1
|
Malicka A, Ali A, MacCannell ADV, Roberts LD. Brown and beige adipose tissue-derived metabokine and lipokine inter-organ signalling in health and disease. Exp Physiol 2024. [PMID: 39591977 DOI: 10.1113/ep092008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
Adipose tissue has an established endocrine function through the secretion of adipokines. However, a role for bioactive metabolites and lipids, termed metabokines and lipokines, is emerging in adipose tissue-mediated autocrine, paracrine and endocrine signalling and inter-organ communication. Traditionally seen as passive entities, metabolites are now recognized for their active roles in regulating cellular signalling and local and systemic metabolism. Distinct from white adipose tissue, specific endocrine functions have been attributed to thermogenic brown and beige adipose tissues. Brown and beige adipose tissues have been identified as sources of metabokines and lipokines, which influence diverse metabolic pathways, such as fatty acid β-oxidation, mitochondrial function and glucose homeostasis, across a range of tissues, including skeletal muscle, adipose tissue and heart. This review explores the intricate signalling mechanisms of brown and beige adipose tissue-derived metabokines and lipokines, emphasizing their roles in maintaining metabolic homeostasis and their potential dysregulation in metabolic diseases. Furthermore, we discuss the therapeutic potential of targeting these pathways, proposing that precise modulation of metabokine receptors and transporters could offer superior specificity and efficacy in comparison to conventional approaches, such as β-adrenergic signalling-stimulated activation of brown adipose tissue thermogenesis. Understanding the complex interactions between adipokines, metabokines and lipokines is essential for developing a systems-level approach to new interventions for metabolic disorders, underscoring the need for continued research in this rapidly evolving field.
Collapse
Affiliation(s)
- Anna Malicka
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Aysha Ali
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Amanda D V MacCannell
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Lee D Roberts
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
2
|
Chen Z, Wan B, Zhang H, Zhang L, Zhang R, Li L, Zhang Y, Hu C. Histone lactylation mediated by Fam172a in POMC neurons regulates energy balance. Nat Commun 2024; 15:10111. [PMID: 39578459 PMCID: PMC11584794 DOI: 10.1038/s41467-024-54488-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
Glycolysis-derived lactate was identified as substrate for histone lactylation, which has been regarded as a significant role in transcriptional regulation in many tissues. However, the role of histone lactylation in the metabolic center, the hypothalamus, is still unknown. Here, we show that hypothalamic pro-opiomelanocortin (POMC) neuron-specific deletion of family with sequence similarity 172, member A (Fam172a) can increase histone lactylation and protect mice against diet-induced obesity (DIO) and related metabolic disorders. Conversely, overexpression of Fam172a in POMC neurons led to an obesity-like phenotype. Using RNA-seq and CUT&Tag chromatin profiling analyzes, we find that knockdown of Fam172a activates the glycolytic process and increases peptidylglycine α-amidating monooxygenase (PAM), which affects the synthesis of α-MSH, via H4K12la (histone lactylation). In addition, pharmacological inhibition of lactate production clearly abrogates the anti-obesity effect of PFKO (POMC-Cre, Fam172aloxP/loxP, POMC neurons Fam172a knockout). These findings highlight the importance of Fam172a and lactate in the development of obesity and our results mainly concern male mice.
Collapse
Affiliation(s)
- Zhuo Chen
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baocheng Wan
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lina Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianxi Li
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, China.
| |
Collapse
|
3
|
Yu Z, Zhang T, Yang X, Xu B, Yu Z, An L, Xu T, Jing X, Wang Y, Lu M. Neuregulin4-ErbB4 signalling pathway is driven by electroacupuncture stimulation to remodel brown adipose tissue innervation. Diabetes Obes Metab 2024; 26:3880-3896. [PMID: 38951947 DOI: 10.1111/dom.15735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/25/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024]
Abstract
AIM To show that electroacupuncture stimulation (ES) remodels sympathetic innervation in brown adipose tissue (BAT) via the bone morphogenic protein 8B (BMP8B)-neuregulin 4 (NRG4)-ErbB4 axis, with somatotopic dependence. MATERIALS AND METHODS We established a high-fat diet (HFD) model with C57BL/6J mice to measure the thermogenesis and metabolism of BAT. In addition, the sympathetic nerve activity (SNA) was measured with the electrophysiological technique, and the immunostaining of c-Fos was used to detect the central nervous system sources of sympathetic outflows. Finally, the key role of the BMP8B-NRG4-ErbB4 axis was verified by peripheral specific antagonism of ErbB4. RESULTS ES at the forelimb and abdomen regions significantly up-regulate SNA, whereas ES at the hindlimb region has a limited regulatory effect on SNA but still partially restores HFD-induced BAT dysfunction. Mechanistically, ES at the forelimb and abdomen regions driving catecholaminergic signals in brown adipocytes depends on neural activities projected from the ventromedial nucleus of the hypothalamus (VMH) to the spinal cord intermediolateral column (IML). Notably, the peripheral suppression of ErbB4 in BAT inhibits the thermogenesis and metabolic function of BAT, as well as significantly hindering the SNA activation and metabolic benefits induced by ES. CONCLUSION These results suggest that ES appears to be an effective approach for remodeling sympathetic innervation in BAT, which is closely related to neuronal activity in the VMH and the NRG4-ErbB4 signaling pathway.
Collapse
Affiliation(s)
- Ziwei Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ting Zhang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xingyu Yang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bin Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li An
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tiancheng Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyue Jing
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yaling Wang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengjiang Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
4
|
Lin WW, Ou GY, Dai HF, Zhao WJ. Neuregulin 4 (Nrg4) cooperates with melatonin to regulate the PRL expression via ErbB4/Erk signaling pathway as a potential prolactin (PRL) regulator. J Cell Biochem 2024; 125:e30551. [PMID: 38465779 DOI: 10.1002/jcb.30551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/12/2024]
Abstract
Neuregulin-4 (Nrg4) and melatonin play vital roles in endocrine diseases. However, there is little discussion about the function and potential mechanism of Nrg4 and melatonin in prolactin (PRL) regulation. The human normal pituitary data from Gene Expression Profiling Interactive Analysis (GEPIA) database was used to explore the correlation between NRG4 and PRL. The expression and correlation of NRG4 and PRL were determined by Immunofluorescence staining (IF) and human normal pituitary tissue microarray. Western Blot (WB) was used to detect the expression of PRL, p-ErbB2/3/4, ErbB2/3/4, p-Erk1/2, Erk1/2, p-Akt and Akt in PRL-secreting pituitary GH3 and RC-4B/C cells treated by Nrg4, Nrg4-small interfering RNA, Erk1/2 inhibitor FR180204 and melatonin. The expression of NRG4 was significantly positively correlated with that of PRL in the GEPIA database and normal human pituitary tissues. Nrg4 significantly increased the expression and secretion of PRL and p-Erk1/2 expression in GH3 cells and RC-4B/C cells. Inhibition of Nrg4 significantly inhibited PRL expression. The increased levels of p-Erk1/2 and PRL induced by Nrg4 were abolished significantly in response to FR180204 in GH3 and RC-4B/C cells. Additionally, Melatonin promotes the expression of Nrg4, p-ErbB4, p-Erk1/2, and PRL and can further promote the expression of p-Erk1/2 and PRL in combination with Nrg4. Further investigation into the function of Nrg4 and melatonin on PRL expression and secretion may provide new clues to advance the clinical control of prolactinomas and hyperprolactinemia.
Collapse
Affiliation(s)
- Wen-Wen Lin
- Department of Pathology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Guan-Yong Ou
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hui-Fang Dai
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Wei-Jiang Zhao
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
5
|
Yang C, Zhu D, Liu C, Wang W, He Y, Wang B, Li M. Lipid metabolic reprogramming mediated by circulating Nrg4 alleviates metabolic dysfunction-associated steatotic liver disease during the early recovery phase after sleeve gastrectomy. BMC Med 2024; 22:164. [PMID: 38632600 PMCID: PMC11025198 DOI: 10.1186/s12916-024-03377-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/28/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The metabolic benefits of bariatric surgery that contribute to the alleviation of metabolic dysfunction-associated steatotic liver disease (MASLD) have been reported. However, the processes and mechanisms underlying the contribution of lipid metabolic reprogramming after bariatric surgery to attenuating MASLD remain elusive. METHODS A case-control study was designed to evaluate the impact of three of the most common adipokines (Nrg4, leptin, and adiponectin) on hepatic steatosis in the early recovery phase following sleeve gastrectomy (SG). A series of rodent and cell line experiments were subsequently used to determine the role and mechanism of secreted adipokines following SG in the alleviation of MASLD. RESULTS In morbidly obese patients, an increase in circulating Nrg4 levels is associated with the alleviation of hepatic steatosis in the early recovery phase following SG before remarkable weight loss. The temporal parameters of the mice confirmed that an increase in circulating Nrg4 levels was initially stimulated by SG and contributed to the beneficial effect of SG on hepatic lipid deposition. Moreover, this occurred early following bariatric surgery. Mechanistically, gain- and loss-of-function studies in mice or cell lines revealed that circulating Nrg4 activates ErbB4, which could positively regulate fatty acid oxidation in hepatocytes to reduce intracellular lipid deposition. CONCLUSIONS This study demonstrated that the rapid effect of SG on hepatic lipid metabolic reprogramming mediated by circulating Nrg4 alleviates MASLD.
Collapse
Affiliation(s)
- Chengcan Yang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Dongzi Zhu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chaofan Liu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenyue Wang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yining He
- Biostatistics Office of Clinical Research Unit, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Bing Wang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Meiyi Li
- Fudan Zhangjiang Institute, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
6
|
Santiago-Marrero I, Liu F, Wang H, Arzola EP, Xiong WC, Mei L. Energy Expenditure Homeostasis Requires ErbB4, an Obesity Risk Gene, in the Paraventricular Nucleus. eNeuro 2023; 10:ENEURO.0139-23.2023. [PMID: 37669858 PMCID: PMC10521346 DOI: 10.1523/eneuro.0139-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
Obesity affects more than a third adult population in the United States; the prevalence is even higher in patients with major depression disorders. GWAS studies identify the receptor tyrosine kinase ErbB4 as a risk gene for obesity and for major depression disorders. We found that ErbB4 was enriched in the paraventricular nucleus of the hypothalamus (PVH). To investigate its role in metabolism, we deleted ErbB4 by injecting a Cre-expressing virus into the PVH of ErbB4-floxed male mice and found that PVH ErbB4 deletion increased weight gain without altering food intake. ErbB4 PVH deletion also reduced nighttime activity and decreased intrascapular brown adipose tissue (iBAT) thermogenesis. Analysis of covariance (ANCOVA) revealed that ErbB4 PVH deletion reduced O2 consumption, CO2 production and heat generation in a manner independent of body weight. Immunostaining experiments show that ErbB4+ neurons in the PVH were positive for oxytocin (OXT); ErbB4 PVH deletion reduces serum levels of OXT. We characterized mice where ErbB4 was specifically mutated in OXT+ neurons and found reduction in energy expenditure, phenotypes similar to PVH ErbB4 deletion. Taken together, our data indicate that ErbB4 in the PVH regulates metabolism likely through regulation of OXT expressing neurons, reveal a novel function of ErbB4 and provide insight into pathophysiological mechanisms of depression-associated obesity.
Collapse
Affiliation(s)
- Ivan Santiago-Marrero
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Fang Liu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Hongsheng Wang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Emily P Arzola
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
- Chinese Institutes for Medical Research, Beijing 100005, China
- Capital Medical University, Beijing 100054, China
| |
Collapse
|
7
|
Coskun M, Altinova AE, Babayeva A, Sel AT, Yapar D, Karaca M, Yalcin MM, Akturk M, Toruner FB, Karakoc MA, Yetkin I. Leukocyte Telomere Length and Neuregulin-4 Levels in Female Patients with Acromegaly: The Relationship between Disease Activity and Body Fat Distribution. J Clin Med 2023; 12:4108. [PMID: 37373801 DOI: 10.3390/jcm12124108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The study aimed to examine leukocyte telomere length (LTL) and serum neuregulin-4 levels and their relationship with disease activity, co-morbidities and body fat distribution in female acromegaly patients. Forty female patients with acromegaly and thirty-nine age and body mass index (BMI) similar healthy female volunteers were included in the study. Patients were classified into two groups: active acromegaly (AA) and controlled acromegaly (CA). The quantitative polymerase chain reaction (PCR) method was used to study LTL, and T/S ratio < 1 was accepted as shortened telomere length. Neuregulin-4 was studied by ELISA. There was no difference in median LTL between acromegaly and the control group (p = 0.530). The percentage of T/S < 1 in patients with acromegaly (60.0%) was similar to that of the control group (43.6%) (p = 0.144). However, serum neuregulin-4 was significantly higher in patients with acromegaly than those in the control group (p = 0.037). There were no significant differences concerning LTL, percentage of T/S < 1 and neuregulin-4 levels between active and controlled acromegaly groups (p > 0.05). Neuregulin-4 correlated positively with fasting glucose, triglyceride (TG), triglyceride/glucose (TyG) index, and lean body mass in the acromegaly group. A negative correlation was observed between LTL and neuregulin-4 in the control group (p = 0.039). When the factors affecting neuregulin-4 were evaluated by multivariate linear regression analysis with an enter method, TG (β: 0.316, p = 0.025) was independently and positively associated with neuregulin-4. Our findings indicate that acromegaly is associated with unchanged LTL and high neuregulin-4 levels in female patients. However, the relationship between acromegaly, the aging process, and neuregulin-4 involves complex mechanisms, and further studies are needed.
Collapse
Affiliation(s)
- Meric Coskun
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara 06100, Turkey
| | - Alev Eroglu Altinova
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara 06100, Turkey
| | - Afruz Babayeva
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara 06100, Turkey
| | - Aydin Tuncer Sel
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara 06100, Turkey
| | - Dilek Yapar
- Department of Public Health, Faculty of Medicine, Gazi University, Ankara 06100, Turkey
| | - Mine Karaca
- Department of Internal Medicine, Faculty of Medicine, Gazi University, Ankara 06100, Turkey
| | - Mehmet Muhittin Yalcin
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara 06100, Turkey
| | - Mujde Akturk
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara 06100, Turkey
| | - Fusun Balos Toruner
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara 06100, Turkey
| | - Mehmet Ayhan Karakoc
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara 06100, Turkey
| | - Ilhan Yetkin
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara 06100, Turkey
| |
Collapse
|