1
|
Zhang Y, Jin C, Wang C, Zeng X, Yang M, Hou C, Huo D. Fe/Pt dual-atom catalyst-enabled wearable microfluidic patch for superior uric acid detection in sweat. Biosens Bioelectron 2024; 271:117001. [PMID: 39673956 DOI: 10.1016/j.bios.2024.117001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 12/16/2024]
Abstract
Wearable sweat sensors offer a promising non-invasive approach for real-time physiological monitoring, with significant potential in personalized medicine. In this study, we present an innovative wearable patch designed for highly sensitive and accurate detection of uric acid (UA) in human sweat. The sensor integrates superior platinum-iron dual-atom catalysts (Pt/Fe DACs), developed based on iron single-atom catalysts (Fe SACs), to achieve selective and precise UA detection across a wide concentration range (6.25-1500 μM). To enhance the sensor's performance, a pH electrode based on polyaniline (PANI) is incorporated for reliable pH calibration. Density functional theory (DFT) calculations are used to explore the catalytic mechanism of UA detection and the synergistic interaction between Fe and Pt atoms in the catalyst, which improves sensor sensitivity. Additionally, we developed a microfluidic patch made of polydimethylsiloxane (PDMS) with enhanced hydrophilicity to facilitate efficient sweat collection. This work presents a valuable approach for advancing wearable sweat sensors for UA detection and offers a promising strategy for the application of wearable sensors in personalized health monitoring.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Changpeng Jin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Cuncun Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Xin Zeng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
2
|
Zhang W, Li S, Liu S, Wang TT, Luo ZH, Bian C, Zhou YN. Photomediated Cationic Ring-Opening Polymerization of Cyclosiloxanes with Temporal Control. JACS AU 2024; 4:4317-4327. [PMID: 39610724 PMCID: PMC11600145 DOI: 10.1021/jacsau.4c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 11/30/2024]
Abstract
Precision synthesis of polyorganosiloxanes and temporal control over the polymerization process during ring-opening polymerization (ROP) of cyclosiloxanes remain challenging due to the occurrence of side reactions, e.g., intramolecular transfer (backbiting) and intermolecular chain transfer, and irreversible catalyst transformation. In this study, a merocyanine-based photoacid catalyst is developed for cationic ROP of different cyclosiloxanes. A series of well-defined cyclotrisiloxane polymers with predetermined molar masses and low dispersities (Đ < 1.30) are successfully synthesized under various conditions (i.e., different catalyst loadings, initiator concentrations, solvents, and monomer types). Mechanistic insights by experiments and theoretical calculations suggest that the cationic active species, siloxonium ions, are combined with the catalyst anions to form tight ion pairs, thereby attenuating the reactivity of active species and subsequently minimizing side reactions. An efficient photocatalytic cycle is established among the catalyst, monomer, and polymer chain due to the rapid and reversible isomeric phototransformation of the catalyst, which endows the polymerization process with excellent temporal control. Successful in situ chain extension further confirms the controlled characteristics of photomediated CROP. This as-developed polymerization strategy effectively addresses long-standing challenges in the field of polyorganosiloxane synthesis.
Collapse
Affiliation(s)
- Wenxu Zhang
- School
of Chemical Engineering, Shandong University
of Technology, Zibo 255000, P. R. China
| | - Shen Li
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, Shanghai 200240, P. R. China
- School
of Chemical Engineering and Technology, Hainan University, Haikou570228, P. R. China
| | - Shuting Liu
- School
of Chemical Engineering, Shandong University
of Technology, Zibo 255000, P. R. China
| | - Tian-Tian Wang
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, Shanghai 200240, P. R. China
| | - Zheng-Hong Luo
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, Shanghai 200240, P. R. China
| | - Chao Bian
- School
of Chemical Engineering, Shandong University
of Technology, Zibo 255000, P. R. China
| | - Yin-Ning Zhou
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
3
|
Li S, Tian J, Li K, Xu K, Zhang J, Chen T, Li Y, Wang H, Wu Q, Xie J, Men Y, Liu W, Zhang X, Cao W, Huang Z. Intelligent Song Recognition via a Hollow-Microstructure-Based, Ultrasensitive Artificial Eardrum. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405501. [PMID: 39301887 PMCID: PMC11558140 DOI: 10.1002/advs.202405501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/30/2024] [Indexed: 09/22/2024]
Abstract
Artificial ears with intelligence, which can sensitively detect sound-a variant of pressure-and generate consciousness and logical decision-making abilities, hold great promise to transform life. However, despite the emerging flexible sensors for sound detection, most success is limited to very simple phonemes, such as a couple of letters or words, probably due to the lack of device sensitivity and capability. Herein, the construction of ultrasensitive artificial eardrums enabling intelligent song recognition is reported. This strategy employs novel geometric engineering of sensing units in the soft microstructure array (to significantly reduce effective modulus) along with complex song recognition exploration leveraging machine learning algorithms. Unprecedented pressure sensitivity (6.9 × 103 kPa-1) is demonstrated in a sensor with a hollow pyramid architecture with porous slants. The integrated device exhibits unparalleled (exceeding by 1-2 orders of magnitude compared with reported benchmark samples) sound detection sensitivity, and can accurately identify 100% (for training set) and 97.7% (for test set) of a database of the segments from 77 songs varying in language, style, and singer. Overall, the results highlight the outstanding performance of the hollow-microstructure-based sensor, indicating its potential applications in human-machine interaction and wearable acoustical technologies.
Collapse
Affiliation(s)
- Shaopeng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Jiangtao Tian
- School of Information Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Ke Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Kemeng Xu
- School of Electronics and InformationXi'an Polytechnic UniversityXi'an710048China
| | - Jiaqi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Tingting Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Yang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Hongbo Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Qiye Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Jinchun Xie
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Yongjun Men
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Weiping Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
- Center for CompositesCOMAC Shanghai Aircraft Manufacturing Co. Ltd.Shanghai201620China
| | - Xiaodan Zhang
- School of Electronics and InformationXi'an Polytechnic UniversityXi'an710048China
| | - Wenhan Cao
- School of Information Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Zhongjie Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| |
Collapse
|
4
|
Wu W, Fan J, Zeng C, Cheng X, Liu X, Guo S, Sun R, Ren L, Hao Z, Zeng X. Soft, Tough, Antifatigue Fracture Elastomer Composites with Low Thermal Resistance through Synergistic Crack Pinning and Interfacial Slippage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403661. [PMID: 39081089 DOI: 10.1002/adma.202403661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/13/2024] [Indexed: 10/04/2024]
Abstract
Soft elastomer composites are promising functional materials for engineer interfaces, where the miniaturized electronic devices have triggered increasing demand for effective heat dissipation, high fracture energy, and antifatigue fracture. However, such a combination of these properties can be rarely met in the same elastomer composites simultaneously. Here a strategy is presented to fabricate a soft, extreme fracture tough (3316 J m-2) and antifatigue fracture (1052.56 J m⁻2) polydimethylsiloxane/aluminum elastomer composite. These outstanding properties are achieved by optimizing the dangling chains and spherical aluminum fillers, resulting in the combined effects of crack pinning and interfacial slippage. The dangling chains that lengthen the polymer chains between cross-linked points pin the cracks and the rigid fillers obstruct the cracks, enhancing the energy per unit area needed for fatigue failure. The dangling chains also promote polymer/filler interfacial slippage, enabling effective deflection and blunting of an advancing crack tip, thus enhancing mechanical energy dissipation. Moreover, the elastomer composite exhibits low thermal resistance (≈0.12 K cm2 W-1), due to the formation of a thermally conductive network. These remarkable characteristics render this elastomer composite promising for application as a thermal interface material in electronic devices.
Collapse
Affiliation(s)
- Weijian Wu
- State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jianfeng Fan
- State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou, 510640, China
| | - Chen Zeng
- State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaxia Cheng
- State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaowei Liu
- State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shifeng Guo
- Shenzhen Key Laboratory of Smart Sensing and Intelligent Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Rong Sun
- State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Linlin Ren
- State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhifeng Hao
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaoliang Zeng
- State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
5
|
Tang J, Zhang Y, Qi C, Li B, Wu Y, Ma S, Ma Y, Yu Q, Yang W, Xi P, Yu B, Zhou F. Robust and Lubricating Interface Semi-Interpenetrating Network on Inert Polymer Substrates Enabled by Subsurface-Initiated Polymerization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403303. [PMID: 39031810 DOI: 10.1002/smll.202403303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/30/2024] [Indexed: 07/22/2024]
Abstract
Lubricating hydrogel coatings on inert rubber and plastic surfaces significantly reduce friction and wear, thus enhancing material durability and lifespan. However, achieving optimal hydration lubrication typically requires a porous polymer network, which unfortunately reduces their mechanical strength and limits their applicability where robust durability and wear-resistance are essential. In the research, a hydrogel coating with remarkable wear resistance and surface stability is developed by forming a semi-interpenetrating polymer network with polymer substrate at the interface. By employing a good solvent swelling method, monomers, and photoinitiators are embedded within the substrates' subsurface, followed by in situ polymerization under ultraviolet light, creating a robust semi-interpenetrating and entangled network structure. This approach, offering a thicker energy-dissipating layer, outperforms traditional surface modifications in wear resistance while preserving anti-fatigue, hydrophilicity, oleophobicity, and other properties. Adaptable to various rubber and plastic substrates by using suitable solvents, this method provides an efficient solution for creating durable, lubricating surfaces, broadening the potential applications in multiple industries.
Collapse
Affiliation(s)
- Jie Tang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunlei Zhang
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Changmin Qi
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yang Wu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yanfei Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Qiangliang Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wufang Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Pinxian Xi
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Bo Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
6
|
Xie Y, Guo Y, Xie F, Dong Y, Zhang X, Li X, Zhang X. A flexible strategy to fabricate trumpet-shaped porous PDMS membranes for organ-on-chip application. BIOMICROFLUIDICS 2024; 18:054101. [PMID: 39247799 PMCID: PMC11379495 DOI: 10.1063/5.0227148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024]
Abstract
Porous polydimethylsiloxane (PDMS) membrane is a crucial element in organs-on-chips fabrication, supplying a unique substrate that can be used for the generation of tissue-tissue interfaces, separate co-culture, biomimetic stretch application, etc. However, the existing methods of through-hole PDMS membrane production are largely limited by labor-consuming processes and/or expensive equipment. Here, we propose an accessible and low-cost strategy to fabricate through-hole PDMS membranes with good controllability, which is performed via combining wet-etching and spin-coating processes. The porous membrane is obtained by spin-coating OS-20 diluted PDMS on an etched glass template with a columnar array structure. The pore size and thickness of the PDMS membrane can be adjusted flexibly via optimizing the template structure and spinning speed. In particular, compared to the traditional vertical through-hole structure of porous membranes, the membranes prepared by this method feature a trumpet-shaped structure, which allows for the generation of some unique bionic structures on organs-on-chips. When the trumpet-shape faces upward, the endothelium spreads at the bottom of the porous membrane, and intestinal cells form a villous structure, achieving the same effect as traditional methods. Conversely, when the trumpet-shape faces downward, intestinal cells spontaneously form a crypt-like structure, which is challenging to achieve with other methods. The proposed approach is simple, flexible with good reproducibility, and low-cost, which provides a new way to facilitate the building of multifunctional organ-on-chip systems and accelerate their translational applications.
Collapse
Affiliation(s)
| | - Yaqiong Guo
- CAS Key Laboratory of SSAC, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian, China
| | - Fuwei Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, China
| | | | - Xiaoqing Zhang
- CAS Key Laboratory of SSAC, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian, China
| | - Xiang Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, China
| | - Xu Zhang
- CAS Key Laboratory of SSAC, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian, China
| |
Collapse
|
7
|
Zheng W, Zhang C, Han Y, Wang W, Li Z. Highly Durable Silicone-Based Elastomers Achieved Through the Synergy of Bi-Incompatible Soft Segments and Multi-Scale Hydrogen Bonds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402124. [PMID: 38593327 DOI: 10.1002/smll.202402124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Indexed: 04/11/2024]
Abstract
Developing a silicone elastomer with high strength, exceptional toughness, good crack tolerance, healability, and recyclability, poses significant challenges due to the inherent trade-offs between these properties. Herein, the design of silicone-based elastomers with a nanoscopic microphase separation structure and comprehensive mechanical properties is achieved by combining bi-incompatible soft segments and multi-scale hydrogen bonds. The formation of multi-scale hydrogen bonds involving urethane, urea, and 2-ureido-4[1H]-pyrimidinone (UPy) facilitates efficient reversible crosslinking of the synthesized polymer containing thermodynamically incompatible poly(dimethylsiloxane) (PDMS) and poly(propylene glycol) (PPG). The dynamic dissociation and recombination of hydrogen bonds, coupled with the forced compatibility and spontaneous separation of bi-incompatible soft segments, can effectively dissipate energy, particularly in the crack region during the stretching process. The obtained silicone-based elastomer exhibits a high break strength of 8.0 MPa, good elongation at break of 1910%, ultrahigh toughness of 67.8 MJ m-3, and unprecedented fracture energy of 31.8 kJ m-2 while maintaining their thermal stability, hydrophobicity, healability, and recyclability. This resilient and long-lasting silicone-based elastomer exhibits significant potential for use in flexible electronic devices.
Collapse
Affiliation(s)
- Wei Zheng
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, China
| | - Chengshu Zhang
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, China
| | - Yangjiao Han
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, China
| | - Wenpin Wang
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, China
| |
Collapse
|
8
|
Lin J, Niu L, Jiang Y, Wang Y, Chu Z, Yang Z, Xie Z, Yang Y. Magnetic Hyperporous Elastic Material with Excellent Fatigue Resistance and Oil Retention for Oil-Water Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12078-12088. [PMID: 38805683 DOI: 10.1021/acs.langmuir.4c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Oily wastewater has caused serious threats to the environment; thus, high-performance absorbing materials for effective oil-water separation technology have attracted increasing attention. Herein, we develop a magnetic, hydrophobic, and lipophilic hyperporous elastic material (HEM) templated by high internal phase emulsions (HIPE), in which free-radical polymerization of butyl acrylate (BA) and divinylbenzene (DVB) is employed in the presence of poly(dimethylsiloxane) (PDMS), lecithin surfactant, and modified Fe3O4 nanoparticles. The adoption of the emulsion template with nanoparticles as both stabilizers and cross-linkers endows the HEM with biomimetic hierarchical open-cell micropores and elastic cross-linked networks, generating an oil absorbent with outstanding mechanical stability. Compressive fatigue resistance of the HEM is demonstrated to endure 2000 mechanical cycles without plastic deformation or strength degradation. By exploiting the synergistic effect of hierarchical structures and low-surface-energy components, the resulting HEM also possesses excellent and robust hydrophobicity (water contact angle of 164°) and good oil absorption capacity, in which Fe3O4 nanoparticles lead to convenient magnetically controlled oil recyclability as well. Notably, the unique biomimetic microporous structure demonstrates superior oil retention capacity (>95% at 1000 rpm and >60% at 10,000 rpm) over the state-of-the-art porous materials for a diverse variety of oils to reduce the risk of secondary oil leakage, along with good recoverability by squeezing owing to the excellent compression resilience. These excellent performances of our HEM provide broad prospects for practical applications in oil-water separation, energy conversion, and smart soft robotics.
Collapse
Affiliation(s)
- Jiamian Lin
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Liyong Niu
- Institute of Nanoscience and Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Yuanyuan Jiang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Yuting Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Zhuangzhuang Chu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Zhuohong Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Zhuang Xie
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yu Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| |
Collapse
|
9
|
Liu J, Chen Y, Liu Y, Wu C, Li Z, Gao Y, Qiu X, Wang Y, Guo X, Xuan F. Facile Electret-Based Self-Powered Soft Sensor for Noncontact Positioning and Information Translation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29188-29197. [PMID: 38775355 DOI: 10.1021/acsami.4c02741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Noncontact sensors have demonstrated significant potential in human-machine interactions (HMIs) in terms of hygiene and less wear and tear. The development of soft, stable, and simply structured noncontact sensors is highly desired for their practical applications in HMIs. This work reports on electret-based self-powered noncontact sensors that are soft, transparent, stable, and easy to manufacture. The sensors contain a three-layer structure with a thickness of 0.34 mm that is fabricated by simply stacking a polymeric electret layer, an electrode layer, and a substrate layer together. The fabricated sensors show high charge-retention capability, keeping over 98% of the initial surface potential even after 90 h, and can accurately and repeatedly sense external approaching objects with impressive durability. The intensity of the detected signal shows a strong dependence on the distance between the object and the sensor, capable of sensing a distance as small as 2 mm. Furthermore, the sensors can report stable signals in response to external objects over 3000 cycles. By virtue of the signal dependence on distance, an intelligent noncontact positioning system is developed that can precisely detect the location of an approaching object. Finally, by integrating with eyeglasses, the transparent sensor successfully captures the movements of blinks for information translation. This work may contribute to the development of stable and easily manufactured noncontact soft sensors for HMI applications, for instance, assisting with communication for locked-in syndrome patients.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yuqian Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yuji Liu
- Shanghai Key Laboratory for Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Chengyuan Wu
- Shanghai Key Laboratory for Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhongqi Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yuliang Gao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xunlin Qiu
- Shanghai Key Laboratory for Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yiming Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Shanghai Key Laboratory for Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Fuzhen Xuan
- Shanghai Key Laboratory for Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
10
|
Lee DH, Yea J, Ha J, Kim D, Kim S, Lee J, Park JU, Park T, Jang KI. Rugged Island-Bridge Inorganic Electronics Mounted on Locally Strain-Isolated Substrates. ACS NANO 2024; 18:13061-13072. [PMID: 38721824 DOI: 10.1021/acsnano.4c01759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Various strain isolation strategies that combine rigid and stretchable regions for stretchable electronics were recently proposed, but the vulnerability of inorganic materials to mechanical stress has emerged as a major impediment to their performance. We report a strain-isolation system that combines heteropolymers with different elastic moduli (i.e., hybrid stretchable polymers) and utilize it to construct a rugged island-bridge inorganic electronics system. Two types of prepolymers were simultaneously cross-linked to form an interpenetrating polymer network at the rigid-stretchable interface, resulting in a hybrid stretchable polymer that exhibited efficient strain isolation and mechanical stability. The system, including stretchable micro-LEDs and microheaters, demonstrated consistent operation under external strain, suggesting that the rugged island-bridge inorganic electronics mounted on a locally strain-isolated substrate offer a promising solution for replacing conventional stretchable electronics, enabling devices with a variety of form factors.
Collapse
Affiliation(s)
- Dae Hwan Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Junwoo Yea
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Jeongdae Ha
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Dohyun Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sungryong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Junwoo Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Taiho Park
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Kyung-In Jang
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
- ENSIDE Corporation, Daegu 42988, Republic of Korea
| |
Collapse
|
11
|
Kowalewska A, Majewska-Smolarek K. Synergistic Self-Healing Enhancement in Multifunctional Silicone Elastomers and Their Application in Smart Materials. Polymers (Basel) 2024; 16:487. [PMID: 38399865 PMCID: PMC10892785 DOI: 10.3390/polym16040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Organosilicon polymers (silicones) are of enduring interest both as an established branch of polymer chemistry and as a segment of commercial products. Their unique properties were exploited in a wide range of everyday applications. However, current silicone trends in chemistry and materials engineering are focused on new smart applications, including stretchable electronics, wearable stress sensors, protective coatings, and soft robotics. Such applications require a fresh approach to methods for increasing the durability and mechanical strength of polysiloxanes, including crosslinked systems. The introduction of self-healing options to silicones has been recognized as a promising alternative in this field, but only carefully designed multifunctional systems operating with several different self-healing mechanisms can truly address the demands placed on such valuable materials. In this review, we summarized the progress of research efforts dedicated to the synthesis and applications of self-healing hybrid materials through multi-component systems that enable the design of functional silicon-based polymers for smart applications.
Collapse
Affiliation(s)
- Anna Kowalewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland;
| | | |
Collapse
|
12
|
Huang Z. Chemical Patterning on Nanocarbons: Functionality Typewriting. Molecules 2023; 28:8104. [PMID: 38138593 PMCID: PMC10745949 DOI: 10.3390/molecules28248104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Nanocarbon materials have become extraordinarily compelling for their significant potential in the cutting-edge science and technology. These materials exhibit exceptional physicochemical properties due to their distinctive low-dimensional structures and tailored surface characteristics. An attractive direction at the forefront of this field involves the spatially resolved chemical functionalization of a diverse range of nanocarbons, encompassing carbon nanotubes, graphene, and a myriad of derivative structures. In tandem with the technological leaps in lithography, these endeavors have fostered the creation of a novel class of nanocarbon materials with finely tunable physical and chemical attributes, and programmable multi-functionalities, paving the way for new applications in fields such as nanoelectronics, sensing, photonics, and quantum technologies. Our review examines the swift and dynamic advancements in nanocarbon chemical patterning. Key breakthroughs and future opportunities are highlighted. This review not only provides an in-depth understanding of this fast-paced field but also helps to catalyze the rational design of advanced next-generation nanocarbon-based materials and devices.
Collapse
Affiliation(s)
- Zhongjie Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|