1
|
Katz I, Tissier R, Kohlhauer M, Lemaire J, Hamlin A, Chalopin M, Farjot G, Milet A. Argon pharmacokinetics: measurements in pigs and analysis in humans using a physiologically based pharmacokinetics model. Med Gas Res 2024; 14:206-212. [PMID: 39073329 DOI: 10.4103/mgr.mgr_20_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 01/22/2024] [Indexed: 07/30/2024] Open
Abstract
The primary objective of this study was to investigate the pharmacokinetics of inhaled argon in young pigs using mechanical ventilation. Also a physiologically based model of argon pharmacokinetics (PBPK) is validated with human data for xenon from the literature and the new data from juvenile pigs. The inherent difficulty in performing pharmacokinetics studies of argon makes the use of the PBPK model especially relevant. The model is used to investigate argon pharmacokinetics for adult and neonate applications. Juvenile pigs (n = 4) were anesthetized, submitted to endotracheal intubation, and mechanical ventilation using a conventional ventilator. Argon inhalation was achieved by switching the animal from the first mechanical ventilator (with air/oxygen) to a second one that was supplied with 75% argon and 25% oxygen from premixed gas cylinders. This administration yielded blood samples that were analyzed using a quadrupole based technique for determining argon concentration. The range of blood:gas partition coefficient corresponding to the average measured Cmax of 190-872 μM is 0.005-0.022. Based on the average curve, T1/2= 75 seconds. The PBPK is shown to be in general agreement with the experimental data in pigs. Inhaled argon administration exhibited an on-off nature such that AUC was proportional to administration time. Confidence in the PBPK model and the remarkably robust and stable on-off nature of argon pharmacokinetics, notwithstanding intersubject variability and comorbidity, suggests that inhaled argon could readily be applied to any treatment regime.
Collapse
Affiliation(s)
- Ira Katz
- Early Drug Development, Air Liquide Santé International, Les loges-en-Josas, France
| | - Renaud Tissier
- Univ Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale, Mondor Institute for Biomedical Research, Créteil, France
- Ecole Nationale Vétérinaire d'Alfort, Mondor Institute for Biomedical Research, Maisons-Alfort, France
| | - Matthias Kohlhauer
- Univ Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale, Mondor Institute for Biomedical Research, Créteil, France
- Ecole Nationale Vétérinaire d'Alfort, Mondor Institute for Biomedical Research, Maisons-Alfort, France
| | - Joël Lemaire
- Institut de Chimie Physique, Centre National de la Recherche Scientifique, Université Paris-Saclay, Orsay, France
| | - Arthur Hamlin
- Institut de Chimie Physique, Centre National de la Recherche Scientifique, Université Paris-Saclay, Orsay, France
| | - Matthieu Chalopin
- Early Drug Development, Air Liquide Santé International, Les loges-en-Josas, France
| | - Géraldine Farjot
- Early Drug Development, Air Liquide Santé International, Les loges-en-Josas, France
| | - Aude Milet
- Early Drug Development, Air Liquide Santé International, Les loges-en-Josas, France
| |
Collapse
|
2
|
Porel P, Bala K, Aran KR. Exploring the role of HIF-1α on pathogenesis in Alzheimer's disease and potential therapeutic approaches. Inflammopharmacology 2024:10.1007/s10787-024-01585-x. [PMID: 39465478 DOI: 10.1007/s10787-024-01585-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
Hypoxia-inducible factor 1α (HIF-1α) is a crucial transcription factor that regulates cellular responses to low oxygen levels (hypoxia). In Alzheimer's disease (AD), emerging evidence suggests a significant involvement of HIF-1α in disease pathogenesis. AD is characterized by the accumulation of amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs), leading to neuronal dysfunction and cognitive decline. HIF-1α is implicated in AD through its multifaceted roles in various cellular processes. Firstly, in response to hypoxia, HIF-1α promotes the expression of genes involved in angiogenesis, which is crucial for maintaining cerebral blood flow and oxygen delivery to the brain. However, in the context of AD, dysregulated HIF-1α activation may exacerbate cerebral hypoperfusion, contributing to neuronal damage. Moreover, HIF-1α is implicated in the regulation of Aβ metabolism. It can influence the production and clearance of Aβ peptides, potentially modulating their accumulation and toxicity in the brain. Additionally, HIF-1α activation has been linked to neuroinflammation, a key feature of AD pathology. It can promote the expression of pro-inflammatory cytokines and exacerbate neuronal damage. Furthermore, HIF-1α may play a role in synaptic plasticity and neuronal survival, which are impaired in AD. Dysregulated HIF-1α signaling could disrupt these processes, contributing to cognitive decline and neurodegeneration. Overall, the involvement of HIF-1α in various aspects of AD pathophysiology highlights its potential as a therapeutic target. Modulating HIF-1α activity could offer novel strategies for mitigating neurodegeneration and preserving cognitive function in AD patients. However, further research is needed to elucidate the precise mechanisms underlying HIF-1α dysregulation in AD and to develop targeted interventions.
Collapse
Affiliation(s)
- Pratyush Porel
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Kanchan Bala
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Khadga Raj Aran
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
3
|
Mandel RM, Lotlikar PS, Keasler KT, Chen EY, Wilson JJ, Milner PJ. Gas Delivery Relevant to Human Health using Porous Materials. Chemistry 2024; 30:e202402163. [PMID: 38949770 PMCID: PMC11443428 DOI: 10.1002/chem.202402163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
Gases are essential for various applications relevant to human health, including in medicine, biomedical imaging, and pharmaceutical synthesis. However, gases are significantly more challenging to safely handle than liquids and solids. Herein, we review the use of porous materials, such as metal-organic frameworks (MOFs), zeolites, and silicas, to adsorb medicinally relevant gases and facilitate their handling as solids. Specific topics include the use of MOFs and zeolites to deliver H2S for therapeutic applications, 129Xe for magnetic resonance imaging, O2 for the treatment of cancer and hypoxia, and various gases for use in organic synthesis. This Perspective aims to bring together the organic, inorganic, medicinal, and materials chemistry communities to inspire the design of next-generation porous materials for the storage and delivery of medicinally relevant gases.
Collapse
Affiliation(s)
- Ruth M. Mandel
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Piyusha S. Lotlikar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, United States
| | - Kaitlyn T. Keasler
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Elena Y. Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, United States
| | - Phillip J. Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| |
Collapse
|
4
|
Feng Y, Su L, Liu L, Chen Z, Ji Y, Hu Y, Zheng D, Chen Z, Lei C, Xu H, Han Y, Shen H. Accurate Spatio-Temporal Delivery of Nitric Oxide Facilitates the Programmable Repair of Avascular Dense Connective Tissues Injury. Adv Healthc Mater 2024; 13:e2303740. [PMID: 38413194 DOI: 10.1002/adhm.202303740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/21/2023] [Indexed: 02/29/2024]
Abstract
Avascular dense connective tissues (e.g., the annulus fibrosus (AF) rupture, the meniscus tear, and tendons and ligaments injury) repair remains a challenge due to the "biological barrier" that hinders traditional drug permeation and limits self-healing of the injured tissue. Here, accurate delivery of nitric oxide (NO) to penetrate the "AF biological barrier" is achieved thereby enabling programmable AF repair. NO-loaded BioMOFs are synthesized and mixed in a modified polyvinyl alcohol and PCL-composited electrospun fiber membrane with excellent reactive oxygen species-responsive capability (LN@PM). The results show that LN@PM could respond to the high oxidative stress environment at the injured tissue and realize continuous and substantial NO release. Based on low molecular weight and lipophilicity, NO could penetrate through the "biological barrier" for accurate AF drug delivery. Moreover, the dynamic characteristics of the LN@PM reaction can be matched with the pathological microenvironment to initiate programmable tissue repair including sequential remodeling microenvironment, reprogramming the immune environment, and finally promoting tissue regeneration. This tailored programmable treatment strategy that matches the pathological repair process significantly repairs AF, ultimately alleviating intervertebral disc degeneration. This study highlights a promising approach for avascular dense connective tissue treatment through intelligent NO release, effectively overcoming "AF biological barriers" and programmable treatment.
Collapse
Affiliation(s)
- Yubo Feng
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Lefeng Su
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Lei Liu
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Zhanyi Chen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Yucheng Ji
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Yuwei Hu
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Dandan Zheng
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Zhi Chen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Changbin Lei
- Department of Orthopedics, Affiliated Hospital of Xiangnan University, Chenzhou, 423000, P. R. China
| | - He Xu
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Yingchao Han
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Hongxing Shen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| |
Collapse
|
5
|
Gao X, Jin B, Zhou X, Bai J, Zhong H, Zhao K, Huang Z, Wang C, Zhu J, Qin Q. Recent advances in the application of gasotransmitters in spinal cord injury. J Nanobiotechnology 2024; 22:277. [PMID: 38783332 PMCID: PMC11112916 DOI: 10.1186/s12951-024-02523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Spinal Cord Injury (SCI) is a condition characterized by complete or incomplete motor and sensory impairment, as well as dysfunction of the autonomic nervous system, caused by factors such as trauma, tumors, or inflammation. Current treatment methods primarily include traditional approaches like spinal canal decompression and internal fixation surgery, steroid pulse therapy, as well as newer techniques such as stem cell transplantation and brain-spinal cord interfaces. However, the above methods have limited efficacy in promoting axonal and neuronal regeneration. The challenge in medical research today lies in promoting spinal cord neuron regeneration and regulating the disrupted microenvironment of the spinal cord. Studies have shown that gas molecular therapy is increasingly used in medical research, with gasotransmitters such as hydrogen sulfide, nitric oxide, carbon monoxide, oxygen, and hydrogen exhibiting neuroprotective effects in central nervous system diseases. The gas molecular protect against neuronal death and reshape the microenvironment of spinal cord injuries by regulating oxidative, inflammatory and apoptotic processes. At present, gas therapy mainly relies on inhalation for systemic administration, which cannot effectively enrich and release gas in the spinal cord injury area, making it difficult to achieve the expected effects. With the rapid development of nanotechnology, the use of nanocarriers to achieve targeted enrichment and precise control release of gas at Sites of injury has become one of the emerging research directions in SCI. It has shown promising therapeutic effects in preclinical studies and is expected to bring new hope and opportunities for the treatment of SCI. In this review, we will briefly outline the therapeutic effects and research progress of gasotransmitters and nanogas in the treatment of SCI.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Bingrong Jin
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Xiaozhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Jinyu Bai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Hao Zhong
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Kai Zhao
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Zongrui Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jiang Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China.
| | - Qin Qin
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
6
|
Yang N, Li J, Yu S, Xia G, Li D, Yuan L, Wang Q, Ding L, Fan Z, Li J. Application of Nanomaterial-Based Sonodynamic Therapy in Tumor Therapy. Pharmaceutics 2024; 16:603. [PMID: 38794265 PMCID: PMC11125068 DOI: 10.3390/pharmaceutics16050603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Sonodynamic therapy (SDT) has attracted significant attention in recent years as it is an innovative approach to tumor treatment. It involves the utilization of sound waves or ultrasound (US) to activate acoustic sensitizers, enabling targeted drug release for precise tumor treatment. This review aims to provide a comprehensive overview of SDT, encompassing its underlying principles and therapeutic mechanisms, the applications of nanomaterials, and potential synergies with combination therapies. The review begins by introducing the fundamental principle of SDT and delving into the intricate mechanisms through which it facilitates tumor treatment. A detailed analysis is presented, outlining how SDT effectively destroys tumor cells by modulating drug release mechanisms. Subsequently, this review explores the diverse range of nanomaterials utilized in SDT applications and highlights their specific contributions to enhancing treatment outcomes. Furthermore, the potential to combine SDT with other therapeutic modalities such as photothermal therapy (PTT) and chemotherapy is discussed. These combined approaches aim to synergistically improve therapeutic efficacy while mitigating side effects. In conclusion, SDT emerges as a promising frontier in tumor treatment that offers personalized and effective treatment options with the potential to revolutionize patient care. As research progresses, SDT is poised to play a pivotal role in shaping the future landscape of oncology by providing patients with a broader spectrum of efficacious and tailored treatment options.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhongxiong Fan
- School of Pharmaceutical Sciences, Institute of Materia Medica, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Jinyao Li
- School of Pharmaceutical Sciences, Institute of Materia Medica, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
7
|
Martusevich AK, Surovegina AV, Nazarov VV, Popovicheva AN, Didenko NV. Chemiluminescent Analysis of Oxidative Metabolism in Rat Blood under the Influence of Argon and Helium. Bull Exp Biol Med 2023; 176:50-53. [PMID: 38091138 DOI: 10.1007/s10517-023-05965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 12/19/2023]
Abstract
We studied the nature of the action of course treatment with argon and helium (1 min, 3 procedures) on the oxidative metabolism in rat blood plasma. The study was performed on 30 Wistar rats divided into 3 groups (n=10 in each group): intact and 2 experimental (treatment of the skin of the back with a stream of argon and helium, respectively). After completion of the treatment course, the intensity of free radical processes, the total antioxidant activity, and malondialdehyde concentration were evaluated in the blood plasma. It was found that argon and helium gas flows provide stimulation of antioxidant systems, but the mechanisms of their effect were different. Treatment with helium did not affect the intensity of free radical processes, but significantly increased the overall antioxidant activity of blood plasma and reduced malondialdehyde concentration in comparison with the effect of argon flow.
Collapse
Affiliation(s)
- A K Martusevich
- Privolzhsky Research Medical University, Ministry of Health of the Russian Federation, Nizhny Novgorod, Russia.
| | - A V Surovegina
- Privolzhsky Research Medical University, Ministry of Health of the Russian Federation, Nizhny Novgorod, Russia
| | - V V Nazarov
- Privolzhsky Research Medical University, Ministry of Health of the Russian Federation, Nizhny Novgorod, Russia
| | - A N Popovicheva
- Privolzhsky Research Medical University, Ministry of Health of the Russian Federation, Nizhny Novgorod, Russia
| | - N V Didenko
- Privolzhsky Research Medical University, Ministry of Health of the Russian Federation, Nizhny Novgorod, Russia
| |
Collapse
|
8
|
Li J, Huang Y, Ma T, Liu Y, Luo Y, Gao L, Li Z, Ye Z. Carbon Monoxide Releasing Molecule-3 Alleviates Oxidative Stress and Apoptosis in Selenite-Induced Cataract in Rats via Activating Nrf2/HO-1 Pathway. Curr Eye Res 2023; 48:919-929. [PMID: 37395371 DOI: 10.1080/02713683.2023.2232569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE This study investigated the protective effect of carbon monoxide releasing molecule-3 (CORM-3), the classical donor of carbon monoxide, on selenite-induced cataract in rats and explore its possible mechanism. METHODS Sprague-Dawley rat pups treated with sodium selenite (Na2SeO3) were chosen as the cataract model. Fifty rat pups were randomly divided into 5 groups: Control group, Na2SeO3 (3.46 mg/kg) group, low-dose CORM-3 (8 mg/kg/d) + Na2SeO3 group, high-dose CORM-3 (16 mg/kg/d) + Na2SeO3 group, and inactivated CORM-3 (iCORM-3) (8 mg/kg/d) + Na2SeO3 group. The protective effect of CORM-3 was tested by lens opacity scores, hematoxylin and eosin staining, TdT-mediated dUTP nick-end labeling assay, and enzyme-linked immunosorbent assay. Besides, quantitative real-time PCR and western blotting were used for mechanism validation. RESULTS Na2SeO3 induced nuclear cataract rapidly and stably, and the achievement ratio of Na2SeO3 group was 100%. CORM-3 alleviated lens opacity of selenite-induced cataract and attenuated the morphological changes of the rat lens. The levels of antioxidant enzymes GSH and SOD in rat lens were also increased by CORM-3 treatment. CORM-3 significantly reduced the ratio of apoptotic lens epithelial cells, besides, CORM-3 decreased the expression of Cleaved Caspase-3 and Bax induced by selenite and increased the expression of Bcl-2 in rat lens inhibited by selenite. Moreover, Nrf-2 and HO-1 were upregulated and Keap1 was downregulated after CORM-3 treatment. While iCORM-3 did not exert the same effect as CORM-3. CONCLUSIONS Exogenous CO released from CORM-3 alleviates oxidative stress and apoptosis in selenite-induced rat cataract via activating Nrf2/HO-1 pathway. CORM-3 may serve as a promising preventive and therapeutic strategy for cataract.
Collapse
Affiliation(s)
- Jinglan Li
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Yang Huang
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tianju Ma
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Yating Liu
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Yu Luo
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Lixiong Gao
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Zhaohui Li
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Zi Ye
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
9
|
Huang H, Qian M, Liu Y, Chen S, Li H, Han Z, Han ZC, Chen XM, Zhao Q, Li Z. Genetically engineered mesenchymal stem cells as a nitric oxide reservoir for acute kidney injury therapy. eLife 2023; 12:e84820. [PMID: 37695201 PMCID: PMC10541176 DOI: 10.7554/elife.84820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/08/2023] [Indexed: 09/12/2023] Open
Abstract
Nitric oxide (NO), as a gaseous therapeutic agent, shows great potential for the treatment of many kinds of diseases. Although various NO delivery systems have emerged, the immunogenicity and long-term toxicity of artificial carriers hinder the potential clinical translation of these gas therapeutics. Mesenchymal stem cells (MSCs), with the capacities of self-renewal, differentiation, and low immunogenicity, have been used as living carriers. However, MSCs as gaseous signaling molecule (GSM) carriers have not been reported. In this study, human MSCs were genetically modified to produce mutant β-galactosidase (β-GALH363A). Furthermore, a new NO prodrug, 6-methyl-galactose-benzyl-oxy NONOate (MGP), was designed. MGP can enter cells and selectively trigger NO release from genetically engineered MSCs (eMSCs) in the presence of β-GALH363A. Moreover, our results revealed that eMSCs can release NO when MGP is systemically administered in a mouse model of acute kidney injury (AKI), which can achieve NO release in a precise spatiotemporal manner and augment the therapeutic efficiency of MSCs. This eMSC and NO prodrug system provides a unique and tunable platform for GSM delivery and holds promise for regenerative therapy by enhancing the therapeutic efficiency of stem cells.
Collapse
Affiliation(s)
- Haoyan Huang
- Nankai University School of MedicineTianjinChina
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, the College of Life SciencesTianjinChina
- National Key Laboratory of Kidney Diseases, Chinese PLA General HospitalBeijingChina
| | - Meng Qian
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, the College of Life SciencesTianjinChina
| | - Yue Liu
- Nankai University School of MedicineTianjinChina
| | - Shang Chen
- Nankai University School of MedicineTianjinChina
| | - Huifang Li
- Nankai University School of MedicineTianjinChina
| | - Zhibo Han
- Jiangxi Engineering Research Center for Stem Cell, ShangraoJiangxiChina
- Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, National Engineering Research Center of Cell Products, AmCellGene Co., LtdTianjinChina
| | - Zhong-Chao Han
- Jiangxi Engineering Research Center for Stem Cell, ShangraoJiangxiChina
- Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, National Engineering Research Center of Cell Products, AmCellGene Co., LtdTianjinChina
- Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health & Biotech CoBeijingChina
| | - Xiang-Mei Chen
- National Key Laboratory of Kidney Diseases, Chinese PLA General HospitalBeijingChina
| | - Qiang Zhao
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, the College of Life SciencesTianjinChina
| | - Zongjin Li
- Nankai University School of MedicineTianjinChina
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, the College of Life SciencesTianjinChina
- National Key Laboratory of Kidney Diseases, Chinese PLA General HospitalBeijingChina
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and GynecologyTianjinChina
| |
Collapse
|
10
|
Wu M, Wang S, Hai W, Lu X, Li P. Development of a H 2S-responsive NIR Fluorescent Probe for H 2S Detection and H 2S Releasing Monitoring From Prodrug. J Fluoresc 2023; 33:1853-1860. [PMID: 36867290 DOI: 10.1007/s10895-023-03187-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 02/16/2023] [Indexed: 03/04/2023]
Abstract
H2S was deemed as a toxic gradient in the realm of food and environment but plays pivotal pathophysiological roles in organisms. H2S instabilities and disturbances are always responsible for multiple disorders. We fabricated a H2S-responsive NIR fluorescent probe (HT) for H2S detection and evaluation both in vitro and in vivo. HT exhibited rapid H2S response within 5 min, accompanied with visible color change and NIR fluorescence generation, and the fluorescent intensities were linearly correlated with corresponding H2S concentrations. When HT was incubated with A549 cells, the intracellular H2S and H2S fluctuations could be monitored ore rotundo via the responsive fluorescence. Meanwhile, when HT was co-administrated with H2S prodrug ADT-OH, the H2S release from ADT-OH could be visualized and monitored to evaluate its release efficacy.
Collapse
Affiliation(s)
- Muyu Wu
- Department of Nuclear Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Siwen Wang
- Department of Nuclear Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Wangxi Hai
- Department of Nuclear Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xinmiao Lu
- Department of Nuclear Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Peiyong Li
- Department of Nuclear Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
11
|
Peng T, Booher K, Moody MR, Yin X, Aronowski J, McPherson DD, Savitz SI, Kim H, Huang SL. Enhanced Cerebroprotection of Xenon-Loaded Liposomes in Combination with rtPA Thrombolysis for Embolic Ischemic Stroke. Biomolecules 2023; 13:1256. [PMID: 37627321 PMCID: PMC10452377 DOI: 10.3390/biom13081256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Xenon (Xe) has shown great potential as a stroke treatment due to its exceptional ability to protect brain tissue without inducing side effects. We have previously developed Xe-loaded liposomes for the ultrasound-activated delivery of Xe into the cerebral region and demonstrated their therapeutic efficacy. At present, the sole FDA-approved thrombolytic agent for stroke treatment is recombinant tissue plasminogen activator (rtPA). In this study, we aimed to investigate the potential of combining Xe-liposomes with an intravenous rtPA treatment in a clinically relevant embolic rat stroke model. We evaluated the combinational effect using an in vitro clot lysis model and an in vivo embolic middle cerebral artery occlusion (eMCAO) rat model. The treatment groups received intravenous administration of Xe-liposomes (20 mg/kg) at 2 h post-stroke onset, followed by the administration of rtPA (10 mg/kg) at either 2 or 4 h after the onset. Three days after the stroke, behavioral tests were conducted, and brain sections were collected for triphenyltetrazolium chloride (TTC) and TUNEL staining. Infarct size was determined as normalized infarct volume (%). Both in vitro and in vivo clot lysis experiments demonstrated that Xe-liposomes in combination with rtPA resulted in effective clot lysis comparable to the treatment with free rtPA alone. Animals treated with Xe-liposomes in combination with rtPA showed reduced TUNEL-positive cells and demonstrated improved neurological recovery. Importantly, Xe-liposomes in combination with late rtPA treatment reduced rtPA-induced hemorrhage, attributing to the reduction of MMP9 immunoreactivity. This study demonstrates that the combined therapy of Xe-liposomes and rtPA provides enhanced therapeutic efficacy, leading to decreased neuronal cell death and a potential to mitigate hemorrhagic side effects associated with late rtPA treatment.
Collapse
Affiliation(s)
- Tao Peng
- Division of Cardiovascular Medicine, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (T.P.); (M.R.M.); (X.Y.); (D.D.M.)
| | - Keith Booher
- Zymo Research Corporation, Irvine, CA 92614, USA;
| | - Melanie R. Moody
- Division of Cardiovascular Medicine, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (T.P.); (M.R.M.); (X.Y.); (D.D.M.)
| | - Xing Yin
- Division of Cardiovascular Medicine, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (T.P.); (M.R.M.); (X.Y.); (D.D.M.)
| | - Jaroslaw Aronowski
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.A.); (S.I.S.)
- Institute for Stroke and Cerebrovascular Disease, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - David D. McPherson
- Division of Cardiovascular Medicine, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (T.P.); (M.R.M.); (X.Y.); (D.D.M.)
| | - Sean I. Savitz
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.A.); (S.I.S.)
- Institute for Stroke and Cerebrovascular Disease, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hyunggun Kim
- Division of Cardiovascular Medicine, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (T.P.); (M.R.M.); (X.Y.); (D.D.M.)
- Department of Biomechatronic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Shao-Ling Huang
- Division of Cardiovascular Medicine, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (T.P.); (M.R.M.); (X.Y.); (D.D.M.)
- Institute for Stroke and Cerebrovascular Disease, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
12
|
Tang X, Ren J, Wei X, Wang T, Li H, Sun Y, Liu Y, Chi M, Zhu S, Lu L, Zhang J, Yang B. Exploiting synergistic effect of CO/NO gases for soft tissue transplantation using a hydrogel patch. Nat Commun 2023; 14:2417. [PMID: 37105981 PMCID: PMC10140290 DOI: 10.1038/s41467-023-37959-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Autologous skin flap transplantation is a common method for repairing complex soft tissue defects caused by cancer, trauma, and congenital malformations. Limited blood supply range and post-transplantation ischemia-reperfusion injury can lead to distal necrosis of the flap and long-term functional loss, which severely restricts the decision-making regarding the optimal surgical plan. To address this issue, we develop a hydrogel patch that releases carbon monoxide and nitric oxide gases on demand, to afford a timely blood supply for skin flap transplantation during surgery. Using an ischemia-reperfusion dorsal skin flap model in rats, we show that the hydrogel patch maintains the immediate opening of blood flow channels in transplanted tissue and effective blood perfusion throughout the perioperative period, activating perfusion of the hemodynamic donor site. We demonstrate that the hydrogel patch promotes distal vascularization and long-term functional reconstruction of transplanted tissues by inhibiting inflammatory damage and accelerating blood vessel formation.
Collapse
Affiliation(s)
- Xiaoduo Tang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun, PR China
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, PR China
| | - Jingyan Ren
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun, PR China
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, PR China
| | - Xin Wei
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
| | - Tao Wang
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
| | - Haiqiu Li
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
| | - Yihan Sun
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun, PR China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, PR China
| | - Yang Liu
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
| | - Mingli Chi
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun, PR China.
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, PR China.
| | - Laijin Lu
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun, PR China.
| | - Junhu Zhang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun, PR China.
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, PR China.
| | - Bai Yang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Jilin University, Changchun, PR China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, PR China
| |
Collapse
|
13
|
Duan Y, Sun J. Preparation of Iron-Based Sulfides and Their Applications in Biomedical Fields. Biomimetics (Basel) 2023; 8:biomimetics8020177. [PMID: 37218763 DOI: 10.3390/biomimetics8020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Recently, iron-based sulfides, including iron sulfide minerals and biological iron sulfide clusters, have attracted widespread interest, owing to their excellent biocompatibility and multi-functionality in biomedical applications. As such, controlled synthesized iron sulfide nanomaterials with elaborate designs, enhanced functionality and unique electronic structures show numerous advantages. Furthermore, iron sulfide clusters produced through biological metabolism are thought to possess magnetic properties and play a crucial role in balancing the concentration of iron in cells, thereby affecting ferroptosis processes. The electrons in the Fenton reaction constantly transfer between Fe2+ and Fe3+, participating in the production and reaction process of reactive oxygen species (ROS). This mechanism is considered to confer advantages in various biomedical fields such as the antibacterial field, tumor treatment, biosensing and the treatment of neurodegenerative diseases. Thus, we aim to systematically introduce recent advances in common iron-based sulfides.
Collapse
Affiliation(s)
- Yefan Duan
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Jianfei Sun
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| |
Collapse
|
14
|
Artamonov MY, Martusevich AK, Pyatakovich FA, Minenko IA, Dlin SV, LeBaron TW. Molecular Hydrogen: From Molecular Effects to Stem Cells Management and Tissue Regeneration. Antioxidants (Basel) 2023; 12:antiox12030636. [PMID: 36978884 PMCID: PMC10045005 DOI: 10.3390/antiox12030636] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
It is known that molecular hydrogen is a relatively stable, ubiquitous gas that is a minor component of the atmosphere. At the same time, in recent decades molecular hydrogen has been shown to have diverse biological effects. By the end of 2022, more than 2000 articles have been published in the field of hydrogen medicine, many of which are original studies. Despite the existence of several review articles on the biology of molecular hydrogen, many aspects of the research direction remain unsystematic. Therefore, the purpose of this review was to systematize ideas about the nature, characteristics, and mechanisms of the influence of molecular hydrogen on various types of cells, including stem cells. The historical aspects of the discovery of the biological activity of molecular hydrogen are presented. The ways of administering molecular hydrogen into the body are described. The molecular, cellular, tissue, and systemic effects of hydrogen are also reviewed. Specifically, the effect of hydrogen on various types of cells, including stem cells, is addressed. The existing literature indicates that the molecular and cellular effects of hydrogen qualify it to be a potentially effective agent in regenerative medicine.
Collapse
Affiliation(s)
- Mikhail Yu. Artamonov
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
- Correspondence: (M.Y.A.); (T.W.L.); Tel.: +1-570-972-6778 (M.Y.A.); +1-435-586-7818 (T.W.L.)
| | - Andrew K. Martusevich
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia
- Laboratory of Medical Biophysics, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia
| | | | - Inessa A. Minenko
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
| | - Sergei V. Dlin
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
| | - Tyler W. LeBaron
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT 84720, USA
- Molecular Hydrogen Institute, Enoch, UT 84721, USA
- Correspondence: (M.Y.A.); (T.W.L.); Tel.: +1-570-972-6778 (M.Y.A.); +1-435-586-7818 (T.W.L.)
| |
Collapse
|
15
|
Some Beneficial Effects of Inert Gases on Blood Oxidative Metabolism: In Vivo Study. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5857979. [PMID: 36573196 PMCID: PMC9789907 DOI: 10.1155/2022/5857979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/29/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
The aim of the study was to assess the effect of external use of inert gases (helium and argon) on the state of free radical processes in vivo. The experiment was performed on 30 male Wistar stock rats (age-3 months, weight-200-220 g.), randomly distributed into 3 equal groups. The first group of animals was intact (n = 10). The animals of the second and third groups were treated with argon and helium streams, respectively. Our research has allowed us to establish that the studied inert gases have a modulating effect on the state of oxidative metabolism of rat blood, and the nature of this effect is directly determined by the type of gas. The results of this study allowed us to establish the potential antioxidant effect of the helium stream, mainly realized due to the activation of the catalytic properties of the enzymatic link of the antioxidant system of rat blood plasma. At the same time, the revealed features of shifts in oxidative metabolism during treatment with argon flow include not only stimulation of the antioxidant system but also the pronounced induction of free radical oxidation. Thus, the conducted studies made it possible to verify the specificity of the response of the oxidative metabolism of blood plasma to the use of inert gases, depending on their type.
Collapse
|
16
|
Qi W, Man L, Suguro S, Zhao Y, Quan H, Huang C, Ma H, Guan H, Zhu Y. Endocrine effects of three common gas signaling molecules in humans: A literature review. Front Endocrinol (Lausanne) 2022; 13:1074638. [PMID: 36568094 PMCID: PMC9780443 DOI: 10.3389/fendo.2022.1074638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Gases such as hydrogen sulfide, nitric oxide and sulfur dioxide have important regulatory effects on the endocrine and physiological processes of the body and are collectively referred to as "gas signaling molecules". These gas signaling molecules are also closely related to Alzheimer's disease, the inflammatory response and depression. In this paper, we introduce the production and metabolic pathways of NO, H2S and SO2 in living organisms and review the regulatory functions of gas signaling molecules in the endocrine system and their mechanisms in relation to their clinical applications. This work will provide a basis for finding targets for intervention and establishing novel prevention and treatment strategies for related diseases.
Collapse
Affiliation(s)
- Wei Qi
- School of Pharmacy, Macau University of Science and Technology, Macao, Macao SAR, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macao, Macao SAR, China
| | - Luo Man
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Sei Suguro
- Faculty of Medicine, School of Pharmacy, The Chinese University of Hong Kong, Shatin, China
| | - Yidan Zhao
- State Key Laboratory of Quality Research in Chinese Medicines, Macao, Macao SAR, China
| | - Heng Quan
- School of Pharmacy, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Chuoji Huang
- School of Pharmacy, Macau University of Science and Technology, Macao, Macao SAR, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macao, Macao SAR, China
| | - Haoran Ma
- School of Pharmacy, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Haoran Guan
- School of Pharmacy, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Yizhun Zhu
- School of Pharmacy, Macau University of Science and Technology, Macao, Macao SAR, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macao, Macao SAR, China
- *Correspondence: Yizhun Zhu,
| |
Collapse
|