1
|
Liu J, Chen Z, Wu C, Yu X, Yu X, Chen C, Li Z, Qiao Q, Cao Y, Zhou Y. Recent Advances in Antimony Selenide Photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406028. [PMID: 39139003 DOI: 10.1002/adma.202406028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/27/2024] [Indexed: 08/15/2024]
Abstract
Photodetectors (PDs) rapidly capture optical signals and convert them into electrical signals, making them indispensable in a variety of applications including imaging, optical communication, remote sensing, and biological detection. Recently, antimony selenide (Sb2Se3) has achieved remarkable progress due to its earth-abundant, low toxicity, low price, suitable bandgap width, high absorption coefficient, and unique structural characteristics. Sb2Se3 has been extensively studied in solar cells, but there's a lack of timely updates in the field of PDs. A literature review based on Sb2Se3 PDs is urgently warranted. This review aims to provide a concise understanding of the latest progress in Sb2Se3 PDs, with a focus on the basic characteristics and the performance optimization for Sb2Se3 photoconductive-type and photodiode-type detectors, including nanostructure regulation, process optimization, and stability improvement of flexible devices. Furthermore, the application progresses of Sb2Se3 PDs in heart rate monitoring, and monolithic-integrated matrix images are introduced. Finally, this review presents various strategies with potential and feasibility to address challenges for the rapid development and commercial application of Sb2Se3 PDs.
Collapse
Affiliation(s)
- Jiaojiao Liu
- School of Marine Engineering Equipment, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Zhenbo Chen
- School of Marine Engineering Equipment, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Cheng Wu
- School of Marine Engineering Equipment, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Xiaoming Yu
- School of Marine Engineering Equipment, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Xuan Yu
- School of Marine Engineering Equipment, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Chao Chen
- School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan, Wuhan, Hubei, 430074, China
| | - Zhenhua Li
- School of Marine Engineering Equipment, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Qian Qiao
- School of Marine Engineering Equipment, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Yu Cao
- School of Electrical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Yingtang Zhou
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| |
Collapse
|
2
|
Otavio Mendes J, Merenda A, Wilson K, Fraser Lee A, Della Gaspera E, van Embden J. Substrate Morphology Directs (001) Sb 2Se 3 Thin Film Growth by Crystallographic Orientation Filtering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302721. [PMID: 37254267 DOI: 10.1002/smll.202302721] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/01/2023] [Indexed: 06/01/2023]
Abstract
Antimony chalcogenide, Sb2X3 (X = S, Se), applications greatly benefit from efficient charge transport along covalently bonded (001) oriented (Sb4X6)n ribbons, making thin film orientation control highly desirable - although particularly hard to achieve experimentally. Here, it is shown for the first time that substrate nanostructure plays a key role in driving the growth of (001) oriented antimony chalcogenide thin films. Vapor Transport Deposition of Sb2Se3 thin films is conducted on ZnO substrates whose morphology is tuned between highly nanostructured and flat. The extent of Sb2Se3 (001) orientation is directly correlated to the degree of substrate nanostructure. These data showcase that nanostructuring a substrate is an effective tool to control the orientation and morphology of Sb2Se3 films. The optimized samples demonstrate high (001) crystallographic orientation. A growth mechanism for these films is proposed, wherein the substrate physically restricts the development of undesirable crystallographic orientations. It is shown that the surface chemistry of the nanostructured substrates can be altered and still drive the growth of (001) Sb2Se3 thin films - not limiting this phenomenon to a particular substrate type. Insights from this work are expected to guide the rational design of Sb2X3 thin film devices and other low-dimensional crystal-structured materials wherein performance is intrinsically linked to morphology and orientation.
Collapse
Affiliation(s)
| | - Andrea Merenda
- School of Science, RMIT University, Victoria, 3001, Australia
| | - Karen Wilson
- School of Science, RMIT University, Victoria, 3001, Australia
| | - Adam Fraser Lee
- School of Science, RMIT University, Victoria, 3001, Australia
| | | | - Joel van Embden
- School of Science, RMIT University, Victoria, 3001, Australia
| |
Collapse
|
3
|
Shen YC, Lee CY, Wang HH, Kao MH, Hou PC, Chen YY, Huang WH, Shen CH, Chueh YL. Embedded Integration of Sb 2Se 3 Film by Low-Temperature Plasma-Assisted Chemical Vapor Reaction with Polycrystalline Si Transistor for High-Performance Flexible Visible-to-Near-Infrared Photodetector. ACS NANO 2023; 17:2019-2028. [PMID: 36689417 DOI: 10.1021/acsnano.2c07288] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Flexible optoelectronics have garnered considerable interest for applications such as optical communication, motion capture, biosignal detection, and night vision. Transition-metal dichalcogenides are widely used as flexible photodetectors owing to their outstanding electrical and optical properties and high flexibility. Herein, a two-dimensional (2D) Sb2Se3 film-based one transistor-one resistor (1T1R) flexible photodetector with high photosensing current and detection ranges from visible to near-infrared was developed. The flexible 1T1R was fabricated using an efficient field-effect transistor platform with the 2D Sb2Se3 film directly deposited on the sensing region using a low-temperature plasma-assisted chemical vapor reaction. The photodetector could achieve a maximum Iphoto/Idark of 15,000 under white light with a power density of 26 mW/cm2, in which the photodetector showed quick rising and falling response times of 0.16 and 0.28 s, respectively. The 2D Sb2Se3 film exhibits broadband absorption in the visible and IR regions, yielding an excellent photoresponse under laser illumination with different wavelengths. To investigate the flexibility and stability of the 1T1R photodetector, the photoresponses were measured under different bending cycles and curvatures, which maintained its functions and exhibited high stability under convex and concave bending at a curvature radius of 20 mm.
Collapse
Affiliation(s)
- Ying-Chun Shen
- Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Cheng-Yu Lee
- Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Hsing-Hsiang Wang
- National Applied Research Laboratories, Taiwan Semiconductor Research Institute, Hsinchu 300091, Taiwan
| | - Ming-Hsuan Kao
- National Applied Research Laboratories, Taiwan Semiconductor Research Institute, Hsinchu 300091, Taiwan
| | - Po-Cheng Hou
- National Applied Research Laboratories, Taiwan Semiconductor Research Institute, Hsinchu 300091, Taiwan
| | - Yen-Yu Chen
- Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Wen-Hsien Huang
- National Applied Research Laboratories, Taiwan Semiconductor Research Institute, Hsinchu 300091, Taiwan
| | - Chang-Hong Shen
- National Applied Research Laboratories, Taiwan Semiconductor Research Institute, Hsinchu 300091, Taiwan
| | - Yu-Lun Chueh
- Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
4
|
Tan X, Li Q, Ren D. One dimensional MOSFETs for sub-5 nm high-performance applications: a case of Sb 2Se 3 nanowires. Phys Chem Chem Phys 2023; 25:2056-2062. [PMID: 36546566 DOI: 10.1039/d2cp05132j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Low-dimensional materials have been proposed as alternatives to silicon-based field-effect transistor (FET) channel materials in order to overcome the scaling limitation. In the present research, gate-all-around (GAA) Sb2Se3 nanowire FETs were simulated using the ab initio quantum transport method. The gate-length (Lg, Lg = 5 nm) GAA Sb2Se3 FETs with an underlap (UL, UL = 2, 3 nm) could satisfy the on-state current (Ion) and delay time (τ) of the 2028 requirements for high performance (HP) applications of the International Technology Roadmap for Semiconductors (ITRS) 2013. It is interesting that the Lg = 3 nm GAA Sb2Se3 FETs with a UL = 3 nm can meet the Ion, power dissipation (PDP), and τ of the 2028 requirements of ITRS 2013 for HP applications. Therefore, GAA Sb2Se3 FETs can be a potential candidate scaling Moore's law downward to 3 nm.
Collapse
Affiliation(s)
- Xingyi Tan
- Department of Physics, Chongqing Three Gorges University, Wanzhou, 404100, China.
| | - Qiang Li
- College of Intelligent systems science and engineering, Hubei Minzu University, Enshi, 445000, China
| | - Dahua Ren
- College of Intelligent systems science and engineering, Hubei Minzu University, Enshi, 445000, China
| |
Collapse
|
5
|
Koskela K, Mora Perez C, Eremin DB, Evans JM, Strumolo MJ, Lewis NS, Prezhdo OV, Brutchey RL. Polymorphic Control of Solution-Processed Cu 2SnS 3 Films with Thiol-Amine Ink Formulation. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:8654-8663. [PMID: 36248230 PMCID: PMC9558449 DOI: 10.1021/acs.chemmater.2c01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/05/2022] [Indexed: 05/10/2023]
Abstract
There is increasing demand for tailored molecular inks that produce phase-pure solution-processed semiconductor films. Within the Cu-Sn-S phase space, Cu2SnS3 belongs to the I2-IV-VI3 class of semiconductors that crystallizes in several different polymorphs. We report the ability of thiol-amine solvent mixtures to dissolve inexpensive bulk Cu2S and SnO precursors to generate free-flowing molecular inks. Upon mild annealing, polymorphic control over phase-pure tetragonal (I4̅2m) and orthorhombic (Cmc21) Cu2SnS3 films was realized simply by switching the identity of the thiol (i.e., 1,2-ethanedithiol vs 2-mercaptoethanol, respectively). Polymorph control is dictated by differences in the resulting molecular metal-thiolate complexes and their subsequent decomposition profiles, which likely seed distinct Cu2-x S phases that template the ternary sulfide sublattice. The p-type tetragonal and orthorhombic Cu2SnS3 films possess similar experimental direct optical band gaps of 0.94 and 0.88 eV, respectively, and strong photoelectrochemical current responses. Understanding how ink formulation dictates polymorph choice should inform the development of other thiol-amine inks for solution-processed films.
Collapse
Affiliation(s)
- Kristopher
M. Koskela
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Carlos Mora Perez
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Dmitry B. Eremin
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- The
Bridge@USC, University of Southern California, Los Angeles, California 90089, United States
| | - Jake M. Evans
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Marissa J. Strumolo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Nathan S. Lewis
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Richard L. Brutchey
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
6
|
Vadapoo R, Krishnan S, Yilmaz H, Marin C. Orientation dependence of electronic properties of antimony selenide nanowires. NANO EXPRESS 2022. [DOI: 10.1088/2632-959x/ac929d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
We present a comprehensive DFT study of size-dependent atomic and electronic properties of antimony selenide (Sb
2
Se
3) nanowires in three main crystallographic directions. Our calculations show a significant enhancement in the band gap of wires oriented in [100] and [010] directions due to confinement effects, however the band gap of [001] oriented wires is reduced with respect to bulk. We attribute this anomaly in band gap reduction to the surface reconstructions in these nanostructures. These surface reconstructions are similar to the polyhedral distortions observed in bulk Sb
2
Se
3 under high pressure leading to the insulator-metal transition related to the topological insulating states and then at lower temperature (8K) to superconductivity.
Collapse
|
7
|
Comparison of Various Thin-Film-Based Absorber Materials: A Viable Approach for Next-Generation Solar Cells. COATINGS 2022. [DOI: 10.3390/coatings12030405] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thin-film solar cells are simple and affordable to produce, but their efficiency is low compared to crystalline-silicon solar cells, and needs to be improved. This study investigates the photovoltaic performance of different absorber materials (CdTe, CIGS, Sb2Se3, and CZTS) with simple structure Au/absorber/CdS/ITO. The research uses the SCAPS (Solar Cell Capacitance Simulator), a mathematical model based on Poisson and continuity equations. The impact of various parameters on cell performance, such as absorber layer thickness, acceptor density, electron affinity, back contact work function, and temperature, are examined. As per the simulation results, an absorber thickness of 4 µm is suitable for achieving the maximum efficiency for all the absorber materials. The optimized acceptor density for CdTe/CIGS/ Sb2Se3 and CZTS is taken as 1016 cm−3 and 1017 cm−3, respectively. The back contact work function and device temperature were set to be 5.1 eV and 300 K, respectively, to achieve excellent performance. Among all the absorber materials, the highest efficiency of 28.2% was achieved for CZTS. The aim is to highlight the various absorber layers’ performances by optimizing the device parameters. The obtained results can be used in solar energy harvesting applications due to the improved performance characteristics.
Collapse
|
8
|
Koskela KM, Quiton SJ, Sharada SM, Williams TJ, Brutchey RL. Kinetics and mechanistic details of bulk ZnO dissolution using a thiol-imidazole system. Chem Sci 2022; 13:3208-3215. [PMID: 35414876 PMCID: PMC8926287 DOI: 10.1039/d1sc06667f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
Oxide dissolution is important for metal extraction from ores and has become an attractive route for the preparation of inks for thin film solution deposition; however, oxide dissolution is often kinetically challenging. While binary "alkahest" systems comprised of thiols and N-donor species, such as amines, are known to dissolve a wide range of oxides, the mechanism of dissolution and identity of the resulting solute(s) remain unstudied. Here, we demonstrate facile dissolution of both bulk synthetic and natural mineral ZnO samples using an "alkahest" that operates via reaction with thiophenol and 1-methylimidazole (MeIm) to give a single, pseudotetrahedral Zn(SPh)2(MeIm)2 molecular solute identified by X-ray crystallography. The kinetics of ZnO dissolution were measured using solution 1H NMR, and the reaction was found to be zero-order in the presence of excess ligands, with more electron withdrawing para-substituted thiophenols resulting in faster dissolution. A negative entropy of activation was measured by Eyring analysis, indicating associative ligand binding in, or prior to, the rate determining step. Combined experimental and computational surface binding studies on ZnO reveal stronger, irreversible thiophenol binding compared to MeIm, leading to a proposed dissolution mechanism initiated by thiol binding to the ZnO surface with the liberation of water, followed by alternating MeIm and thiolate ligand additions, and ultimately cleavage of the ligated zinc complex from the ZnO surface. Design rules garnered from the mechanistic insight provided by this study should inform the dissolution of other bulk oxides into inks for solution processed thin films.
Collapse
Affiliation(s)
- Kristopher M Koskela
- Department of Chemistry, University of Southern California Los Angeles CA 90089 USA
| | - Stephen J Quiton
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California Los Angeles CA 90089 USA
| | - Shaama Mallikarjun Sharada
- Department of Chemistry, University of Southern California Los Angeles CA 90089 USA
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California Los Angeles CA 90089 USA
| | - Travis J Williams
- Department of Chemistry, University of Southern California Los Angeles CA 90089 USA
- Loker Hydrocarbon Institute, University of Southern California Los Angeles CA 90089 USA
| | - Richard L Brutchey
- Department of Chemistry, University of Southern California Los Angeles CA 90089 USA
| |
Collapse
|
9
|
Koskela KM, Strumolo MJ, Brutchey RL. Progress of thiol-amine ‘alkahest’ solutions for thin film deposition. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Zhang Y, Zhang Y, Ma H, Feng Y, Wang S, Li Z. High-responsivity, self-driven visible-near infrared Sb 2Se 3 nanorod array photodetector. OPTICS EXPRESS 2021; 29:39549-39559. [PMID: 34809317 DOI: 10.1364/oe.442621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Anisotropic antimony selenide (Sb2Se3) semiconductor has received considerable attention due to its unique one-dimensional crystal structure and corresponding superior and anisotropic optical and electronic properties. It is a promising material for a wide range of applications related to electronics and optoelectronics. Herein, we demonstrate a high-performance and self-powered Sb2Se3 nanorod array-based core/shell heterojunction detector fabricated on glass substate. The detector shows a wide spectral photoresponse range from visible to near-infrared (405-980 nm). The detector yields a detectivity of as high as 2.06×1012 Jones in the visible light (638 nm) and that of 1.82×1012 Jones (830 nm) at zero bias. Due to the strong built-in filed and excellent carrier transport, the detector exhibits ultrafast response speed at both rise (30 μs) and decay (68 μs) processes. Further analysis demonstrates that the noise is mainly generated from the 1/f noise in the low frequency range, while it is affected by the shot noise and generation-recombination noise in high frequency.
Collapse
|
11
|
Bafekry A, Mortazavi B, Faraji M, Shahrokhi M, Shafique A, Jappor HR, Nguyen C, Ghergherehchi M, Feghhi SAH. Ab initio prediction of semiconductivity in a novel two-dimensional Sb 2X 3 (X= S, Se, Te) monolayers with orthorhombic structure. Sci Rep 2021; 11:10366. [PMID: 33990674 PMCID: PMC8121886 DOI: 10.1038/s41598-021-89944-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/28/2021] [Indexed: 02/04/2023] Open
Abstract
[Formula: see text] and [Formula: see text] are well-known layered bulk structures with weak van der Waals interactions. In this work we explore the atomic lattice, dynamical stability, electronic and optical properties of [Formula: see text], [Formula: see text] and [Formula: see text] monolayers using the density functional theory simulations. Molecular dynamics and phonon dispersion results show the desirable thermal and dynamical stability of studied nanosheets. On the basis of HSE06 and PBE/GGA functionals, we show that all the considered novel monolayers are semiconductors. Using the HSE06 functional the electronic bandgap of [Formula: see text], [Formula: see text] and [Formula: see text] monolayers are predicted to be 2.15, 1.35 and 1.37 eV, respectively. Optical simulations show that the first absorption coefficient peak for [Formula: see text], [Formula: see text] and [Formula: see text] monolayers along in-plane polarization is suitable for the absorption of the visible and IR range of light. Interestingly, optically anisotropic character along planar directions can be desirable for polarization-sensitive photodetectors. Furthermore, we systematically investigate the electrical transport properties with combined first-principles and Boltzmann transport theory calculations. At optimal doping concentration, we found the considerable larger power factor values of 2.69, 4.91, and 5.45 for hole-doped [Formula: see text], [Formula: see text], and [Formula: see text], respectively. This study highlights the bright prospect for the application of [Formula: see text], [Formula: see text] and [Formula: see text] nanosheets in novel electronic, optical and energy conversion systems.
Collapse
Affiliation(s)
- A Bafekry
- Department of Radiation Application, Shahid Beheshti University, Tehran, Iran.
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - B Mortazavi
- Chair of Computational Science and Simulation Technology, Institute of Photonics, Department of Mathematics and Physics, Leibniz University of Hannover, Appelstrae 11, 30157, Hannover, Germany
| | - M Faraji
- Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, Sogutozu Caddesi No 43 Sogutozu, 06560, Ankara, Turkey
| | - M Shahrokhi
- Department of Physics, Faculty of Science, University of Kurdistan, Sanandaj, 66177-15175, Iran
| | - A Shafique
- Department of Physics, Lahore University of Management Sciences, Lahore, Pakistan
| | - H R Jappor
- Department of Physics, College of Education for Pure Sciences, University of Babylon, Hilla, Iraq
| | - C Nguyen
- Department of Materials Science and Engineering, Le Quy Don Technical University, Ha Noi, 100000, Vietnam
| | - M Ghergherehchi
- Department of Electrical and Computer Engineering, Sungkyunkwan University, 16419, Suwon, Korea.
| | - S A H Feghhi
- Department of Radiation Application, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
12
|
Huang SM, Hung JL, Chou M, Chen CY, Liu FC, Chen RS. The Highly Uniform Photoresponsivity from Visible to Near IR Light in Sb 2Te 3 Flakes. SENSORS 2021; 21:s21041535. [PMID: 33672142 PMCID: PMC7926365 DOI: 10.3390/s21041535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/27/2021] [Accepted: 02/19/2021] [Indexed: 11/25/2022]
Abstract
Broadband photosensors have been widely studied in various kinds of materials. Experimental results have revealed strong wavelength-dependent photoresponses in all previous reports. This limits the potential application of broadband photosensors. Therefore, finding a wavelength-insensitive photosensor is imperative in this application. Photocurrent measurements were performed in Sb2Te3 flakes at various wavelengths ranging from visible to near IR light. The measured photocurrent change was insensitive to wavelengths from 300 to 1000 nm. The observed wavelength response deviation was lower than that in all previous reports. Our results show that the corresponding energies of these photocurrent peaks are consistent with the energy difference of the density of state peaks between conduction and valence bands. This suggests that the observed photocurrent originates from these band structure peak transitions under light illumination. Contrary to the most common explanation that observed broadband photocurrent carrier is mainly from the surface state in low-dimensional materials, our experimental result suggests that bulk state band structure is the main source of the observed photocurrent and dominates the broadband photocurrent.
Collapse
Affiliation(s)
- Shiu-Ming Huang
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Correspondence:
| | - Jai-Lung Hung
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Mitch Chou
- Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Taiwan Consortium of Emergent Crystalline Materials, TCECM, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chi-Yang Chen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.-Y.C.); (F.-C.L.); (R.-S.C.)
| | - Fang-Chen Liu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.-Y.C.); (F.-C.L.); (R.-S.C.)
| | - Ruei-San Chen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.-Y.C.); (F.-C.L.); (R.-S.C.)
| |
Collapse
|
13
|
Wen X, Lu Z, Valdman L, Wang GC, Washington M, Lu TM. High-Crystallinity Epitaxial Sb 2Se 3 Thin Films on Mica for Flexible Near-Infrared Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35222-35231. [PMID: 32633940 DOI: 10.1021/acsami.0c08467] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The V-VI binary chalcogenide, Sb2Se3, has attracted considerable attention for its applications in thin film optoelectronic devices because of its unique 1D structure and remarkable optoelectronic properties. Herein, we report an Sb2Se3 thin film epitaxially grown on a flexible mica substrate through a relatively weak (van der Waals) interaction by vapor transport deposition. The epitaxial Sb2Se3 thin films exhibit a single (120) out-of-plane orientation and a 0.25° full width at half-maximum of (120) rocking curve in X-ray diffraction, confirming the high crystallinity of the epitaxial films. The Sb2Se3(120) plane is epitaxially aligned on mica(001) surface with the in-plane relationship of Sb2Se3[2̅10]//mica[010] and Sb2Se3[001]//mica[100]. Compared to the photodetector made of a nonepitaxial Sb2Se3 film, the photocurrent of the epitaxial Sb2Se3 film photodetector is almost doubled. Furthermore, because of the flexibility and high sensitivity of the epitaxial Sb2Se3 film photodetector on mica, it has been successfully employed to detect the heart rate of a person. These encouraging results will facilitate the development of epitaxial Sb2Se3 film-based devices and potential applications in wearable electronics.
Collapse
Affiliation(s)
- Xixing Wen
- Center for Materials, Devices and Integrated Systems, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Zonghuan Lu
- Center for Materials, Devices and Integrated Systems, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Lukas Valdman
- Center for Materials, Devices and Integrated Systems, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Materials Science and Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Gwo-Ching Wang
- Center for Materials, Devices and Integrated Systems, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Morris Washington
- Center for Materials, Devices and Integrated Systems, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Toh-Ming Lu
- Center for Materials, Devices and Integrated Systems, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
14
|
Wang J, Guan F. Solution-synthesis of Sb2Se3 nanorods using KSeCN as a molecular selenium source. CrystEngComm 2020. [DOI: 10.1039/c9ce01399g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Potassium selenocyanate (KSeCN) is used as a molecular selenium source to prepare Sb2Se3 nanorods, in which selenocyanate (SeCN−) anions are thermally decomposed to elemental Se(0) and then reduced to Se2− anions in the organic amine medium.
Collapse
Affiliation(s)
- Junli Wang
- School of Materials Science & Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Fan Guan
- School of Materials Science & Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| |
Collapse
|
15
|
McCarthy CL, Brutchey RL. Solution processing of chalcogenide materials using thiol–amine “alkahest” solvent systems. Chem Commun (Camb) 2017; 53:4888-4902. [DOI: 10.1039/c7cc02226c] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We highlight recent studies utilizing thiol/amine mixtures to dissolve bulk inorganic materials for facile solution processing of functional thin films.
Collapse
|