1
|
Huang L, Wei L, Li D, Zhang W, Liu L. Enhanced Sonodynamic Therapy via Au Nanoclusters Deposited on TiO 2 Nanosheets. Int J Nanomedicine 2025; 20:6121-6131. [PMID: 40385495 PMCID: PMC12085897 DOI: 10.2147/ijn.s516314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/30/2025] [Indexed: 05/20/2025] Open
Abstract
Purpose This study aimed to enhance the efficacy of sonodynamic therapy (SDT) for breast cancer by engineering TiO2 nanosheets modified with Au nanoclusters (TiO2-Au), thereby improving reactive oxygen species (ROS) generation under ultrasound (US) irradiation. Methods TiO2-Au sonosensitizers were synthesized via a deposition-precipitation with urea (DPU) method and characterized by TEM, XRD, and XPS. ROS generation efficiency was quantified using DPBF, TMB, and NBT probes, along with electron spin resonance (ESR). In vitro therapeutic performance was assessed in 4T1 breast cancer cells via flow cytometry, Calcein-AM/PI staining, and cell counting kit-8 (CCK-8) assay. In vivo efficacy and biosafety were validated in 4T1 tumor-bearing BALB/c mice through tumor growth monitoring, histological analysis, blood biochemistry, and hemolysis assays. Results TiO2-Au10.5 exhibited enhanced electron-hole separation, reduced bandgap (from 3.2 to 2.8 eV), and significantly boosted ROS generation under US irradiation. In vitro, TiO2-Au10.5 combined with US induced a 4.25-fold increase in intracellular ROS and a 4.7-fold higher apoptosis rate compared to TiO2 + US. In vivo, TiO2-Au10.5 + US achieved a tumor growth inhibition index of 76.9% without significant toxicity, as evidenced by normal blood markers, no hemolysis, and no damage to major organs. Conclusion Au nanocluster modification effectively tunes the sonodynamic performance of TiO2 nanosheets by modulating electron-hole separation and ROS production. Notably, varying the Au content enabled precise regulation of SDT efficacy, with TiO2-Au10.5 achieving optimal therapeutic outcomes. These findings highlight TiO2-Au as a safe, potent, and composition-tunable sonosensitizer platform for precise and effective cancer therapy.
Collapse
Affiliation(s)
- Lei Huang
- Department of Medical Imaging Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Lineng Wei
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Dan Li
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Weiqing Zhang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Lidong Liu
- Department of Medical Imaging Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| |
Collapse
|
2
|
Chen Y, Li K, Du H, Yao Y, Xie D, Zhou Z. Breaking Barriers in Oncology: Harnessing Sonodynamic Therapy for Enhanced Tumor Metabolism Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502323. [PMID: 40317653 DOI: 10.1002/smll.202502323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/01/2025] [Indexed: 05/07/2025]
Abstract
The recent booming development of sonometabolism regulation in controlling the tumor microenvironment (TME) has opened a new research area to identify innovative approaches against cancer. The aim of this review is to highlight the potentials and advantages of sonodynamic therapy (SDT) in antitumor nanotherapies, specifically, delineating the progress made in SDT concerning the regulation of TME metabolism which encompasses factors such as hypoxia, redox balance, autophagy, immunosuppression, ion homeostasis, and other metabolic processes. By focusing on both tumor cell metabolism and TME dynamics, a wide range of SDT strategies that have demonstrated great therapeutic effectiveness by targeting the metabolic functions inherent to TME are summarized. In conclusion, this review offers valuable insights for researchers involved in SDT-based antitumor therapeutic strategies, with the aim of advancing the development of antitumor SDT methodologies in future research.
Collapse
Affiliation(s)
- Yangmengfan Chen
- Department of Orthopedics and Research Institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kun Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Hao Du
- Department of Orthopedics and Research Institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yangcheng Yao
- Center for Reproductive Medicine, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Zongke Zhou
- Department of Orthopedics and Research Institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
3
|
Qu H, Zhang Y, Chen M, Shao S, Chen J, Wu Y, Wu X. NIR-II photo- and sono-responsive hyaluronic acid-capped nanozymes for glioblastoma-targeting theranostics. Int J Biol Macromol 2025; 306:141737. [PMID: 40049489 DOI: 10.1016/j.ijbiomac.2025.141737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/25/2025] [Accepted: 03/02/2025] [Indexed: 05/03/2025]
Abstract
Glioblastoma is the most aggressive and heterogeneous astrocytic tumor, with its intracranial location limiting the efficacy of conventional therapies. This study presents the synthesis of a multifunctional nanocomplex utilizing borophene nanosheets (B NSs) as a substrate. Gold nanoparticles (Au NPs) are modified onto the surface of B NSs to create Schottky heterojunctions (BAu). This is followed by co-precipitation solvothermal synthesis incorporating silver sulfide (Ag2S) and hyaluronic acid (HA) as a capping agent, yielding B-Au-Ag2S-HA (BAA-HA). The Schottky heterojunction reduces the bandgap and accelerates charge carrier separation, significantly enhancing the sonodynamic therapy (SDT) efficiency of B NSs. In comparison to B NSs, BAA-HA exhibits significantly improved photothermal conversion efficiency under 1064 nm laser irradiation, facilitating the cascade catalysis of glucose oxidase-like (GOx-like) and catalase-like (CAT-like) enzymes. This accelerates glucose and H2O2 decomposition, increasing O2 supply to amplify SDT efficacy and induce immunogenic cell death (ICD), inducing a robust anti-tumor immune response. Ultrasound-targeted microbubble destruction technology is employed to transiently open the blood-brain barrier, allowing for targeted delivery of BAA-HA to glioblastoma cells via HA-mediated recognition of the CD44 receptor. Additionally, the NIR-II fluorescence properties of Ag2S enable precise tumor imaging, guiding multimodal synergistic therapy. This platform provides a promising strategy for treating deep-seated tumors, integrating therapeutic and diagnostic functions to enhance efficacy and precision.
Collapse
Affiliation(s)
- Huanran Qu
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Center of One Health, Key Laboratory of Biomedical Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Yuanyuan Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Center of One Health, Key Laboratory of Biomedical Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Minghao Chen
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Center of One Health, Key Laboratory of Biomedical Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Shiyang Shao
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Jianqiang Chen
- Department of Radiology, The First Affiliated Hospital of Hainan Medical University, Haikou 570228, China
| | - Yundi Wu
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Center of One Health, Key Laboratory of Biomedical Engineering of Hainan Province, Hainan University, Haikou 570228, China; NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou 571199, China.
| | - Xilong Wu
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Center of One Health, Key Laboratory of Biomedical Engineering of Hainan Province, Hainan University, Haikou 570228, China.
| |
Collapse
|
4
|
Shao D, Pei X, Ma Y, Liu S, Li W, Li L, Ma P. Metallized hollow-COF nanobowls with dual-mode ROS generation for cancer sonodynamic therapy. J Mater Chem B 2025; 13:5181-5189. [PMID: 40223533 DOI: 10.1039/d5tb00338e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Sonodynamic therapy (SDT) has emerged as an encouraging route in tumor treatment, due to its exceptional tissue penetration depth and favorable safety profile. Nevertheless, the clinical translation of conventional organic sonosensitizers is hindered by intrinsic limitations, including pronounced hydrophobicity, insufficient chemical stability, and low reactive oxygen species (ROS) production. In contrast, hollow covalent organic frameworks (HCOFs) exhibit exceptional cargo-loading capabilities, structural robustness, and biocompatibility, positioning them as ideal nanoplatforms for advanced therapeutic applications. Herein, we engineered a bowl-shaped HCOF architecture designed to amplify ultrasonic cavitation effects. This nanostructure was subsequently functionalized with the sonosensitizer (Hemin) and subjected to strategic metallization via metal ion incorporation, culminating in the development of a high-efficiency antitumor nanosystem (FeHHCA). FeHHCA can achieve dual-mode ROS generation, namely, sonodynamic synergistically generating 1O2 and being specifically activated by a tumor microenvironment (TME) to generate ˙OH through a Fenton-like reaction, achieving an 78.7% tumor inhibition rate in vivo. These findings offer innovative approaches and strategies for the design of hollow COFs and offer great potential for the application of SDT in cancer treatment.
Collapse
Affiliation(s)
- Donghan Shao
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528400, P. R. China
| | - Xinyu Pei
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528400, P. R. China
| | - Yuqin Ma
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528400, P. R. China
| | - Sainan Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Wenliang Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528400, P. R. China
| | - Leijiao Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528400, P. R. China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
5
|
Zheng Z, Williams GR, Guo H, Zheng Y, Xiu M, Zhang Y, Zhang H, Wang K, Xia J, Wang Y, Zhu LM. A Bi 2O 3-TiO 2 Heterojunction for Triple-Modality Cancer Theranostics. Int J Nanomedicine 2025; 20:5593-5610. [PMID: 40321808 PMCID: PMC12049674 DOI: 10.2147/ijn.s511891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
Purpose Owing to the limitations of single-mode cancer treatments, combination therapies have attracted much attention. However, constructing a platform for combination therapies in a simple and effective way and improving the overall treatment effect remains a challenge. Our aim was to combine sonodynamic therapy, radiotherapy and chemotherapy together and improve therapeutic outcomes within one nanoplatform. Methods In this work, we sought to exploit the properties of nanoscale heterojunctions to this end. A multifunctional Bi2O3-TiO2@polydopamine-doxorubicin (BTPD) nanoparticle platform was constructed as an anti-cancer theranostic. Under ultrasound irradiation, the Bi2O3-TiO2 core can generate singlet oxygen to damage tumor cells. Meanwhile, the high-Z Bi2O3 can attenuate the energy of X-rays and scatter secondary electrons to enhance radiation damage in the tumor. A thin coating of polydopamine (PDA) increases the biocompatibility but also gives the particles the ability for photoacoustic imaging. Doxorubicin, a DNA repair inhibitor which can hinder tumor recovery from radiation damage, was loaded onto the PDA. Results A comprehensive series of in vitro and in vivo assays demonstrated that the nanoparticles were effectively taken up into cancer cells, where they could induce ROS production and cause cell death. In vivo, this led to a marked reduction in tumor volume in a murine 4T1 cancer model. Conclusion The formulations developed here have significant potential for future investigation and exploration in the treatment of cancer.
Collapse
Affiliation(s)
- Zhiyu Zheng
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, People’s Republic of China
| | | | - Honghua Guo
- Department of Radiology, Songjiang Hospital Affiliated to Shanghai Jiaotong University of Medicine, Shanghai, People’s Republic of China
| | - Yilu Zheng
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, People’s Republic of China
| | - Mengting Xiu
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, People’s Republic of China
| | - Yanyan Zhang
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, People’s Republic of China
| | - Huan Zhang
- International Union Laboratory on Acupuncture Based Target Discovery, International Joint Laboratory on Acupuncture Neuro-Immunology, Shanghai Research Institute of Acupuncture and Meridian, Yue Yang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Kai Wang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jindong Xia
- Department of Radiology, Songjiang Hospital Affiliated to Shanghai Jiaotong University of Medicine, Shanghai, People’s Republic of China
| | - Yu Wang
- International Union Laboratory on Acupuncture Based Target Discovery, International Joint Laboratory on Acupuncture Neuro-Immunology, Shanghai Research Institute of Acupuncture and Meridian, Yue Yang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Li-Min Zhu
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, People’s Republic of China
| |
Collapse
|
6
|
Yu J, Hu JR, Tian Y, Lei YM, Hu HM, Lei BS, Zhang G, Sun Y, Ye HR. Nanosensitizer-assisted sonodynamic therapy for breast cancer. J Nanobiotechnology 2025; 23:281. [PMID: 40197318 PMCID: PMC11978163 DOI: 10.1186/s12951-025-03311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/09/2025] [Indexed: 04/10/2025] Open
Abstract
Breast cancer is the most commonly diagnosed cancer worldwide. Despite advancements in therapeutic modalities, its prognosis remains poor owing to complex clinical, pathological, and molecular characteristics. Sonodynamic therapy (SDT) is a promising approach for tumor elimination, using sonosensitizers that preferentially accumulate in tumor tissues and are activated by low-intensity ultrasound to produce reactive oxygen species. However, the clinical translation of SDT faces challenges, including the limited efficiency of sonosensitizers and resistance posed by the tumor microenvironment. The emergence of nanomedicine offers innovative strategies to address these obstacles. This review discusses strategies for enhancing the efficacy of SDT using sonosensitizers, including rational structural modifications, improved tumor-targeted enrichment, tumor microenvironment remodeling, and imaging-guided therapy. Additionally, SDT-based multimodal therapies, such as sono-chemotherapy, sono-immunotherapy, and sono-photodynamic therapy, and their potential applications in breast cancer treatment are summarized. The underlying mechanisms of SDT in breast cancer are briefly outlined. Finally, this review highlights current challenges and prospects for the clinical translation of SDT, providing insights into future advancements that may improve therapeutic outcomes for breast cancer.
Collapse
Affiliation(s)
- Jing Yu
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, 430080, China
| | - Jun-Rui Hu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yi Tian
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, 430080, China
| | - Yu-Meng Lei
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, 430080, China
| | - Hai-Man Hu
- Department of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan, 430068, China
| | - Bing-Song Lei
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, 430080, China.
| | - Ge Zhang
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, 430080, China.
| | - Yao Sun
- National Key Laboratory of Green Pesticides, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| | - Hua-Rong Ye
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, 430080, China.
| |
Collapse
|
7
|
Zhang R, Wang Q, Pan J, Du J, Yang H, Wang B, Li Y, Miao Y, Hou X, Wu J, Miao Q. Ternary Schottky Junction for Sonocatalytic Water Splitting in Gas-Immunotherapy-Mediated Cancer Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413519. [PMID: 39921438 PMCID: PMC11967844 DOI: 10.1002/advs.202413519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/21/2024] [Indexed: 02/10/2025]
Abstract
Hydrogen therapy has shown new potential in cancer treatment, particularly in high-pressure and hypoxic areas, where it demonstrates the ability to alter the tumor microenvironment and regulate tumor metabolism. Hydrogen disrupts the mitochondrial function of cancer cells, interferes with their energy metabolism, and ultimately leads to energy depletion and apoptosis. In this study, a sonocatalyst (BPM), is designed to generate hydrogen and oxygen in situ within tumors, further enhancing the therapeutic efficacy. The mesocrystalline structure of BPM, composed of bismuth fluoride, polyoxometalates, and molybdenum carbide, significantly improves charge separation and electron transfer efficiency under ultrasound irradiation, resulting in an efficient water-splitting reaction. By simultaneously generating hydrogen and oxygen within the tumor microenvironment and depleting glutathione, BPM effectively triggers oxidative stress and alleviates hypoxia, thereby disrupting mitochondrial function and inhibiting energy metabolism in cancer cells. Additionally, BPM enhances antitumor immune responses by promoting dendritic cell maturation, activating T lymphocytes, and polarizing macrophages toward the M1 phenotype, reversing the immunosuppressive state of the tumor microenvironment. The results indicate that BPM holds potential for gas-immunotherapy combination treatments, offering a multifunctional strategy to improve cancer therapy outcomes.
Collapse
Affiliation(s)
- Rui Zhang
- Department of AnesthesiologyShanghai Chest HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Institute of Bismuth ScienceSchool of Materials and ChemistryShanghai Collaborative Innovation Center of Energy Therapy for TumorsUniversity of Shanghai for Science and TechnologyShanghai200093China
| | - Qian Wang
- Institute of Bismuth ScienceSchool of Materials and ChemistryShanghai Collaborative Innovation Center of Energy Therapy for TumorsUniversity of Shanghai for Science and TechnologyShanghai200093China
| | - Junjie Pan
- Institute of Bismuth ScienceSchool of Materials and ChemistryShanghai Collaborative Innovation Center of Energy Therapy for TumorsUniversity of Shanghai for Science and TechnologyShanghai200093China
| | - Jun Du
- Institute of Bismuth ScienceSchool of Materials and ChemistryShanghai Collaborative Innovation Center of Energy Therapy for TumorsUniversity of Shanghai for Science and TechnologyShanghai200093China
| | - Han Yang
- Institute of Bismuth ScienceSchool of Materials and ChemistryShanghai Collaborative Innovation Center of Energy Therapy for TumorsUniversity of Shanghai for Science and TechnologyShanghai200093China
| | - Bingfeng Wang
- College of Materials and EnergySouth China Agricultural UniversityGuangzhou510631China
| | - Yuhao Li
- Institute of Bismuth ScienceSchool of Materials and ChemistryShanghai Collaborative Innovation Center of Energy Therapy for TumorsUniversity of Shanghai for Science and TechnologyShanghai200093China
| | - Yuqing Miao
- Institute of Bismuth ScienceSchool of Materials and ChemistryShanghai Collaborative Innovation Center of Energy Therapy for TumorsUniversity of Shanghai for Science and TechnologyShanghai200093China
| | - Xumin Hou
- Department of AnesthesiologyShanghai Chest HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
| | - Jingxiang Wu
- Department of AnesthesiologyShanghai Chest HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
| | - Qing Miao
- Department of AnesthesiologyShanghai Chest HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
| |
Collapse
|
8
|
Guo Q, Tang Y, Wang S, Xia X. Applications and enhancement strategies of ROS-based non-invasive therapies in cancer treatment. Redox Biol 2025; 80:103515. [PMID: 39904189 PMCID: PMC11847112 DOI: 10.1016/j.redox.2025.103515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
Reactive oxygen species (ROS) play a crucial role in the pathogenesis of cancer. Non-invasive therapies that promote intracellular ROS generation, including photodynamic therapy (PDT), sonodynamic therapy (SDT), and chemodynamic therapy (CDT), have emerged as novel approaches for cancer treatment. These therapies directly kill tumor cells by generating ROS, and although they show great promise in tumor treatment, many challenges remain to be addressed in practical applications. Firstly, the inherent complexity of the tumor microenvironment (TME), such as hypoxia and elevated glutathione (GSH) levels, hinders ROS generation, thereby significantly diminishing the efficacy of ROS-based therapies. In addition, these therapies are influenced by their intrinsic mechanisms. To overcome these limitations, various nanoparticle (NP) systems have been developed to improve the therapeutic efficacy of non-invasive therapies against tumors. This review first summarizes the mechanisms of ROS generation for each non-invasive therapy and their current limitations, with a particular focus on the enhancement strategies for each therapy based on NP systems. Additionally, various strategies to modulate the TME are highlighted. These strategies aim to amplify ROS generation in non-invasive therapies and enhance their anti-tumor efficiency. Finally, the current challenges and possible solutions for the clinical translation of ROS-based non-invasive therapies are also discussed.
Collapse
Affiliation(s)
- Qiuyan Guo
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Yingnan Tang
- School of Pharmacy, Hunan Vocational College of Science And Technology, Changsha, Hunan, 410208, China
| | - Shengmei Wang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
9
|
Xu W, Wang M, Liu X, Ding Y, Fu J, Zhang P. Recent advances in chemodynamic nanotherapeutics to overcome multidrug resistance in cancers. Biomed Pharmacother 2025; 184:117901. [PMID: 39933445 DOI: 10.1016/j.biopha.2025.117901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/13/2025] Open
Abstract
Multidrug resistance (MDR) has become a major challenge in cancer therapy, it results in the failure of chemotherapy and anticancer drug development. Chemodynamic therapy (CDT), an emerging cancer treatment strategy, has been reported as a novel approach for cancer treatment characterized by low toxicity and minimal side effects. By generating robust cytotoxic hydroxyl radicals (·OH) via Fenton/Fenton-like reaction, CDT may cause cellular damage and oxidative stress-induced cell death. In recent years, many therapies based on CDT and/or combined with other treatment modalities are reported and exhibit exciting treatment efficacy in cancer treatment, such as photothermal therapy, photodynamic therapy, sonodynamic therapy, chemotherapy, starvation therapy and gas therapy etc. These combination therapies exhibit synergistic effects, significantly improving anticancer outcomes compared to CDT alone. Herein, we provide a comprehensive overview of CDT-based strategies in cancer treatment, highlighting developments of CDT and CDT-based combination strategies in tumor therapy, especially in overcoming MDR challenges. Finally, the opportunities and challenges of CDT and CDT-combination therapy in the clinical application are also addressed.
Collapse
Affiliation(s)
- Wenjia Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Min Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Xinyu Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yucui Ding
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jianlong Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Peng Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
10
|
Dong Y, Guo L, Song L, Liu T, Zheng G, Zheng M, Li B. Two-Dimensional MXenes Surface Engineering Nanoplatform for PTT-Chemotherapy Synergistic Tumor Therapy. Int J Nanomedicine 2025; 20:1983-1998. [PMID: 39968062 PMCID: PMC11834670 DOI: 10.2147/ijn.s487405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/18/2024] [Indexed: 02/20/2025] Open
Abstract
Background Triple-negative breast cancer (TNBC) has a high early recurrence rate and poor prognosis. Given its insensitivity to traditional systemic chemotherapy, there is an urgent need for new therapeutic strategies for effective treatment. This paper reports the development of a novel two-dimensional MXene composite nanoplatform for efficient synergistic chemotherapy and photothermal therapy of TNBC. Results To achieve surface functionalization of MXene, we developed a surface nanopore engineering strategy, enabling the uniform coating of a thin mesoporous silica layer on the two-dimensional Ti3C2 MXene surface. This strategy endows MXenes with well-defined mesopores for on-demand drug release/delivery and enhanced hydrophilicity/dispersibility. Systematic in vitro and in vivo evaluations demonstrate that Ti3C2@MSNs have high active targeting capability upon entering tumors, and through the synergistic chemotherapy of the mesoporous shell and the photothermal therapy of the Ti3C2 MXene core, tumors can be completely eradicated with no significant recurrence. Conclusion This study provides a new strategy for developing MXene-based composite nano drug delivery systems to effectively combat TNBC.
Collapse
Affiliation(s)
- Yang Dong
- Department of Breast Surgery, Breast Cancer Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, 271000, People’s Republic of China
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Liang Guo
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People’s Republic of China
| | - Lu Song
- Department of Breast Surgery, Breast Cancer Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, 271000, People’s Republic of China
| | - Tingting Liu
- Department of Breast Surgery, Breast Cancer Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, 271000, People’s Republic of China
| | - Gang Zheng
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Meizhu Zheng
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Baojiang Li
- Department of Breast Surgery, Breast Cancer Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, 271000, People’s Republic of China
| |
Collapse
|
11
|
Yang Y, Wang N, Wang Z, Yan F, Shi Z, Feng S. Glutathione-Responsive Metal-Organic-Framework-Derived Mn xO y/(A/R)TiO 2 Nanoparticles for Enhanced Synergistic Sonodynamic/Chemodynamic/Immunotherapy. ACS NANO 2025; 19:885-899. [PMID: 39752569 DOI: 10.1021/acsnano.4c12304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Despite the potential of sonodynamic therapy (SDT) in treating malignant tumors, the lack of effective sonosensitizers has limited its clinical implementation. In this study, we explored the relationship between the heteroatom doping concentration in metal-organic frameworks and interface formation after pyrolysis by regulating the addition of manganese sources and successfully derived Z-scheme heterojunctions MnxOy/(A/R)TiO2 (MTO) in situ from MIL-125-NH2 (Ti/Mn). The electron transfer pathway introduced by interfacial contact promoted carrier separation and greatly preserved the effective redox components, significantly influencing the performance of reactive oxygen species generation. Upon reaching the tumor sites, MTO effectively depleted glutathione to alleviate the suppressive tumor environment, and the heterojunctions and MnxOy in MTO facilitated SDT and synergistic chemodynamic therapy (CDT), respectively, leading to enhanced immunogenic cell death (ICD). Furthermore, Mn2+ uptake by dendritic cells (DCs) and the tumor-associated antigens released due to ICD activated the stimulator of interferon genes pathway, which elicited a robust tumor-specific immune response by driving the maturation of DCs and the activation of T cells. In addition, the activated T cells secreted high levels of interferon-γ to enhance Mn3+/Mn2+-mediated ferroptosis in metastatic tumor cells. The combination of MTO-mediated synergistic therapy and PD-L1 checkpoint blockade exhibited vaccine-like functions, inducing stronger systemic immunity and durable immune memory to inhibit tumor progression, metastasis, and recurrence. To summarize, we synthesized a self-enhancing nanoplatform for synergistic SDT/CDT/immunotherapy using multifunctional MOF-derived Z-scheme heterojunctions. This study provides an experimental basis for amplifying the potential of sonosensitizers while optimizing SDT-mediated systemic immunity while avoiding interference caused by additional adjuvants.
Collapse
Affiliation(s)
- Yilin Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Ning Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zhihua Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
12
|
Ge X, Hu J, Qi X, Shi Y, Chen X, Xiang Y, Xu H, Li Y, Zhang Y, Shen J, Deng H. An Immunomodulatory Hydrogel Featuring Antibacterial and Reactive Oxygen Species Scavenging Properties for Treating Periodontitis in Diabetes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412240. [PMID: 39610168 DOI: 10.1002/adma.202412240] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/01/2024] [Indexed: 11/30/2024]
Abstract
Periodontal disease is a multifactorial, bacterially induced inflammatory disorder characterized by progressive destruction of periodontal tissues. Additionally, diabetes mellitus exacerbates periodontitis, resulting in expedited resorption of periodontal bone. However, methods such as mechanical debridement, anti-inflammatory medications, and surgical approaches often fail to eradicate local infections and inflammation, complicating the reconstruction of periodontal tissue structures. Consequently, there is an urgent need to devise a novel strategy for managing diabetic periodontal conditions. Here, a multifunctional controlled-release drug delivery system (GOE1) is developed by encapsulating self-assembled nanoparticles (consisting of chlorhexidine acetate and epigallocatechin-3-gallate) into a hydrogel matrix composed of gelatin methacryloyl and oxidized hyaluronic acid. In vitro experiments demonstrate that the GOE1 hydrogel possesses good antimicrobial, antioxidant and anti-inflammatory properties, and transgenic sequence genomics further illustrates that IL-17-producing RAW 264.7 macrophages are critical for mediating M1/M2 macrophage transition and provide favorable immune microenvironment. In addition, in vivo experiments reveal that GOE1 significantly ameliorates periodontal tissue inflammation and reduces the loss of alveolar bone by reducing inflammatory infiltration and collagen destruction. Overall, the GOE1 hydrogel offers a promising therapeutic option for managing diabetic periodontitis.
Collapse
Affiliation(s)
- Xinxin Ge
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jiajun Hu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xiaoliang Qi
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yizuo Shi
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xiaojing Chen
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yajing Xiang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Hangbin Xu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ying Li
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yi Zhang
- Department of Burn and Plastic Surgery, Department of Wound Repair Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Hui Deng
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| |
Collapse
|
13
|
Zhou X, Feng S, Xu Q, Li Y, Lan J, Wang Z, Ding Y, Wang S, Zhao Q. Current advances in nanozyme-based nanodynamic therapies for cancer. Acta Biomater 2025; 191:1-28. [PMID: 39571955 DOI: 10.1016/j.actbio.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Nanozymes are nano-catalysis materials with enzyme-like activities, which can repair the defects of natural enzyme such as harsh catalytic conditions, and harness their strengths to treat tumor. The emerging nanodynamic therapies improved drug selectivity and decreased drug tolerance, while causing efficient cell apoptosis through the generated reactive oxygen species (ROS). Nanodynamic therapies based on nanozymes can improve the complicated tumor microenvironment (TME) to reduce the defect rate of nanodynamic therapies, and provide more options for tumor treatment. This review summarized the characteristics and applications of nanozymes with different activities and the factors influencing the activity of nanozymes. We also focused on the application of nanozymes in nanodynamic therapies, including photodynamic therapy (PDT), chemodynamic therapy (CDT), and sonodynamic therapy (SDT). Moreover, we discussed the strategies for optimizing nanodynamic therapies based on nanozymes for tumor treatment in detail, and provided a systematic review of tactics for synergies with other tumor therapies. Ultimately, we analyzed the shortcomings of nanodynamic therapies based on nanozymes and the relevant research prospect, which would provide sufficient evidence and lay a foundation for further research. STATEMENT OF SIGNIFICANCE: 1. The novelty and significance of the work with respect to the existing literatures. (1) Recent advances in nanozyme-based nanodynamic therapies are comprehensively and systematically reviewed, and strategies to address the limitations and challenges of current therapies based on nanozymes are discussed firstly. (2) The mechanism of nanozymes in nanodynamic therapies is described for the first time. The synergistic therapies, prospects, and challenges of nanozyme-based nanodynamic therapies are innovatively discussed. 2. The scientific impact and interest to our readership. This review focuses on the recent progress of nanozyme-based nanodynamic therapies. This review indicates the way forward for the combined treatment of nanozymes and nanodynamic therapies, and lays a foundation for facilitating theoretical development in clinic.
Collapse
Affiliation(s)
- Xubin Zhou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Shuaipeng Feng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Qingqing Xu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yian Li
- School of Libra Arts of Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Jiaru Lan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Ziyi Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yiduo Ding
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
14
|
Yang Y, Hu T, Zhao K, Wang YC, Zhu Y, Wang S, Zhou Z, Gu L, Tan C, Liang R. Metal Doping Enabling Defective CoMo-Layered Double Hydroxide Nanosheets as Highly Efficient Photosensitizers for NIR-II Photodynamic Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2405847. [PMID: 39629533 DOI: 10.1002/adma.202405847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/15/2024] [Indexed: 01/30/2025]
Abstract
Photodynamic therapy (PDT) is attracting widespread attention as a promising strategy for tumor treatment. However, the efficacy of PDT is severely limited by the insufficient tissue penetration depth of the light source and low reactive oxygen species (ROS) generation efficiency. Herein, the metal doping strategy is reported to construct a series of defect-rich M-doped amorphous CoMo-layered double hydroxide (a-M-CoMo-LDH, M = Mn, Cu, Al, Ni, Mg, Zn) photosensitizers (PSs) for NIR-II PDT. Especially, M-doped CoMo-LDH nanosheets are synthesized through a simple hydrothermal method and then etched by acid treatment to prepare defect-rich a-M-CoMo-LDH nanosheets. Under NIR-II 1270 nm laser irradiation, the defect-rich a-Zn-CoMo-LDH nanosheets exhibit the optimal PDT performance compared with other a-M-CoMo-LDH nanosheets, and also possess much higher ROS production activity (3.9 times) than that of the pristine a-CoMo-LDH, with a singlet oxygen quantum yield up to 1.86, which is the highest among all the reported PSs. After polyethylene glycol (PEG) modification, the a-Zn-CoMo-LDH-PEG nanosheets can function as an effective inorganic PS for PDT, effectively inducing cell apoptosis in vitro and eradicating tumors in vivo. Notably, transcriptome sequencing analysis and further molecular validation highlight the critical role of the apoptotic/p53/AMPK/oxidative phosphorylation signaling pathways in a-Zn-CoMo-LDH-PEG-induced cancer cell apoptosis.
Collapse
Affiliation(s)
- Yu Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tingting Hu
- Department Electrical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, 999077, P. R. China
- Department Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| | - Kexin Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yi-Chi Wang
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yanfang Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shibo Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Lin Gu
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Chaoliang Tan
- Department Electrical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, 999077, P. R. China
- Department Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, P. R. China
| |
Collapse
|
15
|
Zhang G, He S, Wei J, Ran P, Zheng H, He L, Li X. Interface-Engineered Cu xO@Bi 2MoO 6 Heterojunctions to Inhibit Piezoelectric Screening Effect and Promote Double-Nanozyme Catalysis for Antibacterial Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407281. [PMID: 39533451 DOI: 10.1002/smll.202407281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/13/2024] [Indexed: 11/16/2024]
Abstract
Sonodynamic therapy is confronted with the low acoustic efficiency of sonosensitizers, and nanozymes are accompanied by intrinsic low catalytic activity. Herein, to increase the piezopotential of N-type piezoelectric semiconductors, the P-N heterojunction is designed to inhibit the piezoelectric screening effect (PSE) and increase electron utilization efficiency to enhance nanozyme activity. P-type CuxO nanoparticles are in situ grown on N-type piezoelectric Bi2MoO6 (BMO) nanoflakes (NFs) to construct heterostructured CuxO@BMO by interface engineering. CuxO deposition leads to lattice distortion of BMO NFs to improve piezoelectric response, and the strong interface electric field (IEF) suppresses PSE and increases piezopotential. The nonlocal piezopotential, local IEF, and glutathione (GSH) inoculation enhances electron-hole separation and increases peroxidase (POD)-like activity of BMO and GSH oxidase (GSHOx)-like activity of CuxO with high selectivity. The heterojunction formation causes the transfer and rearrangement of interface electrons, and the increased piezopotential accelerates electron transfer at interfaces with bacteria, thus increasing the production of reactive oxidative species and interfering with adenosine triphosphate synthesis. The heterostructured nanozymes produce abundant intracellular ·OH and achieve 4log magnitude reductions in viable bacteria and effective biofilm dispersion. This study elucidates integral mechanisms of nanozyme and acoustic catalysis and opens up a new way to synergize high piezopotential and nanozyme-catalyzed therapy.
Collapse
Affiliation(s)
- Guiyuan Zhang
- Institute of Biomedical Engineering, College of Medicine, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Sumei He
- Institute of Biomedical Engineering, College of Medicine, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Junwu Wei
- Institute of Biomedical Engineering, College of Medicine, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Pan Ran
- Institute of Biomedical Engineering, College of Medicine, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Huan Zheng
- Institute of Biomedical Engineering, College of Medicine, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Long He
- Institute of Biomedical Engineering, College of Medicine, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xiaohong Li
- Institute of Biomedical Engineering, College of Medicine, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
16
|
Zheng Y, Zhang T, Chang M, Xia L, Chen L, Ding L, Chen Y, Wu R. Sonoactivated Z-Scheme Heterojunction for Enhanced Sonodynamic Mitophagy Inhibition and Triple Negative Breast Cancer Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413601. [PMID: 39617984 DOI: 10.1002/adma.202413601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/21/2024] [Indexed: 01/30/2025]
Abstract
Sonodynamic therapy (SDT) has emerged as a potent therapeutic modality to generate intratumoral toxic reactive oxygen species (ROS) in combating refractory triple-negative breast cancer (TNBC). However, its therapeutic efficacy is compromised due to pro-survival cancer-cell mitophagy to mitigate mitochondrial oxidative damage. Here, an "all-in-one" tumor-therapeutic strategy that integrates nanosonosensitizer-augmented noninvasive SDT with mitophagy inhibition is reported. This is achieved using a rationally constructed sonoactivated liquid Z-scheme heterojunction that connects sonosensitizer PtCu3 nanocages and mitophagy-blocking sonosensitizer BP nanosheets via an amphipathic organic linker (PEI-PEG5000-C18). The conjugated electron mediator (M, Cp*Rh(phen)Cl) is strategically positioned between the 2 sonosensitizers to facilitate electron transfer. This M-based Z-scheme configuration prolongs the separation of sonoactivated electron-hole pairs, leading to efficient ROS generation upon ultrasound stimulation. Importantly, Cu2+ released from PtCu3 expedites BP degradation by reducing phosphorus vacancy formation energy, improving the overall biodegradability of BP-M-PtCu3 and favoring phosphate ions production. These ions elevate lysosomal pH, inhibiting the hydrolysis of damaged mitochondria within autophagic lysosomes, thus preventing cancer cell self-preservation under oxidative stress and effectively eliminating TNBC. It is believe that the M-based sonoactivated Z-scheme heterojunction will be a promising sonosensitizer structure, and the sonodynamic mitophagy inhibition strategy offers valuable prospects for cancer treatment.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| | - Tianhu Zhang
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| | - Meiqi Chang
- Central Laboratory of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Li Ding
- Department of Medical Ultrasound, National Clinical Research Center of Interventional Medicine, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Rong Wu
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| |
Collapse
|
17
|
Jia Y, Gao F, Wang P, Bai S, Li H, Li J. Supramolecular assembly of Polydopamine@Fe nanoparticles with near-infrared light-accelerated cascade catalysis applied for synergistic photothermal-enhanced chemodynamic therapy. J Colloid Interface Sci 2024; 676:626-635. [PMID: 39053410 DOI: 10.1016/j.jcis.2024.07.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Chemodynamic therapy (CDT) via Fenton-like reaction is greatly attractive owing to its capability to generate highly cytotoxic •OH radicals from tumoral hydrogen peroxide (H2O2). However, the antitumor efficacy of CDT is often challenged by the relatively low radical generation efficiency and the high levels of antioxidative glutathione (GSH) in tumor microenvironment. Herein, an innovative photothermal Fenton-like catalyst, Fe-chelated polydopamine (PDA@Fe) nanoparticle, with excellent GSH-depleting capability is constructed via one-step molecular assembly strategy for dual-modal imaging-guided synergetic photothermal-enhanced chemodynamic therapy. Fe(III) ions in PDA@Fe nanoparticles can consume the GSH overexpressed in tumor microenvironment to avoid the potential •OH consumption, while the as-produced Fe(II) ions subsequently convert tumoral H2O2 into cytotoxic •OH radicals through the Fenton reaction. Notably, PDA@Fe nanoparticles demonstrate excellent near-infrared light absorption that results in superior photothermal conversion ability, which further boosts above-mentioned cascade catalysis to yield more •OH radicals for enhanced CDT. Taken together with T1-weighted magnetic resonance imaging (MRI) contrast enhancement (r1 = 8.13 mM-1 s-1) and strong photoacoustic (PA) imaging signal of PDA@Fe nanoparticles, this design finally realizes the synergistic photothermal-chemodynamic therapy. Overall, this work offers a new promising paradigm to effectively accommodate both imaging and therapy functions in one well-defined framework for personalized precision disease treatment.
Collapse
Affiliation(s)
- Yi Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fan Gao
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Peizhi Wang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Li
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Shi Y, Li C, Li L, He Q, Zhu Q, Xu Z, Liu Y, Zhang N, Zhang M, Jiao J, Zheng R. Electronic band structure modulation for sonodynamic therapy. J Mater Chem B 2024; 12:12470-12488. [PMID: 39533888 DOI: 10.1039/d4tb01679c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Sonodynamic therapy (SDT) is a burgeoning and newfangled therapy modality with great application potential. Sonosensitizers are essential factors used to ensure the effectiveness of SDT. For the past few years, a lot of scientists have discovered many valid ways to refine and improve the performance of SDT. Among these methods, modulating the electronic band structure of sonosensitizers is one of the eminent measures to improve SDT, but relevant research studies on this are still unsatisfactory for actual transformation. Herein, this review provides a brief and comprehensive introduction of common ways to modulate electronic band structure, such as forming defects, doping, piezoelectric effect and heterostructure. Then, some nanomaterials with excellent properties that can be used as a sonosensitizer to enhance the SDT effect by modulating electronic band structure are overviewed, such as Ti-based, Zn-based, Bi-based, noble metal-based and MOF-based nanomaterials. At the same time, this paper also discusses the problems and challenges that may be encountered in the future application progress of SDT. In conclusion, the strategy of enhancing SDT through modulating electronic band structure will promote the rapid development of nanomedicine and provide a great research direction for SDT.
Collapse
Affiliation(s)
- Yafang Shi
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
- College of Life and Health Science, Northeastern University, Shenyang 110000, China
| | - Chengzhilin Li
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Linquan Li
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Qingbin He
- Medical Engineering and Technology Research Center, School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China
| | - Qingyi Zhu
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Ziang Xu
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Yanzi Liu
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Nianlei Zhang
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Meng Zhang
- Medical Engineering and Technology Research Center, School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China
| | - Jianwei Jiao
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Runxiao Zheng
- Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| |
Collapse
|
19
|
Zhao L, Tong Y, Yin J, Li H, Du L, Li J, Jiang Y. Photo-Activated Oxidative Stress Amplifier: A Strategy for Targeting Glutathione Metabolism and Enhancing ROS-Mediated Therapy in Triple-Negative Breast Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403861. [PMID: 39096062 DOI: 10.1002/smll.202403861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/03/2024] [Indexed: 08/04/2024]
Abstract
Amplifying oxidative stress within tumor cells can effectively inhibit the growth and metastasis of triple-negative breast cancer (TNBC). Therefore, the development of innovative nanomedicines that can effectively disrupt the redox balance represents a promising yet challenging therapeutic strategy for TNBC. In this study, an oxidative stress amplifier, denoted as PBCH, comprising PdAg mesoporous nanozyme and a CaP mineralized layer, loaded with GSH inhibitor L-buthionine sulfoximine (BSO), and further surface-modified with hyaluronic acid that can target CD44, is introduced. In the acidic tumor microenvironment, Ca2+ is initially released, thereby leading to mitochondrial dysfunction and eventually triggering apoptosis. Additionally, BSO suppresses the synthesis of intracellular reduced GSH and further amplifies the level of oxidative stress in cancer cells. Furthermore, PdAg nanozyme can be activated by near-infrared light to induce photothermal and photodynamic effects, causing a burst of ROS and simultaneously promoting cell apoptosis via provoking immunogenic cell death. The high-performance therapeutic effects of PBCH, based on the synergistic effect of aforementioned multiple oxidative damage and photothermal ablation, are validated in TNBC cells and animal models, declaring its potential as a safe and effective anti-tumor agent. The proposed approach offers new perspectives for precise and efficient treatment of TNBC.
Collapse
Affiliation(s)
- Li Zhao
- Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Yao Tong
- The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
| | - Jiawei Yin
- The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
| | - Hui Li
- Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Lutao Du
- The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Shandong Provincial Key Laboratory of Innovation Technology in Laboratory Medicine, Jinan, Shandong, 250033, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, 250033, China
| | - Juan Li
- The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
| | - Yanyan Jiang
- Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| |
Collapse
|
20
|
Zhang M, Sun D, Huang H, Yang D, Song X, Feng W, Jing X, Chen Y. Nanosonosensitizer Optimization for Enhanced Sonodynamic Disease Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409663. [PMID: 39308222 DOI: 10.1002/adma.202409663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/16/2024] [Indexed: 11/16/2024]
Abstract
Low-intensity ultrasound-mediated sonodynamic therapy (SDT), which, by design, integrates sonosensitizers and molecular oxygen to generate therapeutic substances (e.g., toxic hydroxyl radicals, superoxide anions, or singlet oxygen) at disease sites, has shown enormous potential for the effective treatment of a variety of diseases. Nanoscale sonosensitizers play a crucial role in the SDT process because their structural, compositional, physicochemical, and biological characteristics are key determinants of therapeutic efficacy. In particular, advances in materials science and nanotechnology have invigorated a series of optimization strategies for augmenting the therapeutic efficacy of nanosonosensitizers. This comprehensive review systematically summarizes, discusses, and highlights state-of-the-art studies on the current achievements of nanosonosensitizer optimization in enhanced sonodynamic disease treatment, with an emphasis on the general design principles of nanosonosensitizers and their optimization strategies, mainly including organic and inorganic nanosonosensitizers. Additionally, recent advancements in optimized nanosonosensitizers for therapeutic applications aimed at treating various diseases, such as cancer, bacterial infections, atherosclerosis, and autoimmune diseases, are clarified in detail. Furthermore, the biological effects of the improved nanosonosensitizers for versatile SDT applications are thoroughly discussed. The review concludes by highlighting the current challenges and future opportunities in this rapidly evolving research field to expedite its practical clinical translation and application.
Collapse
Affiliation(s)
- Min Zhang
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Dandan Sun
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Hui Huang
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Dayan Yang
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Xinran Song
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xiangxiang Jing
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Yu Chen
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, 325088, P. R. China
- Shanghai Institute of Materdicine, Shanghai, 200051, P. R. China
| |
Collapse
|
21
|
Huang H, Du L, Su R, Li Z, Shao Y, Yuan Y, Wang C, Lu C, He Y, He H, Zhang C. Albumin-based co-loaded sonosensitizer and STING agonist nanodelivery system for enhanced sonodynamic and immune combination antitumor therapy. J Control Release 2024; 375:524-536. [PMID: 39278356 DOI: 10.1016/j.jconrel.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
STING agonists can activate natural and adaptive immune responses, and are expected to become a new type of immunotherapy drug for tumor therapy. However, how to target deliver STING agonists to tumor tissues is a key factor affecting the efficacy of tumor treatment. Sonodynamic therapy (SDT) has become a research hotspot in the field of cancer treatment due to its non-invasive, spatiotemporally controllable, and high tissue penetration capabilities. Therefore, how to choose the appropriate drug delivery strategy, build a suitable drug delivery system to co-deliver photosensitizers and STING agonists, is a challenge faced in the tumor treatment. In this study, we developed an albumin-based nanodelivery system named FA-ICG&MnOx@HSA that co-loaded the sonosensitizers indocyanine green (ICG) and manganese oxide (MnOx). This approach achieved folate receptor-targeting mediated tumor delivery and tumor microenvironment (TME)-responsive release facilitated by high levels of glutathione (GSH) and hydrogen peroxide (H2O2), which catalyze oxygen generation to potentiate SDT efficacy in killing tumors and inducing immunogenic cell death (ICD). Simultaneously, the released Mn2+ acted as a STING agonist promoting dendritic cell maturation, IFN-β production, and proliferation of T cells. Ultimately, this albumin based co-loaded sonosensitizer and STING agonist demonstrated promising potential for advancing tumor treatment.
Collapse
Affiliation(s)
- Huaping Huang
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Lihua Du
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China; Guangdong-Hong Kong-Macau University Joint Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Rishun Su
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zhuoyuan Li
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yu Shao
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yeling Yuan
- Department of Pediatrics, Division of Hematology/Oncology, Pediatric Hematology Laboratory, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Chen Wang
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Changzheng Lu
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Yulong He
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China; Guangdong-Hong Kong-Macau University Joint Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Haozhe He
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China; Guangdong-Hong Kong-Macau University Joint Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Changhua Zhang
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China; Guangdong-Hong Kong-Macau University Joint Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
22
|
Wen D, Feng J, Deng R, Li K, Zhang H. Zn/Pt dual-site single-atom driven difunctional superimposition-augmented sonosensitizer for sonodynamic therapy boosted ferroptosis of cancer. Nat Commun 2024; 15:9359. [PMID: 39472589 PMCID: PMC11522694 DOI: 10.1038/s41467-024-53488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
Sonodynamic therapy (SDT) as a non-invasive antitumor strategy has been widely concerned. However, the rapid electron (e-) and hole (h+) recombination of traditional inorganic semiconductor sonosensitizers under ultrasonic (US) stimulation greatly limits the production of reactive oxygen species (ROS). Herein, we report a unique Zn/Pt dual-site single-atom driven difunctional superimposition-augmented TiO2-based sonosensitizer (Zn/Pt SATs). Initially, we verify through theoretical calculation that the strongly coupled Zn and Pt atoms can assist electron excitation at the atomic level by increasing electron conductivity and excitation efficiency under US, respectively, thus effectively improving the yield of ROS. Additionally, Zn/Pt SATs can significantly enhance ferroptosis by producing more ROS and sonoexcited holes under US stimuli. Therefore, the establishment of dual-site single-atom system represents an innovative strategy to enhance SDT in cancer model of female mice and provides a typical example for the development of inorganic sonosensitizer in the field of antitumor therapy.
Collapse
Affiliation(s)
- Ding Wen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- University of Science and Technology of China, 230026, Hefei, China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.
- University of Science and Technology of China, 230026, Hefei, China.
| | - Ruiping Deng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Kai Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.
- University of Science and Technology of China, 230026, Hefei, China.
- Department of Chemistry, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
23
|
Goel H, Rana I, Jain K, Ranjan KR, Mishra V. Atomically dispersed single-atom catalysts (SACs) and enzymes (SAzymes): synthesis and application in Alzheimer's disease detection. J Mater Chem B 2024; 12:10466-10489. [PMID: 39291791 DOI: 10.1039/d4tb01293c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and memory loss. Conventional diagnostic methods, such as neuroimaging and cerebrospinal fluid analysis, typically detect AD at advanced stages, limiting the efficacy of therapeutic interventions. Early detection is crucial for improving patient condition by enabling timely administration of treatments that may decelerate disease progression. In this context, single-atom catalysts (SACs) and single-atom nanozymes (SAzymes) have emerged as promising tools offering highly sensitive and selective detection of Alzheimer's biomarkers. SACs, consisting of isolated metal atoms on a support surface, deliver unparalleled atomic efficiency, increased reactivity, and reduced operational costs, although certain challenges in terms of stability, aggregation, and other factors persist. The advent of SAzymes, which integrate SACs with natural metalloprotease catalysts, has further advanced this field by enabling controlled electronic exchange, synergistic productivity, and enhanced biosafety. Particularly, M-N-C SACs with M-Nx active sites mimic the selectivity and sensitivity of natural metalloenzymes, providing a robust platform for early detection of AD. This review encompasses the advancements in SACs and SAzymes, highlighting their pivotal role in bridging the gap between conventional enzymes and nanozyme and offering enhanced catalytic efficiency, controlled electron transfer, and improved biosafety for Alzheimer's detection.
Collapse
Affiliation(s)
- Himanshi Goel
- Amity Institute of Applied Sciences, Amity University Noida, UP, India.
| | - Ishika Rana
- Amity Institute of Applied Sciences, Amity University Noida, UP, India.
| | - Kajal Jain
- Amity Institute of Applied Sciences, Amity University Noida, UP, India.
| | | | - Vivek Mishra
- Amity Institute of Click Chemistry Research and Studies, Amity University Noida, UP, India.
| |
Collapse
|
24
|
Zeng Q, Zhong H, Liao J, Huo Q, Miao B, Zeng L, Zhang B, Nie G. Antioxidant activities of metal single-atom nanozymes in biomedicine. Biomater Sci 2024; 12:5150-5163. [PMID: 39254215 DOI: 10.1039/d4bm00978a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Nanozymes are a class of nanomaterials with enzyme-like activity that can mimic the catalytic properties of natural enzymes. The small size, high catalytic activity, and strong stability of nanozymes compared to those of natural enzymes allow them to not only exist in a wide temperature and pH range but also maintain stability in complex environments. Recently developed single-atom nanozymes have metal active sites composed of a single metal atom fixed to a carrier. These metal atoms can act as independent catalytically active centers. Metal single-atom nanozymes have a homogeneous single-atom structure and a suitable coordination environment for stronger catalytic activity and specificity than traditional nanozymes. The antioxidant metal single-atom nanozymes with the ability of removing reactive oxygen species (ROS) can simulate superoxidase dismutase, catalase, and glutathione peroxidase to show different effects in vivo. Furthermore, due to the similar structure of antioxidant enzymes, a metal single-atom nanozyme often has multiple antioxidant activities, and this synergistic effect can more efficiently remove ROS related to oxidative stress. The versatility of single-atom nanozymes encompasses a broad spectrum of biomedical applications such as anti-oxidation, anti-infection, immunomodulatory, biosensing, bioimaging, and tumor therapy applications. Herein, the nervous, circulatory, digestive, motor, immune, and sensory systems are considered in order to demonstrate the role of metal single-atom nanozymes in biomedical antioxidants.
Collapse
Affiliation(s)
- Qingdong Zeng
- Graduate Collaborative Training Base of Shenzhen Second People's Hospital, Heng Yang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Huihai Zhong
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Jiahao Liao
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Qin Huo
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Beiping Miao
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Li Zeng
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Bin Zhang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Guohui Nie
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| |
Collapse
|
25
|
Huang Y, Chen C, Tan H, Dong S, Ren Y, Chao M, Yan H, Yan X, Jiang G, Gao F. A Stimulus-Responsive Ternary Heterojunction Boosting Oxidative Stress, Cuproptosis for Melanoma Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401147. [PMID: 38770990 DOI: 10.1002/smll.202401147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/23/2024] [Indexed: 05/22/2024]
Abstract
Cuproptosis, a recently discovered copper-dependent cell death, presents significant potential for the development of copper-based nanoparticles to induce cuproptosis in cancer therapy. Herein, a unique ternary heterojunction, denoted as HACT, composed of core-shell Au@Cu2O nanocubes with surface-deposited Titanium Dioxide quantum dots and modified with hyaluronic acid is introduced. Compared to core-shell AC NCs, the TiO2/Au@Cu2O exhibits improved energy structure optimization, successfully separating electron-hole pairs for redox use. This optimization results in a more rapid generation of singlet oxygen and hydroxyl radicals triggering oxidative stress under ultrasound radiation. Furthermore, the HACT NCs initiate cuproptosis by Fenton-like reaction and acidic environment, leading to the sequential release of cupric and cuprous ions. This accumulation of copper induces the aggregation of lipoylated proteins and reduces iron-sulfur proteins, ultimately initiating cuproptosis. More importantly, HACT NCs show a tendency to selectively target cancer cells, thereby granting them a degree of biosecurity. This report introduces a ternary heterojunction capable of triggering both cuproptosis and oxidative stress-related combination therapy in a stimulus-responsive manner. It can energize efforts to develop effective melanoma treatment strategies using Cu-based nanoparticles through rational design.
Collapse
Affiliation(s)
- Yuqi Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 223002, P. R. China
| | - Cheng Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 223002, P. R. China
| | - Huarong Tan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 223002, P. R. China
| | - Shuqing Dong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 223002, P. R. China
| | - Yiping Ren
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 223002, P. R. China
| | - Minghao Chao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 223002, P. R. China
| | - Hanrong Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
| | - Xiang Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 223002, P. R. China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 223002, P. R. China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 223002, P. R. China
| |
Collapse
|
26
|
Liu J, Dong S, Gai S, Li S, Dong Y, Yu C, He F, Yang P. Four Birds with One Stone: A Bandgap-Regulated Multifunctional Schottky Heterojunction for Robust Synergistic Antitumor Therapy upon Endo-/Exogenous Stimuli. ACS NANO 2024; 18:23579-23598. [PMID: 39150904 DOI: 10.1021/acsnano.4c07904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Considering the profound impact of structure on heterojunction catalysts, the rational design of emerging catalysts with optimized energy band structures is required for antitumor efficiency. Herein, we select titanium nitride (TiN) and Pt to develop a multifunctional Schottky heterojunction named Pt/H-TiN&SRF (PHTS) nanoparticles (NPs) with a narrowed bandgap to accomplish "four birds with one stone" involving enzyo/sono/photo three modals and additional ferroptosis. The in situ-grown Pt NPs acted as electron traps that can cause the energy band to bend upward and form a Schottky barrier, thereby facilitating the separation of electron/hole pairs in exogenous stimulation catalytic therapy. In addition, endogenous catalytic reactions based on peroxidase (POD)- and catalase (CAT)-mimicking activities can also be amplified, triggering intense oxidative stress, in which CAT-like activity decomposes endogenous H2O2 into O2 alleviating hypoxia and provides reactants for sonodynamic therapy. Moreover, PHTS NPs can elicit mild photothermal therapy with boosted photothermal properties as well as ferroptosis with loaded ferroptosis inducer sorafenib for effective tumor ablation and apoptosis-ferroptosis synergistic tumor inhibitory effect. In summary, this paper proposes an attractive design for antitumor strategies and highlights findings for heterojunction catalytic therapy with potential in tumor theranostics.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shuyao Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Yushan Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Chenghao Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| |
Collapse
|
27
|
Wang H, Zhang Z, Wang X, Jin X, Gao X, Yu L, Han Q, Wang Z, Song J. Copper Single-Atom-Based Metal-Organic Framework for Ultrasound-Enhanced Nanocatalytic Therapy. NANO LETTERS 2024; 24:9700-9710. [PMID: 39052427 DOI: 10.1021/acs.nanolett.4c02246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Chemodynamic therapy (CDT) is an emerging therapeutic modality triggered by endogenous substances in the tumor microenvironment (TME) to generate reactive oxygen species. However, the mild acid pH, low H2O2 concentration, and overexpressed glutathione can suppress the CDT efficiency. Herein, ultrasound (US)-triggered Cu2+-based single-atom nanoenzymes (FA-NH2-UiO-66-Cu, FNUC) are constructed with the performance of target and glutathione depletion. In the TME, the single-atom Cu sites of FNUC consume glutathione and the FNUC:Cu+ generates •OH via peroxidase-like activity. The US-activated FNUC exhibits a fast •OH generation rate, a low Michaelis constant, and a large •OH concentration, indicating the cavitation effect of US promotes the •OH generation. Meanwhile, the tumor target of FNUC is confirmed by NIR-II fluorescence imaging, in which it is modified with IR-1061. Combined with the antitumor performance of FNUC in vitro and in vivo, the novel Cu-based SAzymes can achieve efficient and precise cancer treatment.
Collapse
Affiliation(s)
- He Wang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Zhiping Zhang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Xiao Wang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Xinxin Jin
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Xing Gao
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Lei Yu
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Quanxiang Han
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Zhao Wang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, P. R. China
| |
Collapse
|
28
|
Ma X, Ding B, Yang Z, Liu S, Liu Z, Meng Q, Chen H, Li J, Li Z, Ma P, Lin J. Sulfur-Vacancy-Engineered Two-Dimensional Cu@SnS 2-x Nanosheets Constructed via Heterovalent Substitution for High-Efficiency Piezocatalytic Tumor Therapy. J Am Chem Soc 2024; 146:21496-21508. [PMID: 39073804 DOI: 10.1021/jacs.4c04385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Ultrasound (US)-mediated piezocatalytic tumor therapy has attracted much attention due to its notable tissue-penetration capabilities, noninvasiveness, and low oxygen dependency. Nevertheless, the efficiency of piezocatalytic therapy is limited due to an inadequate piezoelectric response, low separation of electron-hole (e--h+) pairs, and complex tumor microenvironment (TME). Herein, an ultrathin two-dimensional (2D) sulfur-vacancy-engineered (Sv-engineered) Cu@SnS2-x nanosheet (NS) with an enhanced piezoelectric effect was constructed via the heterovalent substitution strategy of Sn4+ by Cu2+. The introduction of Cu2+ ion not only causes changes in the crystal structure to increase polarization but also generates rich Sv to decrease band gap from 2.16 to 1.62 eV and inhibit e--h+ pairs recombination, collectively leading to the highly efficient generation of reactive oxygen species under US irradiation. Moreover, Cu@SnS2-x shows US-enhanced TME-responsive Fenton-like catalytic activity and glutathione depletion ability, further aggravating the oxidative stress. Both in vitro and in vivo results prove that the Sv-engineered Cu@SnS2-x NSs can significantly kill tumor cells and achieve high-efficiency piezocatalytic tumor therapy in a biocompatible manner. Overall, this study provides a new avenue for sonocatalytic therapy and broadens the application of 2D piezoelectric materials.
Collapse
Affiliation(s)
- Xinyu Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhuang Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Sainan Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhendong Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qi Meng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hao Chen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ziyao Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
29
|
Xiong Z, Pan Z, Wu Z, Huang B, Lai B, Liu W. Advanced Characterization Techniques and Theoretical Calculation for Single Atom Catalysts in Fenton-like Chemistry. Molecules 2024; 29:3719. [PMID: 39202799 PMCID: PMC11357653 DOI: 10.3390/molecules29163719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Single-atom catalysts (SACs) have attracted extensive attention due to their unique catalytic properties and wide range of applications. Advanced characterization techniques, such as energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy, and X-ray absorption fine-structure spectroscopy, have been used to investigate the elemental compositions, structural morphologies, and chemical bonding states of SACs in detail, aiming at unraveling the catalytic mechanism. Meanwhile, theoretical calculations, such as quantum chemical calculations and kinetic simulations, were used to predict the catalytic reaction pathways, active sites, and reaction kinetic behaviors of SACs, providing theoretical guidance for the design and optimization of SACs. This review overviews advanced characterization techniques and theoretical calculations for SACs in Fenton-like chemistry. Moreover, this work highlights the importance of advanced characterization techniques and theoretical calculations in the study of SACs and provides perspectives on the potential applications of SACs in the field of environmental remediation and the challenges of practical engineering.
Collapse
Affiliation(s)
- Zhaokun Xiong
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Ministry of Education, Beijing 100871, China;
- Sichuan Province Engineering Technology Research Center of Water Safety and Water Pollution Control, Haitian Water Group, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; (Z.W.); (B.H.); (B.L.)
| | - Zhicheng Pan
- Sichuan Province Engineering Technology Research Center of Water Safety and Water Pollution Control, Haitian Water Group, Chengdu 610065, China
| | - Zelin Wu
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; (Z.W.); (B.H.); (B.L.)
| | - Bingkun Huang
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; (Z.W.); (B.H.); (B.L.)
| | - Bo Lai
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; (Z.W.); (B.H.); (B.L.)
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Ministry of Education, Beijing 100871, China;
| |
Collapse
|
30
|
Zhao J, Bian E, Zhang R, Xu T, Nie Y, Wang L, Jin G, Xie H, Xiang H, Chen Y, Wu D. Self-Assembled Aza-Boron-Dipyrromethene-Based H 2S Prodrug for Synergistic Ferroptosis-Enabled Gas and Sonodynamic Tumor Therapies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309542. [PMID: 38872263 PMCID: PMC11321684 DOI: 10.1002/advs.202309542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/12/2024] [Indexed: 06/15/2024]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and lethal subtype of gliomas of the central nervous system. The efficacy of sonodynamic therapy (SDT) against GBM is significantly reduced by the expression of apoptosis-inhibitory proteins in GBM cells. In this study, an intelligent nanoplatform (denoted as Aza-BD@PC NPs) based on the aza-boron-dipyrromethene dye and phenyl chlorothionocarbonate-modified DSPE-PEG molecules is developed for synergistic ferroptosis-enabled gas therapy (GT) and SDT of GBM. Once internalized by GBM cells, Aza-BD@PC NPs showed effective cysteine (Cys) consumption and Cys-triggered hydrogen sulfide (H2S) release for ferroptosis-enabled GT, thereby disrupting homeostasis in the intracellular environment, affecting GBM cell metabolism, and inhibiting GBM cell proliferation. Additionally, the released Aza-BD generated abundant singlet oxygen (1O2) under ultrasound irradiation for favorable SDT. In vivo and in vitro evaluations demonstrated that the combined functions of Cys consumption, H2S production, and 1O2 production induced significant death of GBM cells and markedly inhibited tumor growth, with an impressive inhibition rate of up to 97.5%. Collectively, this study constructed a cascade nanoreactor with satisfactory Cys depletion performance, excellent H2S release capability, and prominent reactive oxygen species production ability under ultrasound irradiation for the synergistic ferroptosis-enabled GT and SDT of gliomas.
Collapse
Affiliation(s)
- Jiajia Zhao
- Department of NeurosurgeryThe Second Affiliated Hospital of Anhui Medical UniversityHefei230601P. R. China
| | - Erbao Bian
- Department of NeurosurgeryThe Second Affiliated Hospital of Anhui Medical UniversityHefei230601P. R. China
| | - Renwu Zhang
- Department of NeurosurgeryThe Second Affiliated Hospital of Anhui Medical UniversityHefei230601P. R. China
| | - Tao Xu
- Department of NeurosurgeryChangzheng HospitalNaval Medical UniversityShanghai200003P. R. China
| | - Yang Nie
- Department of NeurosurgeryThe Second Affiliated Hospital of Anhui Medical UniversityHefei230601P. R. China
| | - Linqi Wang
- Department of NeurosurgeryThe Second Affiliated Hospital of Anhui Medical UniversityHefei230601P. R. China
| | - Gui Jin
- Department of NeurosurgeryThe Second Affiliated Hospital of Anhui Medical UniversityHefei230601P. R. China
| | - Han Xie
- Department of NeurosurgeryThe Second Affiliated Hospital of Anhui Medical UniversityHefei230601P. R. China
| | - Huijing Xiang
- School of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Yu Chen
- School of Life SciencesShanghai UniversityShanghai200444P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou Institute of Shanghai UniversityWenzhou325088P. R. China
- Shanghai Institute of MaterdicineShanghai200051P. R. China
| | - Dejun Wu
- Department of NeurosurgeryThe Second Affiliated Hospital of Anhui Medical UniversityHefei230601P. R. China
| |
Collapse
|
31
|
Zhu D, Lu Y, Yang S, Hu T, Tan C, Liang R, Wang Y. PAD4 Inhibitor-Functionalized Layered Double Hydroxide Nanosheets for Synergistic Sonodynamic Therapy/Immunotherapy Of Tumor Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401064. [PMID: 38708711 PMCID: PMC11234469 DOI: 10.1002/advs.202401064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/03/2024] [Indexed: 05/07/2024]
Abstract
Sonodynamic therapy (SDT) is demonstrated to trigger the systemic immune response of the organism and facilitate the treatment of metastatic tumors. However, SDT-mediated neutrophil extracellular traps (NETs) formation can promote tumor cell spread, thus weakening the therapeutic effectiveness of metastatic tumors. Herein, the amorphous CoW-layered double hydroxide (a-CoW-LDH) nanosheets are functionalized with a peptidyl arginine deiminase 4 (PAD4) inhibitor, i.e., YW3-56, to construct a multifunctional nanoagent (a-LDH@356) for synergistic SDT/immunotherapy. Specifically, a-CoW-LDH nanosheets can act as a sonosensitizer to generate abundant reactive oxygen species (ROS) under US irradiation. After loading with YW3-56, a-LDH@356 plus US irradiation not only effectively induces ROS generation and immunogenic cell death, but also inhibits the elevation of citrullinated histone H3 (H3cit) and the release of NETs, enabling a synergistic enhancement of anti-tumor metastasis effect. Using 4T1 tumor model, it is demonstrated that combining a-CoW-LDH with YW3-56 stimulates an anti-tumor response by upregulating the proportion of immune-activated cells and inducing polarization of M1 macrophages, and inhibits immune escape by downregulating the expression of PD-1 on immune cells under US irradiation, which not only arrests primary tumor progression with a tumor inhibition rate of 69.5% but also prevents tumor metastasis with the least number of lung metastatic nodules.
Collapse
Affiliation(s)
- Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, P. R. China
| | - Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, P. R. China
| | - Shuqing Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tingting Hu
- Department Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| | - Chaoliang Tan
- Department Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, P. R. China
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing Laboratory of Oral Health, Beijing, 100069, P. R. China
| |
Collapse
|
32
|
Zheng N, Hu X, Yan L, Ding LY, Feng J, Li D, Ji T, Ai F, Yu K, Hu J. Bimetallic Cu@Ru Core-Shell Structures with Ligand Effects for Endo-Exogenous Stimulation-Mediated Dynamic Oncotherapy. NANO LETTERS 2024; 24:6165-6173. [PMID: 38717317 DOI: 10.1021/acs.nanolett.4c01714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Dynamic therapies, which induce reactive oxygen species (ROS) production in situ through endogenous and exogenous stimulation, are emerging as attractive options for tumor treatment. However, the complexity of the tumor substantially limits the efficacy of individual stimulus-triggered dynamic therapy. Herein, bimetallic copper and ruthenium (Cu@Ru) core-shell nanoparticles are applied for endo-exogenous stimulation-triggered dynamic therapy. The electronic structure of Cu@Ru is regulated through the ligand effects to improve the adsorption level for small molecules, such as water and oxygen. The core-shell heterojunction interface can rapidly separate electron-hole pairs generated by ultrasound and light stimulation, which initiate reactions with adsorbed small molecules, thus enhancing ROS generation. This synergistically complements tumor treatment together with ROS from endogenous stimulation. In vitro and in vivo experiments demonstrate that Cu@Ru nanoparticles can induce tumor cell apoptosis and ferroptosis through generated ROS. This study provides a new paradigm for endo-exogenous stimulation-based synergistic tumor treatment.
Collapse
Affiliation(s)
- Nannan Zheng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Xin Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Li Yan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Ling-Yun Ding
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Juan Feng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Dan Li
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Tao Ji
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Fujin Ai
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Keda Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Junqing Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
- Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China
| |
Collapse
|
33
|
Zhu L, Chen G, Wang Q, Du J, Wu S, Lu J, Liu B, Miao Y, Li Y. High-Z elements dominated bismuth-based heterojunction nano-semiconductor for radiotherapy-enhanced sonodynamic breast cancer therapy. J Colloid Interface Sci 2024; 662:914-927. [PMID: 38382375 DOI: 10.1016/j.jcis.2024.02.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
Ultrasound and X-rays possess remarkable tissue penetration capabilities, making them promising candidates for cancer therapy. Sonodynamic therapy, which utilizes ultrasound excitation, offers a safer alternative to radiotherapy and can be combined with X-rays to mitigate the adverse effects on normal tissues. In this study, we developed a bismuth-based heterostructure semiconductor (BFIP) to enhance the efficacy of radiotherapy and sonodynamic therapy in treating breast cancer. The semiconductor is fabricated through a two-step process involving the synthesis of porous spherical bismuth fluoride and partially reduced to bismuth oxyiodide. Then, followed by surface modification with amphiphilic polyethylene glycol, BFIP is fabricated. Incorporating heavy atoms in the BFIP enhances radiosensitivity. The BFIP exhibits superior carrier separation efficiency compared to bismuth fluoride, generating a substantial quantity of reactive oxygen species upon ultrasound stimulation. Moreover, the BFIP effectively depletes glutathione through coordination and hole-mediated oxidation pathways, disrupting the tumor microenvironment and inducing oxidative stress. Encouraging results are acquired in both in vitro cell and in vivo tumor models. Our study provides a de-risking strategy by utilizing ultrasound as a partial substitute for X-rays in treating deep-seated tumors, offering a viable research direction for constructing a unified nanoplatform.
Collapse
Affiliation(s)
- Lejin Zhu
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guobo Chen
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qian Wang
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Du
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Sijia Wu
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiacheng Lu
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Baolin Liu
- Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, Shanghai 200093, China.
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, Shanghai 200093, China.
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, Shanghai 200093, China.
| |
Collapse
|
34
|
Zhao L, Chang F, Tong Y, Yin J, Xu J, Li H, Du L, Jiang Y. A Multifunctional Bimetallic Nanoplatform for Synergic Local Hyperthermia and Chemotherapy Targeting HER2-Positive Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308316. [PMID: 38380506 PMCID: PMC11040336 DOI: 10.1002/advs.202308316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/19/2024] [Indexed: 02/22/2024]
Abstract
Anti-HER2 (human epidermal growth factor receptor 2) therapies significantly increase the overall survival of patients with HER2-positive breast cancer. Unfortunately, a large fraction of patients may develop primary or acquired resistance. Further, a multidrug combination used to prevent this in the clinic places a significant burden on patients. To address this issue, this work develops a nanotherapeutic platform that incorporates bimetallic gold-silver hollow nanoshells (AuAg HNSs) with exceptional near-infrared (NIR) absorption capability, the small-molecule tyrosine kinase inhibitor pyrotinib (PYR), and Herceptin (HCT). This platform realizes targeted delivery of multiple therapeutic effects, including chemo-and photothermal activities, oxidative stress, and immune response. In vitro assays reveal that the HCT-modified nanoparticles exhibit specific recognition ability and effective internalization by cells. The released PYR inhibit cell proliferation by downregulating HER2 and its associated pathways. NIR laser application induces a photothermal effect and tumor cell apoptosis, whereas an intracellular reactive oxygen species burst amplifies oxidative stress and triggers cancer cell ferroptosis. Importantly, this multimodal therapy also promotes the upregulation of genes related to TNF and NF-κB signaling pathways, enhancing immune activation and immunogenic cell death. In vivo studies confirm a significant reduction in tumor volume after treatment, substantiating the potential effectiveness of these nanocarriers.
Collapse
Affiliation(s)
- Li Zhao
- Liquid‐Solid Structural Evolution & Processing of Materials (Ministry of Education)School of Materials Science and EngineeringShandong UniversityJinanShandong250061China
| | - Fei Chang
- The Second Hospital of Shandong UniversityJinanShandong250033China
| | - Yao Tong
- The Second Hospital of Shandong UniversityJinanShandong250033China
| | - Jiawei Yin
- The Second Hospital of Shandong UniversityJinanShandong250033China
| | - Jiawen Xu
- Department of PathologyShandong Provincial Hospital affiliated to Shandong First Medical UniversityJinanShandong250021China
| | - Hui Li
- Liquid‐Solid Structural Evolution & Processing of Materials (Ministry of Education)School of Materials Science and EngineeringShandong UniversityJinanShandong250061China
| | - Lutao Du
- Department of Clinical LaboratoryQilu Hospital of Shandong UniversityJinanShandong250012China
- Shandong Provincial Key Laboratory of Innovation Technology in Laboratory MedicineJinanShandong250033China
- Shandong Provincial Clinical Medicine Research Center for Clinical LaboratoryJinanShandong250033China
| | - Yanyan Jiang
- Liquid‐Solid Structural Evolution & Processing of Materials (Ministry of Education)School of Materials Science and EngineeringShandong UniversityJinanShandong250061China
| |
Collapse
|
35
|
Liu Y, Zhao H, Zhao Y. Designing Efficient Single Metal Atom Biocatalysts at the Atomic Structure Level. Angew Chem Int Ed Engl 2024; 63:e202315933. [PMID: 38206594 DOI: 10.1002/anie.202315933] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/18/2023] [Accepted: 01/11/2024] [Indexed: 01/12/2024]
Abstract
Various nanomaterials as biocatalysts could be custom-designed and modified to precisely match the specific microenvironment of diseases, showing a promise in achieving effective therapy outcomes. Compared to conventional biocatalysts, single metal atom catalysts (SMACs) with maximized atom utilization through well-defined structures offer enhanced catalytic activity and selectivity. Currently, there is still a gap in a comprehensive overview of the connection between structures and biocatalytic mechanisms of SMACs. Therefore, it is crucial to deeply investigate the role of SMACs in biocatalysis from the atomic structure level and to elucidate their potential mechanisms in biocatalytic processes. In this minireview, we summarize catalysis regulation methods of SMACs at the atomic structure level, focusing on the optimization of catalytic active sites, coordination environment, and active site-support interactions, and briefly discuss biocatalytic mechanisms for biomedical applications.
Collapse
Affiliation(s)
- Yang Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Huan Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
36
|
Ren L, Sun Y, Zhang J, Nie L, Shavandi A, Yunusov KE, Aharodnikau UE, Solomevich SO, Jiang G. Red blood cell membrane-coated functionalized Cu-doped metal organic framework nanoformulations as a biomimetic platform for improved chemo-/chemodynamic/photothermal synergistic therapy. Int J Pharm 2024; 652:123811. [PMID: 38237709 DOI: 10.1016/j.ijpharm.2024.123811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024]
Abstract
Nanoformulations for combining chemotherapy, chemodynamic therapy, and photothermal therapy have enormous potential in tumor treatment. Coating nanoformulations with cell membranes endows them with homologous cellular mimicry, enabling nanoformulations to acquire new functions and properties, including homologous targeting and long circulation in vivo, and can enhance internalization by homologous cancer cells. Herein, we fused multifunctional biomimetic nanoformulations based on Cu-doped zeolitic imidazolate framework-8 (ZIF-8). Hydroxycamptothecin (HCPT), a clinical anti-tumor drug, was encapsulated into ZIF-8, which was subsequently coated with polydopamine (PDA) and red blood cell membrane. The as-fabricated biomimetic nanoformulations showed an enhanced cell uptake in vitro and the potential to prolong blood circulation in vivo, producing effective synergistic chemotherapy, chemodynamic therapy, and photothermal therapy under the 808 nm laser irradiation. Together, the biomimetic nanoformulations showed a prolonged blood circulation and evasion of immune recognition in vivo to provide a bio-inspired strategy which may have the potential for the multi-synergistic therapy of breast cancer.
Collapse
Affiliation(s)
- Luping Ren
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou 310018, China
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou Zhejiang, 310018, China.
| | - Junhao Zhang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou 310018, China
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO10 BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Khaydar E Yunusov
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences, Tashkent, 100128, Uzbekistan
| | - Uladzislau E Aharodnikau
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, 220030, Belarus
| | - Sergey O Solomevich
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, 220030, Belarus
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou 310018, China.
| |
Collapse
|
37
|
Zhou Z, Wang T, Hu T, Xu H, Cui L, Xue B, Zhao X, Pan X, Yu S, Li H, Qin Y, Zhang J, Ma L, Liang R, Tan C. Synergistic Interaction between Metal Single-Atoms and Defective WO 3- x Nanosheets for Enhanced Sonodynamic Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2311002. [PMID: 38408758 DOI: 10.1002/adma.202311002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/03/2024] [Indexed: 02/28/2024]
Abstract
Although metal single-atom (SA)-based nanomaterials are explored as sonosensitizers for sonodynamic therapy (SDT), they normally exhibit poor activities and need to combine with other therapeutic strategies. Herein, the deposition of metal SAs on oxygen vacancy (OV)-rich WO3- x nanosheets to generate a synergistic effect for efficient SDT is reported. Crystalline WO3 and OV-rich WO3- x nanosheets are first prepared by simple calcination of the WO3 ·H2 O nanosheets under an air and N2 atmosphere, respectively. Pt, Cu, Fe, Co, and Ni metal SAs are then deposited on WO3- x nanosheets to obtain metal SA-decorated WO3- x nanocomposites (M-WO3- x ). Importantly, the Cu-WO3- x sonosensitizer exhibits a much higher activity for ultrasound (US)-induced production of reactive oxygen species than that of the WO3- x and Cu SA-decorated WO3 , which is also higher than other M-WO3- x nanosheets. Both the experimental and theoretical results suggest that the excellent SDT performance of the Cu-WO3- x nanosheets should be attributed to the synergistic effect between Cu SAs and WO3- x OVs. Therefore, after polyethylene glycol modification, the Cu-WO3- x can quickly kill cancer cells in vitro and effectively eradicate tumors in vivo under US irradiation. Transcriptome sequencing analysis and further molecular validation suggest that the Cu-WO3- x -mediated SDT-activated apoptosis and TNF signaling pathways are potential drivers of tumor apoptosis induction.
Collapse
Affiliation(s)
- Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Tao Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tingting Hu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| | - Hao Xu
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lin Cui
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Baoli Xue
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Xinshuo Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Xiangrong Pan
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Shilong Yu
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Hai Li
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yong Qin
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Jiankang Zhang
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lufang Ma
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, P. R. China
| | - Chaoliang Tan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
38
|
Li R, Wang X, Shi J, Kang Y, Ji X. Sonocatalytic cancer therapy: theories, advanced catalysts and system design. NANOSCALE 2023; 15:19407-19422. [PMID: 37965689 DOI: 10.1039/d3nr04505f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Treating cancer remains one of the most formidable challenges in modern medicine, with traditional treatment options often being limited by poor therapeutic outcomes and unacceptable side effects. Nanocatalytic therapy activates tumor-localized catalytic reactions in situ via nontoxic or minimally toxic nanocatalysts responding to unique cues from the tumor microenvironment or external stimuli. In particular, sonocatalytic cancer therapy is a promising approach that has emerged as a potential solution to this problem through the combination of ultrasound waves and catalytic materials to selectively target and destroy cancer cells. Compared to light, ultrasound exhibits higher spatial precision, lower energy attenuation, and superior tissue penetrability, furnishing more energy to catalysts. Multidimensional modulation of nanocatalyst structures and properties is pivotal to maximizing catalytic efficiency given constraints in external stimulative energy as well as substrate types and levels. In this review, we discuss the various theories and mechanisms underlying sonocatalytic cancer therapy, as well as advanced catalysts that have been developed for this application. Additionally, we explore the design of sonocatalytic cancer therapy systems, including the use of heterojunction catalysts and the optimal conditions for achieving maximum therapeutic effects. Finally, we highlight the potential benefits of sonocatalytic cancer therapy over traditional cancer treatments, including its noninvasive nature and lower toxicity.
Collapse
Affiliation(s)
- Ruiyan Li
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China.
| | - Xuan Wang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China.
| | - Jiacheng Shi
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China.
| | - Yong Kang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China.
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China.
- Medical College, Linyi University, Linyi 276000, China
| |
Collapse
|
39
|
Wang X, Ren X, Yang J, Zhao Z, Zhang X, Yang F, Zhang Z, Chen P, Li L, Zhang R. Mn-single-atom nano-multizyme enabled NIR-II photoacoustically monitored, photothermally enhanced ROS storm for combined cancer therapy. Biomater Res 2023; 27:125. [PMID: 38049922 PMCID: PMC10694968 DOI: 10.1186/s40824-023-00464-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
RATIONALE To realize imaging-guided multi-modality cancer therapy with minimal side effects remains highly challenging. METHODS We devised a bioinspired hollow nitrogen-doped carbon sphere anchored with individually dispersed Mn atoms (Mn/N-HCN) via oxidation polymerization with triton micelle as a soft template, followed by carbonization and annealing. Enzyme kinetic analysis and optical properties were performed to evaluate the imaging-guided photothermally synergized nanocatalytic therapy. RESULTS Simultaneously mimicking several natural enzymes, namely peroxidase (POD), catalase (CAT), oxidase (OXD), and glutathione peroxidase (GPx), this nano-multizyme is able to produce highly cytotoxic hydroxyl radical (•OH) and singlet oxygen (1O2) without external energy input through parallel and series catalytic reactions and suppress the upregulated antioxidant (glutathione) in tumor. Furthermore, NIR-II absorbing Mn/N-HCN permits photothermal therapy (PTT), enhancement of CAT activity, and photoacoustic (PA) imaging to monitor the accumulation kinetics of the nanozyme and catalytic process in situ. Both in vitro and in vivo experiments demonstrate that near-infrared-II (NIR-II) PA-imaging guided, photothermally enhanced and synergized nanocatalytic therapy is efficient to induce apoptosis of cancerous cells and eradicate tumor tissue. CONCLUSIONS This study not only demonstrates a new method for effective cancer diagnosis and therapy but also provides new insights into designing multi-functional nanozymes.
Collapse
Affiliation(s)
- Xiaozhe Wang
- The Radiology Department of First Hospital of Shanxi Medical University, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaofeng Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Jie Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Zican Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Xiaoyu Zhang
- The Radiology Department of First Hospital of Shanxi Medical University, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, China
| | - Fan Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Zheye Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Lee Kong Chian School of Medicine, Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Lee Kong Chian School of Medicine, Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
| | - Liping Li
- The Radiology Department of First Hospital of Shanxi Medical University, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China.
| | - Ruiping Zhang
- The Radiology Department of First Hospital of Shanxi Medical University, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
40
|
Wang X, Xu X, Yang Z, Xu X, Han S, Zhang H. Improvement of the effectiveness of sonodynamic therapy: by optimizing components and combination with other treatments. Biomater Sci 2023; 11:7489-7511. [PMID: 37873617 DOI: 10.1039/d3bm00738c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Sonodynamic therapy (SDT) is an emerging treatment method. In comparison with photodynamic therapy (PDT), SDT exhibits deep penetration, high cell membrane permeability, and free exposure to light capacity. Unfortunately, owing to inappropriate ultrasound parameter selection, poor targeting of sonosensitizers, and the complex tumor environment, SDT is frequently ineffective. In this review, we describe the approaches for selecting ultrasound parameters and how to develop sonosensitizers to increase targeting and improve adverse tumor microenvironments. Furthermore, the potential of combining SDT with other treatment methods, such as chemotherapy, chemodynamic therapy, photodynamic therapy, photothermal therapy, and immunotherapy, is discussed to further increase the treatment efficiency of SDT.
Collapse
Affiliation(s)
- Xiangting Wang
- Zhuhai Institute of Translational Medicine, Department of Ultrasound and Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), The First School of Clinical Medicine of Guangdong Medical University, Zhuhai 519000, China.
| | - Xiaohong Xu
- Department of Ultrasound, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhe Yang
- Zhuhai Institute of Translational Medicine, Department of Ultrasound and Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), The First School of Clinical Medicine of Guangdong Medical University, Zhuhai 519000, China.
| | - Xuanshou Xu
- Zhuhai Institute of Translational Medicine, Department of Ultrasound and Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), The First School of Clinical Medicine of Guangdong Medical University, Zhuhai 519000, China.
| | - Shisong Han
- Zhuhai Institute of Translational Medicine, Department of Ultrasound and Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), The First School of Clinical Medicine of Guangdong Medical University, Zhuhai 519000, China.
| | - Heng Zhang
- Zhuhai Institute of Translational Medicine, Department of Ultrasound and Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), The First School of Clinical Medicine of Guangdong Medical University, Zhuhai 519000, China.
| |
Collapse
|
41
|
Tian R, Li Y, Xu Z, Xu J, Liu J. Current Advances of Atomically Dispersed Metal-Centered Nanozymes for Tumor Diagnosis and Therapy. Int J Mol Sci 2023; 24:15712. [PMID: 37958697 PMCID: PMC10648793 DOI: 10.3390/ijms242115712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Nanozymes, which combine enzyme-like catalytic activity and the biological properties of nanomaterials, have been widely used in biomedical fields. Single-atom nanozymes (SANs) with atomically dispersed metal centers exhibit excellent biological catalytic activity due to the maximization of atomic utilization efficiency, unique metal coordination structures, and metal-support interaction, and their structure-activity relationship can also be clearly investigated. Therefore, they have become an emerging alternative to natural enzymes. This review summarizes the examples of nanocatalytic therapy based on SANs in tumor diagnosis and treatment in recent years, providing an overview of material classification, activity modulation, and therapeutic means. Next, we will delve into the therapeutic mechanism of SNAs in the tumor microenvironment and the advantages of synergistic multiple therapeutic modalities (e.g., chemodynamic therapy, sonodynamic therapy, photothermal therapy, chemotherapy, photodynamic therapy, sonothermal therapy, and gas therapy). Finally, this review proposes the main challenges and prospects for the future development of SANs in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Ruizhen Tian
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; (R.T.); (Y.L.)
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (Z.X.); (J.X.)
| | - Yijia Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; (R.T.); (Y.L.)
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (Z.X.); (J.X.)
| | - Zhengwei Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (Z.X.); (J.X.)
| | - Jiayun Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (Z.X.); (J.X.)
| | - Junqiu Liu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (Z.X.); (J.X.)
| |
Collapse
|
42
|
Zhao L, Sun Z, Wang Y, Huang J, Wang H, Li H, Chang F, Jiang Y. Plasmonic nanobipyramids with photo-enhanced catalytic activity under near-infrared II window for effective treatment of breast cancer. Acta Biomater 2023; 170:496-506. [PMID: 37660961 DOI: 10.1016/j.actbio.2023.08.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Nanozyme-based catalytic therapy is an effective method for cancer treatment, but insufficient catalytic activity presents a challenge in achieving optimal therapeutic outcomes. External light can provide an innovative approach to modulate nanozyme catalytic activity. Herein, we report on plasmonic gold nanobipyramid@cuprous oxide (Au NBP@Cu2O) nanozyme for the effective phototherapy of breast cancer. In the tumor microenvironment, Cu+-mediated Fenton-like reaction catalyzes the generation of toxic hydroxyl radicals (•OH) from endogenous hydrogen peroxide to induce apoptosis. Additionally, the Au NBP@Cu2O nanostructure improves the absorption performance of Au NBPs in the near-infrared II region through near-field enhancement of equipartite exciters and achieves a high photothermal conversion efficiency value of 58%. Remarkably, the Au NBP@Cu2O nanoheterostructure can capture hot electrons induced by equipartition excitations and promote electron-hole separation under 1064 nm laser irradiation, facilitating the production of more reactive oxygen species (ROS). The mechanism behind this enhanced catalytic activity was unraveled using femtosecond transient absorption spectroscopy. Both in vitro and in vivo investigations have demonstrated the efficacious tumor therapeutic potential of Au NBP@Cu2O nanozyme, particularly under 1064 nm laser irradiation. Furthermore, the proposed therapeutic approach has been proved to effectively block tumor metastasis, providing a promising strategy for the development of multifunctional nanotherapeutics to tackle metastatic tumors. STATEMENT OF SIGNIFICANCE: A highly effective plasmonic nanozyme has been developed to improve catalytic therapy for breast cancer. When exposed to 1064 nm laser irradiation, Au NBP@Cu2O nanozyme can promote the separation of hot electrons and holes thereby facilitating the production of reactive oxygen species. Hot electrons transfer behavior is unveiled by femtosecond transient absorption spectroscopy technique. This enhanced catalytic activity, along with the intrinsic photothermal effect, effectively kills tumor cells.
Collapse
Affiliation(s)
- Li Zhao
- Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, China; Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong 518057, China
| | - Zhongqi Sun
- Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Yi Wang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Jian Huang
- Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Haitao Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Hui Li
- Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Fei Chang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China.
| | - Yanyan Jiang
- Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, China; Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
43
|
Yuan M, Kermanian M, Agarwal T, Yang Z, Yousefiasl S, Cheng Z, Ma P, Lin J, Maleki A. Defect Engineering in Biomedical Sciences. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304176. [PMID: 37270664 DOI: 10.1002/adma.202304176] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/28/2023] [Indexed: 06/05/2023]
Abstract
With the promotion of nanochemistry research, large numbers of nanomaterials have been applied in vivo to produce desirable cytotoxic substances in response to endogenous or exogenous stimuli for achieving disease-specific therapy. However, the performance of nanomaterials is a critical issue that is difficult to improve and optimize under biological conditions. Defect-engineered nanoparticles have become the most researched hot materials in biomedical applications recently due to their excellent physicochemical properties, such as optical properties and redox reaction capabilities. Importantly, the properties of nanomaterials can be easily adjusted by regulating the type and concentration of defects in the nanoparticles without requiring other complex designs. Therefore, this tutorial review focuses on biomedical defect engineering and briefly discusses defect classification, introduction strategies, and characterization techniques. Several representative defective nanomaterials are especially discussed in order to reveal the relationship between defects and properties. A series of disease treatment strategies based on defective engineered nanomaterials are summarized. By summarizing the design and application of defective engineered nanomaterials, a simple but effective methodology is provided for researchers to design and improve the therapeutic effects of nanomaterial-based therapeutic platforms from a materials science perspective.
Collapse
Affiliation(s)
- Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Mehraneh Kermanian
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology (School of Pharmacy), Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| | - Tarun Agarwal
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, 522502, India
| | - Zhuang Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Satar Yousefiasl
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Ziyong Cheng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology (School of Pharmacy), Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| |
Collapse
|
44
|
Zhao R, Zhu H, Feng L, Zhu Y, Liu B, Yu C, Gai S, Yang P. 2D Piezoelectric BiVO 4 Artificial Nanozyme with Adjustable Vanadium Vacancy for Ultrasound Enhanced Piezoelectric/Sonodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301349. [PMID: 37127877 DOI: 10.1002/smll.202301349] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Increasing the yield of reactive oxygen species (ROS) to enhance oxidative stress in cells is an eternal goal in cancer therapy. In this study, BiVO4 artificial nanozyme is developed with adjustable vanadium vacancy for ultrasound (US) enhanced piezoelectric/sonodynamic therapy. Under US excitation, the vanadium vacancy-rich BiVO4 nanosheets (abbreviated Vv -r BiVO4 NSs) facilitate the generation of a large number of electrons to improve the ROS yield. Meanwhile, the mechanical strain imposed by US irradiation makes the Vv -r BiVO4 NSs display a typical piezoelectric response, which tilts the conduction band to be more negative and the valance band more positive than the redox potentials of O2 /O2 •- and H2 O/·OH, boosting the efficiency of ROS generation. Both density functional theory calculations and experiments confirm that the introduction of cationic vacancy can improve the sonodynamic effect. As expected, Vv -r BiVO4 NSs have better peroxidase enzyme catalytic and glutathione depletion activities, resulting in increased intracellular oxidative stress. This triple amplification strategy of oxidative stress induced by US substantially inhibits the growth of cancer cells. The work may open an avenue to achieve a synergetic therapy by introducing cationic vacancy, broadening the biomedical use of piezoelectric materials.
Collapse
Affiliation(s)
- Ruoxi Zhao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Haixia Zhu
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, P. R. China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Yanlin Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Chenghao Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| |
Collapse
|
45
|
Ku M, Mao C, Wu S, Zheng Y, Li Z, Cui Z, Zhu S, Shen J, Liu X. Lattice Strain Engineering of Ti 3C 2 Narrows Band Gap for Realizing Extraordinary Sonocatalytic Bacterial Killing. ACS NANO 2023; 17:14840-14851. [PMID: 37493319 DOI: 10.1021/acsnano.3c03134] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The rapid development of sonodynamic therapy (SDT) provides a promising strategy for treating deep-seated multidrug-resistant (MDR) bacterial infection. However, the extreme scarcity of biologically functional and highly efficient sonosensitizers severely limits the further clinical practice of SDT. Herein, the lattice-strain-rich Ti3C2 (LS-Ti3C2) with greatly improved sonosensitizing effect is one-step synthesized using Ti3C2 and meso-tetra(4-carboxyphenyl)porphine (TCPP) by the solvothermal method for realizing extraordinary SDT. The intervention of TCPP causes all the Ti-O chemical bonds and most of the Ti-F chemical bonds on the surface layer of Ti3C2 to break down. The amino groups of TCPP are then recombined with these exposed Ti atoms to perturb the order of the Ti atoms, resulting in displacement of the Ti atoms and final lattice structural distortion of Ti3C2. The inherent lattice strain narrows the band gap of Ti3C2, which mainly facilitates the electron-hole pair separation and electron transfer under ultrasound irradiation, thereby resulting in US-mediated reactive oxygen species (ROS) production and the subsequent robust bactericidal capability (99.77 ± 0.16%) against methicillin-resistant Staphylococcus aureus (MRSA). Overall, this research offers a perspective into the development of Ti-familial sonosensitizers toward SDT practice.
Collapse
Affiliation(s)
- Minyue Ku
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China
| | - Congyang Mao
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China
| | - Shuilin Wu
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Shengli Zhu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 516473, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China
- School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|