1
|
Wang L, Yao Y, Xie B, Lei M, Li Y, Shi J, Yu L, Zhou W, Sang Y, Kong L, Liu H, Qiu J. Nanoelectrode-Mediated Extracellular Electrical Stimulation Directing Dopaminergic Neuronal Differentiation of Stem Cells for Improved Parkinson's Disease Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2409745. [PMID: 39703114 DOI: 10.1002/adma.202409745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/18/2024] [Indexed: 12/21/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease caused by the dysfunction and death of dopaminergic neurons. Neural-stem-cell (NSC)-based therapy is a promising approach for the treatment of PD but its therapeutic performance is limited by low efficiency of differentiation of NSCs to dopaminergic neurons. Although electrical stimulation can promote neuronal differentiation, it is not verified whether it can induce the NSCs to specifically differentiate into dopaminergic neurons. Meanwhile, it is a great challenge to precisely apply electrical stimulation to dynamically migrating NSCs after transplantation. Here, electrochemically exfoliated graphene nanosheets are designed to anchor to the membrane of NSCs to serve as wireless nanoelectrodes. After anchoring to the cell membrane, these nanoelectrodes are able to migrate together with the cells and precisely apply extracellular electrical stimulation to the receptors or ion transport channels on the membrane of transplanted cells under alternating magnetic field. The nanoelectrode-mediated electrical stimulation induces 38.46% of the NSCs to specifically differentiate into dopaminergic neurons, while the percentage is only 5.82% for NSCs without the nanoelectrode stimulation. Transplantation of NSCs anchored with the nanoelectrodes effectively improves the recovery of the motor and memory ability of PD mice under alternating magnetic field within 2 weeks.
Collapse
Affiliation(s)
- Liang Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Yuan Yao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Bojun Xie
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Ming Lei
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Yiwei Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Jiaming Shi
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Liyang Yu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Wenjuan Zhou
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Liang Kong
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, Shandong, 250022, P. R. China
| | - Jichuan Qiu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| |
Collapse
|
2
|
Hu N, Shi JX, Chen C, Xu HH, Chang ZH, Hu PF, Guo D, Zhang XW, Shao WW, Fan X, Zuo JC, Ming D, Li XH. Constructing organoid-brain-computer interfaces for neurofunctional repair after brain injury. Nat Commun 2024; 15:9580. [PMID: 39505863 PMCID: PMC11541701 DOI: 10.1038/s41467-024-53858-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
The reconstruction of damaged neural circuits is critical for neurological repair after brain injury. Classical brain-computer interfaces (BCIs) allow direct communication between the brain and external controllers to compensate for lost functions. Importantly, there is increasing potential for generalized BCIs to input information into the brains to restore damage, but their effectiveness is limited when a large injured cavity is caused. Notably, it might be overcome by transplantation of brain organoids into the damaged region. Here, we construct innovative BCIs mediated by implantable organoids, coined as organoid-brain-computer interfaces (OBCIs). We assess the prolonged safety and feasibility of the OBCIs, and explore neuroregulatory strategies. OBCI stimulation promotes progressive differentiation of grafts and enhances structural-functional connections within organoids and the host brain, promising to repair the damaged brain via regenerating and regulating, potentially directing neurons to preselected targets and recovering functional neural networks in the future.
Collapse
Affiliation(s)
- Nan Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Jian-Xin Shi
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Chong Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
- Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Hai-Huan Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
- Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Zhe-Han Chang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Peng-Fei Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Di Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Xiao-Wang Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Wen-Wei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Xiu Fan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Jia-Chen Zuo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China.
| |
Collapse
|
3
|
Hong J, Zhu Z, Wang Z, Li J, Liu Z, Tan R, Hao Y, Cheng G. Annular Conductive Hydrogel-Mediated Wireless Electrical Stimulation for Augmenting Neurogenesis. Adv Healthc Mater 2024; 13:e2400624. [PMID: 38782037 DOI: 10.1002/adhm.202400624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Electrical stimulation (ES) has a remarkable capacity to regulate neuronal differentiation and neurogenesis in the treatment of various neurological diseases. However, wired devices connected to the stimulating electrode and the mechanical mismatch between conventional rigid electrodes and soft tissues restrict their motion and cause possible infections, thereby limiting their clinical utility. An approach integrating the advantages of wireless techniques and soft hydrogels provides new insights into ES-induced nerve regeneration. Herein, a flexible and implantable wireless ES-responsive electrode based on an annular gelatin methacrylate-polyaniline (Gel/Pani) hydrogel is fabricated and used as a secondary coil to achieve wireless ES via electromagnetic induction in the presence of a primary coil. The Gel/Pani hydrogels exhibit favorable biocompatibility, biodegradability, conductivity, and compression resistance. The annular electrode of the Gel/Pani conductive hydrogel (AECH) supports neural stem cell growth, while the applied wireless ES facilitates neuronal differentiation and the formation of functional neural networks in vitro. Furthermore, AECH is implanted in vivo in rats with ischemic stroke and the results reveal that AECH-mediated wireless ES significantly ameliorates brain impairment and neurological function by activating endogenous neurogenesis. This novel flexible hydrogel system addresses wireless stimulation and implantable technical challenges, holding great potential for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jing Hong
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Anhui, 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu, 215123, China
| | - Zhanchi Zhu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Anhui, 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu, 215123, China
| | - Zhaojun Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Anhui, 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu, 215123, China
| | - Jiawei Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Anhui, 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu, 215123, China
| | - Zhongqing Liu
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Rui Tan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Ying Hao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Anhui, 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu, 215123, China
| | - Guosheng Cheng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Anhui, 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu, 215123, China
| |
Collapse
|
4
|
Wang L, Zhao H, Han M, Yang H, Lei M, Wang W, Li K, Li Y, Sang Y, Xin T, Liu H, Qiu J. Electromagnetic Cellularized Patch with Wirelessly Electrical Stimulation for Promoting Neuronal Differentiation and Spinal Cord Injury Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307527. [PMID: 38868910 PMCID: PMC11321663 DOI: 10.1002/advs.202307527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/02/2024] [Indexed: 06/14/2024]
Abstract
Although stem cell therapy holds promise for the treatment of spinal cord injury (SCI), its practical applications are limited by the low degree of neural differentiation. Electrical stimulation is one of the most effective ways to promote the differentiation of stem cells into neurons, but conventional wired electrical stimulation may cause secondary injuries, inflammation, pain, and infection. Here, based on the high conductivity of graphite and the electromagnetic induction effect, graphite nanosheets with neural stem cells (NSCs) are proposed as an electromagnetic cellularized patch to generate in situ wirelessly pulsed electric signals under a rotating magnetic field for regulating neuronal differentiation of NSCs to treat SCI. The strength and frequency of the induced voltage can be controlled by adjusting the rotation speed of the magnetic field. The generated pulsed electrical signals promote the differentiation of NSCs into functional mature neurons and increase the proportion of neurons from 12.5% to 33.7%. When implanted in the subarachnoid region of the injured spinal cord, the electromagnetic cellularized patch improves the behavioral performance of the hind limbs and the repair of spinal cord tissue in SCI mice. This work opens a new avenue for remote treatment of SCI and other nervous system diseases.
Collapse
Affiliation(s)
- Liang Wang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Hongbo Zhao
- Department of NeurosurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinan250014P. R. China
| | - Min Han
- Department of NeurosurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinan250014P. R. China
| | - Hongru Yang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Ming Lei
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Wenhan Wang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Keyi Li
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Yiwei Li
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Yuanhua Sang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Tao Xin
- Department of NeurosurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinan250014P. R. China
- Department of Neurosurgery, Shandong Provincial Qianfoshan HospitalShandong UniversityJinan250014P. R. China
- Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinan250117P. R. China
- Department of NeurosurgeryJiangxi Provincial People's HospitalNanchangJiangxi330006P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
- Institute for Advanced Interdisciplinary ResearchUniversity of JinanJinanShandong250022P. R. China
| | - Jichuan Qiu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| |
Collapse
|
5
|
Luo S, Zhang C, Xiong W, Song Y, Wang Q, Zhang H, Guo S, Yang S, Liu H. Advances in electroactive biomaterials: Through the lens of electrical stimulation promoting bone regeneration strategy. J Orthop Translat 2024; 47:191-206. [PMID: 39040489 PMCID: PMC11261049 DOI: 10.1016/j.jot.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
The regenerative capacity of bone is indispensable for growth, given that accidental injury is almost inevitable. Bone regenerative capacity is relevant for the aging population globally and for the repair of large bone defects after osteotomy (e.g., following removal of malignant bone tumours). Among the many therapeutic modalities proposed to bone regeneration, electrical stimulation has attracted significant attention owing to its economic convenience and exceptional curative effects, and various electroactive biomaterials have emerged. This review summarizes the current knowledge and progress regarding electrical stimulation strategies for improving bone repair. Such strategies range from traditional methods of delivering electrical stimulation via electroconductive materials using external power sources to self-powered biomaterials, such as piezoelectric materials and nanogenerators. Electrical stimulation and osteogenesis are related via bone piezoelectricity. This review examines cell behaviour and the potential mechanisms of electrostimulation via electroactive biomaterials in bone healing, aiming to provide new insights regarding the mechanisms of bone regeneration using electroactive biomaterials. The translational potential of this article This review examines the roles of electroactive biomaterials in rehabilitating the electrical microenvironment to facilitate bone regeneration, addressing current progress in electrical biomaterials and the mechanisms whereby electrical cues mediate bone regeneration. Interactions between osteogenesis-related cells and electroactive biomaterials are summarized, leading to proposals regarding the use of electrical stimulation-based therapies to accelerate bone healing.
Collapse
Affiliation(s)
- Songyang Luo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, China
| | - Chengshuo Zhang
- Hepatobiliary Surgery Department, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Wei Xiong
- Department of Plastic Surgery, The First Hospital of Shihezi Medical University, Shihezi, 832000, China
| | - Yiping Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, China
| | - Hangzhou Zhang
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang Sports Medicine Clinical Medical Research Center, Shenyang, 110001, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, China
| | - Huanye Liu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, China
| |
Collapse
|
6
|
Li Y, Chen Z, Liu Y, Liu Z, Wu T, Zhang Y, Peng L, Huang X, Huang S, Lin X, Xie X, Jiang L. Ultra-low frequency magnetic energy focusing for highly effective wireless powering of deep-tissue implantable electronic devices. Natl Sci Rev 2024; 11:nwae062. [PMID: 38628571 PMCID: PMC11020258 DOI: 10.1093/nsr/nwae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 04/19/2024] Open
Abstract
The limited lifespan of batteries is a challenge in the application of implantable electronic devices. Existing wireless power technologies such as ultrasound, near-infrared light and magnetic fields cannot charge devices implanted in deep tissues, resulting in energy attenuation through tissues and thermal generation. Herein, an ultra-low frequency magnetic energy focusing (ULFMEF) methodology was developed for the highly effective wireless powering of deep-tissue implantable devices. A portable transmitter was used to output the low-frequency magnetic field (<50 Hz), which remotely drives the synchronous rotation of a magnetic core integrated within the pellet-like implantable device, generating an internal rotating magnetic field to induce wireless electricity on the coupled coils of the device. The ULFMEF can achieve energy transfer across thick tissues (up to 20 cm) with excellent transferred power (4-15 mW) and non-heat effects in tissues, which is remarkably superior to existing wireless powering technologies. The ULFMEF is demonstrated to wirelessly power implantable micro-LED devices for optogenetic neuromodulation, and wirelessly charged an implantable battery for programmable electrical stimulation on the sciatic nerve. It also bypassed thick and tough protective shells to power the implanted devices. The ULFMEF thus offers a highly advanced methodology for the generation of wireless powered biodevices.
Collapse
Affiliation(s)
- Yuanyuan Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Zhipeng Chen
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yuxin Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Zijian Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Tong Wu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yuanxi Zhang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Lelun Peng
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shuang Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xudong Lin
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Xi Xie
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Lelun Jiang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
7
|
Liu M, Zhang W, Han S, Zhang D, Zhou X, Guo X, Chen H, Wang H, Jin L, Feng S, Wei Z. Multifunctional Conductive and Electrogenic Hydrogel Repaired Spinal Cord Injury via Immunoregulation and Enhancement of Neuronal Differentiation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313672. [PMID: 38308338 DOI: 10.1002/adma.202313672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Indexed: 02/04/2024]
Abstract
Spinal cord injury (SCI) is a refractory neurological disorder. Due to the complex pathological processes, especially the secondary inflammatory cascade and the lack of intrinsic regenerative capacity, it is difficult to recover neurological function after SCI. Meanwhile, simulating the conductive microenvironment of the spinal cord reconstructs electrical neural signal transmission interrupted by SCI and facilitates neural repair. Therefore, a double-crosslinked conductive hydrogel (BP@Hydrogel) containing black phosphorus nanoplates (BP) is synthesized. When placed in a rotating magnetic field (RMF), the BP@Hydrogel can generate stable electrical signals and exhibit electrogenic characteristic. In vitro, the BP@Hydrogel shows satisfactory biocompatibility and can alleviate the activation of microglia. When placed in the RMF, it enhances the anti-inflammatory effects. Meanwhile, wireless electrical stimulation promotes the differentiation of neural stem cells (NSCs) into neurons, which is associated with the activation of the PI3K/AKT pathway. In vivo, the BP@Hydrogel is injectable and can elicit behavioral and electrophysiological recovery in complete transected SCI mice by alleviating the inflammation and facilitating endogenous NSCs to form functional neurons and synapses under the RMF. The present research develops a multifunctional conductive and electrogenic hydrogel for SCI repair by targeting multiple mechanisms including immunoregulation and enhancement of neuronal differentiation.
Collapse
Affiliation(s)
- Mingshan Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Wencan Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Shuwei Han
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Dapeng Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Xiaolong Zhou
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Xianzheng Guo
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Haosheng Chen
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Haifeng Wang
- Department of Orthopaedics, The Second Hospital of Shandong University, No. 247 Beiyuan Street, Tianqiao District, Jinan, 250033, China
| | - Lin Jin
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, No. 6, Middle Section of Wenchang Avenue, Chuanhui District, Zhoukou, 466001, China
| | - Shiqing Feng
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
- Department of Orthopedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Zhijian Wei
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| |
Collapse
|
8
|
Li M, Sun H, Hou Z, Hao S, Jin L, Wang B. Engineering the Physical Microenvironment into Neural Organoids for Neurogenesis and Neurodevelopment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306451. [PMID: 37771182 DOI: 10.1002/smll.202306451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/04/2023] [Indexed: 09/30/2023]
Abstract
Understanding the signals from the physical microenvironment is critical for deciphering the processes of neurogenesis and neurodevelopment. The discovery of how surrounding physical signals shape human developing neurons is hindered by the bottleneck of conventional cell culture and animal models. Notwithstanding neural organoids provide a promising platform for recapitulating human neurogenesis and neurodevelopment, building neuronal physical microenvironment that accurately mimics the native neurophysical features is largely ignored in current organoid technologies. Here, it is discussed how the physical microenvironment modulates critical events during the periods of neurogenesis and neurodevelopment, such as neural stem cell fates, neural tube closure, neuronal migration, axonal guidance, optic cup formation, and cortical folding. Although animal models are widely used to investigate the impacts of physical factors on neurodevelopment and neuropathy, the important roles of human stem cell-derived neural organoids in this field are particularly highlighted. Considering the great promise of human organoids, building neural organoid microenvironments with mechanical forces, electrophysiological microsystems, and light manipulation will help to fully understand the physical cues in neurodevelopmental processes. Neural organoids combined with cutting-edge techniques, such as advanced atomic force microscopes, microrobots, and structural color biomaterials might promote the development of neural organoid-based research and neuroscience.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
| | - Zongkun Hou
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
| |
Collapse
|
9
|
Yu M, Sun P, Sun C, Jin WL. Bioelectronic medicine potentiates endogenous NSCs for neurodegenerative diseases. Trends Mol Med 2023; 29:886-896. [PMID: 37735022 DOI: 10.1016/j.molmed.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023]
Abstract
Neurodegenerative diseases (NDs) are commonly observed and while no therapy is universally applicable, cell-based therapies are promising. Stem cell transplantation has been investigated, but endogenous neural stem cells (eNSCs), despite their potential, especially with the development of bioelectronic medicine and biomaterials, remain understudied. Here, we compare stem cell transplantation therapy with eNSC-based therapy and summarize the combined use of eNSCs and developing technologies. The rapid development of implantable biomaterials has resulted in electronic stimulation becoming increasingly effective and decreasingly invasive. Thus, the combination of bioelectronic medicine and eNSCs has substantial potential for the treatment of NDs.
Collapse
Affiliation(s)
- Maifu Yu
- School of Life Science, Lanzhou University, Lanzhou 730000, China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Pin Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Changkai Sun
- Research & Educational Center for the Control Engineering of Translational Precision Medicine (R-ECCE-TPM), School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
10
|
Gao H, Sun C, Shang S, Sun B, Sun M, Hu S, Yang H, Hu Y, Feng Z, Zhou W, Liu C, Wang J, Liu H. Wireless Electrical Signals Induce Functional Neuronal Differentiation of BMSCs on 3D Graphene Framework Driven by Magnetic Field. ACS NANO 2023; 17:16204-16220. [PMID: 37531596 DOI: 10.1021/acsnano.3c05725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are suggested as candidates for neurodegeneration therapy by autologous stem cells to overcome the lack of neural stem cells in adults. However, the differentiation of BMSCs into functional neurons is a major challenge for neurotherapy. Herein, a methodology has been proposed to induce functional neuronal differentiation of BMSCs on a conductive three-dimensional graphene framework (GFs) combined with a rotating magnetic field. A wireless electrical signal of about 10 μA can be generated on the surface of GFs by cutting the magnetic field lines based on the well-known electromagnetic induction effect, which has been proven to be suitable for inducing neuronal differentiation of BMSCs. The enhanced expressions of the specific genes/proteins and apparent Ca2+ intracellular flow indicate that BMSCs cultured on GFs with 15 min/day rotating magnetic field stimulation for 15 days can differentiate functional neurons without any neural inducing factor. The animal experiments confirm the neural differentiation of BMSCs on GFs after transplantation in vivo, accompanied by stimulation of an external rotating magnetic field. This study overcomes the lack of autologous neural stem cells for adult neurodegeneration patients and provides a facile and safe strategy to induce the neural differentiation of BMSCs, which has potential for clinical applications of neural tissue engineering.
Collapse
Affiliation(s)
- Haoyang Gao
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Chunhui Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Shuo Shang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Baojun Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Mingyuan Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Shuang Hu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Hongru Yang
- State Key Laboratory of Crystal Materials, Shandong University, 27 Shandanan Road, Jinan, Shandong 250100, People's Republic of China
| | - Ying Hu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Zhichao Feng
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Chao Liu
- Cryomedicine Laboratory, Qilu Hospital, Shandong University, Jinan 250012, People's Republic of China
| | - Jingang Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
- State Key Laboratory of Crystal Materials, Shandong University, 27 Shandanan Road, Jinan, Shandong 250100, People's Republic of China
| |
Collapse
|
11
|
Zhang J, Wang Y, Shu X, Deng H, Wu F, He J. Magnetic chitosan hydrogel induces neuronal differentiation of neural stem cells by activating RAS-dependent signal cascade. Carbohydr Polym 2023; 314:120918. [PMID: 37173006 DOI: 10.1016/j.carbpol.2023.120918] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023]
Abstract
Our aim was to modulate magnetic cues to influence the differentiation of neural stem cell (NSC) into neuron during nerve repair and to explore corresponding mechanisms. Here, a magnetic hydrogel composed of chitosan matrices and magnetic nanoparticles (MNPs) with different content was prepared as the magnetic-stimulation platform to apply intrinsically-present magnetic cue and externally-applied magnetic field to NSC grown on the hydrogel. The MNP content had regulatory effects on neuronal differentiation and the MNPs-50 samples exhibited the best neuronal potential and appropriate biocompatibility in vitro, as well as accelerated the subsequent neuronal regeneration in vivo. Remarkably, the use of proteomics analysis parsed the underlying mechanism of magnetic cue-mediated neuronal differentiation form the perspective of protein corona and intracellular signal transduction. The intrinsically-present magnetic cues in hydrogel contributed to the activation of intracellular RAS-dependent signal cascades, thus facilitating neuronal differentiation. Magnetic cue-dependent changes in NSCs benefited from the upregulation of adsorbed proteins related to "neuronal differentiation", "cell-cell interaction", "receptor", "protein activation cascade", and "protein kinase activity" in the protein corona. Additionally, magnetic hydrogel acted cooperatively with the exterior magnetic field, showing further improving neurogenesis. The findings clarified the mechanism for magnetic cue-mediated neuronal differentiation, coupling protein corona and intracellular signal transduction.
Collapse
Affiliation(s)
- Junwei Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Yao Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Xuedong Shu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Huan Deng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Fang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Jing He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
12
|
Qiu J, Liu XJ, You BA, Ren N, Liu H. Application of Nanomaterials in Stem Cell-Based Therapeutics for Cardiac Repair and Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206487. [PMID: 36642861 DOI: 10.1002/smll.202206487] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Cardiovascular disease is a leading cause of disability and death worldwide. Although the survival rate of patients with heart diseases can be improved with contemporary pharmacological treatments and surgical procedures, none of these therapies provide a significant improvement in cardiac repair and regeneration. Stem cell-based therapies are a promising approach for functional recovery of damaged myocardium. However, the available stem cells are difficult to differentiate into cardiomyocytes, which result in the extremely low transplantation efficiency. Nanomaterials are widely used to regulate the myocardial differentiation of stem cells, and play a very important role in cardiac tissue engineering. This study discusses the current status and limitations of stem cells and cell-derived exosomes/micro RNAs based cardiac therapy, describes the cardiac repair mechanism of nanomaterials, summarizes the recent advances in nanomaterials used in cardiac repair and regeneration, and evaluates the advantages and disadvantages of the relevant nanomaterials. Besides discussing the potential clinical applications of nanomaterials in cardiac therapy, the perspectives and challenges of nanomaterials used in stem cell-based cardiac repair and regeneration are also considered. Finally, new research directions in this field are proposed, and future research trends are highlighted.
Collapse
Affiliation(s)
- Jie Qiu
- Medical Research Institute, Jinan Nanjiao Hospital, Jinan, 250002, P. R. China
| | - Xiang-Ju Liu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, 250012, P. R. China
| | - Bei-An You
- Department of Cardiovascular Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Jinan, 266035, P. R. China
| | - Na Ren
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|