1
|
Jiménez AJ, Domínguez-Pinos MD, Guerra MM, Fernández-Llebrez P, Pérez-Fígares JM. Structure and function of the ependymal barrier and diseases associated with ependyma disruption. Tissue Barriers 2014; 2:e28426. [PMID: 25045600 PMCID: PMC4091052 DOI: 10.4161/tisb.28426] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/03/2014] [Accepted: 03/03/2014] [Indexed: 12/20/2022] Open
Abstract
The neuroepithelium is a germinal epithelium containing progenitor cells that produce almost all of the central nervous system cells, including the ependyma. The neuroepithelium and ependyma constitute barriers containing polarized cells covering the embryonic or mature brain ventricles, respectively; therefore, they separate the cerebrospinal fluid that fills cavities from the developing or mature brain parenchyma. As barriers, the neuroepithelium and ependyma play key roles in the central nervous system development processes and physiology. These roles depend on mechanisms related to cell polarity, sensory primary cilia, motile cilia, tight junctions, adherens junctions and gap junctions, machinery for endocytosis and molecule secretion, and water channels. Here, the role of both barriers related to the development of diseases, such as neural tube defects, ciliary dyskinesia, and hydrocephalus, is reviewed.
Collapse
Affiliation(s)
- Antonio J Jiménez
- Department of Cell Biology, Genetics, and Physiology; University of Malaga; Malaga, Spain
| | | | - María M Guerra
- Institute of Anatomy, Histology, and Pathology; Austral University of Chile; Valdivia, Chile
| | | | | |
Collapse
|
2
|
Chugh G, Asghar M, Patki G, Bohat R, Jafri F, Allam F, Dao AT, Mowrey C, Alkadhi K, Salim S. A high-salt diet further impairs age-associated declines in cognitive, behavioral, and cardiovascular functions in male Fischer brown Norway rats. J Nutr 2013; 143:1406-13. [PMID: 23864508 PMCID: PMC3743272 DOI: 10.3945/jn.113.177980] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/02/2013] [Accepted: 06/20/2013] [Indexed: 01/11/2023] Open
Abstract
Aging-associated declines in cognitive, emotional, and cardiovascular function are well known. Environmental stress triggers critical changes in the brain, further compromising cardiovascular and behavioral health during aging. Excessive dietary salt intake is one such stressor. Here, we tested the effect of high salt (HS) on anxiety, learning-memory function, and blood pressure (BP) in male Fischer brown Norway (FBN) rats. Adult (A; 2 mo) and old (O; 20 mo) male rats were fed normal-salt (NS; 0.4% NaCl) or HS (8% NaCl) diets for 4 wk after being implanted with telemeter probes for conscious BP measurement. Thereafter, tests to assess anxiety-like behavior and learning-memory were conducted. The rats were then killed, and samples of plasma, urine, and brain tissue were collected. We found that systolic BP was higher in O-NS (117 ± 1.2 mm Hg) than in A-NS (105 ± 0.8 mm Hg) rats (P < 0.05). Furthermore, BP was higher in O-HS (124 ± 1.4 mm Hg) than in O-NS (117 ± 1.2 mm Hg) rats (P < 0.05). Moreover, anxiety-like behavior (light-dark and open-field tests) was not different between A-NS and O-NS rats but was greater in O-HS rats than in A-NS, O-NS, or A-HS rats (P < 0.05). Short-term memory (radial arm water maze test) was similar in A-NS and O-NS rats but was significantly impaired in O-HS rats compared with A-NS, O-NS, or A-HS rats (P < 0.05). Furthermore, oxidative stress variables (in plasma, urine, and brain) as well as corticosterone (plasma) were greater in O-HS rats when compared with A-NS, O-NS, or A-HS rats (P < 0.05). The antioxidant enzyme glyoxalase-1 expression was selectively reduced in the hippocampus and amygdala of O-HS rats compared with A-NS, O-NS, or A-HS rats (P < 0.05), whereas other antioxidant enzymes, glutathione reductase 1, manganese superoxide dismutase (SOD), and Cu/Zn SOD remained unchanged. We suggest that salt-sensitive hypertension and behavioral derangement are associated with a redox imbalance in the brain of aged FBN rats.
Collapse
Affiliation(s)
- Gaurav Chugh
- Department of Pharmacological and Pharmaceutical Sciences, and
- Heart and Kidney Institute, University of Houston, Houston, TX
| | - Mohammad Asghar
- Department of Pharmacological and Pharmaceutical Sciences, and
- Heart and Kidney Institute, University of Houston, Houston, TX
| | - Gaurav Patki
- Department of Pharmacological and Pharmaceutical Sciences, and
| | - Ritu Bohat
- Department of Pharmacological and Pharmaceutical Sciences, and
| | - Faizan Jafri
- Department of Pharmacological and Pharmaceutical Sciences, and
| | - Farida Allam
- Department of Pharmacological and Pharmaceutical Sciences, and
| | - An T. Dao
- Department of Pharmacological and Pharmaceutical Sciences, and
| | | | - Karim Alkadhi
- Department of Pharmacological and Pharmaceutical Sciences, and
| | - Samina Salim
- Department of Pharmacological and Pharmaceutical Sciences, and
| |
Collapse
|
3
|
Why the embryo still matters: CSF and the neuroepithelium as interdependent regulators of embryonic brain growth, morphogenesis and histiogenesis. Dev Biol 2009; 327:263-72. [PMID: 19154733 DOI: 10.1016/j.ydbio.2008.12.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 11/10/2008] [Accepted: 12/17/2008] [Indexed: 11/20/2022]
Abstract
The key focus of this review is that both the neuroepithelium and embryonic cerebrospinal fluid (CSF) work in an integrated way to promote embryonic brain growth, morphogenesis and histiogenesis. The CSF generates pressure and also contains many biologically powerful trophic factors; both play key roles in early brain development. Accumulation of fluid via an osmotic gradient creates pressure that promotes rapid expansion of the early brain in a developmental regulated way, since the rates of growth differ between the vesicles and for different species. The neuroepithelium and ventricles both contribute to this growth but by different and coordinated mechanisms. The neuroepithelium grows primarily by cell proliferation and at the same time the ventricle expands via hydrostatic pressure generated by active transport of Na(+) and transport or secretion of proteins and proteoglycans that create an osmotic gradient which contribute to the accumulation of fluid inside the sealed brain cavity. Recent evidence shows that the CSF regulates relevant aspects of neuroepithelial behavior such as cell survival, replication and neurogenesis by means of growth factors and morphogens. Here we try to highlight that early brain development requires the coordinated interplay of the CSF contained in the brain cavity with the surrounding neuroepithelium. The information presented is essential in order to understand the earliest phases of brain development and also how neuronal precursor behavior is regulated.
Collapse
|
4
|
Melloy PG, Kusnierczyk MK, Meyer RA, Lo CW, Desmond ME. Overexpression of connexin43 alters the mutant phenotype of midgestational wnt-1 null mice resulting in recovery of the midbrain and cerebellum. ACTA ACUST UNITED AC 2005; 283:224-38. [PMID: 15678491 DOI: 10.1002/ar.a.20158] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The midbrain-hindbrain (MHB) junction plays a key role in the patterning of the embryonic neural tube and the formation of brain structures such as the cerebellum. The mitogen wnt-1 is critical for cerebellar development, as evidenced by the lack of MHB region and cerebellar formation in the wnt-1 null embryo. We have generated wnt-1 null embryos overexpressing the gap junction gene connexin43 by crossing wnt-1 null heterozygotes into the CMV43 mouse line. We have confirmed that these mice show an increase in gap junctional communication by dye coupling analysis. Two-thirds of wnt-1 null CMV43(+) mouse embryos at E18.5 have a cerebellum. In addition, changes in the wnt-1 null phenotype in mouse embryos overexpressing connexin43 are observed as early as E9.5. At this stage, one-quarter of wnt-1 null CMV43(+) embryos display extra or expanded tissue present at the MHB boundary (a wnt-1 null enlarged phenotype). In situ hybridization studies conducted on these embryos have indicated no changes in the expression of embryonic brain positional markers in this region. We conclude from these studies that overexpression of the connexin43 gap junction restores cerebellar formation by compensating for the loss of wnt-1.
Collapse
|
5
|
Desmond ME, Levitan ML, Haas AR. Internal luminal pressure during early chick embryonic brain growth: Descriptive and empirical observations. ACTA ACUST UNITED AC 2005; 285:737-47. [PMID: 15977221 DOI: 10.1002/ar.a.20211] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
If the intraluminal pressure of the brain is decreased for 24 hr, the brain and neuroepithelium volumes are both reduced in half. The current study measured the intraluminal pressure throughout the period of rapid brain growth using a servo-null micropressure monitoring system. From 613 measurements made on 55 embryos, we show that the intraluminal pressure over this time period is appropriately described by a linear model with correlation coefficient of 0.752. To assess whether sustained hyperpressure would increase mitosis, elevated intraluminal pressure was induced in 10 embryos for 1-hr duration via a gravity-fed drip. The mitotic density and index of the mesencephalon were measured for the 10 embryos. Those embryos, in which the colchicine solution was added to the intraluminal cerebrospinal fluid creating a sustained hyperpressure, exhibited at least a 2.5-fold increase in both the mitotic density and index compared with control embryos. Based on the small sample size, we cautiously conclude that sustained hyper-intraluminal pressure does stimulate mitosis.
Collapse
Affiliation(s)
- Mary E Desmond
- Department of Biology, Villanova University, Villanova, PA 19085, USA.
| | | | | |
Collapse
|
6
|
Gato A, Martín P, Alonso MI, Martín C, Pulgar MA, Moro JA. Analysis of cerebro-spinal fluid protein composition in early developmental stages in chick embryos. ACTA ACUST UNITED AC 2004; 301:280-9. [PMID: 15039986 DOI: 10.1002/jez.a.20035] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Foetal cerebro-spinal fluid (CSF) has a very high protein concentration when compared to adult CSF, and in many species five major protein fractions have been described. However, the protein concentration and composition in CSF during early developmental stages remains largely unknown. Our results show that in the earliest stages (18 to 30 H.H.) of chick development there is a progressive increase in CSF protein concentration until foetal values are attained. In addition, by performing electrophoretic separation and high-sensitivity silver staining, we were able to identify a total of 21 different protein fractions in the chick embryo CSF. In accordance with the developmental pattern of their concentration, these can be classified as follows: A: high-concentration fractions which corresponded with the ones described in foetal CSF by other authors; B: low-concentration fractions which remained stable throughout the period studied; C: low-concentration fractions which show changes during this period. The evolution and molecular weight of the latter group suggest the possibility of an important biological role. Our data demonstrate that all the CSF protein fractions are present in embryonic serum; this could mean that the specific transport mechanisms in neuroepithelial cells described in the foetal period evolve in very early stages of development. In conclusion, this paper offers an accurate study of the protein composition of chick embryonic CSF, which will help the understanding of the influences on neuroepithelial stem cells during development and, as a result, the appropriate conditions for the in vitro study of embryonic/foetal nervous tissue cells.
Collapse
Affiliation(s)
- A Gato
- Instituto de Neurociencias de Castilla y León, Spain.
| | | | | | | | | | | |
Collapse
|
7
|
Desmond ME, Levitan ML. Brain expansion in the chick embryo initiated by experimentally produced occlusion of the spinal neurocoel. THE ANATOMICAL RECORD 2002; 268:147-59. [PMID: 12221721 DOI: 10.1002/ar.10146] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The brain expands in the early chick embryo from pressure generated by accumulation of cerebrospinal fluid (CSF) in a closed neural tube. The sealing of the neural tube occurs as the result of occlusion of the spinal neurocoel rostral to and before closure of the posterior neuropore. We have previously demonstrated the dependence of normal brain expansion upon intraluminal pressure. We had yet to demonstrate, however, that brain expansion actually depends upon natural occlusion of the spinal neurocoel. To demonstrate such dependence, we experimentally occluded the spinal neurocoels of embryos 5 hr younger than stage 11 embryos (in which occlusion of the neurocoel occurs naturally). The stage 10 chick embryos were cultured ex ovo and critically staged, and their spinal neurocoels were occluded using microcautery. All embryos were photographed immediately and at 5, 12, and 24 hr after cautery. Serial sections were made of selected embryos, in which the areas of both the brain and the head were measured. Wilcoxon-Mann-Whitney rank-sum nonparametric tests, Hodges-Lehmann estimators, bootstrapping techniques, and resampling randomization tests were used to determine whether the increases in the brain and head areas for the experimental embryos were significantly different from those of the control embryos during three distinct intervals of expansion: 0-5, 5-12, and 0-12 hr. From 0 to 5 hr, the brains of the precociously occluded embryos expanded significantly more than the brains of the non-occluded controls. From 5 to 12 hr, the brains of the embryos with naturally occluded neurocoels grew significantly larger than the brains of the embryos with precociously occluded neurocoels. At 12 hr, there appeared to be no difference in brain size for these two groups. We conclude that the data support the hypothesis that brain expansion is directly dependent upon occlusion of the spinal neurocoel.
Collapse
Affiliation(s)
- Mary E Desmond
- Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA.
| | | |
Collapse
|
8
|
Alonso MI, Gato A, Moro JA, Barbosa E. Disruption of proteoglycans in neural tube fluid by beta-D-xyloside alters brain enlargement in chick embryos. Anat Rec (Hoboken) 1998; 252:499-508. [PMID: 9845201 DOI: 10.1002/(sici)1097-0185(199812)252:4<499::aid-ar1>3.0.co;2-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Following neurulation, the anterior end of the neural tube undergoes a dramatic increase in size due mainly to the enlarging of the brain cavity. This cavity is filled with so-called neural tube fluid (NTF), whose positive pressure has been shown to play a key role in brain morphogenesis. This fluid contains a water-soluble matrix, rich in chondroitin sulfate (CS), which has been proposed as an osmotic regulator of NTF pressure genesis. The purpose of the present study is to observe the influence of CS on NTF osmolality and its relation to NTF hydrostatic pressure and brain expansion. NTF was obtained by means of microaspiration from the mesencephalic cavity of chick embryos. The osmolality of NTF between H.H. stages 20 and 29 was measured on the basis of its cryoscopic point. CS synthesis was disrupted by using beta-D-xyloside and the induced variations in brain volume were measured by means of morphometry. We also measured the variations in NTF osmolality, hydrostatic pressure, and the concentration of CS and sodium induced by means of beta-D-xyloside. Our data reveal that, at the earliest stages of development analyzed, variations in NTF osmolality show a characteristic pattern that coincides with the developmental changes in the previously described fluid pressure. Chick embryos treated with beta-D-xyloside, a chemical that disrupts CS synthesis, displayed a notable increase in brain volume but no other apparent developmental alterations. Morphometric analysis revealed that this increase was due to hyperenlargement of the brain cavity. Beta-D-xyloside brings about specific changes in the biochemical composition of NTF, which entails a large increase in CS concentration, mainly in the form of free chains, and in that of sodium. As a result, the fluid's osmolality and brain intraluminal pressure increased, which could account for the increase in size of the brain anlage. These data support the hypothesis that the intraluminal pressure involved in embryonic brain enlargement is directly dependent on NTF osmolality, and that the concentrations of CS and its associated microions could play a key role in the regulation of this process.
Collapse
Affiliation(s)
- M I Alonso
- Departamento de Anatomía Humana, Facultad de Medicina, Valladolid, Spain
| | | | | | | |
Collapse
|
9
|
van Straaten HW, Peeters MC, Szpak KF, Hekking JW. Initial closure of the mesencephalic neural groove in the chick embryo involves a releasing zipping-up mechanism. Dev Dyn 1997; 209:333-41. [PMID: 9264257 DOI: 10.1002/(sici)1097-0177(199708)209:4<333::aid-aja1>3.0.co;2-j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
According to a traditional viewpoint, initial closure of the anterior neural groove involves bilateral elevation of the edges of the neural plate, flattening of the midline area, subsequent convergence of the dorsal neural folds, and finally adhesion and fusion of the medial fold edges. In a transverse view, the shape of the neural groove thereby changes from V > U > toppled C > O. This sequence implicates that the neural groove is wide almost from its inception. In the present study, a new mechanism of initial closure is proposed, based on observations in living chick embryos and on light and scanning electron microscopic observations during neurulation in the presumptive mesencephalic region. The medial part of the neural plate invaginates in ventral direction. The walls of the arising neural groove appose, beginning in the depth, and make subsequent contact. During continued invagination the neural walls extend in ventral direction, the apposition/contact zone shifts in dorsal direction up to the neural folds and the neural walls separate ventrally, resulting in the incipient neural tube lumen. The mechanism is best compared with a zipping-up releasing model. In a transverse view, the shape of the neural groove changes from V > Y > I > O. While, according to the traditional view, the neural folds have to converge from a distance in order to contact each other, in the present mechanism the walls and folds are sequentially in contact by the ventro-dorsal zipping-up mechanism, thereby avoiding the possibility of mismatch of the neural folds. The above process is initiated over a considerable longitudinal distance along the neural plate, but only at the mesencephalic level does the dorsal shift of the contact zone become complete. At other levels of the neuraxis, the contact zone releases prematurely and the neural walls become widely separated well before their dorsal neural folds are in contact. These folds have to converge, therefore, in order to close, but their matching is facilitated by the alignment of the previously contacted neural folds at the mesencephalic level as well as by guidance underneath the vitelline membrane.
Collapse
Affiliation(s)
- H W van Straaten
- Department of Anatomy/Embryology, University of Maastricht, The Netherlands.
| | | | | | | |
Collapse
|