 10.1039/d1cs00983d] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covalent organic frameworks (COFs) are a class of organic crystalline porous materials discovered in the early 21st century that have become an attractive class of emerging materials due to their high crystallinity, intrinsic porosity, structural regularity, diverse functionality, design flexibility, and outstanding stability. However, many chemical and physical properties strongly depend on the presence of metal ions in materials for advanced applications, but metal-free COFs do not have these properties and are therefore excluded from such applications. Metalated COFs formed by combining COFs with metal ions, while retaining the advantages of COFs, have additional intriguing properties and applications, and have attracted considerable attention over the past decade. This review presents all aspects of metalated COFs, from synthetic strategies to various applications, in the hope of promoting the continued development of this young field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
30
|
Ge H, Kuwahara Y, Yamashita H. Development of defective molybdenum oxides for photocatalysis, thermal catalysis, and photothermal catalysis. Chem Commun (Camb) 2022; 58:8466-8479. [PMID: 35861347 DOI: 10.1039/d2cc02658a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The localized surface plasmon resonance (LSPR) of noble metals has been investigated for decades for applications in various catalysis reactions and optical research studies, but its development has been hampered by inefficient light absorption and high costs. In comparison, the creation of less expensive semiconductors (metal oxides) with strong plasmonic absorption is an appealing option, particularly defective molybdenum oxide (HxMoO3-y) has received considerable attention and investigation as a promising plasmonic material for a variety of catalytic reactions (photocatalysis, thermocatalysis, photothermal catalysis, etc.).The LSPR effect of HxMoO3-y can be tuned throughout a broad spectrum range from visible to near-infrared (NIR) by altering the doping amount by electrochemical control, chemical reduction, or photochemical control. Notably, defects (oxygen vacancies) in HxMoO3-y arise in conjunction with the LSPR effect, resulting in the formation of unique and useful active sites in a range of catalytic processes. In this review, we explore the formation mechanism of HxMoO3-y with plasmonic features and discuss its applications in photocatalysis, thermocatalysis, and photothermal catalysis.
Collapse
Affiliation(s)
- Hao Ge
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Osaka 565-0871, Japan.
| | - Yasutaka Kuwahara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Osaka 565-0871, Japan. .,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.,JST, PRESTO, 4-1-8 Hon-Cho, Kawaguchi, Saitama 332-0012, Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Osaka 565-0871, Japan. .,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
31
|
Zhuo C, Cao H, You H, Liu S, Wang X, Wang F. Two-in-One: Photothermal Ring-Opening Copolymerization of CO 2 and Epoxides. ACS Macro Lett 2022; 11:941-947. [PMID: 35815849 DOI: 10.1021/acsmacrolett.2c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A two-in-one strategy for the photothermal ring-opening copolymerization (PROCOP) of carbon dioxide (CO2) and epoxides was developed by using visible light as an external stimulus. This strategy bridges two processes involving light-to-heat conversion and the alternating copolymerization of CO2 and epoxides. As a proof-of-concept, aluminum porphyrin complexes were explored as photothermal catalysts to afford the copolymerization of CO2/epoxides under a 635 nm laser irradiation. We demonstrated photothermally enhanced polymerization activity, in which the polymerization initiated by the photothermal effect showed a much higher turnover frequency than in the thermal system. Moreover, the PROCOP demonstrated a spatial-temporal control by a light on/off switch. This study provides a fascinating photothermal strategy not only for the CO2/epoxides copolymerization but also for the ring-opening (co)polymerization of other cyclic monomers.
Collapse
Affiliation(s)
- Chunwei Zhuo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Han Cao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Huai You
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Shunjie Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Fosong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
32
|
Khan IS, Garzon Tovar L, Mateo D, Gascon J. Metal‐Organic‐Frameworks and their derived materials in Photo‐Thermal Catalysis. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Il Son Khan
- KAUST: King Abdullah University of Science and Technology KCC SAUDI ARABIA
| | - Luis Garzon Tovar
- KAUST: King Abdullah University of Science and Technology KCC SAUDI ARABIA
| | - Diego Mateo
- KAUST: King Abdullah University of Science and Technology KCC SAUDI ARABIA
| | - Jorge Gascon
- King Abdullah University of Science and Technology Kaust Catalysis Center Bldg.3, Level 4, Room 4235 23955-6900 Thuwal SAUDI ARABIA
| |
Collapse
|
33
|
Mascaretti L, Schirato A, Fornasiero P, Boltasseva A, Shalaev VM, Alabastri A, Naldoni A. Challenges and prospects of plasmonic metasurfaces for photothermal catalysis. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:3035-3056. [PMID: 39634672 PMCID: PMC11501173 DOI: 10.1515/nanoph-2022-0073] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/10/2022] [Indexed: 12/07/2024]
Abstract
Solar-thermal technologies for converting chemicals using thermochemistry require extreme light concentration. Exploiting plasmonic nanostructures can dramatically increase the reaction rates by providing more efficient solar-to-heat conversion by broadband light absorption. Moreover, hot-carrier and local field enhancement effects can alter the reaction pathways. Such discoveries have boosted the field of photothermal catalysis, which aims at driving industrially-relevant chemical reactions using solar illumination rather than conventional heat sources. Nevertheless, only large arrays of plasmonic nano-units on a substrate, i.e., plasmonic metasurfaces, allow a quasi-unitary and broadband solar light absorption within a limited thickness (hundreds of nanometers) for practical applications. Through moderate light concentration (∼10 Suns), metasurfaces reach the same temperatures as conventional thermochemical reactors, or plasmonic nanoparticle bed reactors reach under ∼100 Suns. Plasmonic metasurfaces, however, have been mostly neglected so far for applications in the field of photothermal catalysis. In this Perspective, we discuss the potentialities of plasmonic metasurfaces in this emerging area of research. We present numerical simulations and experimental case studies illustrating how broadband absorption can be achieved within a limited thickness of these nanostructured materials. The approach highlights the synergy among different enhancement effects related to the ordered array of plasmonic units and the efficient heat transfer promoting faster dynamics than thicker structures (such as powdered catalysts). We foresee that plasmonic metasurfaces can play an important role in developing modular-like structures for the conversion of chemical feedstock into fuels without requiring extreme light concentrations. Customized metasurface-based systems could lead to small-scale and low-cost decentralized reactors instead of large-scale, infrastructure-intensive power plants.
Collapse
Affiliation(s)
- Luca Mascaretti
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, 77900Olomouc, Czech Republic
| | - Andrea Schirato
- Department of Physics, Politecnico Di Milano, Piazza Leonardo Da Vinci 32, 20133Milan, Italy; and Istituto Italiano di Tecnologia, Via Morego 30, 16163Genoa, Italy
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport Giacomo Ciamiciam, INSTM Trieste Research Unit and ICCOM-CNR Trieste Research Unit, University of Trieste, Via L. Giorgieri 1, 34127Trieste, Italy
| | - Alexandra Boltasseva
- School of Electrical & Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, USA
| | - Vladimir M. Shalaev
- School of Electrical & Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, USA
| | - Alessandro Alabastri
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, 77005Houston, TX, USA
| | - Alberto Naldoni
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, 77900Olomouc, Czech Republic
| |
Collapse
|
34
|
Zhang L, Li Z, Zhang X, Xu C, Zhang Y. Elaborated Reaction Pathway of Photothermal Catalytic CO
2
Conversion with H
2
O on Gallium Oxide‐Decorated and ‐Defective Surfaces. Chemistry 2022; 28:e202104490. [DOI: 10.1002/chem.202104490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Li Zhang
- State Key Laboratory of Clean Energy Utilization Department of Energy Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Zheng Li
- State Key Laboratory of Clean Energy Utilization Department of Energy Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Xu‐Han Zhang
- State Key Laboratory of Clean Energy Utilization Department of Energy Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Chen‐Yu Xu
- Department of Chemical and Materials Engineering University of Alberta Edmonton Alberta T6G 1H9 Canada
| | - Yan‐Wei Zhang
- State Key Laboratory of Clean Energy Utilization Department of Energy Engineering Zhejiang University Hangzhou 310027 P. R. China
| |
Collapse
|
35
|
Fang S, Hu YH. Thermo-photo catalysis: a whole greater than the sum of its parts. Chem Soc Rev 2022; 51:3609-3647. [PMID: 35419581 DOI: 10.1039/d1cs00782c] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thermo-photo catalysis, which is the catalysis with the participation of both thermal and photo energies, not only reduces the large energy consumption of thermal catalysis but also addresses the low efficiency of photocatalysis. As a whole greater than the sum of its parts, thermo-photo catalysis has been proven as an effective and promising technology to drive chemical reactions. In this review, we first clarify the definition (beyond photo-thermal catalysis and plasmonic catalysis), classification, and principles of thermo-photo catalysis and then reveal its superiority over individual thermal catalysis and photocatalysis. After elucidating the design principles and strategies toward highly efficient thermo-photo catalytic systems, an ample discussion on the synergetic effects of thermal and photo energies is provided from two perspectives, namely, the promotion of photocatalysis by thermal energy and the promotion of thermal catalysis by photo energy. Subsequently, state-of-the-art techniques applied to explore thermo-photo catalytic mechanisms are reviewed, followed by a summary on the broad applications of thermo-photo catalysis and its energy management toward industrialization. In the end, current challenges and potential research directions related to thermo-photo catalysis are outlined.
Collapse
Affiliation(s)
- Siyuan Fang
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, USA.
| | - Yun Hang Hu
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, USA.
| |
Collapse
|
36
|
Controlled Synthesis and Photoelectrochemical Performance Enhancement of Cu2−xSe Decorated Porous Au/Bi2Se3 Z-Scheme Plasmonic Photoelectrocatalyst. Catalysts 2022. [DOI: 10.3390/catal12040359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this paper, uniform Cu2−xSe-modified Au/Bi2Se3 hybrid nanoparticles with porous shells have been prepared through a cation exchange method. Bi2Se3/Cu2−xSe Z-scheme heterojunction is introduced onto Au nanocube by replacing Bi3+ with Cu2+. Owing to the effective coupling between Au core and semiconductor shells, Au/Bi2Se3/Cu2−xSe hybrids present a broad and strong plasmon resonance absorption in the visible band. More intriguingly, the carrier lifetime of Au/Bi2Se3/Cu2−xSe hybrid photoelectrodes can be further tailored with corresponding Cu2−xSe content. Through parameter optimization, 0.1-Au/Bi2Se3/Cu2−xSe electrode exhibits the longest electron lifetime (86.03 ms) among all the parallel samples, and corresponding photoelectrochemical performance enhancement is also observed in the tests. Compared with that of pure Bi2Se3 (0.016% at 0.90 V vs. RHE) and Au/Bi2Se3 (0.02% at 0.90 V vs. RHE) nanoparticles, the maximum photoconversion efficiency of porous Au/Bi2Se3/Cu2−xSe hybrid photoanodes increased by 5.87 and 4.50 times under simulated sunlight illumination, attributing to the cooperation of Z-scheme heterojunction and plasmon resonance enhancement effects. All the results indicate that Au/Bi2Se3/Cu2−xSe porous hybrids combine eco-friendliness with excellent sunlight harvesting capability and effectively inhibiting the charge recombination, which provide a new idea for efficient solar-driven water splitting.
Collapse
|
37
|
Nanostructured Broadband Solar Absorber for Effective Photothermal Conversion and Electricity Generation. ENERGIES 2022. [DOI: 10.3390/en15041354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photothermal conversion is an environmentally friendly process that harvests energy from the sun and has been attracting growing research interest in recent years. However, nanostructured strategies to improve light capture performance deserve further development, and the application of solar heating effects for clean energy needs to be explored. Herein, a multiscale nanomaterial was prepared by in situ polymerizing the polyaniline (PANI) nanoparticles into porous anodic aluminum oxide (AAO) membrane. As a result, the as-prepared PANI-AAO shows broadband solar absorption and provides a platform for efficient photothermal conversion. What is more, we introduced a typical thermoelectricity generator (TEG) with excellent output performance and combined it with PANI-AAO to prepare a solar thermoelectric generator (s-TEG). The s-TEG harvests solar energy and converts it into electricity, showing an outstanding power generation capability in outdoor conditions. Thus, the nanostructured broadband solar absorber and the integrated solar thermoelectric generator offer a promising candidate for a sustainable and green energy source in the future.
Collapse
|