1
|
Li S, Wu Z, Fan H, Zhong M, Xing X, Wang Y, Yang H, Liu Q, Zhang D. Flexible Stretchable Strain Sensor Based on LIG/PDMS for Real-Time Health Monitoring of Test Pilots. SENSORS (BASEL, SWITZERLAND) 2025; 25:2884. [PMID: 40363320 PMCID: PMC12074438 DOI: 10.3390/s25092884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 04/25/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025]
Abstract
In the rapidly advancing era of intelligent technology, flexible strain sensors are emerging as a key component in wearable electronics. Laser-induced graphene (LIG) stands out as a promising fabrication method due to its rapid processing, environmental sustainability, low cost, and superior physicochemical properties. However, the stretchability and conformability of LIG are often limited by the substrate material, hindering its application in scenarios requiring high deformation. To address this issue, we propose a high-performance flexible and stretchable strain sensor fabricated by generating graphene on a polyimide (PI) substrate using laser induction and subsequently transferred onto a polydimethylsiloxane (PDMS). The resultant sensor demonstrates an ultra-low detection limit (0.1%), a rapid response time (150 ms), a wide strain range (40%), and retains stable performance after 1000 stretching cycles. Notably, this sensor has been successfully applied to the real-time monitoring of civil aviation test pilots during flight for the first time, enabling the accurate detection of physiological signals such as pulse, hand movements, and blink frequency. This study introduces a unique and innovative solution for the real-time health monitoring of civil aviation test pilots, with significant implications for enhancing flight safety.
Collapse
Affiliation(s)
- Shouqing Li
- Civil Aviation Administration of China Academy, Civil Aviation Flight University of China, Deyang 618307, China;
| | - Zhanghui Wu
- College of Aviation and Electronics and Electrical, Civil Aviation Flight University of China, Deyang 618307, China; (Z.W.); (H.F.); (X.X.); (D.Z.)
| | - Hongyun Fan
- College of Aviation and Electronics and Electrical, Civil Aviation Flight University of China, Deyang 618307, China; (Z.W.); (H.F.); (X.X.); (D.Z.)
| | - Mian Zhong
- College of Aviation and Electronics and Electrical, Civil Aviation Flight University of China, Deyang 618307, China; (Z.W.); (H.F.); (X.X.); (D.Z.)
- Key Laboratory of Flight Techniques and Flight Safety, Civil Aviation Administration of China, Deyang 618307, China
| | - Xiaoqing Xing
- College of Aviation and Electronics and Electrical, Civil Aviation Flight University of China, Deyang 618307, China; (Z.W.); (H.F.); (X.X.); (D.Z.)
- Key Laboratory of Flight Techniques and Flight Safety, Civil Aviation Administration of China, Deyang 618307, China
| | - Yongzheng Wang
- Civil Aviation Flight Test Institute, Civil Aviation Flight University of China, Deyang 618307, China;
| | - Huaxiao Yang
- Mianyang Branch, Civil Aviation Flight University of China, Mianyang 621000, China;
| | - Qijian Liu
- College of Computer Science, Civil Aviation Flight University of China, Deyang 618307, China;
| | - Deyin Zhang
- College of Aviation and Electronics and Electrical, Civil Aviation Flight University of China, Deyang 618307, China; (Z.W.); (H.F.); (X.X.); (D.Z.)
| |
Collapse
|
2
|
Han F, Chen S, Wang F, Liu M, Li J, Liu H, Yang Y, Zhang H, Liu D, He R, Cao W, Qin X, Xu F. High-Conductivity, Self-Healing, and Adhesive Ionic Hydrogels for Health Monitoring and Human-Machine Interactions Under Extreme Cold Conditions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412726. [PMID: 39874215 PMCID: PMC12021042 DOI: 10.1002/advs.202412726] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/16/2024] [Indexed: 01/30/2025]
Abstract
Ionic conductive hydrogels (ICHs) are emerging as key materials for advanced human-machine interactions and health monitoring systems due to their unique combination of flexibility, biocompatibility, and electrical conductivity. However, a major challenge remains in developing ICHs that simultaneously exhibit high ionic conductivity, self-healing, and strong adhesion, particularly under extreme low-temperature conditions. In this study, a novel ICH composed of sulfobetaine methacrylate, methacrylic acid, TEMPO-oxidized cellulose nanofibers, sodium alginate, and lithium chloride is presented. The hydrogel is designed with a hydrogen-bonded and chemically crosslinked network, achieving excellent conductivity (0.49 ± 0.05 S m-1), adhesion (36.73 ± 2.28 kPa), and self-healing capacity even at -80 °C. Furthermore, the ICHs maintain functionality for over 45 days, showcasing outstanding anti-freezing properties. This material demonstrates significant potential for non-invasive, continuous health monitoring, adhering conformally to the skin without signal crosstalk, and enabling real-time, high-fidelity signal transmission in human-machine interactions under cryogenic conditions. These ICHs offer transformative potential for the next generation of multimodal sensors, broadening application possibilities in harsh environments, including extreme weather and outer space.
Collapse
Affiliation(s)
- Fei Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Shumeng Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Fei Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Mei Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Jiahui Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Hao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Yanshen Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Haoqing Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Dong Liu
- School of Chemical Engineering and TechnologyXi'an Jiaotong UniversityNo. 28, Xianning West RoadXi'anShaanxi710049P. R. China
| | - Rongyan He
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
- Guangxi Key Laboratory of Special BiomedicineSchool of MedicineGuangxi UniversityNanning530004P. R. China
| | - Wentao Cao
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Xiaochuan Qin
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| |
Collapse
|
3
|
Chen R, Wang L, Ji D, Luo M, Zhang Z, Zhao G, Chang X, Zhu Y. Highly stretchable, conductive, and self-adhesive starch-based hydrogel for high-performance flexible electronic devices. Carbohydr Polym 2025; 352:123220. [PMID: 39843111 DOI: 10.1016/j.carbpol.2025.123220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/01/2024] [Accepted: 12/31/2024] [Indexed: 01/24/2025]
Abstract
To achieve the green and sustainable development of environment, biocompatible hydrogels with exceptional ionic conductivity and flexibility are highly desired for intelligent and wearable sensors. However, it remains a great challenge to obtain biopolymer hydrogel-based sensors with high transparency, excellent mechanical properties, and good adhesion ability simultaneously. Herein, starch/polyacrylamide double-network hydrogel is achieved to endow the multifunctionality of traditional hydrogel sensor. Specifically, the resultant hydrogel sensor exhibits wide strain detection range of 2580 %, fast response time of 120 ms, high conductivity of 31.9 mS·m-1, superior sensitivity, remarkable fatigue resistance of 1350 cycles. In addition, multiple hydrogen bonding endows starch/polyacrylamide hydrogel with high mechanical properties and high transparency. Owing to these merits, the hydrogel sensor is capable of discriminating different human motions. Notably, the ionic conducting hydrogels could be employed as single-electrode TENGs for energy harvesting. The multifunctionality and biocompatibility of starch-based hydrogel sensor may offer an inspiration for the future development of next-generation sustainable and wearable electronics.
Collapse
Affiliation(s)
- Rui Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou 311121, Zhejiang, People's Republic of China; School of Petrochemical Engineering, Liaoning Petrochemical University, No. 1 West Section of Dandong Rd., Wanghua District, Fushun 113001, People's Republic of China
| | - Lei Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Dan Ji
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Mengqing Luo
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Zihao Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Guiyan Zhao
- School of Petrochemical Engineering, Liaoning Petrochemical University, No. 1 West Section of Dandong Rd., Wanghua District, Fushun 113001, People's Republic of China
| | - Xiaohua Chang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Yutian Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
4
|
Roy A, Afshari R, Jain S, Zheng Y, Lin MH, Zenkar S, Yin J, Chen J, Peppas NA, Annabi N. Advances in conducting nanocomposite hydrogels for wearable biomonitoring. Chem Soc Rev 2025; 54:2595-2652. [PMID: 39927792 DOI: 10.1039/d4cs00220b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Recent advancements in wearable biosensors and bioelectronics have led to innovative designs for personalized health management devices, with biocompatible conducting nanocomposite hydrogels emerging as a promising building block for soft electronics engineering. In this review, we provide a comprehensive framework for advancing biosensors using these engineered nanocomposite hydrogels, highlighting their unique properties such as high electrical conductivity, flexibility, self-healing, biocompatibility, biodegradability, and tunable architecture, broadening their biomedical applications. We summarize key properties of nanocomposite hydrogels for thermal, biomechanical, electrophysiological, and biochemical sensing applications on the human body, recent progress in nanocomposite hydrogel design and synthesis, and the latest technologies in developing flexible and wearable devices. This review covers various sensor types, including strain, physiological, and electrochemical sensors, and explores their potential applications in personalized healthcare, from daily activity monitoring to versatile electronic skin applications. Furthermore, we highlight the blueprints of design, working procedures, performance, detection limits, and sensitivity of these soft devices. Finally, we address challenges, prospects, and future outlook for advanced nanocomposite hydrogels in wearable sensors, aiming to provide a comprehensive overview of their current state and future potential in healthcare applications.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Ronak Afshari
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Saumya Jain
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Yuting Zheng
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Min-Hsuan Lin
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Shea Zenkar
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Junyi Yin
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Jun Chen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Pediatrics, Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, 90095, USA
| |
Collapse
|
5
|
Hou Y, Zhang H, Zhou K. Ultraflexible Sensor Development via 4D Printing: Enhanced Sensitivity to Strain, Temperature, and Magnetic Fields. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411584. [PMID: 39718127 PMCID: PMC11831529 DOI: 10.1002/advs.202411584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/07/2024] [Indexed: 12/25/2024]
Abstract
This paper addresses the trade-off between sensitivity and sensing range in strain sensors, while introducing additional functionalities through an innovative 4D printing approach. The resulting ultraflexible sensor integrates carbon nanotubes/liquid metal hybrids and iron powders within an Ecoflex matrix. The optimization of this composition enables the creation of an uncured resin ideal for Direct Ink Writing (DIW) and a cured sensor with exceptional electromechanical, thermal, and magnetic performance. Notably, the sensor achieves a wide linear strain range of 350% and maintains a stable Gauge Factor of 19.8, offering an ultralow detection limit of 0.1% strain and a rapid 83-ms response time. Beyond superior strain sensing capabilities, the sensor exhibits outstanding thermal endurance for temperatures exceeding 300 °C, enhanced thermal conductivity, and a consistent resistance-temperature relationship, making it well-suited for high-temperature applications. Moreover, the inclusion of iron particles provides magnetic responsiveness, enabling synergistic applications in location and speed detection, particularly in home care. Leveraging DIW facilitates the creation of complex-shaped sensors with multiple functional materials, significantly broadening the sensor's capabilities. This convergence of additive manufacturing and multifunctional materials marks a transformative step in advancing the performance of next-generation sensors across diverse domains.
Collapse
Affiliation(s)
- Yanbei Hou
- Singapore Centre for 3D PrintingSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Hancen Zhang
- Environmental Process Modeling CentreNanyang Environment and Water Research InstituteNanyang Technological UniversitySingapore639798Singapore
| | - Kun Zhou
- Singapore Centre for 3D PrintingSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
| |
Collapse
|
6
|
She W, Shen C, Xue Z, Zhang B, Zhang G, Meng Q. Hydrogel Strain Sensors for Integrating Into Dynamic Organ-on-a-Chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407704. [PMID: 39846814 DOI: 10.1002/smll.202407704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/19/2024] [Indexed: 01/24/2025]
Abstract
Current hydrogel strain sensors have never been integrated into dynamic organ-on-a-chip (OOC) due to the lack of sensitivity in aqueous cell culture systems. To enhance sensing performance, a novel strain sensor is presented in which the MXene layer is coated on the bottom surface of a pre-stretched anti-swelling hydrogel substrate of di-acrylated Pluronic F127 (F127-DA) and chitosan (CS) for isolation from the cell culture on the top surface. The fabricated strain sensors display high sensitivity (gauge factor of 290.96), a wide sensing range (0-100%), and high repeatability. To demonstrate its application, alveolar epithelial cells are cultivated on the top surface of the hydrogel strain sensor forming alveolar barriers, and then integrated into dynamic lung-on-a-chip (LOC) systems. This system can sensitively monitor normal physiological breathing, pathological inflammation stimulated by lipopolysaccharide (LPS), and alleviated inflammation through drug intervention.
Collapse
Affiliation(s)
- Wenqi She
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chong Shen
- Center for Membrane and Water Science and Technology, Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zaifei Xue
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Bin Zhang
- Department of Respiratory Disease, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 120070, China
| | - Guoliang Zhang
- Center for Membrane and Water Science and Technology, Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qin Meng
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
7
|
Zhang X, Yao Y, Wu Y, Liu W, Wang X, Feng P, Zhang J, Hu W, Shang E. Enhancement and mechanism of mechanical properties and functionalities of polyacrylamide/polyacrylic acid hydrogels by 1D and 2D nanocarbon. J Colloid Interface Sci 2025; 679:79-90. [PMID: 39442208 DOI: 10.1016/j.jcis.2024.10.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Highly flexible hydrogels are widely used in fields such as agriculture, drug delivery, and tissue engineering. However, the simultaneous integration of excellent mechanical properties, swelling properties, and high electrical conductivity into a hydrogel is still a great challenge. This work introduces 1D tubular multi-walled carbon nanotubes (MWCNTs) and 2D layered graphene oxide (GO) into polyacrylamide/poly-acrylic acid (PAM/PAA) hydrogels. The high specific surface area and oxygen-containing groups of GO contribute to excellent mechanical properties and water absorption of the PAM/PAA hydrogels, but the conductivity is poorly affected due to the presence of defects on GO surface. However, MWCNTs with large aspect ratios benefit to form continuous conductive paths in PAM/PAA hydrogels which further improves conductivity of the hydrogels. MWCNTs are entangled with PAM/PAA molecular chains to form a dense three-dimensional (3D) network structure, and this special structure improves the water absorption of PAM/PAA hydrogels by 3.7 g g-1. What's more, the MWCNTs/PAM/PAA hydrogel not only provides excellent mechanical properties (compressive strength up to 2.7 MPa), but also has high conductivity (2.3 S m-1). In particular, a strain sensor based on MWCNTs/PAM/PAA hydrogel exhibits exceptional sensitivity (gauge factor = 3.9 at 230-300 % strain) with a rapid response (200 ms) over a wide strain range (50 ∼ 200 %) which enables the ability to precisely and reliably monitor human motion. Therefore, the work provides a new insight into the design of multifunctional hydrogels with application on anatomical water plugging, electronic skin, and biosensors.
Collapse
Affiliation(s)
- Xinmeng Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, China; School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, China; Ningbo Hantech Medical Device CO., LTD, Ningbo 315326, China.
| | - Yuanyuan Yao
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yu Wu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wenjing Liu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xunwei Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Peizhong Feng
- School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, China.
| | - Jianming Zhang
- Ningbo Hantech Medical Device CO., LTD, Ningbo 315326, China
| | - Wu Hu
- Ningbo Hantech Medical Device CO., LTD, Ningbo 315326, China
| | - Erdong Shang
- Ningbo Hantech Medical Device CO., LTD, Ningbo 315326, China
| |
Collapse
|
8
|
Dhakal KN, Lach R, Grellmann W, Krause B, Pionteck J, Adhikari R. Piezoresistivity and strain-sensing behaviour of poly(butylene adipate- co-terephthalate)/multiwalled carbon nanotube nanocomposites. RSC Adv 2024; 14:35715-35726. [PMID: 39524094 PMCID: PMC11546897 DOI: 10.1039/d4ra04826a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Multiwalled carbon nanotubes (MWCNTs) at different concentrations, ranging from 0.5 to 10 wt%, as a conductive filler, were incorporated into poly(butylene adipate-co-terephthalate) (PBAT), a flexible biodegradable copolyester, via melt-mixing, followed by compression moulding. The electrical conductivity of the prepared nanocomposites was evaluated by considering their volume resistivity value. The volume resistivity values of the nanocomposites suggested a quite low percolation threshold between the MWCNT concentration of 0.5 and 1 wt%. The corresponding volume resistivity values of the nanocomposites in the range of (6.90 ± 3.16) × 105 Ω cm to (1.24 ± 0.41) × 101 Ω cm implied their suitability for strain-sensing applications. The change in the electrical resistance of the nanocomposites was measured simultaneously with tensile testing to evaluate their piezoresistivity. The deformation behaviour of the nanocomposites was correlated with relative resistance change (ΔR/R 0) via a cyclic-strain test to investigate the stability of their strain-sensing behaviour. A non-linear and exponential-like increment in the ΔR/R 0 values of the nanocomposites as a function of mechanical strain during tensile stretching confirmed their piezoresistivity. ΔR/R 0 values fitted well with an increase in applied mechanical strain from 2% to 8% during the cyclic-strain test, which revealed the low-strain sensing potential of the nanocomposites, provided by their stable and intact microstructure formed via continuous stretching and releasing during the test; this was further supported by the reproducibility of the ΔR/R 0 values in the cyclic-strain test with 7% applied strain in 15 cycles. Additionally, the uniformly extended net-like morphology of the nanocomposites with an entangled network of MWCNTs throughout the polymer matrix was revealed by their electron micrographs.
Collapse
Affiliation(s)
- Kedar Nath Dhakal
- Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu Nepal
- Leibniz-Institut für Polymerforschung Dresden e.V. (IPF) Hohe Straße 6 01069 Dresden Germany
- Nepal Polymer Institute (NPI) P. O. Box 24411 Kathmandu Nepal
- Research Centre for Applied Science and Technology (RECAST), Tribhuvan University Kathmandu Nepal
| | - Ralf Lach
- Polymer Service GmbH Merseburg (PSM) Geusaer Straße 81f 06217 Merseburg Germany
| | - Wolfgang Grellmann
- Polymer Service GmbH Merseburg (PSM) Geusaer Straße 81f 06217 Merseburg Germany
| | - Beate Krause
- Leibniz-Institut für Polymerforschung Dresden e.V. (IPF) Hohe Straße 6 01069 Dresden Germany
| | - Jürgen Pionteck
- Leibniz-Institut für Polymerforschung Dresden e.V. (IPF) Hohe Straße 6 01069 Dresden Germany
| | - Rameshwar Adhikari
- Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu Nepal
- Nepal Polymer Institute (NPI) P. O. Box 24411 Kathmandu Nepal
- Research Centre for Applied Science and Technology (RECAST), Tribhuvan University Kathmandu Nepal
| |
Collapse
|
9
|
Sun C, Chen J, Han Z, Zhang Y, Yang F, Xu H, Liu C, Shen C. Unique framework effect induced by uniform silk fibroin dynamic nanospheres enables multiscale hydrogel with outstanding elastic resilience and strain sensing performance. Int J Biol Macromol 2024; 281:136422. [PMID: 39395508 DOI: 10.1016/j.ijbiomac.2024.136422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/28/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024]
Abstract
It is a significant challenge to obtain hydrogels simultaneously with low tensile energy dissipation, high compressive resilience and long durability. Herein, the uniform dynamic nanospheres (Sil-4H0.75) derived from 4-Hydroxybutyl acrylate glycidyl ether grafted silk fibroin is designed to overcome this issue. Due to its uniform and dynamic characteristic, Sil-4H0.75 could endow hydrogel with homogeneous multiscale structure and produce unique framework effect. Thus, transparent Sil-4H0.75 crosslinked acrylamide hydrogel doped with Ag nanowires APS3.75%/AgNW0.1 exhibits a high stretchability (1260 %) and outstanding elastic resilience. The tensile energy dissipation ratio maintains a low value of 9 % across a wide 800 % strain range. A high compression resilience ratio of 92.2 % is kept after ten compression cycles under 90 % compressive strain. The orderly AgNWs motion guided by framework effect also make it be used as both tensile and compressive sensors and exhibits high gauge factor of 7.35, outstanding compression sensitivity of 30.379 kPa-1 and excellent durability (up to 2000 cycles). The detection or other applications based on both two sensing modes are also demonstrated. In a word, this work affords a general strategy to achieve high-performance hydrogel based on uniform dynamic nanospheres which exhibits great potential in the applications of flexible wearable strain sensors.
Collapse
Affiliation(s)
- Chuanqiang Sun
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, The Key Laboratory of Advanced Materials Processing & Mold of Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450002, China
| | - Jinchuan Chen
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, The Key Laboratory of Advanced Materials Processing & Mold of Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450002, China
| | - Zhe Han
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, The Key Laboratory of Advanced Materials Processing & Mold of Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450002, China
| | - Yujing Zhang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, The Key Laboratory of Advanced Materials Processing & Mold of Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450002, China
| | - Feng Yang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, The Key Laboratory of Advanced Materials Processing & Mold of Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450002, China
| | - Huajie Xu
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, The Key Laboratory of Advanced Materials Processing & Mold of Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450002, China.
| | - Chuntai Liu
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, The Key Laboratory of Advanced Materials Processing & Mold of Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450002, China
| | - Changyu Shen
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, The Key Laboratory of Advanced Materials Processing & Mold of Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450002, China
| |
Collapse
|
10
|
Wang F, Zhao J, Hu X, Su X, Sun F. Robust Treble-Weaving Wearable Textiles for Pressure and Temperature Monitoring in Harsh Environments. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48269-48279. [PMID: 39190542 DOI: 10.1021/acsami.4c09471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Wearable sensing textiles with continuous temperature monitoring, tactile feedback, and motion perception are highly desirable for personal safeguarding in extreme environments, such as fire scenes and extreme sports. However, it remains challenging for current wearable sensors to maintain reliable performance and provide point-of-care monitoring in harsh environments, such as high- and low-temperature or high-humidity conditions. Herein, a robust temperature and pressure sensing textile (TPST) with a hierarchical triple-weaving structure is developed using industrial weaving technology. The well-engineered interlacing configuration of the polyimide binding yarns in the triple-weaving structure tightly solidifies the carbon-based sensing yarns between two weaving layers, forming an integrated textile sensing array. The TPST not only exhibits excellent sensing sensitivity, reliability, and rapid response to pressure and temperature stimuli but also shows robust mechanical properties, flame resistance, and wearing comfort. Moreover, we demonstrate the application of the TPST for continuous temperature monitoring, human motion mapping, and vital sign monitoring. This technology offers significant potential for enhancing autonomous rescue operations and defense wearables.
Collapse
Affiliation(s)
- Fameng Wang
- MOE Key Laboratory of Special Protective Textiles, Jiangnan University, Wuxi 214122, China
| | - Jieyun Zhao
- MOE Key Laboratory of Special Protective Textiles, Jiangnan University, Wuxi 214122, China
| | - Xiaorui Hu
- MOE Key Laboratory of Special Protective Textiles, Jiangnan University, Wuxi 214122, China
| | - Xuzhong Su
- MOE Key Laboratory of Special Protective Textiles, Jiangnan University, Wuxi 214122, China
| | - Fengxin Sun
- MOE Key Laboratory of Special Protective Textiles, Jiangnan University, Wuxi 214122, China
- Laboratory of Soft Fibrous Materials and Physics, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Ma Y, Gong J, Li Q, Liu X, Qiao C, Zhang J, Zhang S, Li Z. Triple-Mechanism Enhanced Flexible SiO 2 Nanofiber Composite Hydrogel with High Stiffness and Toughness for Cartilaginous Ligaments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310046. [PMID: 38183373 DOI: 10.1002/smll.202310046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/19/2023] [Indexed: 01/08/2024]
Abstract
Hydrogels are widely used in tissue engineering, soft robotics and wearable electronics. However, it is difficult to achieve both the required toughness and stiffness, which severely hampers their application as load-bearing materials. This study presents a strategy to develop a hard and tough composite hydrogel. Herein, flexible SiO2 nanofibers (SNF) are dispersed homogeneously in a polyvinyl alcohol (PVA) matrix using the synergistic effect of freeze-drying and annealing through the phase separation, the modulation of macromolecular chain movement and the promotion of macromolecular crystallization. When the stress is applied, the strong molecular interaction between PVA and SNF effectively disperses the load damage to the substrate. Freeze-dried and annealed-flexible SiO2 nanofibers/polyvinyl alcohol (FDA-SNF/PVA) reaches a preferred balance between enhanced stiffness (13.71 ± 0.28 MPa) and toughness (9.9 ± 0.4 MJ m-3). Besides, FDA-SNF/PVA hydrogel has a high tensile strength of 7.84 ± 0.10 MPa, super elasticity (no plastic deformation under 100 cycles of stretching), fast deformation recovery ability and excellent mechanical properties that are superior to the other tough PVA hydrogels, providing an effective way to optimize the mechanical properties of hydrogels for potential applications in artificial tendons and ligaments.
Collapse
Affiliation(s)
- Yvqing Ma
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes/Key Laboratory of Advanced Textile Composites of Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Jixian Gong
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes/Key Laboratory of Advanced Textile Composites of Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Qiujin Li
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes/Key Laboratory of Advanced Textile Composites of Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Xiuming Liu
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes/Key Laboratory of Advanced Textile Composites of Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Changsheng Qiao
- School of Biological Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Jianfei Zhang
- National Innovation Center of Advanced Dyeing and Finishing Technology, Taian, 271001, P. R. China
| | - Songnan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes/Key Laboratory of Advanced Textile Composites of Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Zheng Li
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes/Key Laboratory of Advanced Textile Composites of Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| |
Collapse
|
12
|
Pan K, Wang J, Li Y, Lu X, Hu D, Jia Z, Lin J. Sandwich-Like Flexible Breathable Strain Sensor with Tunable Thermal Regulation Capability for Human Motion Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10633-10645. [PMID: 38366968 DOI: 10.1021/acsami.3c16607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
High-performance flexible strain sensors with synergistic and outstanding thermal regulation function are poised to make a significant impact on next-generation multifunctional sensors. However, it has long been intractable to optimize the sensing performance and high thermal conductivity simultaneously. Herein, a novel flexible sandwich-like strain sensor with advanced thermal regulation capability was prepared by assembling electrospun thermoplastic polyurethane (TPU) fibrous membrane, MXene layer, and TPU/boron nitride nanosheet (BNNS) composite films. The as-prepared sensor demonstrates a wide strain working range (∼100% strain), an ultrahigh gauge factor (2080.9), and a satisfactory reliability. Meanwhile, benefiting from the uniform dispersion and promising orientation of BNNSs in TPU composites, the sensor possesses a high thermal conductivity of 1.5 W·m-1·K-1, guaranteeing wearer comfort. Additionally, the unique structure endows the sensor with high stretchability, breathability, biocompatibility, and tunable electromagnetic interference shielding performances. Furthermore, an integrated wireless motion monitoring device based on this sensor is rationally designed. It exhibits a fast response time, a wide recognition range, and the ability to maintain skin temperature during prolonged physical activity. These encouraging findings provide a new and feasible approach to designing high-performance and versatile flexible strain sensors with broad applications in advanced wearable technology.
Collapse
Affiliation(s)
- Kelin Pan
- Research Center of Flexible Sensing Materials and Devices, School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Jun Wang
- Research Center of Flexible Sensing Materials and Devices, School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Ye Li
- Research Center of Flexible Sensing Materials and Devices, School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Xinyu Lu
- Research Center of Flexible Sensing Materials and Devices, School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Dechao Hu
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Zhixin Jia
- Key Lab of Guangdong High Property and Functional Macromolecular Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jing Lin
- Research Center of Flexible Sensing Materials and Devices, School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
13
|
Li X, Gao X, Yao D, Chen J, Lu C, Pang X. Flexible Sensors with a Multilayer Interlaced Tunnel Architecture for Distinguishing Different Strains. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38044869 DOI: 10.1021/acsami.3c14210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The diversity of body joints and the complexity of joint motions cause flexible strain sensors to undergo complex strains such as stretching, compression, bending, and extrusion, which results in sensors that do not recognize different strains, facing great challenges in detecting the true motion characteristics of joints. Here, the monitoring of body joints' real motion characteristics has been realized by the sensor that can output response signals with different resistance trends for different strains. The sensor prepared by the sacrificial template method is characterized by a multilayered interlaced tunnel architecture and carbon black embedded in the inner wall of the tunnel. Stretching, compressive, and bending strains result in increasing, decreasing, and increasing resistance, followed by a decrease in resistance of the sensor, respectively. The sensor can still output distinguishable response signals, even in the presence of complex strains induced by squeezing. Low strain detection limits (0.03%) and wide detection ranges (>600%) are achieved due to the localized strain enhancement caused by the unique structure. The sensor can detect the motion characteristics of different joints in flexion-extension, abduction-adduction, and internal-external rotation, which, in turn, can be used for real-time monitoring of complex joint motions involved in limb rehabilitation. In addition, the sensor recognizes the 26 letters of the alphabet represented by sign language gestures. The above studies demonstrate the potential application of our prepared sensors in flexible, wearable devices.
Collapse
Affiliation(s)
- Xueyuan Li
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Xiping Gao
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Dahu Yao
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Jing Chen
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Chang Lu
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Xinchang Pang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| |
Collapse
|