1
|
Haghighi E, Abolmaali SS, Dehshahri A, Mousavi Shaegh SA, Azarpira N, Tamaddon AM. Navigating the intricate in-vivo journey of lipid nanoparticles tailored for the targeted delivery of RNA therapeutics: a quality-by-design approach. J Nanobiotechnology 2024; 22:710. [PMID: 39543630 PMCID: PMC11566655 DOI: 10.1186/s12951-024-02972-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024] Open
Abstract
RNA therapeutics, such as mRNA, siRNA, and CRISPR-Cas9, present exciting avenues for treating diverse diseases. However, their potential is commonly hindered by vulnerability to degradation and poor cellular uptake, requiring effective delivery systems. Lipid nanoparticles (LNPs) have emerged as a leading choice for in vivo RNA delivery, offering protection against degradation, enhanced cellular uptake, and facilitation of endosomal escape. However, LNPs encounter numerous challenges for targeted RNA delivery in vivo, demanding advanced particle engineering, surface functionalization with targeting ligands, and a profound comprehension of the biological milieu in which they function. This review explores the structural and physicochemical characteristics of LNPs, in-vivo fate, and customization for RNA therapeutics. We highlight the quality-by-design (QbD) approach for targeted delivery beyond the liver, focusing on biodistribution, immunogenicity, and toxicity. In addition, we explored the current challenges and strategies associated with LNPs for in-vivo RNA delivery, such as ensuring repeated-dose efficacy, safety, and tissue-specific gene delivery. Furthermore, we provide insights into the current clinical applications in various classes of diseases and finally prospects of LNPs in RNA therapeutics.
Collapse
Affiliation(s)
- Elahe Haghighi
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Ali Mousavi Shaegh
- Laboratory of Microfluidics and Medical Microsystems, Research Institute for Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
- Orthopedic Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Azarpira
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutics, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Wei PS, Thota N, John G, Chang E, Lee S, Wang Y, Ma Z, Tsai YH, Mei KC. Enhancing RNA-lipid nanoparticle delivery: Organ- and cell-specificity and barcoding strategies. J Control Release 2024; 375:366-388. [PMID: 39179112 DOI: 10.1016/j.jconrel.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/25/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Recent advancements in RNA therapeutics highlight the critical need for precision gene delivery systems that target specific organs and cells. Lipid nanoparticles (LNPs) have emerged as key vectors in delivering mRNA and siRNA, offering protection against enzymatic degradation, enabling targeted delivery and cellular uptake, and facilitating RNA cargo release into the cytosol. This review discusses the development and optimization of organ- and cell-specific LNPs, focusing on their design, mechanisms of action, and therapeutic applications. We explore innovations such as DNA/RNA barcoding, which facilitates high-throughput screening and precise adjustments in formulations. We address major challenges, including improving endosomal escape, minimizing off-target effects, and enhancing delivery efficiencies. Notable clinical trials and recent FDA approvals illustrate the practical applications and future potential of LNP-based RNA therapies. Our findings suggest that while considerable progress has been made, continued research is essential to resolve existing limitations and bridge the gap between preclinical and clinical evaluation of the safety and efficacy of RNA therapeutics. This review highlights the dynamic progress in LNP research. It outlines a roadmap for future advancements in RNA-based precision medicine.
Collapse
Affiliation(s)
- Pu-Sheng Wei
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Nagasri Thota
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Greshma John
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Evelyn Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Sunjae Lee
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Yuanjun Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Zitao Ma
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Yu-Hsuan Tsai
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Kuo-Ching Mei
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA.
| |
Collapse
|
3
|
Li J, Zhang Y, Yang YG, Sun T. Advancing mRNA Therapeutics: The Role and Future of Nanoparticle Delivery Systems. Mol Pharm 2024; 21:3743-3763. [PMID: 38953708 DOI: 10.1021/acs.molpharmaceut.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The coronavirus (COVID-19) pandemic has underscored the critical role of mRNA-based vaccines as powerful, adaptable, readily manufacturable, and safe methodologies for prophylaxis. mRNA-based treatments are emerging as a hopeful avenue for a plethora of conditions, encompassing infectious diseases, cancer, autoimmune diseases, genetic diseases, and rare disorders. Nonetheless, the in vivo delivery of mRNA faces challenges due to its instability, suboptimal delivery, and potential for triggering undesired immune reactions. In this context, the development of effective drug delivery systems, particularly nanoparticles (NPs), is paramount. Tailored with biophysical and chemical properties and susceptible to surface customization, these NPs have demonstrated enhanced mRNA delivery in vivo and led to the approval of several NPs-based formulations for clinical use. Despite these advancements, the necessity for developing a refined, targeted NP delivery system remains imperative. This review comprehensively surveys the biological, translational, and clinical progress in NPs-mediated mRNA therapeutics for both the prevention and treatment of diverse diseases. By addressing critical factors for enhancing existing methodologies, it aims to inform the future development of precise and efficacious mRNA-based therapeutic interventions.
Collapse
Affiliation(s)
- Jiaxuan Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China
- International Center of Future Science, Jilin University, Changchun, Jilin 130021, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China
- International Center of Future Science, Jilin University, Changchun, Jilin 130021, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
4
|
Yu HP, Liu FC, Chung YK, Alalaiwe A, Sung CT, Fang JY. Nucleic acid-based nanotherapeutics for treating sepsis and associated organ injuries. Theranostics 2024; 14:4411-4437. [PMID: 39113804 PMCID: PMC11303080 DOI: 10.7150/thno.98487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
In recent years, gene therapy has been made possible with the success of nucleic acid drugs against sepsis and its related organ dysfunction. Therapeutics based on nucleic acids such as small interfering RNAs (siRNAs), microRNAs (miRNAs), messenger RNAs (mRNAs), and plasmid DNAs (pDNAs) guarantee to treat previously undruggable diseases. The advantage of nucleic acid-based therapy against sepsis lies in the development of nanocarriers, achieving targeted and controlled gene delivery for improved efficacy with minimal adverse effects. Entrapment into nanocarriers also ameliorates the poor cellular uptake of naked nucleic acids. In this study, we discuss the current state of the art in nanoparticles for nucleic acid delivery to treat hyperinflammation and apoptosis associated with sepsis. The optimized design of the nanoparticles through physicochemical property modification and ligand conjugation can target specific organs-such as lung, heart, kidney, and liver-to mitigate multiple sepsis-associated organ injuries. This review highlights the nanomaterials designed for fabricating the anti-sepsis nanosystems, their physicochemical characterization, the mechanisms of nucleic acid-based therapy in working against sepsis, and the potential for promoting the therapeutic efficiency of the nucleic acids. The current investigations associated with nanoparticulate nucleic acid application in sepsis management are summarized in this paper. Noteworthily, the potential application of nanotherapeutic nucleic acids allows for a novel strategy to treat sepsis. Further clinical studies are required to confirm the findings in cell- and animal-based experiments. The capability of large-scale production and reproducibility of nanoparticle products are also critical for commercialization. It is expected that numerous anti-sepsis possibilities will be investigated for nucleic acid-based nanotherapeutics in the future.
Collapse
Affiliation(s)
- Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Yu-Kuo Chung
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Calvin T. Sung
- Department of Dermatology, University of California, Irvine, United States
| | - Jia-You Fang
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
5
|
Kim J, Jozić A, Bloom E, Jones B, Marra M, Murthy NTV, Eygeris Y, Sahay G. Microfluidic Platform Enables Shearless Aerosolization of Lipid Nanoparticles for mRNA Inhalation. ACS NANO 2024; 18:11335-11348. [PMID: 38621181 DOI: 10.1021/acsnano.4c00768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Leveraging the extensive surface area of the lungs for gene therapy, the inhalation route offers distinct advantages for delivery. Clinical nebulizers that employ vibrating mesh technology are the standard choice for converting liquid medicines into aerosols. However, they have limitations when it comes to delivering mRNA through inhalation, including severe damage to nanoparticles due to shearing forces. Here, we introduce a microfluidic aerosolization platform (MAP) that preserves the structural and physicochemical integrity of lipid nanoparticles, enabling safe and efficient delivery of mRNA to the respiratory system. Our results demonstrated the superiority of the MAP over the conventional vibrating mesh nebulizer, as it avoided problems such as particle aggregation, loss of mRNA encapsulation, and deformation of the nanoparticle morphology. Notably, aerosolized nanoparticles generated by the microfluidic device led to enhanced transfection efficiency across various cell lines. In vivo experiments with mice that inhaled these aerosolized nanoparticles revealed successful lung-specific mRNA transfection without observable signs of toxicity. This MAP may represent an advancement for the pulmonary gene therapy, enabling precise and effective delivery of aerosolized nanoparticles.
Collapse
Affiliation(s)
- Jeonghwan Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Antony Jozić
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Elissa Bloom
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Brian Jones
- Funai Microfluidic Systems, Lexington, Kentucky 40508, United States
| | - Michael Marra
- Funai Microfluidic Systems, Lexington, Kentucky 40508, United States
| | | | - Yulia Eygeris
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97201, United States
- Department of Biomedical Engineering, Robertson Life Sciences Building, Oregon Health & Science University, Portland, Oregon 97201, United States
- Center for Innovative Drug Delivery and Imaging, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| |
Collapse
|
6
|
Le ND, Nguyen BL, Patil BR, Chun H, Kim S, Nguyen TOO, Mishra S, Tandukar S, Chang JH, Kim DY, Jin SG, Choi HG, Ku SK, Kim J, Kim JO. Antiangiogenic Therapeutic mRNA Delivery Using Lung-Selective Polymeric Nanomedicine for Lung Cancer Treatment. ACS NANO 2024; 18:8392-8410. [PMID: 38450656 DOI: 10.1021/acsnano.3c13039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Therapeutic antibodies that block vascular endothelial growth factor (VEGF) show clinical benefits in treating nonsmall cell lung cancers (NSCLCs) by inhibiting tumor angiogenesis. Nonetheless, the therapeutic effects of systemically administered anti-VEGF antibodies are often hindered in NSCLCs because of their limited distribution in the lungs and their adverse effects on normal tissues. These challenges can be overcome by delivering therapeutic antibodies in their mRNA form to lung endothelial cells, a primary target of VEGF-mediated pulmonary angiogenesis, to suppress the NSCLCs. In this study, we synthesized derivatives of poly(β-amino esters) (PBAEs) and prepared nanoparticles to encapsulate the synthetic mRNA encoding bevacizumab, an anti-VEGF antibody used in the clinic. Optimization of nanoparticle formulations resulted in a selective lung transfection after intravenous administration. Notably, the optimized PBAE nanoparticles were distributed in lung endothelial cells, resulting in the secretion of bevacizumab. We analyzed the protein corona on the lung- and spleen-targeting nanoparticles using proteomics and found distinctive features potentially contributing to their organ-selectivity. Lastly, bevacizumab mRNA delivered by the lung-targeting PBAE nanoparticles more significantly inhibited tumor proliferation and angiogenesis than recombinant bevacizumab protein in orthotopic NSCLC mouse models, supporting the therapeutic potential of bevacizumab mRNA therapy and its selective delivery through lung-targeting nanoparticles. Our proof-of-principle results highlight the clinical benefits of nanoparticle-mediated mRNA therapy in anticancer antibody treatment in preclinical models.
Collapse
Affiliation(s)
- Ngoc Duy Le
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Bao Loc Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | | | - HeeSang Chun
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - SiYoon Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | | | - Sunil Mishra
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sudarshan Tandukar
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Jae-Hoon Chang
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Dong Young Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, Cheonan, 31116, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, Ansan, 15588, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Republic of Korea
| | - Jeonghwan Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
7
|
Cooper CG, Kafetzis KN, Patabendige A, Tagalakis AD. Blood-brain barrier disruption in dementia: Nano-solutions as new treatment options. Eur J Neurosci 2024; 59:1359-1385. [PMID: 38154805 DOI: 10.1111/ejn.16229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/30/2023]
Abstract
Candidate drugs targeting the central nervous system (CNS) demonstrate extremely low clinical success rates, with more than 98% of potential treatments being discontinued due to poor blood-brain barrier (BBB) permeability. Neurological conditions were shown to be the second leading cause of death globally in 2016, with the number of people currently affected by neurological disorders increasing rapidly. This increasing trend, along with an inability to develop BBB permeating drugs, is presenting a major hurdle in the treatment of CNS-related disorders, like dementia. To overcome this, it is necessary to understand the structure and function of the BBB, including the transport of molecules across its interface in both healthy and pathological conditions. The use of CNS drug carriers is rapidly gaining popularity in CNS research due to their ability to target BBB transport systems. Further research and development of drug delivery vehicles could provide essential information that can be used to develop novel treatments for neurological conditions. This review discusses the BBB and its transport systems and evaluates the potential of using nanoparticle-based delivery systems as drug carriers for CNS disease with a focus on dementia.
Collapse
Affiliation(s)
| | | | - Adjanie Patabendige
- Department of Biology, Edge Hill University, Ormskirk, UK
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| | - Aristides D Tagalakis
- Department of Biology, Edge Hill University, Ormskirk, UK
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
8
|
Kim J, Jozic A, Bloom E, Jones B, Marra M, Murthy NTV, Eygeris Y, Sahay G. Microfluidic platform enables shear-less aerosolization of lipid nanoparticles for messenger RNA inhalation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576136. [PMID: 38293192 PMCID: PMC10827149 DOI: 10.1101/2024.01.17.576136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Leveraging the extensive surface area of the lungs for gene therapy, inhalation route offers distinct advantages for delivery. Clinical nebulizers that employ vibrating mesh technology are the standard choice for converting liquid medicines into aerosols. However, they have limitations when it comes to delivering mRNA through inhalation, including severe damage to nanoparticles due to shearing forces. Here, we introduce a novel microfluidic aerosolization platform (MAP) that preserves the structural and physicochemical integrity of lipid nanoparticles, enabling safe and efficient mRNA delivery to the respiratory system. Our results demonstrated the superiority of the novel MAP over the conventional vibrating mesh nebulizer, as it avoided problems such as particle aggregation, loss of mRNA encapsulation, and deformation of nanoparticle morphology. Notably, aerosolized nanoparticles generated by the microfluidic device led to enhanced transfection efficiency across various cell lines. In vivo experiments with mice that inhaled these aerosolized nanoparticles revealed successful, lung-specific mRNA transfection without observable signs of toxicity. This pioneering MAP represents a significant advancement for the pulmonary gene therapy, enabling precise and effective delivery of aerosolized nanoparticles.
Collapse
|
9
|
Bernardotto S, Frasson I, Faravelli S, Morelli A, Schiavon E, Moscatiello GY, Violatto MB, Pinnola A, Canciani A, Mattarei A, Rossi G, Brini M, Pasetto L, Bonetto V, Bigini P, Forneris F, Richter SN, Morpurgo M. Efficient SARS-CoV-2 infection antagonization by rhACE2 ectodomain multimerized onto the Avidin-Nucleic-Acid-NanoASsembly. Biomaterials 2023; 303:122394. [PMID: 38007919 DOI: 10.1016/j.biomaterials.2023.122394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 11/28/2023]
Abstract
Nanodecoy systems based on analogues of viral cellular receptors assembled onto fluid lipid-based membranes of nano/extravescicles are potential new tools to complement classic therapeutic or preventive antiviral approaches. The need for lipid-based membranes for transmembrane receptor anchorage may pose technical challenges along industrial translation, calling for alternative geometries for receptor multimerization. Here we developed a semisynthetic self-assembling SARS-CoV-2 nanodecoy by multimerizing the biotin labelled virus cell receptor -ACE2- ectodomain onto a poly-avidin nanoparticle (NP) based on the Avidin-Nucleic-Acid-NanoASsembly-ANANAS. The ability of the assembly to prevent SARS-CoV-2 infection in human lung cells and the affinity of the ACE2:viral receptor-binding domain (RBD) interaction were measured at different ACE2:NP ratios. At ACE2:NP = 30, 90 % SARS-CoV-2 infection inhibition at ACE2 nanomolar concentration was registered on both Wuhan and Omicron variants, with ten-fold higher potency than the monomeric protein. Lower and higher ACE2 densities were less efficient suggesting that functional recognition between multi-ligand NPs and multi-receptor virus surfaces requires optimal geometrical relationships. In vivo studies in mice showed that the biodistribution and safety profiles of the nanodecoy are potentially suitable for preventing viral infection upon nasal instillation. Viral receptor multimerization using ANANAS is a convenient process which, in principle, could be rapidly adapted to counteract also other viral infections.
Collapse
Affiliation(s)
- Simone Bernardotto
- Pharmaceutical and Pharmacological Sciences Dept (DSF), University of Padova, Via Marzolo, 5. 35131, Padova, Italy
| | - Ilaria Frasson
- Department of Molecular Medicine (DMM), University of Padova, Via A. Gabelli, 63, 35121, Padova, Italy
| | - Silvia Faravelli
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9/A, 27100, Pavia, Italy
| | - Annalisa Morelli
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy, Via Mario Negri 2, 20156, Milano, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - Elisa Schiavon
- Pharmaceutical and Pharmacological Sciences Dept (DSF), University of Padova, Via Marzolo, 5. 35131, Padova, Italy
| | - Giulia Yuri Moscatiello
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy, Via Mario Negri 2, 20156, Milano, Italy
| | - Martina Bruna Violatto
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy, Via Mario Negri 2, 20156, Milano, Italy
| | - Alberta Pinnola
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9/A, 27100, Pavia, Italy
| | - Anselmo Canciani
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9/A, 27100, Pavia, Italy
| | - Andrea Mattarei
- Pharmaceutical and Pharmacological Sciences Dept (DSF), University of Padova, Via Marzolo, 5. 35131, Padova, Italy
| | - Gianpaolo Rossi
- Department of Medicine (DIMED), University of Padova, Via Giustiniani, 2, 35131, Padova, Italy
| | - Marisa Brini
- Department of Biology (DIBIO), Viale G. Colombo, 3, 35131, Padova, Italy
| | - Laura Pasetto
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy, Via Mario Negri 2, 20156, Milano, Italy
| | - Valentina Bonetto
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy, Via Mario Negri 2, 20156, Milano, Italy
| | - Paolo Bigini
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy, Via Mario Negri 2, 20156, Milano, Italy
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9/A, 27100, Pavia, Italy
| | - Sara N Richter
- Department of Molecular Medicine (DMM), University of Padova, Via A. Gabelli, 63, 35121, Padova, Italy; Microbiology and Virology Unit, Padua University Hospital, 35121, Padua, Italy.
| | - Margherita Morpurgo
- Pharmaceutical and Pharmacological Sciences Dept (DSF), University of Padova, Via Marzolo, 5. 35131, Padova, Italy.
| |
Collapse
|
10
|
Gautam M, Jozic A, Su GLN, Herrera-Barrera M, Curtis A, Arrizabalaga S, Tschetter W, Ryals RC, Sahay G. Lipid nanoparticles with PEG-variant surface modifications mediate genome editing in the mouse retina. Nat Commun 2023; 14:6468. [PMID: 37833442 PMCID: PMC10575971 DOI: 10.1038/s41467-023-42189-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Ocular delivery of lipid nanoparticle (LNPs) packaged mRNA can enable efficient gene delivery and editing. We generated LNP variants through the inclusion of positively charged-amine-modified polyethylene glycol (PEG)-lipids (LNPa), negatively charged-carboxyl-(LNPz) and carboxy-ester (LNPx) modified PEG-lipids, and neutral unmodified PEG-lipids (LNP). Subretinal injections of LNPa containing Cre mRNA in the mouse show tdTomato signal in the retinal pigmented epithelium (RPE) like conventional LNPs. Unexpectedly, LNPx and LNPz show 27% and 16% photoreceptor transfection, respectively, with striking localization extending from the photoreceptor synaptic pedicle to the outer segments, displaying pan-retinal distribution in the photoreceptors and RPE. LNPx containing Cas9 mRNA and sgAi9 leads to the formation of an oval elongated structure with a neutral charge resulting in 16.4% editing restricted to RPE. Surface modifications of LNPs with PEG variants can alter cellular tropism of mRNA. LNPs enable genome editing in the retina and in the future can be used to correct genetic mutations that lead to blindness.
Collapse
Affiliation(s)
- Milan Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR, 97201, USA
| | - Antony Jozic
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR, 97201, USA
| | - Grace Li-Na Su
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Marco Herrera-Barrera
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR, 97201, USA
| | - Allison Curtis
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Sebastian Arrizabalaga
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Wayne Tschetter
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Renee C Ryals
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA.
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR, 97201, USA.
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA.
- Department of Biomedical Engineering, Robertson Life Sciences Building, Oregon Health & Science University, Portland, OR, 97201, USA.
| |
Collapse
|
11
|
Suberi A, Grun MK, Mao T, Israelow B, Reschke M, Grundler J, Akhtar L, Lee T, Shin K, Piotrowski-Daspit AS, Homer RJ, Iwasaki A, Suh HW, Saltzman WM. Polymer nanoparticles deliver mRNA to the lung for mucosal vaccination. Sci Transl Med 2023; 15:eabq0603. [PMID: 37585505 PMCID: PMC11137749 DOI: 10.1126/scitranslmed.abq0603] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/26/2023] [Indexed: 08/18/2023]
Abstract
An inhalable platform for messenger RNA (mRNA) therapeutics would enable minimally invasive and lung-targeted delivery for a host of pulmonary diseases. Development of lung-targeted mRNA therapeutics has been limited by poor transfection efficiency and risk of vehicle-induced pathology. Here, we report an inhalable polymer-based vehicle for delivery of therapeutic mRNAs to the lung. We optimized biodegradable poly(amine-co-ester) (PACE) polyplexes for mRNA delivery using end-group modifications and polyethylene glycol. These polyplexes achieved high transfection of mRNA throughout the lung, particularly in epithelial and antigen-presenting cells. We applied this technology to develop a mucosal vaccine for severe acute respiratory syndrome coronavirus 2 and found that intranasal vaccination with spike protein-encoding mRNA polyplexes induced potent cellular and humoral adaptive immunity and protected susceptible mice from lethal viral challenge. Together, these results demonstrate the translational potential of PACE polyplexes for therapeutic delivery of mRNA to the lungs.
Collapse
Affiliation(s)
- Alexandra Suberi
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Molly K Grun
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Benjamin Israelow
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Melanie Reschke
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Julian Grundler
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Laiba Akhtar
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA
| | - Teresa Lee
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Kwangsoo Shin
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | | | - Robert J Homer
- Department of Pathology, Yale University School of Medicine, CT 06510, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Hee-Won Suh
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
12
|
Xu X, Xia T. Recent Advances in Site-Specific Lipid Nanoparticles for mRNA Delivery. ACS NANOSCIENCE AU 2023; 3:192-203. [PMID: 37360845 PMCID: PMC10288611 DOI: 10.1021/acsnanoscienceau.2c00062] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 06/28/2023]
Abstract
The success of mRNA vaccines during the COVID-19 pandemic has greatly accelerated the development of mRNA therapy. mRNA is a negatively charged nucleic acid that serves as a template for protein synthesis in the ribosome. Despite its utility, the instability of mRNA requires suitable carriers for in vivo delivery. Lipid nanoparticles (LNPs) are employed to protect mRNA from degradation and enhance its intracellular delivery. To further optimize the therapeutic efficacy of mRNA, site-specific LNPs have been developed. Through local or systemic administration, these site-specific LNPs can accumulate in specific organs, tissues, or cells, allowing for the intracellular delivery of mRNA to specific cells and enabling the exertion of local or systemic therapeutic effects. This not only improves the efficiency of mRNA therapy but also reduces off-target adverse effects. In this review, we summarize recent site-specific mRNA delivery strategies, including different organ- or tissue-specific LNP after local injection, and organ-specific or cell-specific LNP after intravenous injection. We also provide an outlook on the prospects of mRNA therapy.
Collapse
Affiliation(s)
- Xiao Xu
- Division
of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Tian Xia
- Division
of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
13
|
Zhang X, Jozic A, Song P, Xu Q, Shi X, Wang H, Bishop L, Struthers HM, Rutledge J, Chen S, Xu F, Hancock MH, Zhu D, Sahay G, Chu CQ. mRNA vaccine against fibroblast activation protein ameliorates murine models of inflammatory arthritis. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2023; 4:90-97. [PMID: 37818347 PMCID: PMC10561064 DOI: 10.2478/rir-2023-0013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/15/2023] [Indexed: 10/12/2023]
Abstract
Objective Synovial fibroblasts in patients with rheumatoid arthritis (RA) contribute substantially to the perpetuation of synovitis and invasion to cartilage and bone, and are potential therapeutic targets. Fibroblast activation protein (FAP) is highly expressed by RA synovial fibroblasts and the expression is relatively specific. We tested whether FAP can serve as a molecular target to modulate synovial fibroblasts for therapy in experimental arthritis. Methods mRNA encoding consensus FAP (cFAP) was encapsulated in lipid nanoparticles (LNP) and was injected intramuscularly as vaccine prior to induction of collagen-induced arthritis (CIA) and collagen antibody induced arthritis (CAIA) in mice. Development of CIA and CAIA was assessed clinically and by histology. Results cFAP mRNA-LNP vaccine provoked immune response to cFAP and mouse FAP (mFAP); prevented onset of CIA in 40% of mice and significantly reduced the severity of arthritis. In CAIA, cFAP mRNA-LNP did not prevent onset of arthritis but significantly reduced the severity of arthritis. Conclusion cFAP mRNA-LNP vaccine was able to provoke immune response to mFAP and suppress inflammatory arthritis.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, VA Portland Health Care System, Portland, Oregon97239, USA
| | - Antony Jozic
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, Oregon97201, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon97239, USA
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon97239, USA
| | - Pingfang Song
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, VA Portland Health Care System, Portland, Oregon97239, USA
| | - Qiang Xu
- Department of Rheumatology, The First Hospital, Guangzhou University of Chinese Medicine, Guangzhou51405, Guangdong Province, China
| | - Xiaofei Shi
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, VA Portland Health Care System, Portland, Oregon97239, USA
- Department of Rheumatology, The First Hospital, Henan University of Science and Technology, Luoyang471003, Henan Province, China
| | - Hong Wang
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, VA Portland Health Care System, Portland, Oregon97239, USA
- Department of Rheumatology, The Second Hospital, Wenzhou Medical University, Wenzhou362000, Zhejiang Province, China
| | - Lindsey Bishop
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon97006, USA
| | - Hillary M Struthers
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon97006, USA
| | - John Rutledge
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, VA Portland Health Care System, Portland, Oregon97239, USA
- Portland VA Research Foundation, Portland, Oregon97239, USA
| | - Shuang Chen
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, VA Portland Health Care System, Portland, Oregon97239, USA
- Department of Internal Medicine, Oregon Health & Science University, Portland, Oregon97239, USA
| | - Fei Xu
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, VA Portland Health Care System, Portland, Oregon97239, USA
- Department of Hematology and Oncology, General Hospital of Ningxia Medical University, Yinchuan750004, Ningxia Hui Autonomous Region, China
| | - Meaghan H Hancock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon97006, USA
| | - Daocheng Zhu
- Shanghai Kexin Biotechnology, Co., Ltd., Shanghai, 201203, China
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, Oregon97201, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon97239, USA
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon97239, USA
| | - Cong-Qiu Chu
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, VA Portland Health Care System, Portland, Oregon97239, USA
| |
Collapse
|
14
|
Dehghani J, Movafeghi A, Mathieu-Rivet E, Mati-Baouche N, Calbo S, Lerouge P, Bardor M. Microalgae as an Efficient Vehicle for the Production and Targeted Delivery of Therapeutic Glycoproteins against SARS-CoV-2 Variants. Mar Drugs 2022; 20:md20110657. [PMID: 36354980 PMCID: PMC9698596 DOI: 10.3390/md20110657] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/27/2022] Open
Abstract
Severe acute respiratory syndrome–Coronavirus 2 (SARS-CoV-2) can infect various human organs, including the respiratory, circulatory, nervous, and gastrointestinal ones. The virus is internalized into human cells by binding to the human angiotensin-converting enzyme 2 (ACE2) receptor through its spike protein (S-glycoprotein). As S-glycoprotein is required for the attachment and entry into the human target cells, it is the primary mediator of SARS-CoV-2 infectivity. Currently, this glycoprotein has received considerable attention as a key component for the development of antiviral vaccines or biologics against SARS-CoV-2. Moreover, since the ACE2 receptor constitutes the main entry route for the SARS-CoV-2 virus, its soluble form could be considered as a promising approach for the treatment of coronavirus disease 2019 infection (COVID-19). Both S-glycoprotein and ACE2 are highly glycosylated molecules containing 22 and 7 consensus N-glycosylation sites, respectively. The N-glycan structures attached to these specific sites are required for the folding, conformation, recycling, and biological activity of both glycoproteins. Thus far, recombinant S-glycoprotein and ACE2 have been produced primarily in mammalian cells, which is an expensive process. Therefore, benefiting from a cheaper cell-based biofactory would be a good value added to the development of cost-effective recombinant vaccines and biopharmaceuticals directed against COVID-19. To this end, efficient protein synthesis machinery and the ability to properly impose post-translational modifications make microalgae an eco-friendly platform for the production of pharmaceutical glycoproteins. Notably, several microalgae (e.g., Chlamydomonas reinhardtii, Dunaliella bardawil, and Chlorella species) are already approved by the U.S. Food and Drug Administration (FDA) as safe human food. Because microalgal cells contain a rigid cell wall that could act as a natural encapsulation to protect the recombinant proteins from the aggressive environment of the stomach, this feature could be used for the rapid production and edible targeted delivery of S-glycoprotein and soluble ACE2 for the treatment/inhibition of SARS-CoV-2. Herein, we have reviewed the pathogenesis mechanism of SARS-CoV-2 and then highlighted the potential of microalgae for the treatment/inhibition of COVID-19 infection.
Collapse
Affiliation(s)
- Jaber Dehghani
- Université de Rouen Normandie, Laboratoire GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France
| | - Ali Movafeghi
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran
| | - Elodie Mathieu-Rivet
- Université de Rouen Normandie, Laboratoire GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France
| | - Narimane Mati-Baouche
- Université de Rouen Normandie, Laboratoire GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France
| | - Sébastien Calbo
- Université de Rouen Normandie, Inserm U1234, F-76000 Rouen, France
| | - Patrice Lerouge
- Université de Rouen Normandie, Laboratoire GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France
| | - Muriel Bardor
- Université de Rouen Normandie, Laboratoire GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France
- Correspondence: ; Tel.: +33-2-35-14-67-51
| |
Collapse
|
15
|
Iraci N, Corsaro C, Giofrè SV, Neri G, Mezzasalma AM, Vacalebre M, Speciale A, Saija A, Cimino F, Fazio E. Nanoscale Technologies in the Fight against COVID-19: From Innovative Nanomaterials to Computer-Aided Discovery of Potential Antiviral Plant-Derived Drugs. Biomolecules 2022; 12:1060. [PMID: 36008954 PMCID: PMC9405735 DOI: 10.3390/biom12081060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
The last few years have increasingly emphasized the need to develop new active antiviral products obtained from artificial synthesis processes using nanomaterials, but also derived from natural matrices. At the same time, advanced computational approaches have found themselves fundamental in the repurposing of active therapeutics or for reducing the very long developing phases of new drugs discovery, which represents a real limitation, especially in the case of pandemics. The first part of the review is focused on the most innovative nanomaterials promising both in the field of therapeutic agents, as well as measures to control virus spread (i.e., innovative antiviral textiles). The second part of the review aims to show how computer-aided technologies can allow us to identify, in a rapid and therefore constantly updated way, plant-derived molecules (i.e., those included in terpenoids) potentially able to efficiently interact with SARS-CoV-2 cell penetration pathways.
Collapse
Affiliation(s)
- Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Carmelo Corsaro
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| | - Salvatore V. Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Angela Maria Mezzasalma
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| | - Martina Vacalebre
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Antonina Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Enza Fazio
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| |
Collapse
|
16
|
Van Fossen EM, Bednar RM, Jana S, Franklin R, Beckman J, Karplus PA, Mehl RA. Nanobody assemblies with fully flexible topology enabled by genetically encoded tetrazine amino acids. SCIENCE ADVANCES 2022; 8:eabm6909. [PMID: 35522749 PMCID: PMC9075797 DOI: 10.1126/sciadv.abm6909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Assembling nanobodies (Nbs) into polyvalent multimers is a powerful strategy for improving the effectiveness of Nb-based therapeutics and biotechnological tools. However, generally effective approaches to Nb assembly are currently restricted to the amino or carboxyl termini, greatly limiting the diversity of Nb multimer topologies that can be produced. Here, we show that reactive tetrazine groups-site-specifically inserted by genetic code expansion at Nb surface sites-are compatible with Nb folding and function, enabling Nb assembly at any desired point. Using two anti-SARS-CoV-2 Nbs with viral neutralization ability, we created Nb homo- and heterodimers with improved properties compared with conventionally linked Nb homodimers, which, in the case of our tetrazine-conjugated trimer, translated into enhanced viral neutralization. Thus, this tetrazine-based approach is a generally applicable strategy that greatly increases the accessible range of Nb assembly topologies, and thereby adds the optimization of topology as an effective avenue to generate Nb assemblies with improved efficacy.
Collapse
Affiliation(s)
- Elise M. Van Fossen
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Riley M. Bednar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Subhashis Jana
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Rachel Franklin
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Joseph Beckman
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
- e-MSion, Inc., 2121 NE Jack London Drive, Corvallis, OR 97330, USA
| | - P. Andrew Karplus
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Ryan A. Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
17
|
Feng T, Nie C, Peng P, Lu H, Wang T, Li P, Huang W. Nanoagent-based theranostic strategies against human coronaviruses. NANO RESEARCH 2022; 15:3323-3337. [PMID: 35003529 PMCID: PMC8727479 DOI: 10.1007/s12274-021-3949-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 05/08/2023]
Abstract
The emergence of human coronaviruses (HCoVs), especially the current pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), engender severe threats to public health globally. Despite the outstanding breakthrough of new vaccines and therapeutic medicines in the past years, HCoVs still undergo unpredictable mutations, thus demanding more effective diagnostic and therapeutic strategies. Benefitting from the unique physicochemical properties and multiple nano-bio interactions, nanomaterials hold promising potential to fight against various HCoVs, either by providing sensitive and economic nanosensors for rapid viral detection, or by developing translatable nanovaccines and broad-spectrum nanomedicines for HCoV treatment. Herein, we systemically summarized the recent applications of nanoagents in diagnostics and therapeutics for HCoV-induced diseases, as well as their limitations and perspectives against HCoV variants. We believe this review will promote the design of innovative theranostic nanoagents for the current and future HCoV-caused pandemics.
Collapse
Affiliation(s)
- Tao Feng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute & Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
| | - Chaofan Nie
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute & Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
| | - Pandi Peng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute & Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
| | - Hui Lu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute & Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute & Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute & Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Ningbo Institute & Chongqing Technology Innovation Center, Northwestern Polytechnical University (NPU), Xi'an, 710072 China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816 China
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
| |
Collapse
|