1
|
Alvarez MM, Cantoral-Sánchez A, Trujillo-de Santiago G. Chaotic (bio)printing in the context of drug delivery systems. Adv Drug Deliv Rev 2025; 216:115475. [PMID: 39561907 DOI: 10.1016/j.addr.2024.115475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/26/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
Chaotic (bio)printing, an innovative fabrication technique that uses chaotic flows to create highly ordered microstructures within materials, may be transformative for drug delivery systems. This review explores the principles underlying chaotic flows and their application in fabricating complex, multi-material constructs designed for advanced drug delivery and controlled release. Chaotic printing enables the precise layering of different active ingredients-a feature that may greatly facilitate the development of polypills with customizable release profiles. Recently, chaos-assisted fabrication has been extended to produce micro-architected hydrogel spheres in a high-throughput manner, potentially enhancing the versatility and efficiency of drug delivery methods. In addition, chaotic bioprinting enables the creation of evolved tissue models that more accurately emulate physiological systems, providing a more relevant platform for drug testing. This review also highlights the unique advantages of chaotic printing, including the ability to fabricate tissues with organized porosity and pre-vascularized structures, addressing critical challenges in tissue engineering. Despite its promising capabilities, challenges remain, particularly in expanding the range of materials compatible with chaotic printing. Continued research and development in this area are essential to fully realize the potential of chaotic (bio)printing in advancing drug delivery, paving the way for the next generation of smart drug delivery systems and functional tissue models for drug testing.
Collapse
Affiliation(s)
- Mario Moisés Alvarez
- Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL 64849, Mexico; Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL 64849, Mexico; Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL 64849, Mexico.
| | - Ariel Cantoral-Sánchez
- Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL 64849, Mexico; Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL 64849, Mexico
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL 64849, Mexico; Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL 64849, Mexico; Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL 64849, Mexico.
| |
Collapse
|
2
|
Shamul JG, Wang Z, Gong H, Ou W, White AM, Moniz-Garcia DP, Gu S, Clyne AM, Quiñones-Hinojosa A, He X. Meta-analysis of the make-up and properties of in vitro models of the healthy and diseased blood-brain barrier. Nat Biomed Eng 2024:10.1038/s41551-024-01250-2. [PMID: 39304761 DOI: 10.1038/s41551-024-01250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
In vitro models of the human blood-brain barrier (BBB) are increasingly used to develop therapeutics that can cross the BBB for treating diseases of the central nervous system. Here we report a meta-analysis of the make-up and properties of transwell and microfluidic models of the healthy BBB and of BBBs in glioblastoma, Alzheimer's disease, Parkinson's disease and inflammatory diseases. We found that the type of model, the culture method (static or dynamic), the cell types and cell ratios, and the biomaterials employed as extracellular matrix are all crucial to recapitulate the low permeability and high expression of tight-junction proteins of the BBB, and to obtain high trans-endothelial electrical resistance. Specifically, for models of the healthy BBB, the inclusion of endothelial cells and pericytes as well as physiological shear stresses (~10-20 dyne cm-2) are necessary, and when astrocytes are added, astrocytes or pericytes should outnumber endothelial cells. We expect this meta-analysis to facilitate the design of increasingly physiological models of the BBB.
Collapse
Affiliation(s)
- James G Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Zhiyuan Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Hyeyeon Gong
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Wenquan Ou
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Alisa M White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | | | - Shuo Gu
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Alisa Morss Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
- Brain and Behavior Institute, University of Maryland, College Park, MD, USA
| | | | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA.
- Brain and Behavior Institute, University of Maryland, College Park, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
3
|
Peng T, Yang S, Lian W, Liu X, Zheng P, Qin X, Liao B, Zhou P, Wang Y, Liu F, Yang Z, Ye Z, Shan H, Liu X, Yu Y, Li R. Cytoskeletal and inter-cellular junction remodelling in endometrial organoids under oxygen-glucose deprivation: a new potential pathological mechanism for thin endometria. Hum Reprod 2024; 39:1778-1793. [PMID: 38915267 DOI: 10.1093/humrep/deae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
STUDY QUESTION What is the pathological mechanism involved in a thin endometrium, particularly under ischaemic conditions? SUMMARY ANSWER Endometrial dysfunction in patients with thin endometrium primarily results from remodelling in cytoskeletons and cellular junctions of endometrial epithelial cells under ischemic conditions. WHAT IS KNOWN ALREADY A healthy endometrium is essential for successful embryo implantation and subsequent pregnancy; ischemic conditions in a thin endometrium compromise fertility outcomes. STUDY DESIGN, SIZE, DURATION We recruited 10 patients with thin endometrium and 15 patients with healthy endometrium. Doppler ultrasound and immunohistochemical results confirmed the presence of insufficient endometrial blood perfusion in patients with thin endometrium. Organoids were constructed using healthy endometrial tissue and cultured under oxygen-glucose deprivation (OGD) conditions for 24 h. The morphological, transcriptomic, protein expression, and signaling pathway changes in the OGD organoids were observed. These findings were validated in both thin endometrial tissue and healthy endometrial tissue samples. PARTICIPANTS/MATERIALS, SETTING, METHODS Endometrial thickness and blood flow were measured during the late follicular phase using transvaginal Doppler ultrasound. Endometrial tissue was obtained via hysteroscopy. Fresh endometrial tissues were used for the generation and culture of human endometrial organoids. Organoids were cultured in an appropriate medium and subjected to OGD to simulate ischemic conditions. Apoptosis and cell death were assessed using Annexin-V/propidium iodide staining. Immunofluorescence analysis, RNA sequencing, western blotting, simple westerns, immunohistochemistry, and electron microscopy were conducted to evaluate cellular and molecular changes. MAIN RESULTS AND THE ROLE OF CHANCE Patients with thin endometrium showed significantly reduced endometrial thickness and altered blood flow patterns compared to those with healthy endometrium. Immunohistochemical staining revealed fewer CD34-positive blood vessels and glands in the thin endometrium group. Organoids cultured under OGD conditions exhibited significant morphological changes, increased apoptosis, and cell death. RNA-seq identified differentially expressed genes related to cytoskeletal remodeling and stress responses. OGD induced a strong cytoskeletal reorganization, mediated by the RhoA/ROCK signaling pathway. Additionally, electron microscopy indicated compromised epithelial integrity and abnormal cell junctions in thin endometrial tissues. Upregulation of hypoxia markers (HIF-1α and HIF-2α) and activation of the RhoA/ROCK pathway were also observed in thin endometrial tissues, suggesting ischemia and hypoxia as underlying mechanisms. LARGE SCALE DATA none. LIMITATIONS AND REASONS FOR CAUTION The study was conducted in an in vitro model, which may not fully replicate the complexity of in vivo conditions. WIDER IMPLICATIONS OF THE FINDINGS This research provides a new three-dimensional in vitro model of thin endometrium, as well as novel insights into the pathophysiological mechanisms of endometrial ischaemia in thin endometrium, offering potential avenues for identifying therapeutic targets for treating fertility issues related to thin endometrium. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the National Natural Science Foundation of China (81925013); National Key Research and Development Project of China (2022YFC2702500, 2021YFC2700303, 2021YFC2700601); the Capital Health Research and Development Project (SF2022-1-4092); the National Natural Science Foundation of China (82288102, 81925013, 82225019, 82192873); Special Project on Capital Clinical Diagnosis and Treatment Technology Research and Transformation Application (Z211100002921054); the Frontiers Medical Center, Tianfu Jincheng Laboratory Foundation(TFJC2023010001). The authors declare that no competing interests exist.
Collapse
Affiliation(s)
- TianLiu Peng
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Ministry of Education, Key Laboratory of Assisted Reproduction (Peking University), Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- National Clinical Key Specialty Construction Program, Beijing, China
| | - Shuo Yang
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Ministry of Education, Key Laboratory of Assisted Reproduction (Peking University), Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- National Clinical Key Specialty Construction Program, Beijing, China
| | - Weisi Lian
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Ministry of Education, Key Laboratory of Assisted Reproduction (Peking University), Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- National Clinical Key Specialty Construction Program, Beijing, China
| | - Xiaojuan Liu
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Ministry of Education, Key Laboratory of Assisted Reproduction (Peking University), Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- National Clinical Key Specialty Construction Program, Beijing, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Ping Zheng
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Ministry of Education, Key Laboratory of Assisted Reproduction (Peking University), Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- National Clinical Key Specialty Construction Program, Beijing, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Xunsi Qin
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Ministry of Education, Key Laboratory of Assisted Reproduction (Peking University), Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- National Clinical Key Specialty Construction Program, Beijing, China
| | - Baoying Liao
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Ministry of Education, Key Laboratory of Assisted Reproduction (Peking University), Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- National Clinical Key Specialty Construction Program, Beijing, China
| | - Ping Zhou
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Ministry of Education, Key Laboratory of Assisted Reproduction (Peking University), Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- National Clinical Key Specialty Construction Program, Beijing, China
| | - Yue Wang
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Ministry of Education, Key Laboratory of Assisted Reproduction (Peking University), Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- National Clinical Key Specialty Construction Program, Beijing, China
| | - Fenting Liu
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Ministry of Education, Key Laboratory of Assisted Reproduction (Peking University), Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- National Clinical Key Specialty Construction Program, Beijing, China
| | - Zi Yang
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Ministry of Education, Key Laboratory of Assisted Reproduction (Peking University), Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- National Clinical Key Specialty Construction Program, Beijing, China
| | - Zhenhong Ye
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Ministry of Education, Key Laboratory of Assisted Reproduction (Peking University), Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- National Clinical Key Specialty Construction Program, Beijing, China
| | - Hongying Shan
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Ministry of Education, Key Laboratory of Assisted Reproduction (Peking University), Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- National Clinical Key Specialty Construction Program, Beijing, China
| | - Xiyao Liu
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Ministry of Education, Key Laboratory of Assisted Reproduction (Peking University), Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- National Clinical Key Specialty Construction Program, Beijing, China
| | - Yang Yu
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Ministry of Education, Key Laboratory of Assisted Reproduction (Peking University), Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- National Clinical Key Specialty Construction Program, Beijing, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Rong Li
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Ministry of Education, Key Laboratory of Assisted Reproduction (Peking University), Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- National Clinical Key Specialty Construction Program, Beijing, China
| |
Collapse
|
4
|
Boylin K, Aquino GV, Purdon M, Abedi K, Kasendra M, Barrile R. Basic models to advanced systems: harnessing the power of organoids-based microphysiological models of the human brain. Biofabrication 2024; 16:032007. [PMID: 38749420 DOI: 10.1088/1758-5090/ad4c08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Understanding the complexities of the human brain's function in health and disease is a formidable challenge in neuroscience. While traditional models like animals offer valuable insights, they often fall short in accurately mirroring human biology and drug responses. Moreover, recent legislation has underscored the need for more predictive models that more accurately represent human physiology. To address this requirement, human-derived cell cultures have emerged as a crucial alternative for biomedical research. However, traditional static cell culture models lack the dynamic tissue microenvironment that governs human tissue function. Advancedin vitrosystems, such as organoids and microphysiological systems (MPSs), bridge this gap by offering more accurate representations of human biology. Organoids, which are three-dimensional miniaturized organ-like structures derived from stem cells, exhibit physiological responses akin to native tissues, but lack essential tissue-specific components such as functional vascular structures and immune cells. Recent endeavors have focused on incorporating endothelial cells and immune cells into organoids to enhance vascularization, maturation, and disease modeling. MPS, including organ-on-chip technologies, integrate diverse cell types and vascularization under dynamic culture conditions, revolutionizing brain research by bridging the gap betweenin vitroandin vivomodels. In this review, we delve into the evolution of MPS, with a particular focus on highlighting the significance of vascularization in enhancing the viability, functionality, and disease modeling potential of organoids. By examining the interplay of vasculature and neuronal cells within organoids, we can uncover novel therapeutic targets and gain valuable insights into disease mechanisms, offering the promise of significant advancements in neuroscience and improved patient outcomes.
Collapse
Affiliation(s)
- Katherine Boylin
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, United States of America
- Center for Stem Cells and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Grace V Aquino
- Center for Stem Cells and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Michael Purdon
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, United States of America
- Center for Stem Cells and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Kimia Abedi
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, United States of America
- Center for Stem Cells and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Magdalena Kasendra
- Center for Stem Cells and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Riccardo Barrile
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, United States of America
- Center for Stem Cells and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| |
Collapse
|
5
|
Ko J, Song J, Choi N, Kim HN. Patient-Derived Microphysiological Systems for Precision Medicine. Adv Healthc Mater 2024; 13:e2303161. [PMID: 38010253 PMCID: PMC11469251 DOI: 10.1002/adhm.202303161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Indexed: 11/29/2023]
Abstract
Patient-derived microphysiological systems (P-MPS) have emerged as powerful tools in precision medicine that provide valuable insight into individual patient characteristics. This review discusses the development of P-MPS as an integration of patient-derived samples, including patient-derived cells, organoids, and induced pluripotent stem cells, into well-defined MPSs. Emphasizing the necessity of P-MPS development, its significance as a nonclinical assessment approach that bridges the gap between traditional in vitro models and clinical outcomes is highlighted. Additionally, guidance is provided for engineering approaches to develop microfluidic devices and high-content analysis for P-MPSs, enabling high biological relevance and high-throughput experimentation. The practical implications of the P-MPS are further examined by exploring the clinically relevant outcomes obtained from various types of patient-derived samples. The construction and analysis of these diverse samples within the P-MPS have resulted in physiologically relevant data, paving the way for the development of personalized treatment strategies. This study describes the significance of the P-MPS in precision medicine, as well as its unique capacity to offer valuable insights into individual patient characteristics.
Collapse
Affiliation(s)
- Jihoon Ko
- Department of BioNano TechnologyGachon UniversitySeongnam‐siGyeonggi‐do13120Republic of Korea
| | - Jiyoung Song
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Nakwon Choi
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science & TechnologyKIST SchoolSeoul02792Republic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Hong Nam Kim
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science & TechnologyKIST SchoolSeoul02792Republic of Korea
- School of Mechanical EngineeringYonsei UniversitySeoul03722Republic of Korea
- Yonsei‐KIST Convergence Research InstituteYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
6
|
Deli MA, Porkoláb G, Kincses A, Mészáros M, Szecskó A, Kocsis AE, Vigh JP, Valkai S, Veszelka S, Walter FR, Dér A. Lab-on-a-chip models of the blood-brain barrier: evolution, problems, perspectives. LAB ON A CHIP 2024; 24:1030-1063. [PMID: 38353254 DOI: 10.1039/d3lc00996c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
A great progress has been made in the development and use of lab-on-a-chip devices to model and study the blood-brain barrier (BBB) in the last decade. We present the main types of BBB-on-chip models and their use for the investigation of BBB physiology, drug and nanoparticle transport, toxicology and pathology. The selection of the appropriate cell types to be integrated into BBB-on-chip devices is discussed, as this greatly impacts the physiological relevance and translatability of findings. We identify knowledge gaps, neglected engineering and cell biological aspects and point out problems and contradictions in the literature of BBB-on-chip models, and suggest areas for further studies to progress this highly interdisciplinary field. BBB-on-chip models have an exceptional potential as predictive tools and alternatives of animal experiments in basic and preclinical research. To exploit the full potential of this technique expertise from materials science, bioengineering as well as stem cell and vascular/BBB biology is necessary. There is a need for better integration of these diverse disciplines that can only be achieved by setting clear parameters for characterizing both the chip and the BBB model parts technically and functionally.
Collapse
Affiliation(s)
- Mária A Deli
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| | - Gergő Porkoláb
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
- Doctoral School of Biology, University of Szeged, Hungary
| | - András Kincses
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| | - Mária Mészáros
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| | - Anikó Szecskó
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
- Doctoral School of Biology, University of Szeged, Hungary
| | - Anna E Kocsis
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| | - Judit P Vigh
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
- Doctoral School of Biology, University of Szeged, Hungary
| | - Sándor Valkai
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| | - Szilvia Veszelka
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| | - Fruzsina R Walter
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| | - András Dér
- HUN-REN Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| |
Collapse
|
7
|
Salmina AB, Alexandrova OP, Averchuk AS, Korsakova SA, Saridis MR, Illarioshkin SN, Yurchenko SO. Current progress and challenges in the development of brain tissue models: How to grow up the changeable brain in vitro? J Tissue Eng 2024; 15:20417314241235527. [PMID: 38516227 PMCID: PMC10956167 DOI: 10.1177/20417314241235527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
In vitro modeling of brain tissue is a promising but not yet resolved problem in modern neurobiology and neuropharmacology. Complexity of the brain structure and diversity of cell-to-cell communication in (patho)physiological conditions make this task almost unachievable. However, establishment of novel in vitro brain models would ultimately lead to better understanding of development-associated or experience-driven brain plasticity, designing efficient approaches to restore aberrant brain functioning. The main goal of this review is to summarize the available data on methodological approaches that are currently in use, and to identify the most prospective trends in development of neurovascular unit, blood-brain barrier, blood-cerebrospinal fluid barrier, and neurogenic niche in vitro models. The manuscript focuses on the regulation of adult neurogenesis, cerebral microcirculation and fluids dynamics that should be reproduced in the in vitro 4D models to mimic brain development and its alterations in brain pathology. We discuss approaches that are critical for studying brain plasticity, deciphering the individual person-specific trajectory of brain development and aging, and testing new drug candidates in the in vitro models.
Collapse
Affiliation(s)
- Alla B Salmina
- Brain Science Institute, Research Center of Neurology, Moscow, Russia
- Bauman Moscow State Technical University, Moscow, Russia
| | - Olga P Alexandrova
- Brain Science Institute, Research Center of Neurology, Moscow, Russia
- Bauman Moscow State Technical University, Moscow, Russia
| | - Anton S Averchuk
- Brain Science Institute, Research Center of Neurology, Moscow, Russia
- Bauman Moscow State Technical University, Moscow, Russia
| | | | | | | | | |
Collapse
|
8
|
Abou-El-Hassan H, Bernstock JD, Chalif JI, Yahya T, Rezende RM, Weiner HL, Izzy S. Elucidating the neuroimmunology of traumatic brain injury: methodological approaches to unravel intercellular communication and function. Front Cell Neurosci 2023; 17:1322325. [PMID: 38162004 PMCID: PMC10756680 DOI: 10.3389/fncel.2023.1322325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
The neuroimmunology of traumatic brain injury (TBI) has recently gained recognition as a crucial element in the secondary pathophysiological consequences that occur following neurotrauma. Both immune cells residing within the central nervous system (CNS) and those migrating from the periphery play significant roles in the development of secondary brain injury. However, the precise mechanisms governing communication between innate and adaptive immune cells remain incompletely understood, partly due to a limited utilization of relevant experimental models and techniques. Therefore, in this discussion, we outline current methodologies that can aid in the exploration of TBI neuroimmunology, with a particular emphasis on the interactions between resident neuroglial cells and recruited lymphocytes. These techniques encompass adoptive cell transfer, intra-CNS injection(s), selective cellular depletion, genetic manipulation, molecular neuroimaging, as well as in vitro co-culture systems and the utilization of organoid models. By incorporating key elements of both innate and adaptive immunity, these methods facilitate the examination of clinically relevant interactions. In addition to these preclinical approaches, we also detail an emerging avenue of research that seeks to leverage human biofluids. This approach enables the investigation of how resident and infiltrating immune cells modulate neuroglial responses after TBI. Considering the growing significance of neuroinflammation in TBI, the introduction and application of advanced methodologies will be pivotal in advancing translational research in this field.
Collapse
Affiliation(s)
- Hadi Abou-El-Hassan
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Joshua I. Chalif
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Taha Yahya
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Rafael M. Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Howard L. Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Saef Izzy
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Zhou S, Chen B, Fu ES, Yan H. Computer vision meets microfluidics: a label-free method for high-throughput cell analysis. MICROSYSTEMS & NANOENGINEERING 2023; 9:116. [PMID: 37744264 PMCID: PMC10511704 DOI: 10.1038/s41378-023-00562-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/21/2023] [Accepted: 04/10/2023] [Indexed: 09/26/2023]
Abstract
In this paper, we review the integration of microfluidic chips and computer vision, which has great potential to advance research in the life sciences and biology, particularly in the analysis of cell imaging data. Microfluidic chips enable the generation of large amounts of visual data at the single-cell level, while computer vision techniques can rapidly process and analyze these data to extract valuable information about cellular health and function. One of the key advantages of this integrative approach is that it allows for noninvasive and low-damage cellular characterization, which is important for studying delicate or fragile microbial cells. The use of microfluidic chips provides a highly controlled environment for cell growth and manipulation, minimizes experimental variability and improves the accuracy of data analysis. Computer vision can be used to recognize and analyze target species within heterogeneous microbial populations, which is important for understanding the physiological status of cells in complex biological systems. As hardware and artificial intelligence algorithms continue to improve, computer vision is expected to become an increasingly powerful tool for in situ cell analysis. The use of microelectromechanical devices in combination with microfluidic chips and computer vision could enable the development of label-free, automatic, low-cost, and fast cellular information recognition and the high-throughput analysis of cellular responses to different compounds, for broad applications in fields such as drug discovery, diagnostics, and personalized medicine.
Collapse
Affiliation(s)
- Shizheng Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
| | - Bingbing Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
| | - Edgar S. Fu
- Graduate School of Computing and Information Science, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Hong Yan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 China
| |
Collapse
|
10
|
Li Y, Xu M, Zhu Z, Xu F, Chen B. Transendothelial electrical resistance measurement by a microfluidic device for functional study of endothelial barriers in inflammatory bowel disease. Front Bioeng Biotechnol 2023; 11:1236610. [PMID: 37520295 PMCID: PMC10375910 DOI: 10.3389/fbioe.2023.1236610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction: Inflammatory bowel disease (IBD) is a chronic relapsing and remitting disease with a rising incidence globally. Circulating exosomes play great roles in IBD pathogenesis through exosomal cargoes, especially impacting the function of endothelial barriers. Transendothelial electrical resistance (TEER) measurement is a widely used non-invasive and label-free strategy to monitor endothelial barrier function in vitro. This study established a well-designed microfluidic device to monitor the TEER changes of endothelial cellular barrier on-chip after treated with exosome derived from IBD serum. Methods: The chip comprised two layers of microfluidic chambers with top layer for the perfusion of medium to maintain the nutrition and pressure during cell culture, and bottom layer for the extracellular matrix mimic using hydrogel, which are separated by a semipermeable membrane that permitted the formation of endothelial cell barrier. Four electrodes independent from the outlets were integrated to the chip for TEER detection. In vivo mouse models mouse models and proteome profiling were performed to finding relevant regulators. Results: With this platform, significant decrease of TEER was detected, indicating that IBD serum exosome impact the endothelial cellular barrier on-chip. In vivo mouse models, IBD serum exosome treated group showed great higher DAI scores, shorter colons, more severe histological features, and higher levers of S100A8 expression, promoting the disease progress. Proteome profiling showed that TFRC and ANXA5 have great potentials as novel regulators in IBD. Discussion: This in-house customized microfluidic chip emulates the endothelial barrier microenvironment and enables the TEER monitoring, and can be used to investigate endothelial barrier function in vitro. IBD serum exosome promote the severity of disease.
Collapse
Affiliation(s)
- Ya Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Min Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhu Zhu
- Department of Biological Sample Bank, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bing Chen
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|