1
|
Lin D, Lynch J, Wang S, Hu Z, Rai RK, Zhang H, Chen C, Kumari S, Stach EA, Davydov AV, Redwing JM, Jariwala D. Broadband Light Harvesting from Scalable Two-Dimensional Semiconductor Multi-Heterostructures. NANO LETTERS 2024; 24:13935-13944. [PMID: 39466799 DOI: 10.1021/acs.nanolett.4c02963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Broadband absorption in the visible spectrum is essential in optoelectronic applications that involve power conversion such as photovoltaics and photocatalysis. Most ultrathin broadband absorbers use parasitic plasmonic structures that maximize absorption using surface plasmons and/or Fabry-Perot cavities, which limits the weight efficiency of the device. Here, we show the theoretical and experimental realization of an unpatterned/planar semiconductor thin-film absorber based on monolayer transition-metal dichalcogenides. We experimentally demonstrate an average total absorption in the visible range (450-700 nm) of >70% using <4 nm of semiconductor absorbing materials scalable over large areas with vapor phase growth techniques. Our analysis suggests that a power conversion efficiency of 15.54% and a specific power >300 W g-1 may be achieved in a photovoltaic cell based on this metamaterial absorber.
Collapse
Affiliation(s)
- Da Lin
- Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jason Lynch
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sudong Wang
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zekun Hu
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rajeev Kumar Rai
- Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Huairuo Zhang
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 208999, United States
- Theiss Research, Inc., La Jolla, California 92037, United States
| | - Chen Chen
- 2D Crystal Consortium Materials Innovation Platform, Materials Research Institute, Penn State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, 2D Crystal Consortium Materials Innovation Platform, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Shalini Kumari
- 2D Crystal Consortium Materials Innovation Platform, Materials Research Institute, Penn State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, 2D Crystal Consortium Materials Innovation Platform, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Eric A Stach
- Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Albert V Davydov
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 208999, United States
| | - Joan M Redwing
- 2D Crystal Consortium Materials Innovation Platform, Materials Research Institute, Penn State University, University Park, Pennsylvania 16802, United States
- Materials Science and Engineering, Penn State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, 2D Crystal Consortium Materials Innovation Platform, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Deep Jariwala
- Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Song W, Ye Q, Chen Z, Ge J, Xie L, Ge Z. Advances in Stretchable Organic Photovoltaics: Flexible Transparent Electrodes and Deformable Active Layer Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311170. [PMID: 38813892 DOI: 10.1002/adma.202311170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/24/2024] [Indexed: 05/31/2024]
Abstract
Stretchable organic photovoltaics (OPVs) have attracted significant attention as promising power sources for wearable electronic systems owing to their superior robustness under repetitive tensile strains and their good compatibility. However, reconciling a high power-conversion efficiency and a reasonable flexibility is a tremendous challenge. In addition, the development of stretchable OPVs must be accelerated to satisfy the increasing requirements of niche markets for mechanical robustness. Stretchable OPV devices can be classified as either structurally or intrinsically stretchable. This work reviews recent advances in stretchable OPVs, including the design of mechanically robust transparent electrodes, photovoltaic materials, and devices. Initially, an overview of the characteristics and recent research progress in the areas of structurally and intrinsically stretchable OPVs is provided. Subsequently, research into flexible and stretchable transparent electrodes that directly affect the performances of stretchable OPVs is summarized and analyzed. Overall, this review aims to provide an in-depth understanding of the intrinsic properties of highly efficient and deformable active materials, while also emphasizing advanced strategies for simultaneously improving the photovoltaic performance and mechanical flexibility of the active layer, including material design, multi-component settings, and structural optimization.
Collapse
Affiliation(s)
- Wei Song
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinrui Ye
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenyu Chen
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinfeng Ge
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Xie
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ziyi Ge
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Abolhosen AMR, Lee S, Fukuda K, Someya T, González LH, Shintake J. Functional soft robotic composites based on organic photovoltaic and dielectric elastomer actuator. Sci Rep 2024; 14:9953. [PMID: 38688993 PMCID: PMC11061127 DOI: 10.1038/s41598-024-60899-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/29/2024] [Indexed: 05/02/2024] Open
Abstract
Improving the energy efficiency of robots remains a crucial challenge in soft robotics, with energy harvesting emerging as a promising approach to address it. This study presents a functional soft robotic composite called OPV-DEA, which integrates flexible organic photovoltaic (OPV) and dielectric elastomer actuator (DEA). The composite can simultaneously generate electrostatic bending actuation and harvest energy from external lights. Owing to its simplicity and inherent flexibility, the OPV-DEA is poised to function as a fundamental building block for soft robots. This study aimed to validate this concept by initially establishing the fabrication process of OPV-DEA. Subsequently, experimental samples are fabricated and characterized. The results show that the samples exhibit a voltage-controllable bending actuation of up to 15.6° and harvested power output of 1.35 mW under an incident power irradiance of 11.7 mW/cm2. These performances remain consistent even after 1000 actuation cycles. Finally, to demonstrate the feasibility of soft robotic applications, an untethered swimming robot equipped with two OPV-DEAs is fabricated and tested. The robot demonstrates swimming at a speed of 21.7 mm/s. The power consumption of the robot is dominated by a high-voltage DC-DC converter, with a value approximately 1.5 W. As a result, the on-board OPVs cannot supply the necessary energy during locomotion simultaneously. Instead, they contribute to the overall system by charging a battery used for the controller on board. Nevertheless, these findings suggest that the OPV-DEA could pave the way for the development of an unprecedented range of functional soft robots.
Collapse
Affiliation(s)
- Ahmed Miguel Román Abolhosen
- Department of Mechanical and Intelligent Systems Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
- Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacán, Instituto Politécnico Nacional, Col. San Francisco Culhuacán, Av. Santa Ana No. 1000, 04440, Mexico City, Mexico
| | - Shinyoung Lee
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kenjiro Fukuda
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takao Someya
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Department of Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Bunkyo-Ku, Tokyo, 113-8656, Japan
| | - Leobardo Hernández González
- Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacán, Instituto Politécnico Nacional, Col. San Francisco Culhuacán, Av. Santa Ana No. 1000, 04440, Mexico City, Mexico
| | - Jun Shintake
- Department of Mechanical and Intelligent Systems Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan.
| |
Collapse
|
4
|
Ding P, Yang D, Yang S, Ge Z. Stability of organic solar cells: toward commercial applications. Chem Soc Rev 2024; 53:2350-2387. [PMID: 38268469 DOI: 10.1039/d3cs00492a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Organic solar cells (OSCs) have attracted a great deal of attention in the field of clean solar energy due to their advantages of transparency, flexibility, low cost and light weight. Introducing them to the market enables seamless integration into buildings and windows, while also supporting wearable, portable electronics and internet-of-things (IoT) devices. With the development of photovoltaic materials and the optimization of fabrication technology, the power conversion efficiencies (PCEs) of OSCs have rapidly improved and now exceed 20%. However, there is a significant lack of focus on material stability and device lifetime, causing a severe hindrance to commercial applications. In this review, we carefully review important strategies employed to improve the stability of OSCs over the past three years from the perspectives of material design and device engineering. Furthermore, we analyze and discuss the current important progress in terms of air, light, thermal and mechanical stability. Finally, we propose the future research directions to overcome the challenges in achieving highly stable OSCs. We expect that this review will contribute to solving the stability problem of OSCs, eventually paving the way for commercial applications in the near future.
Collapse
Affiliation(s)
- Pengfei Ding
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daobin Yang
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuncheng Yang
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Ziyi Ge
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Ali I, Islam MR, Yin J, Eichhorn SJ, Chen J, Karim N, Afroj S. Advances in Smart Photovoltaic Textiles. ACS NANO 2024; 18:3871-3915. [PMID: 38261716 PMCID: PMC10851667 DOI: 10.1021/acsnano.3c10033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
Energy harvesting textiles have emerged as a promising solution to sustainably power wearable electronics. Textile-based solar cells (SCs) interconnected with on-body electronics have emerged to meet such needs. These technologies are lightweight, flexible, and easy to transport while leveraging the abundant natural sunlight in an eco-friendly way. In this Review, we comprehensively explore the working mechanisms, diverse types, and advanced fabrication strategies of photovoltaic textiles. Furthermore, we provide a detailed analysis of the recent progress made in various types of photovoltaic textiles, emphasizing their electrochemical performance. The focal point of this review centers on smart photovoltaic textiles for wearable electronic applications. Finally, we offer insights and perspectives on potential solutions to overcome the existing limitations of textile-based photovoltaics to promote their industrial commercialization.
Collapse
Affiliation(s)
- Iftikhar Ali
- Centre
for Print Research (CFPR), The University
of the West of England, Frenchay Campus, Bristol BS16 1QY, U.K.
| | - Md Rashedul Islam
- Centre
for Print Research (CFPR), The University
of the West of England, Frenchay Campus, Bristol BS16 1QY, U.K.
| | - Junyi Yin
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Stephen J. Eichhorn
- Bristol
Composites Institute, School of Civil, Aerospace, and Design Engineering, The University of Bristol, University Walk, Bristol BS8 1TR, U.K.
| | - Jun Chen
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Nazmul Karim
- Centre
for Print Research (CFPR), The University
of the West of England, Frenchay Campus, Bristol BS16 1QY, U.K.
- Nottingham
School of Art and Design, Nottingham Trent
University, Shakespeare Street, Nottingham NG1 4GG, U.K.
| | - Shaila Afroj
- Centre
for Print Research (CFPR), The University
of the West of England, Frenchay Campus, Bristol BS16 1QY, U.K.
| |
Collapse
|
6
|
Jinno H, Shivarudraiah SB, Asbjörn R, Vagli G, Marcato T, Eickemeyer FT, Pfeifer L, Yokota T, Someya T, Shih CJ. Indoor Self-Powered Perovskite Optoelectronics with Ultraflexible Monochromatic Light Source. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304604. [PMID: 37656902 DOI: 10.1002/adma.202304604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/26/2023] [Indexed: 09/03/2023]
Abstract
Self-powered skin optoelectronics fabricated on ultrathin polymer films is emerging as one of the most promising components for the next-generation Internet of Things (IoT) technology. However, a longstanding challenge is the device underperformance owing to the low process temperature of polymer substrates. In addition, broadband electroluminescence (EL) based on organic or polymer semiconductors inevitably suffers from periodic spectral distortion due to Fabry-Pérot (FP) interference upon substrate bending, preventing advanced applications. Here, ultraflexible skin optoelectronics integrating high-performance solar cells and monochromatic light-emitting diodes using solution-processed perovskite semiconductors is presented. n-i-p perovskite solar cells and perovskite nanocrystal light-emitting diodes (PNC-LEDs), with power-conversion and current efficiencies of 18.2% and 15.2 cd A-1 , respectively, are demonstrated on ultrathin polymer substrates with high thermal stability, which is a record-high efficiency for ultraflexible perovskite solar cell. The narrowband EL with a full width at half-maximum of 23 nm successfully eliminates FP interference, yielding bending-insensitive spectra even under 50% of mechanical compression. Photo-plethysmography using the skin optoelectronic device demonstrates a signal selectivity of 98.2% at 87 bpm pulse. The results presented here pave the way to inexpensive and high-performance ultrathin optoelectronics for self-powered applications such as wearable displays and indoor IoT sensors.
Collapse
Affiliation(s)
- Hiroaki Jinno
- Institute for Chemical and Bioengineering, ETH, Zurich, Zurich, 8093, Switzerland
| | | | - Rasmussen Asbjörn
- Institute for Chemical and Bioengineering, ETH, Zurich, Zurich, 8093, Switzerland
| | - Gianluca Vagli
- Institute for Chemical and Bioengineering, ETH, Zurich, Zurich, 8093, Switzerland
| | - Tommaso Marcato
- Institute for Chemical and Bioengineering, ETH, Zurich, Zurich, 8093, Switzerland
| | - Felix Thomas Eickemeyer
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, EPFL, Lausanne, 1015, Switzerland
| | - Lukas Pfeifer
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, EPFL, Lausanne, 1015, Switzerland
| | - Tomoyuki Yokota
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takao Someya
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Chih-Jen Shih
- Institute for Chemical and Bioengineering, ETH, Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
7
|
Xiong S, Fukuda K, Nakano K, Lee S, Sumi Y, Takakuwa M, Inoue D, Hashizume D, Du B, Yokota T, Zhou Y, Tajima K, Someya T. Waterproof and ultraflexible organic photovoltaics with improved interface adhesion. Nat Commun 2024; 15:681. [PMID: 38302472 PMCID: PMC10834485 DOI: 10.1038/s41467-024-44878-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
Ultraflexible organic photovoltaics have emerged as a potential power source for wearable electronics owing to their stretchability and lightweight nature. However, waterproofing ultraflexible organic photovoltaics without compromising mechanical flexibility and conformability remains challenging. Here, we demonstrate waterproof and ultraflexible organic photovoltaics through the in-situ growth of a hole-transporting layer to strengthen interface adhesion between the active layer and anode. Specifically, a silver electrode is deposited directly on top of the active layers, followed by thermal annealing treatment. Compared with conventional sequentially-deposited hole-transporting layers, the in-situ grown hole-transporting layer exhibits higher thermodynamic adhesion between the active layers, resulting in better waterproofness. The fabricated 3 μm-thick organic photovoltaics retain 89% and 96% of their pristine performance after immersion in water for 4 h and 300 stretching/releasing cycles at 30% strain under water, respectively. Moreover, the ultraflexible devices withstand a machine-washing test with such a thin encapsulation layer, which has never been reported. Finally, we demonstrate the universality of the strategy for achieving waterproof solar cells.
Collapse
Affiliation(s)
- Sixing Xiong
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Saitama, Japan
| | - Kenjiro Fukuda
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Saitama, Japan.
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan.
| | - Kyohei Nakano
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Saitama, Japan
| | - Shinyoung Lee
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Saitama, Japan
| | - Yutaro Sumi
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 113-8656, Tokyo, Japan
| | - Masahito Takakuwa
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 113-8656, Tokyo, Japan
- Institute of Engineering Innovation, The University of Tokyo, 113-8656, Tokyo, Japan
| | - Daishi Inoue
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Saitama, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Saitama, Japan
| | - Baocai Du
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Saitama, Japan
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 113-8656, Tokyo, Japan
| | - Tomoyuki Yokota
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 113-8656, Tokyo, Japan
- Institute of Engineering Innovation, The University of Tokyo, 113-8656, Tokyo, Japan
| | - Yinhua Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Keisuke Tajima
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Saitama, Japan
| | - Takao Someya
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Saitama, Japan.
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan.
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 113-8656, Tokyo, Japan.
| |
Collapse
|
8
|
Lou Z, Tao J, Wei B, Jiang X, Cheng S, Wang Z, Qin C, Liang R, Guo H, Zhu L, Müller‐Buschbaum P, Cheng H, Xu X. Near-Infrared Organic Photodetectors toward Skin-Integrated Photoplethysmography-Electrocardiography Multimodal Sensing System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304174. [PMID: 37991135 PMCID: PMC10754100 DOI: 10.1002/advs.202304174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/05/2023] [Indexed: 11/23/2023]
Abstract
In the fast-evolving landscape of decentralized and personalized healthcare, the need for multimodal biosensing systems that integrate seamlessly with the human body is growing rapidly. This presents a significant challenge in devising ultraflexible configurations that can accommodate multiple sensors and designing high-performance sensing components that remain stable over long periods. To overcome these challenges, ultraflexible organic photodetectors (OPDs) that exhibit exceptional performance under near-infrared illumination while maintaining long-term stability are developed. These ultraflexible OPDs demonstrate a photoresponsivity of 0.53 A W-1 under 940 nm, shot-noise-limited specific detectivity of 3.4 × 1013 Jones, and cut-off response frequency beyond 1 MHz at -3 dB. As a result, the flexible photoplethysmography sensor boasts a high signal-to-noise ratio and stable peak-to-peak amplitude under hypoxic and hypoperfusion conditions, outperforming commercial finger pulse oximeters. This ensures precise extraction of blood oxygen saturation in dynamic working conditions. Ultraflexible OPDs are further integrated with conductive polymer electrodes on an ultrathin hydrogel substrate, allowing for direct interface with soft and dynamic skin. This skin-integrated sensing platform provides accurate measurement of photoelectric and biopotential signals in a time-synchronized manner, reproducing the functionality of conventional technologies without their inherent limitations.
Collapse
Affiliation(s)
- Zirui Lou
- Shenzhen International Graduate School & Tsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhen518055China
- School of Advanced MaterialsPeking University Shenzhen Graduate SchoolShenzhen518055China
| | - Jun Tao
- Shenzhen International Graduate School & Tsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhen518055China
| | - Binbin Wei
- Shenzhen International Graduate School & Tsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhen518055China
| | - Xinyu Jiang
- Lehrstuhl für Funktionelle MaterialienPhysik DepartmentTechnische Universität MünchenJames‐Franck‐Str. 185748GarchingGermany
| | - Simin Cheng
- Shenzhen International Graduate School & Tsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhen518055China
| | - Zehao Wang
- Shenzhen International Graduate School & Tsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhen518055China
| | - Chao Qin
- State Key Laboratory of Silicon and Advanced Semiconductor MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Rong Liang
- State Key Laboratory of Silicon and Advanced Semiconductor MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Haotian Guo
- Shenzhen International Graduate School & Tsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhen518055China
| | - Liping Zhu
- State Key Laboratory of Silicon and Advanced Semiconductor MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Peter Müller‐Buschbaum
- Lehrstuhl für Funktionelle MaterialienPhysik DepartmentTechnische Universität MünchenJames‐Franck‐Str. 185748GarchingGermany
- Heinz Maier‐Leibnitz‐Zentrum (MLZ)Technische Universität MünchenLichtenbergstr. 185748GarchingGermany
| | - Hui‐Ming Cheng
- Institute of Technology for Carbon Neutrality & Faculty of Materials Science and Energy EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of SciencesShenyang110016China
| | - Xiaomin Xu
- Shenzhen International Graduate School & Tsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhen518055China
| |
Collapse
|
9
|
Wang J, Sun L, Xiong S, Du B, Yokota T, Fukuda K, Someya T. Flexible Solution-Processed Electron-Transport-Layer-Free Organic Photovoltaics for Indoor Application. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21314-21323. [PMID: 37084756 DOI: 10.1021/acsami.3c01779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Organic photovoltaics (OPVs) have unique advantages of low weight, mechanical flexibility, and solution processability, which make them exceptionally suitable for integrating low-power Internet of Things devices. However, achieving improved operational stability together with solution processes that are applicable to large-scale fabrication remains challenging. Their major limitation arises due to the instable factors that occur both inside the thick active film and from the ambient environment, which cannot be completely resolved via the current encapsulation techniques used for flexible OPVs. Additionally, thin active layers are highly vulnerable to point defects, which result in low yield rates and impede the laboratory-to-industry translation. In this study, flexible fully solution-processed OPVs with improved indoor efficiency and long-term operational stability than that of conventional OPVs with evaporated electrodes are achieved. Benefiting from the oxygen and water vapor permeation barrier of the spontaneously formed gallium oxide layers on the exposed eutectic gallium-indium surface, fast degradation of the OPVs with thick active layers is prevented, maintaining 93% of its initial Pmax after 5000 min of indoor operation under 1000 lx light-emitting diode (LED) illumination. Additionally, by using the thick active layer, spin-coated silver nanowires could be directly used as bottom electrodes without complicated flattening processes, thereby substantially simplifying the fabrication process and proposing a promising manufacturing technique for devices with high-throughput energy demands.
Collapse
Affiliation(s)
- Jiachen Wang
- Electrical and Electronic Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Lulu Sun
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Sixing Xiong
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Baocai Du
- Electrical and Electronic Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomoyuki Yokota
- Electrical and Electronic Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute of Engineering Innovation, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kenjiro Fukuda
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Someya
- Electrical and Electronic Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
10
|
Xu Z, Xu G, Luo Q, Han Y, Tang Y, Miao Y, Li Y, Qin J, Guo J, Zha W, Gong C, Lu K, Zhang J, Wei Z, Cai R, Yang Y, Li Z, Ma CQ. In situ performance and stability tests of large-area flexible polymer solar cells in the 35-km stratospheric environment. Natl Sci Rev 2023; 10:nwac285. [PMID: 36960222 PMCID: PMC10029844 DOI: 10.1093/nsr/nwac285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/08/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
Abstract
Flexible organic solar cells (FOSCs) are one of the most promising power sources for aerospace aircraft due to their attractive advantages with high power-per-weight ratio and excellent mechanical flexibility. Understanding the performance and stability of high-performance FOSCs is essential for the further development of FOSCs for aerospace applications. In this paper, after systematic investigations on the performance of the state-of-the-art high-performance solar cells under thermal cycle and intensive UV irradiation conditions, in situ performance and stability tests of the solar cells in the 35 km stratospheric environment were carried out through a high-altitude balloon uploading. The encapsulated FOSCs with an area of 0.64 cm2 gave the highest power density of 15.26 mW/cm2 and an efficiency over 11%, corresponding to a power-per-weight ratio of over 3.32 kW/kg. More importantly, the cells showed stable power output during the 3-h continuous flight at 35 km and only 10% performance decay after return to the lab, suggesting promising stability of the FOSCs in the stratospheric environment.
Collapse
Affiliation(s)
- Zihan Xu
- i-Lab & Printable Electronic Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230027, China
| | | | - Qun Luo
- Corresponding author. E-mail:
| | - Yunfei Han
- i-Lab & Printable Electronic Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yu Tang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Ying Miao
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Yongxiang Li
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Jian Qin
- i-Lab & Printable Electronic Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jingbo Guo
- i-Lab & Printable Electronic Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Wusong Zha
- i-Lab & Printable Electronic Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Chao Gong
- i-Lab & Printable Electronic Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Kun Lu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | | | - Rong Cai
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Yanchu Yang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Zhaojie Li
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | | |
Collapse
|
11
|
Du B, Fukuda K, Yokota T, Inoue D, Hashizume D, Xiong S, Lee S, Takakuwa M, Sun L, Wang J, Someya T. Surface-Energy-Mediated Interfacial Adhesion for Mechanically Robust Ultraflexible Organic Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36896972 DOI: 10.1021/acsami.3c01519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Insufficient interfacial adhesion is a widespread problem across multilayered devices that undermines their reliability. In flexible organic photovoltaics (OPVs), poor interfacial adhesion can accelerate degradation and failure under mechanical deformations due to the intrinsic brittleness and mismatching mechanical properties between functional layers. We introduce an argon plasma treatment for OPV devices, which yields 58% strengthening in interfacial adhesion between an active layer and a MoOX hole transport layer, thus contributing to mechanical reliability. The improved adhesion is attributed to the increased surface energy of the active layer that occurred after the mild argon plasma treatment. The mechanically stabilized interface retards the flexible device degradation induced by mechanical stress and maintains a power conversion efficiency of 94.8% after 10,000 cycles of bending with a radius of 2.5 mm. In addition, a fabricated 3 μm thick ultraflexible OPV device shows excellent mechanical robustness, retaining 91.0% of the initial efficiency after 1000 compressing-stretching cycles with a 40% compression ratio. The developed ultraflexible OPV devices can operate stably at the maximum power point under continuous 1 sun illumination for 500 min with an 89.3% efficiency retention. Overall, we validate a simple interfacial linking strategy for efficient and mechanically robust flexible and ultraflexible OPVs.
Collapse
Affiliation(s)
- Baocai Du
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kenjiro Fukuda
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomoyuki Yokota
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute of Engineering Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-8656, Japan
| | - Daishi Inoue
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Sixing Xiong
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shinyoung Lee
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masahito Takakuwa
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Modern Mechanical Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Lulu Sun
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jiachen Wang
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
12
|
Rich SI, Takakuwa M, Fukuda K, Someya T. Simple Method for Creating Hydrophobic Ultraflexible Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12495-12501. [PMID: 36752719 DOI: 10.1021/acsami.2c18941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Optoelectronic devices, such as photodetectors and photovoltaics, are susceptible to surface contamination or water damage that can lead to reductions in performance or stability. Applying superhydrophobic coatings to these devices can introduce self-cleaning behavior and water resistance to extend their lifetime and improve their efficiency. However, existing methods for inducing superhydrophobicity have not been compatible with ultraflexible devices because of their thickness and complexity requirements. In this work, we introduce a procedure for inducing superhydrophobic and self-cleaning behavior on ultraflexible components using a combination of shrinkage-induced wrinkles and a low-surface-energy coating. We apply these techniques to an ultraflexible organic photovoltaics and demonstrate excellent hydrophobicity and self-cleaning behavior.
Collapse
Affiliation(s)
- Steven I Rich
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masahito Takakuwa
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Modern Mechanical Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Kenjiro Fukuda
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Someya
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Electrical and Electronic Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
13
|
Nie H, Busireddy MR, Shih HM, Ko CW, Chen JT, Chang CC, Hsu CS. High-Performance Inverted Organic Solar Cells via the Incorporation of Thickness-Insensitive and Low-Temperature-Annealed Nonconjugated Polymers as Electron Transport Materials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1718-1725. [PMID: 36548433 DOI: 10.1021/acsami.2c18946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Developing new electron transport layers has been an effective way to fabricate high-performance bulk-heterojunction organic solar cells (OSCs). Resolving the longstanding problems associated with commonly used zinc oxide (ZnO), such as electron traps and light-induced device deterioration, however, is still a great challenge. In this study, glycerol diglycidyl ether (GDE) and 1,4-butanesultone (BS) are blended with polyethyleneimine (PEI) to produce cross-linkable PEI-based materials, PEI-GDE and PEI-GDE-BS, which can function as alternative electron transport layers to replace conventional ZnO cathode-modifying layers in inverted OSCs. PEI-GDE and PEI-GDE-BS are amendable to low-temperature annealing processes to produce cross-linked films. The inverted device structure of ITO/ETL/PM6:BTP-BO-4F:PC71BM/MoO3/Ag was used to evaluate the effects of incorporating PEI-GDE and PEI-GDE-BS as electron transport materials. Compared with ZnO-based devices, the PEI-GDE- and PEI-GDE-BS-based devices exhibit significant improvements in photovoltaic performances due to smoother surface roughness, higher charge collection and exciton dissociation efficiencies, higher electron mobilities, and stronger π-π interactions. In particular, a PEI-GDE-BS-based device shows an outstanding power conversion efficiency (PCE) of 17.55% with a VOC of 0.83 V, a JSC of 27.88 mA/cm2, and an FF of 75.96%, which offers great possibilities in the applications of flexible solar cells.
Collapse
Affiliation(s)
- Hebing Nie
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Manohar Reddy Busireddy
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Hung-Min Shih
- Ways Technical Corp., 326 Kaoching Road, Yangmei, Taoyuan 326023, Taiwan
| | - Chung-Wen Ko
- Ways Technical Corp., 326 Kaoching Road, Yangmei, Taoyuan 326023, Taiwan
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Chia-Chih Chang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Chain-Shu Hsu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| |
Collapse
|
14
|
Cheng S, Lou Z, Zhang L, Guo H, Wang Z, Guo C, Fukuda K, Ma S, Wang G, Someya T, Cheng HM, Xu X. Ultrathin Hydrogel Films toward Breathable Skin-Integrated Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206793. [PMID: 36267034 DOI: 10.1002/adma.202206793] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/22/2022] [Indexed: 06/16/2023]
Abstract
On-skin electronics that offer revolutionary capabilities in personalized diagnosis, therapeutics, and human-machine interfaces require seamless integration between the skin and electronics. A common question remains whether an ideal interface can be introduced to directly bridge thin-film electronics with the soft skin, allowing the skin to breathe freely and the skin-integrated electronics to function stably. Here, an ever-thinnest hydrogel is reported that is compliant to the glyphic lines and subtle minutiae on the skin without forming air gaps, produced by a facile cold-lamination method. The hydrogels exhibit high water-vapor permeability, allowing nearly unimpeded transepidermal water loss and free breathing of the skin underneath. Hydrogel-interfaced flexible (opto)electronics without causing skin irritation or accelerated device performance deterioration are demonstrated. The long-term applicability is recorded for over one week. With combined features of extreme mechanical compliance, high permeability, and biocompatibility, the ultrathin hydrogel interface promotes the general applicability of skin-integrated electronics.
Collapse
Affiliation(s)
- Simin Cheng
- Shenzhen International Graduate School and Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | - Zirui Lou
- Shenzhen International Graduate School and Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | - Lan Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Haotian Guo
- Shenzhen International Graduate School and Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | - Zitian Wang
- Shenzhen International Graduate School and Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | - Chuanfei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kenjiro Fukuda
- Center for Emergent Matter Science and Thin-Film Device Laboratory, RIKEN, Saitama, 351-0198, Japan
| | - Shaohua Ma
- Shenzhen International Graduate School and Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | - Guoqing Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Takao Someya
- Center for Emergent Matter Science and Thin-Film Device Laboratory, RIKEN, Saitama, 351-0198, Japan
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Hui-Ming Cheng
- Faculty of Materials Science and Engineering, Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Xiaomin Xu
- Shenzhen International Graduate School and Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
15
|
Han S, Jung H, Jung HJ, Hwang BK, Park IP, Kim SZ, Yun DH, Yoon SY, Heo SW. Optical Manipulation of Incident Light for Enhanced Photon Absorption in Ultrathin Organic Photovoltaics. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3996. [PMID: 36432282 PMCID: PMC9696273 DOI: 10.3390/nano12223996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
We attempted to improve the photon absorption of the photoactive layer in organic photovoltaic (OPV) devices by device engineering without changing their thickness. Soft nanoimprinting lithography was used to introduce a 1D grating pattern into the photoactive layer. The increase in photocurrent caused by the propagating surface plasmon-polariton mode was quantitatively analyzed by measuring the external quantum efficiency in transverse magnetic and transverse electric modes. In addition, the introduction of an ultrathin substrate with a refractive index of 1.34 improved photon absorption by overcoming the mismatched optical impedance at the air/substrate interface. As a result, the power conversion efficiency (PCE) of an ultrathin OPV with a 400 nm grating period was 8.34%, which was 11.6% higher than that of an unpatterned ultrathin OPV, and the PCE was 3.2 times higher at a low incident light angle of 80°, indicating very low incident light angle dependence.
Collapse
Affiliation(s)
- Seungyeon Han
- Nano Convergence Materials Center, Emerging Materials R&D Division, Korea Institute of Ceramic Engineering and Technology (KICET), 101 Soho-ro, Jinju-si 52851, Gyeongsangnam-do, Korea
- Department of Materials Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Hyunsung Jung
- Nano Convergence Materials Center, Emerging Materials R&D Division, Korea Institute of Ceramic Engineering and Technology (KICET), 101 Soho-ro, Jinju-si 52851, Gyeongsangnam-do, Korea
| | - Hyeon Jin Jung
- Nano Convergence Materials Center, Emerging Materials R&D Division, Korea Institute of Ceramic Engineering and Technology (KICET), 101 Soho-ro, Jinju-si 52851, Gyeongsangnam-do, Korea
| | - Bu Kyeong Hwang
- Nano Convergence Materials Center, Emerging Materials R&D Division, Korea Institute of Ceramic Engineering and Technology (KICET), 101 Soho-ro, Jinju-si 52851, Gyeongsangnam-do, Korea
| | - In Pyo Park
- Nano Convergence Materials Center, Emerging Materials R&D Division, Korea Institute of Ceramic Engineering and Technology (KICET), 101 Soho-ro, Jinju-si 52851, Gyeongsangnam-do, Korea
| | - Su Zi Kim
- Nano Convergence Materials Center, Emerging Materials R&D Division, Korea Institute of Ceramic Engineering and Technology (KICET), 101 Soho-ro, Jinju-si 52851, Gyeongsangnam-do, Korea
| | - Dea-Hee Yun
- Resetcompany Co., Ltd., Dallaenae-ro, Sujeong-gu, Seongnam-si 13449, Gyeonggi-do, Korea
| | - Seog-Young Yoon
- Department of Materials Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Soo Won Heo
- Nano Convergence Materials Center, Emerging Materials R&D Division, Korea Institute of Ceramic Engineering and Technology (KICET), 101 Soho-ro, Jinju-si 52851, Gyeongsangnam-do, Korea
| |
Collapse
|