1
|
Mao L, Lu J, Wen X, Song Z, Sun C, Zhao Y, Huang F, Chen S, Jiang D, Che W, Zhong C, Yu C, Li K, Lu X, Shi J. Cuproptosis: mechanisms and nanotherapeutic strategies in cancer and beyond. Chem Soc Rev 2025. [PMID: 40433941 DOI: 10.1039/d5cs00083a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Cuproptosis, a novel form of copper (Cu)-dependent programmed cell death, is induced by directly binding Cu species to lipoylated components of the tricarboxylic acid (TCA) cycle. Since its discovery in 2022, cuproptosis has been closely linked to the field of materials science, offering a biological basis and bright prospects for the use of Cu-based nanomaterials in various disease treatments. Owing to the unique physicochemical properties of nanomaterials, Cu delivery nanosystems can specifically increase Cu levels at disease sites, inducing cuproptosis to achieve disease treatment while minimizing the undesirable release of Cu in normal tissues. This innovative nanomaterial-mediated cuproptosis, termed as "nanocuproptosis", positions at the intersection of chemistry, materials science, pharmaceutical science, and clinical medicine. This review aims to comprehensively summarize and discuss recent advancements in cuproptosis across various diseases, with a particular focus on cancer. It delves into the biochemical basis of nanomaterial-mediated cuproptosis, the rational design for cuproptosis inducers, strategies for enhancing therapeutic specificity, and cuproptosis-centric synergistic cancer therapeutics. Beyond oncology, this review also explores the expanded applications of cuproptosis, such as antibacterial, wound healing, and bone tissue engineering, highlighting its great potential to open innovative therapeutic strategies. Furthermore, the clinical potential of cuproptosis is assessed from basic, preclinical to clinical research. Finally, this review addresses current challenges, proposes potential solutions, and discusses the future prospects of this burgeoning field, highlighting cuproptosis nanomedicine as a highly promising alternative to current clinical therapeutics.
Collapse
Affiliation(s)
- Lijie Mao
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Ji Lu
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xinyu Wen
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Zhiyi Song
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Cai Sun
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yuanru Zhao
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Fang Huang
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Si Chen
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Dongyang Jiang
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wenliang Che
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Cheng Zhong
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Ke Li
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China.
| | - Xiangyu Lu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Jianlin Shi
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| |
Collapse
|
2
|
Wang Z, Huang Y, He S, Li M, Gong J, Cheng L, Li J, Deng Y, Liang K. Oxygen-Independent Sulfate Radical and Fe 2+-Modified Implants for Fast Sterilization and Osseointegration of Infectious Bone Defects. ACS NANO 2025; 19:18804-18823. [PMID: 40350755 DOI: 10.1021/acsnano.5c04147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Currently, emerging dynamic therapy has gradually become a frequently used strategy for treating infectious bone defects via a rise in reactive oxygen species (ROS) levels, which can bring about oxidative harm to bacteria. However, ROS can be generated only under conditions of exogenous energy, limited by energy penetration or dependence on the existence of internal O2/H2O2. Thus, we designed Na2S2O8-decorated polyetheretherketone implants activated by Fe2+ for infected bone defects. In vitro experiments show that they generate sulfate radical (·SO4-) and hydroxyl radical (·OH) without O2/H2O2 existence, effectively killing bacteria. Additionally, the released Fe2+ enters bacteria and triggers ferroptosis-like death via lipid peroxidation. In vivo experiments show implants achieve an ideal effect of bone integration through a high-efficiency bactericidal effect and enhanced osteogenic activity. As envisioned, our proposed strategy offers a promising approach to halt refractory infection of bone tissue by autonomously catalyzing ROS storms and ferroptosis-like death, facilitating bone-defect recovery.
Collapse
Affiliation(s)
- Ziyou Wang
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu 610041, China
| | - Yiling Huang
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu 610041, China
| | - Shuai He
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Meng Li
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu 610041, China
| | - Jing Gong
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu 610041, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu 610041, China
| | - Yi Deng
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Kunneng Liang
- State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Chengdu 610041, China
| |
Collapse
|
3
|
Wu R, Hua M, Lu Y, Chen L, Chen Y, Hu Z. Modulating Pore Wall Chemistry Empowers Sonodynamic Activity of Two-Dimensional Covalent Organic Framework Heterojunctions for Pro-Oxidative Nanotherapy. Angew Chem Int Ed Engl 2025; 64:e202416461. [PMID: 39384540 DOI: 10.1002/anie.202416461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024]
Abstract
Covalent organic frameworks (COFs) have garnered growing interest in the field of biomedicine; however, their application in sonodynamic therapy remains underexplored due to limited understanding of their intrinsic activity and structure-property relationships. Here, we present a pore wall chemistry modulation strategy for empowering sonodynamic activity to two-dimensional (2D) COF heterojunctions through in situ growth of COFs on bismuth oxycarbonate nanosheets (B NSs). Compared to the negligible sonodynamic effects observed in the pristine B NSs, the 2D heterojunction with vinyl-decorated COF pore walls demonstrates a 3.6-fold enhancement in sonocatalytic singlet oxygen generation. This performance also significantly outperforms that of isoreticular COFs functionalized with methoxy or non-substituted groups. Mechanistic studies reveal that the vinyl groups in the B@COF (BC) heterojunction facilitate the separation and transfer of charge carriers while also enhancing the adsorption of oxygen molecules. Furthermore, peroxymonosulfate (PMS) loading into the porous COFs boosts the therapeutic efficacy of antitumor nanotherapy via sonocatalytic dual oxidative species generation. These findings underscore the critical role of pore wall chemistry in modulating the sonocatalytic properties of COFs, and advance the development of COF-based sonosensitizers for pro-oxidative applications.
Collapse
Affiliation(s)
- Ruohui Wu
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
| | - Mengying Hua
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
| | - Yanjia Lu
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Zhongqian Hu
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
| |
Collapse
|
4
|
Yang Y, Hu T, Zhao K, Wang YC, Zhu Y, Wang S, Zhou Z, Gu L, Tan C, Liang R. Metal Doping Enabling Defective CoMo-Layered Double Hydroxide Nanosheets as Highly Efficient Photosensitizers for NIR-II Photodynamic Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2405847. [PMID: 39629533 DOI: 10.1002/adma.202405847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/15/2024] [Indexed: 01/30/2025]
Abstract
Photodynamic therapy (PDT) is attracting widespread attention as a promising strategy for tumor treatment. However, the efficacy of PDT is severely limited by the insufficient tissue penetration depth of the light source and low reactive oxygen species (ROS) generation efficiency. Herein, the metal doping strategy is reported to construct a series of defect-rich M-doped amorphous CoMo-layered double hydroxide (a-M-CoMo-LDH, M = Mn, Cu, Al, Ni, Mg, Zn) photosensitizers (PSs) for NIR-II PDT. Especially, M-doped CoMo-LDH nanosheets are synthesized through a simple hydrothermal method and then etched by acid treatment to prepare defect-rich a-M-CoMo-LDH nanosheets. Under NIR-II 1270 nm laser irradiation, the defect-rich a-Zn-CoMo-LDH nanosheets exhibit the optimal PDT performance compared with other a-M-CoMo-LDH nanosheets, and also possess much higher ROS production activity (3.9 times) than that of the pristine a-CoMo-LDH, with a singlet oxygen quantum yield up to 1.86, which is the highest among all the reported PSs. After polyethylene glycol (PEG) modification, the a-Zn-CoMo-LDH-PEG nanosheets can function as an effective inorganic PS for PDT, effectively inducing cell apoptosis in vitro and eradicating tumors in vivo. Notably, transcriptome sequencing analysis and further molecular validation highlight the critical role of the apoptotic/p53/AMPK/oxidative phosphorylation signaling pathways in a-Zn-CoMo-LDH-PEG-induced cancer cell apoptosis.
Collapse
Affiliation(s)
- Yu Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tingting Hu
- Department Electrical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, 999077, P. R. China
- Department Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| | - Kexin Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yi-Chi Wang
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yanfang Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shibo Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Lin Gu
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Chaoliang Tan
- Department Electrical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, 999077, P. R. China
- Department Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, P. R. China
| |
Collapse
|
5
|
Li J, Li J, Chen Z, Wan Y, Wang Y, Pei Z, Pei Y. Lactobionic acid modified cobalt coordination polymer-coated peroxymonosulfate nanoparticles generate sulfate/hydroxy dual-radicals for targeted cancer therapy. J Mater Chem B 2024; 12:12665-12671. [PMID: 39506566 DOI: 10.1039/d4tb01777c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Free radical therapy, based on the sulfate radical derived from peroxymonosulfate, has recently been explored as a potential cancer treatment. However, while it is promising, its successful application is restricted by several limitations including the uncontrollable generation of free radicals and the instability in aqueous medium. Herein, we prepared LCP nanoparticles by using PMS as a core, the Co-coordination polymer (Co-CP) as a coating layer, and lactobionic acid as a targeting ligand for hepatoma carcinoma cells. LCP could be activated by cobalt ions released from Co-CP, and successfully induced apoptosis and ferroptosis via the inhibition of glutathione peroxidase 4 and caused the accumulation of lipid peroxidation to enhance the efficacy of free radical therapy.
Collapse
Affiliation(s)
- Jiahui Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Jiaxuan Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Zelong Chen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Yichen Wan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Yi Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Zhichao Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Yuxin Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| |
Collapse
|
6
|
Hu J, Zhu J, Chen T, Zhao Y, Xu Q, Wang Y. Cuproptosis in cancer therapy: mechanisms, therapeutic application and future prospects. J Mater Chem B 2024; 12:12191-12206. [PMID: 39526989 DOI: 10.1039/d4tb01877j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Cuproptosis is a regulated form of cell death induced by the accumulation of metal ions and is closely linked to aspects of cellular drug resistance, cellular metabolism, and signalling pathways. Due to its crucial role in regulating physiological and pathological processes, cuproptosis has gained increasing significance as a potential target for anticancer drug development. In this review, we introduce the definition of cuproptosis and provide a comprehensive discussion of the mechanisms of cuproptosis. In addition, the methods for the detection of cuproptosis are summarized, and recent advances in cuproptosis in cancer therapy are reviewed, mainly in terms of elesclomol (ES)-mediated cuproptosis and disulfiram (DSF)-mediated cuproptosis, which provided practical value for applications. Finally, the current challenges and future development of cuproptosis-mediated cancer therapy are discussed. In summary, this review highlights recent progress on cuproptosis in cancer therapy, offering novel ideas and strategies for future research and applications.
Collapse
Affiliation(s)
- Jiawei Hu
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| | - Junfei Zhu
- China-Japan Friendship Hospital, No. 2 Sakura East Street, Chaoyang District, Beijing, China
| | - Tao Chen
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| | - Yudie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| | - Qingwen Xu
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| | - Yan Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| |
Collapse
|
7
|
Wang P, Sun X, Tang L, Li N, Wang Q, Gan B, Zhang Y. CaCO 3-encircled hollow CuS nanovehicles to suppress cervical cancer through enhanced calcium overload-triggered mitochondria damage. Asian J Pharm Sci 2024; 19:100989. [PMID: 39640053 PMCID: PMC11616050 DOI: 10.1016/j.ajps.2024.100989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/25/2024] [Accepted: 07/28/2024] [Indexed: 12/07/2024] Open
Abstract
Cervical cancer stands is a formidable malignancy that poses a significant threat to women's health. Calcium overload, a minimally invasive tumor treatment, aims to accumulate an excessive concentration of Ca2+ within mitochondria, triggering apoptosis. Copper sulfide (CuS) represents a photothermal mediator for tumor hyperthermia. However, relying solely on thermotherapy often proves insufficient in controlling tumor growth. Curcumin (CUR), an herbal compound with anti-cancer properties, inhibits the efflux of exogenous Ca2+ while promoting its excretion from the endoplasmic reticulum into the cytoplasm. To harness these therapeutic modalities, we have developed a nanoplatform that incorporates hollow CuS nanoparticles (NPs) adorned with multiple CaCO3 particles and internally loaded with CUR. This nanocomposite exhibits high uptake and easy escape from lysosomes, along with the degradation of surrounding CaCO3, provoking the generation of abundant exogenous Ca2+ in situ, ultimately damaging the mitochondria of diseased cells. Impressively, under laser excitation, the CuS NPs demonstrate a photothermal effect that accelerates the degradation of CaCO3, synergistically enhancing the antitumor effect through photothermal therapy. Additionally, fluorescence imaging reveals the distribution of these nanovehicles in vivo, indicating their effective accumulation at the tumor site. This nanoplatform shows promising outcomes for tumor-targeting and the effective treatment in a murine model of cervical cancer, achieved through cascade enhancement of calcium overload-based dual therapy.
Collapse
Affiliation(s)
- Pengfei Wang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China
| | - Xichen Sun
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China
| | - Liuyan Tang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China
| | - Ningning Li
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China
| | - Qing Wang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China
| | - Bicheng Gan
- College of Petroleum Engineering, Heilongjiang, Northeast Petroleum University, Daqing 163318, China
| | - Yuezhou Zhang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China
- Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics (FSCFE), Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo 315103, China
| |
Collapse
|
8
|
Liu X, Li Y, Gu X, Qi C, Cai K. A biodegradable calcium sulfite nanoreactor for pH triggered gas therapy in combination with chemotherapy. J Mater Chem B 2024; 12:9258-9267. [PMID: 39221635 DOI: 10.1039/d4tb01468e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
As a gasotransmitter, endogenous sulfur dioxide (SO2) plays an important role in cardiovascular regulation. In addition, excessive SO2 can react with overexpressed hydrogen peroxide (H2O2) in tumor cells to generate toxic radicals, which can induce severe oxidative damage to tumor cells and result in cell apoptosis. This highlights the potential of SO2 in oncotherapy. However, the limited availability of endogenous H2O2 and uncontrolled release of SO2 gas significantly impede the effectiveness of SO2 gas therapy. To address this challenge, a biodegradable calcium sulfite (CS) nanocarrier loaded with 10-hydroxycamptothecin (HCPT) was developed for tumor pH-triggered SO2 gas therapy in combination with chemotherapy. This nanoreactor could be degraded in an acidic tumor microenvironment to release SO2 gas and the HCPT drug. The released SO2 gas induced serious oxidative damage to tumor cells by depleting glutathione (GSH) and generating toxic radicals through a reaction with intracellular H2O2. Simultaneously, the HCPT drug promoted tumor cell apoptosis through chemotherapy and boosted SO2 gas therapy by elevating the H2O2 level within the tumor cells. Consequently, the combination of SO2 gas therapy and chemotherapy provided a promising approach for effective tumor treatment.
Collapse
Affiliation(s)
- Xihong Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Yan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Xiang Gu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Chao Qi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
9
|
Wang J, Zhang W, Xie Z, Wang X, Sun J, Ran F, Jiang W, Liu Y, Wang Z, Ran H, Guo D. NIR-responsive copper nanoliposome composites for cascaded ferrotherapy via ferroptosis actived ICD and IFN-γ released. Biomaterials 2024; 308:122570. [PMID: 38636133 DOI: 10.1016/j.biomaterials.2024.122570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/14/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Metallic biomaterials activate tumor ferroptosis by increasing oxidative stress, but their efficacy is severely limited in tumor microenvironment. Although interferon gamma (IFN-γ) can promote tumor ferroptosis sensitivity by inhibiting the antioxidant system and promoting lipid accumulation, this effect limited by the lack of IFN-γ accumulation in tumors. Herein, we report a near-infrared (NIR)-responsive HCuS nanocomposite (HCuS-PE@TSL-tlyp-1) that can stimulate immunogenic cell death (ICD)-mediated IFN-γ secretion through exogenous oxidative stress, thereby achieving cascaded ferrotherapy by mutually reinforcing ferroptosis and systemic immunity. Upon laser irradiation, the dissolution of the thermal coating, and the introduction of Cu ions and piperazine-erastin (PE) simultaneously induce oxidative stress by reactive oxygen species (ROS)/lipid peroxide (LPO) accumulation and deplete cystine-glutamate transporter (xCT)/GSH. The onset of oxidative stress-mediated ferroptosis is thus achieved, and ICD is triggered, significantly promoting cytotoxic T-cell (CTL) infiltration for IFN-γ secretion. Furthermore, IFN-γ induces immunogenic tumor ferroptosis by inhibiting xCT-antioxidant pathways and enhancing the ACSL4-fatty acid recruitment pathway, which further promotes sensitivity to ferroptosis in cells. These HCuS nanocomposites combined with aPD-L1 effectively in inhibiting tumor metastasis and recurrence. Importantly, these cascade ferrotherapy results broadens the application of HCuS biomaterials.
Collapse
Affiliation(s)
- Junrui Wang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China; Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Wenli Zhang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China; Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Zhuoyan Xie
- Department of Ultrasound, Chongqing General Hospital, Chongqing, 400014, PR China
| | - Xingyue Wang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science. Xiangyang, Hubei, 441053, PR China
| | - Jiangshan Sun
- Chongqing Medical and Health School, Chongqing, 408000, PR China
| | - Fei Ran
- Department of Dentistry, Chongqing University Fuling Hospital, Chongqing, 408000, PR China
| | - Weixi Jiang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Yun Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Dajing Guo
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China.
| |
Collapse
|
10
|
Li S, Ding Q, Zhang L, Shi F, Liu C, Li T, Shi Y, Qi M, Wang L, Dong B, Song S, Sun J, Kim JS, Li C. Gold core@CeO 2 halfshell Janus nanocomposites catalyze targeted sulfate radical for periodontitis therapy. J Control Release 2024; 370:600-613. [PMID: 38735394 DOI: 10.1016/j.jconrel.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
The sulfate radical (SO4•-), known for its high reactivity and long lifespan, has emerged as a potent antimicrobial agent. Its exceptional energy allows for the disruption of vital structures and metabolic pathways in bacteria that are usually inaccessible to common radicals. Despite its promising potential, the efficient generation of this radical, particularly through methods involving enzymes and photocatalysis, remains a substantial challenge. Here, we capitalized on the peroxidase (POD)-mimicking activity and photocatalytic properties of cerium oxide (CeO2) nanozymes, integrating these properties with the enhanced concept of plasma gold nanorod (GNR) to develop a half-encapsulated core@shell GNRs@CeO2 Janus heterostructure impregnated with persulfate. Under near-infrared irradiation, the GNRs generate hot electrons, thereby boosting the CeO2's enzyme-like activity and initiating a potent reactive oxygen species (ROS) storm. This distinct nanoarchitecture facilitates functional specialization, wherein the heterostructure and efficient light absorption ensured continuous hot electron flow, not only enhancing the POD-like activity of CeO2 for the production of SO4•- effectively, but also contributing a significant photothermal effect, disrupting periodontal plaque biofilm and effectively eradicating pathogens. Furthermore, the local temperature elevation synergistically enhances the POD-like activity of CeO2. Transcriptomics analysis, as well as animal experiments of the periodontitis model, have revealed that pathogens undergo genetic information destruction, metabolic disorders, and pathogenicity changes in the powerful ROS system, and profound therapeutic outcomes in vivo, including anti-inflammation and bone preservation. This study demonstrated that energy transfer to augment nanozyme activity, specifically targeting ROS generation, constitutes a significant advancement in antibacterial treatment.
Collapse
Affiliation(s)
- Sijia Li
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Qihang Ding
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of Stomatology, Jilin University, Changchun, 130021, PR China; Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Lingling Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Fangyu Shi
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Chengyu Liu
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Tingxuan Li
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Yujia Shi
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Manlin Qi
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Lin Wang
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Jiao Sun
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, PR China.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea.
| | - Chunyan Li
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of Stomatology, Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
11
|
Li Y, Zhang Q, Sun Z, Rong M, Jiang C, Lu L. Unexpected Emergence of Carbon-Centered Radicals from Piezoelectric Effect in Oleic Acid-Capped BaTiO 3. ACS NANO 2024; 18:9645-9655. [PMID: 38501440 DOI: 10.1021/acsnano.4c00952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The utilization of alkyl radicals (•R) for hypoxic tumor therapy has great prospects due to its O2-independence and high reactivity. However, correlational initiators for in vivo activation remain scarce. Here, we report that ultrasound excitation of oleic acid-capped BaTiO3 (OA@BaTiO3) can result in an •R cascade and hence a means to conquer hypoxic tumors. Mechanistic studies find that the •R signal disappears when OA@BaTiO3 undergoes acid washing post-treatment, which is a common procedure for removing the unwanted byproduct BaCO3. Combined with the infrared spectrum analysis, acid treatment was proven to weaken the peaks at 2840-2970 cm-1 characteristic of -CH2- and terminal -CH3 stretching vibration of OA. There is compelling evidence that high temperature thermal oxidation of OA involves the generation of •R. Thus, acid washing is considered to remove the loosely bound yet catalytically active OA. And piezoelectric BaTiO3, a potential electron-hole redox catalyst, can sensitize these OA molecules and disintegrate them to •R. This unexpected discovery provides us with a distinctive mentality to seek diverse •R initiators for tumor ablation, as well as an additional perspective on the postprocessing of synthetic materials.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Qianqian Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhen Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Mingjie Rong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chunhuan Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
12
|
Guo W, Chen Z, Wu Q, Tan L, Ren X, Fu C, Cao F, Gu D, Meng X. Prepared MW-Immunosensitizers Precisely Release NO to Downregulate HIF-1α Expression and Enhance Immunogenic Cell Death. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308055. [PMID: 38037766 DOI: 10.1002/smll.202308055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Microwave thermotherapy (MWTT) has limited its application in the clinic due to its high rate of metastasis and recurrence after treatment. Nitric oxide (NO) is a gaseous molecule that can address the high metastasis and recurrence rates after MWTT by increasing thermal sensitivity, down-regulating the expression of hypoxia-inducible factor-1 (HIF-1), and inducing the immunogenic cell death (ICD). Therefore, GaMOF-Arg is designed, a gallium-based organic skeleton material derivative loaded with L-arginine (L-Arg), and coupled the mitochondria-targeting drug of triphenylphosphine (TPP) on its surface to obtain GaMOF-Arg-TPP (GAT) MW-immunosensitizers. When GAT MW-immunosensitizers are introduced into mice through the tail vein, reactive oxygen species (ROS) are generated and L-Arg is released under MW action. Then, L-Arg reacts with ROS to generate NO, which not only downregulates HIF-1 expression to improve tumor hypoxia exacerbated by MW, but also enhances immune responses by augment calreticulin (CRT) exposure, high mobility group box 1 (HMGB1) release, and T-cell proliferation to achieve prevention of tumor metastasis and recurrence. In addition, NO can induce mitochondria damage to increase their sensitivity to MWTT. This study provides a unique insight into the use of metal-organic framework MW-immunosensitizers to enhance tumor therapy and offers a new way to treat cancer efficiently.
Collapse
Affiliation(s)
- Wenna Guo
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zengzhen Chen
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Changhui Fu
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Feng Cao
- National Clinical Research Center for Geriatric Diseases & 2nd Medical Center, Chinese PLA General Hospital, Beijing, 100853, P. R. China
| | - Deen Gu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
13
|
Wu X, Zhou Z, Li K, Liu S. Nanomaterials-Induced Redox Imbalance: Challenged and Opportunities for Nanomaterials in Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308632. [PMID: 38380505 PMCID: PMC11040387 DOI: 10.1002/advs.202308632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Cancer cells typically display redox imbalance compared with normal cells due to increased metabolic rate, accumulated mitochondrial dysfunction, elevated cell signaling, and accelerated peroxisomal activities. This redox imbalance may regulate gene expression, alter protein stability, and modulate existing cellular programs, resulting in inefficient treatment modalities. Therapeutic strategies targeting intra- or extracellular redox states of cancer cells at varying state of progression may trigger programmed cell death if exceeded a certain threshold, enabling therapeutic selectivity and overcoming cancer resistance to radiotherapy and chemotherapy. Nanotechnology provides new opportunities for modulating redox state in cancer cells due to their excellent designability and high reactivity. Various nanomaterials are widely researched to enhance highly reactive substances (free radicals) production, disrupt the endogenous antioxidant defense systems, or both. Here, the physiological features of redox imbalance in cancer cells are described and the challenges in modulating redox state in cancer cells are illustrated. Then, nanomaterials that regulate redox imbalance are classified and elaborated upon based on their ability to target redox regulations. Finally, the future perspectives in this field are proposed. It is hoped this review provides guidance for the design of nanomaterials-based approaches involving modulating intra- or extracellular redox states for cancer therapy, especially for cancers resistant to radiotherapy or chemotherapy, etc.
Collapse
Affiliation(s)
- Xumeng Wu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
| | - Ziqi Zhou
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Kai Li
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Shaoqin Liu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| |
Collapse
|
14
|
Zhao F, Yu H, Liang L, Wang C, Shi D, Zhang X, Ying Y, Cai W, Li W, Li J, Zheng J, Qiao L, Che S, Yu J. Redox Homeostasis Disruptors Based on Metal-Phenolic Network Nanoparticles for Chemo/Chemodynamic Synergistic Tumor Therapy through Activating Apoptosis and Cuproptosis. Adv Healthc Mater 2023; 12:e2301346. [PMID: 37369362 DOI: 10.1002/adhm.202301346] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/09/2023] [Accepted: 06/25/2023] [Indexed: 06/29/2023]
Abstract
The combination of chemo/chemodynamic therapy is a promising strategy for improving antitumor efficacy. Herein, metal-phenolic network nanoparticles (NPs) self-assembled from copper ions and gallic acid (Cu-GA) are developed to evoke apoptosis and cuproptosis for synergistic chemo/chemodynamic therapy. The Cu-GA NPs are biodegraded in response to the highly expressed glutathione (GSH) in tumor cells, resulting in the simultaneous release of Cu+ and GA. The intracellular GSH content is dramatically reduced by the released GA, rendering the tumor cells incapable of scavenging reactive oxygen species (ROS) and more susceptible to cuproptosis. Meanwhile, ROS levels within the tumor cells are significantly increased by the Fenton-like reaction of released Cu+ , which disrupts redox homeostasis and achieves apoptosis-related chemodynamic therapy. Moreover, massive accumulation of Cu+ in the tumor cells further induces aggregation of lipoylated dihydrolipoamide S-acetyltransferase and downregulation of iron-sulfur cluster protein, activating cuproptosis to enhance the antitumor efficacy of Cu-GA NPs. The experiments in vivo further demonstrate that Cu-GA NPs exhibited the excellent biosafety and superior antitumor capacity, which can efficiently inhibit the growth of tumors due to the activation by the tumor specific GSH and hydrogen peroxide. These Cu-based metal-phenolic network NPs provide a potential strategy to build up efficient and safe cancer therapy.
Collapse
Affiliation(s)
- Fan Zhao
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hongyan Yu
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Liying Liang
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chen Wang
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Dier Shi
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Xiangyu Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, 331423, China
| | - Yao Ying
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wei Cai
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wangchang Li
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Juan Li
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingwu Zheng
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Liang Qiao
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shenglei Che
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jing Yu
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
15
|
Zhang M, Huang Y, Zou J, Yang Y, Yao Y, Cheng G, Yang Y. Advanced Oxidation Nanoprocessing Boosts Immunogenicity of Whole Tumor Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302250. [PMID: 37211712 PMCID: PMC10401122 DOI: 10.1002/advs.202302250] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Whole tumor cells expressing a wide array of tumor antigens are considered as a highly promising source of antigens for cancer vaccines. However, simultaneously preserving the antigen diversity, improving immunogenicity, and eliminating the potential tumorigenic risk of whole tumor cells are highly challenging. Inspired by the recent progress in sulfate radical-based environmental technology, herein, an advanced oxidation nanoprocessing (AONP) strategy is developed for boosting the immunogenicity of whole tumor cells. The AONP is based on the activation of peroxymonosulfate by ZIF-67 nanocatalysts to produce SO4 -∙ radicals continuously, leading to sustained oxidative damage to tumor cells and consequently extensive cell death. Importantly, AONP causes immunogenic apoptosis as evidenced by the release of a series of characteristic damage associated molecular patterns and at the same time maintains the integrity of cancer cells, which is critical to preserve the cellular components and thus maximize the diversity of antigens. Finally, the immunogenicity of AONP-treated whole tumor cells is evaluated in a prophylactic vaccination model, demonstrating significantly delayed tumor growth and increased survival rate of live tumor-cell-challenged mice. It is expected that the developed AONP strategy would pave the way to develop effective personalized whole tumor cell vaccines in future.
Collapse
Affiliation(s)
- Min Zhang
- Clinical Medicine Scientific and Technical Innovation CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghai200092P. R. China
| | - Yiming Huang
- Clinical Medicine Scientific and Technical Innovation CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghai200092P. R. China
| | - Jie Zou
- Clinical Medicine Scientific and Technical Innovation CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghai200092P. R. China
| | - Yang Yang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of EducationSchool of Chemistry and Chemical EngineeringShandong UniversityJinanShandong250100P. R. China
| | - Yue Yao
- Clinical Medicine Scientific and Technical Innovation CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghai200092P. R. China
| | - Guofeng Cheng
- Clinical Medicine Scientific and Technical Innovation CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghai200092P. R. China
| | - Yannan Yang
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of OptoelectronicsFudan UniversityShanghai200433P. R. China
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueensland4072Australia
| |
Collapse
|
16
|
Ning S, Lyu M, Zhu D, Lam JWY, Huang Q, Zhang T, Tang BZ. Type-I AIE Photosensitizer Loaded Biomimetic System Boosting Cuproptosis to Inhibit Breast Cancer Metastasis and Rechallenge. ACS NANO 2023. [PMID: 37183977 DOI: 10.1021/acsnano.3c00326] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cuproptosis shows good application prospects in tumor therapy. However, the copper efflux mechanism and highly expressed intracellular reducing substances can inhibit the cuproptosis effects. In this study, a platelet vesicle (PV) coated cuprous oxide nanoparticle (Cu2O)/TBP-2 cuproptosis sensitization system (PTC) was constructed for multiple induction of tumor cuproptosis. PTC was prepared by physical extrusion of AIE photosensitizer (TBP-2), Cu2O, and PV. After the biomimetic modification, PTC can enhance its long-term blood circulation and tumor targeting ability. Subsequently, PTC was rapidly degraded to release copper ions under acid conditions and hydrogen peroxides in tumor cells. Then, under light irradiation, TBP-2 quickly enters the cell membrane and generates hydroxyl radicals to consume glutathione and inhibit copper efflux. Accumulated copper can cause lipoylated protein aggregation and iron-sulfur protein loss, which result in proteotoxic stress and ultimately cuproptosis. PTC treatment can target and induce cuproptosis in tumor cells in vitro and in vivo, significantly inhibit lung metastasis of breast cancer, increase the number of central memory T cells in peripheral blood, and prevent tumor rechallenge. It provides an idea for the design of nanomedicine based on cuproptosis.
Collapse
Affiliation(s)
- Shipeng Ning
- Guangxi Medical University Cancer Hospital, Nanning, 530000, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, 530000, China
| | - Meng Lyu
- Department of Gastrointestinal Surgery & Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Daoming Zhu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Qinqin Huang
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou, 450052, China
| | - Tianfu Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511436, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
17
|
Ning S, Mo J, Huang R, Liu B, Fu B, Ding S, Yang H, Cui Y, Yao L. Injectable thermo-sensitive hydrogel loaded hollow copper sulfide nanoparticles for ROS burst in TME and effective tumor treatment. Front Bioeng Biotechnol 2023; 11:1191014. [PMID: 37200848 PMCID: PMC10185793 DOI: 10.3389/fbioe.2023.1191014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction: Lung cancer the most prevalent cause of cancer-related deaths, and current therapies lack sufficient specificity and efficacy. This study developed an injectable thermosensitive hydrogel harboring hollow copper sulfide nanoparticles and β-lapachone (Lap) (CLH) for lung tumor treatment. Methods: The hydrogel-encapsulated CLH system can remotely control the release of copper ions (Cu2+) and drugs using photothermal effects for non-invasive controlled-release drug delivery in tumor therapy. The released Cu2+ consumes the overexpressed GSH in TME and the generated Cu+ further exploits the TME characteristics to initiate nanocatalytic reactions for generating highly toxic hydroxyl radicals. In addition, in cancer cells overexpressing Nicotinamide adenine dinucleotide (phosphate): quinone oxidoreductase 1 (NQO1), Lap can catalyze the generation of hydrogen peroxide (H2O2) through futile redox cycles. H2O2 is further converted into highly toxic hydroxyl radicals via the Fenton-like reaction, leading to a burst of reactive oxygen species in TME, which further enhances the therapeutic effect of chemokines. Results: Analysis of the antitumor efficacy in a subcutaneous A549 lung tumor model mice showed a significant delay in tumor growth and no systemic toxicity was detected. Discussion: In conclusion, we have established a CLH nanodrug platform that enables efficient lung tumor therapy through combined photothermal/chemodynamic therapy (CDT) treatment and self-supplying H2O2 to achieve cascade catalysis, leading to explosive amplification of oxidative stress.
Collapse
Affiliation(s)
- Shipeng Ning
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jianlan Mo
- Department of Anesthesiology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Rong Huang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Benkun Liu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bicheng Fu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuaijie Ding
- Department of Gastrointestinal Surgery and Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Huawei Yang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ying Cui
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lei Yao
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
18
|
Xu C, Jiang Y, Wang H, Zhang Y, Ye Y, Qin H, Gao J, Dan Q, Du L, Liu L, Peng F, Li Y, Tu Y. Arthritic Microenvironment Actuated Nanomotors for Active Rheumatoid Arthritis Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204881. [PMID: 36373692 PMCID: PMC9896045 DOI: 10.1002/advs.202204881] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/05/2022] [Indexed: 05/20/2023]
Abstract
Increasing O2 demand and excessive ROS production are the main features of arthritic microenvironment in rheumatoid arthritis (RA) joints and further play pivotal roles in inflammation exacerbation. In this work, a system of in situ regulation of arthritic microenvironment based on nanomotor strategy is proposed for active RA therapy. The synthesized MnO2 -motors enable catalytic regulation of RA microenvironment by consuming the overproduced H2 O2 and generating O2 synergistically. The generated O2 under H2 O2 -rich conditions functions as inflammation detector, propellant for enhanced diffusion, as well as ameliorator for the hypoxic synovial microenvironment. Owing to O2 generation and inflammation scavenging, the MnO2 -motors block the re-polarization of pro-inflammatory macrophages, which results in significantly decreased secretion of multiple pro-inflammatory cytokines both in vitro and in vivo. In addition, intra-articular administration of MnO2 -motors to collagen-induced arthritis rats (CIA rats) effectively alleviates hypoxia, synovial inflammation, bone erosion, and cartilage degradation in joints. Therefore, the proposed arthritic regulation strategy shows great potential to seamlessly integrate basic research of RA with clinical translation.
Collapse
Affiliation(s)
- Cong Xu
- Department of Medicine UltrasonicsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- School of Pharmaceutical SciencesGuangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical UniversityGuangzhou510515China
| | - Yuejun Jiang
- Department of Medicine UltrasonicsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- School of Pharmaceutical SciencesGuangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical UniversityGuangzhou510515China
| | - Hong Wang
- Department of Medicine UltrasonicsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- School of Pharmaceutical SciencesGuangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical UniversityGuangzhou510515China
| | - Yuxin Zhang
- Department of UltrasoundFirst Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
| | - Yicheng Ye
- School of Pharmaceutical SciencesGuangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical UniversityGuangzhou510515China
| | - Hanfeng Qin
- School of Pharmaceutical SciencesGuangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical UniversityGuangzhou510515China
| | - Junbin Gao
- School of Pharmaceutical SciencesGuangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical UniversityGuangzhou510515China
| | - Qing Dan
- Department of Medicine UltrasonicsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Lingli Du
- Department of Medicine UltrasonicsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Lu Liu
- School of Pharmaceutical SciencesGuangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical UniversityGuangzhou510515China
| | - Fei Peng
- School of Materials Science and EngineeringSun Yat‐Sen UniversityGuangzhou510275China
| | - Yingjia Li
- Department of Medicine UltrasonicsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Yingfeng Tu
- School of Pharmaceutical SciencesGuangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
19
|
Li S, Qi M, Yang Q, Shi F, Liu C, Du J, Sun Y, Li C, Dong B. State-of-the-Art on the Sulfate Radical-Advanced Oxidation Coupled with Nanomaterials: Biological and Environmental Applications. J Funct Biomater 2022; 13:jfb13040227. [PMID: 36412867 PMCID: PMC9680365 DOI: 10.3390/jfb13040227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Sulfate radicals (SO4-·) play important biological roles in biomedical and environmental engineering, such as antimicrobial, antitumor, and disinfection. Compared with other common free radicals, it has the advantages of a longer half-life and higher oxidation potential, which could bring unexpected effects. These properties have prompted researchers to make great contributions to biology and environmental engineering by exploiting their properties. Peroxymonosulfate (PMS) and peroxydisulfate (PDS) are the main raw materials for SO4-· formation. Due to the remarkable progress in nanotechnology, a large number of nanomaterials have been explored that can efficiently activate PMS/PDS, which have been used to generate SO4-· for biological applications. Based on the superior properties and application potential of SO4-·, it is of great significance to review its chemical mechanism, biological effect, and application field. Therefore, in this review, we summarize the latest design of nanomaterials that can effectually activate PMS/PDS to create SO4-·, including metal-based nanomaterials, metal-free nanomaterials, and nanocomposites. Furthermore, we discuss the underlying mechanism of the activation of PMS/PDS using these nanomaterials and the application of SO4-· in the fields of environmental remediation and biomedicine, liberating the application potential of SO4-·. Finally, this review provides the existing problems and prospects of nanomaterials being used to generate SO4-· in the future, providing new ideas and possibilities for the development of biomedicine and environmental remediation.
Collapse
Affiliation(s)
- Sijia Li
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Manlin Qi
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Qijing Yang
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Fangyu Shi
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Chengyu Liu
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Juanrui Du
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yue Sun
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
- Correspondence: (Y.S.); (C.L.); (B.D.)
| | - Chunyan Li
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
- Correspondence: (Y.S.); (C.L.); (B.D.)
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
- Correspondence: (Y.S.); (C.L.); (B.D.)
| |
Collapse
|
20
|
Tang W, Li X, Liu Z, Meng L, Zhu D, Huang Q. CuS nanoparticles and camptothecin co-loaded thermosensitive injectable hydrogel with self-supplied H 2O 2 for enhanced chemodynamic therapy. Front Bioeng Biotechnol 2022; 10:1003777. [PMID: 36105600 PMCID: PMC9465046 DOI: 10.3389/fbioe.2022.1003777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 12/04/2022] Open
Abstract
Chemodynamic therapy (CDT) is a kind of anti-tumor strategy emerging in recent years, but the concentration of hydrogen peroxide (H2O2) in the tumor microenvironment is insufficient, and it is difficult for a single CDT to completely inhibit tumor growth. Here, we designed a CuS nanoparticles (NPs) and camptothecin (CPT) co-loaded thermosensitive injectable hydrogel (SCH) with self-supplied H2O2 for enhanced CDT. SCH is composed of CuS NPs and CPT loaded into agarose hydrogel according to a certain ratio. We injected SCH into the tumor tissue of mice, and under the irradiation of near-infrared region (NIR) laser at 808 nm, CuS NPs converted the NIR laser into heat to realize photothermal therapy (PTT), and at the same time, the agarose hydrogel was changed into a sol state and CPT was released. CPT activates nicotinamide adenine dinucleotide phosphate oxidase, increases the level of H2O2 inside the tumor, and realizes the self-supply of H2O2. At the same time, CuS can accelerate the release of Cu2+ in an acidic environment and light, combined with H2O2 generated by CPT for CDT treatment, and consume glutathione in tumor and generate hydroxyl radical, thus inducing tumor cell apoptosis. The SCH system we constructed achieved an extremely high tumor inhibition rate in vitro and in vivo, presenting a new idea for designing future chemical kinetic systems.
Collapse
Affiliation(s)
- Wenxue Tang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Xiang Li
- Department of Central Laboratory and Precision Medicine Center, Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Xuzhou, China
| | - Zeming Liu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lyu Meng
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Daoming Zhu
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Qinqin Huang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|