1
|
Bell-Hensley A, Brito VGB, Cai L, Liu J, Feeney K, Zheng H, McAlinden A. MicroRNA-181a/b-1 enhances chondroprogenitor anabolism and downregulates aquaporin-9. OSTEOARTHRITIS AND CARTILAGE OPEN 2025; 7:100550. [PMID: 39691700 PMCID: PMC11650276 DOI: 10.1016/j.ocarto.2024.100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/21/2024] [Indexed: 12/19/2024] Open
Abstract
Objective Effective osteoarthritis treatments that enhance the anabolic/regenerative capacity of chondrocytes are needed. Studying cartilage development processes may inform us of approaches to control chondrocyte differentiation and anabolism and, ultimately, how to effectively treat OA. MicroRNAs are broad-acting epigenetic regulators known to affect many skeletal processes. Previous reports from our group indicated that miR-181a-1 is upregulated during chondrocyte differentiation. The goal of this study was to determine how the entire miR-181a/b-1 cluster regulates in vitro chondrogenesis. Design Precursor miR-181a/b-1 was over-expressed in cartilage progenitor cells using lentiviral technology Transduced cartilage progenitor cells were cultured as micromass pellets in hypoxic conditions and stimulated to undergo chondrogenic differentiation for five weeks. Bulk RNA-sequencing and immunostaining was applied to evaluate chondrogenic differentiation and matrix production. Results Immunostaining of cartilage pellet sections showed that miR-181a/b-1 increased mature type II collagen and decreased expression of the chondroprogenitor type IIA collagen isoform. Bulk RNA-Seq at day 7 of chondrogenesis revealed upregulation of pro-anabolic genes such as COL2A1, COL9A2/3, COL11A2 and SNORC. Of the genes significantly downregulated by miR-181a/b-1, aquaporin 9 (AQP9) was the top hit which decreased in expression by over 14-fold. While a predicted target of miR-181a/b, our data showed that this miRNA cluster likely suppresses AQP9 via an indirect targeting mechanism. Conclusions Our findings demonstrate a pro-differentiation/anabolic function for miR-181a/b-1 during in vitro chondrogenesis that may be due, in part, to suppression of AQP9. Future studies are needed to elucidate the role of this membrane channel protein in regulating chondrocyte differentiation and homeostasis.
Collapse
Affiliation(s)
- Austin Bell-Hensley
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Lei Cai
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Jin Liu
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Kathryn Feeney
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Hongjun Zheng
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Department of Cell Biology & Physiology, Washington University in St. Louis, St. Louis, MO, USA
- Shriners Hospital for Children – St. Louis, St. Louis, MO, USA
| |
Collapse
|
2
|
Tian R, Tong P, He Y, Zang L, Zhou S, Tian Q. Exome sequencing-aided precise diagnosis of four families with type I Stickler syndrome. Mol Genet Genomic Med 2024; 12:e2331. [PMID: 38073514 PMCID: PMC10767595 DOI: 10.1002/mgg3.2331] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/11/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Stickler syndrome is a multisystemic disorder characterized by ophthalmological and non-ophthalmological abnormalities, frequently misdiagnosed due to high clinical heterogeneity. Stickler syndrome type I (STL1) is predominantly caused by mutations in the COL2A1 gene. METHODS Exome sequencing and co-segregation analysis were utilized to scrutinize 35 families with high myopia, and pathogenic mutations were identified. Mutant COL2A1 was overexpressed in cells for mechanistic study. A retrospective genotype-phenotype correlation analysis was further conducted. RESULTS Two novel pathogenic mutations (c.2895+1G>C and c.3505G>A (p.Val1169Ile)) and two reported mutations (c.1597C>T (p.Arg533*) and c.1693C>T (p.Arg565Cys)) in COL2A1 were identified causing STL1. These mutations are all in the G-X-Y triplet, and c.2895+1G>C contributed to aberrant RNA splicing. COL2A1 mutants tended to form large aggregates in the endoplasmic reticulum (ER) and elevated ER stress. Additionally, mutations c.550G>A (p.Ala184Thr) and c.2806G>A (p.Gly936Ser) in COL2A1 were found in high myopia families, but were likely benign, although c.2806G>A (p.Gly936Ser) is on G-X-Y triplet. Moreover, genotype-phenotype correlation analysis revealed that mutations in exon 2 mainly contribute to retinal detachment, whereas mutations in the collagen alpha-1 chain region of COL2A1 tend to cause non-ophthalmologic symptoms. CONCLUSION This study broadens the COL2A1 gene mutation spectrum, provides evidence for ER stress caused by pathogenic COL2A1 mutations and highlights the importance of non-ophthalmological examination in clinical diagnosis of high myopia.
Collapse
Affiliation(s)
- Runyi Tian
- Center for Medical Genetics, School of Life SciencesCentral South UniversityChangshaChina
- Institute of Molecular Precision MedicineXiangya Hospital, Central South UniversityChangshaChina
| | - Ping Tong
- Department of Ophthalmology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yuhong He
- Institute of Molecular Precision MedicineXiangya Hospital, Central South UniversityChangshaChina
| | - Liyu Zang
- Center for Medical Genetics, School of Life SciencesCentral South UniversityChangshaChina
- Hunan Key Laboratory of Medical Genetics, School of Life SciencesCentral South UniversityChangshaChina
- Hunan Key Laboratory of Animal Models for Human Disease, School of Life SciencesCentral South UniversityChangshaChina
| | - Shimin Zhou
- Center for Medical Genetics, School of Life SciencesCentral South UniversityChangshaChina
- Hunan Key Laboratory of Medical Genetics, School of Life SciencesCentral South UniversityChangshaChina
- Hunan Key Laboratory of Animal Models for Human Disease, School of Life SciencesCentral South UniversityChangshaChina
| | - Qi Tian
- Center for Medical Genetics, School of Life SciencesCentral South UniversityChangshaChina
- Hunan Key Laboratory of Medical Genetics, School of Life SciencesCentral South UniversityChangshaChina
- Hunan Key Laboratory of Animal Models for Human Disease, School of Life SciencesCentral South UniversityChangshaChina
| |
Collapse
|
3
|
Perrier-Groult E, Moustaghfir S, Pasdeloup M, Malcor JD, Lafont J, Mallein-Gerin F. Presence of type IIB procollagen in mouse articular cartilage and growth plate is revealed by immuno-histochemical analysis with a novel specific antibody. Matrix Biol Plus 2023; 18:100130. [PMID: 36941890 PMCID: PMC10024168 DOI: 10.1016/j.mbplus.2023.100130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023] Open
Abstract
Type II collagen is the major fibrillar collagen in cartilage. It is synthesized in the form of precursors (procollagens) containing N- and C-terminal propeptides. The two main isoforms of type II procollagen protein are type IIA and type IIB procollagens, generated in a developmentally regulated manner by differential splicing of the primary gene transcript. Isoform IIA contains exon 2 and is produced mainly by chondroprogenitor cells while isoform IIB lacks exon 2 and is produced by differentiated chondrocytes. Thus, expression of IIA and IIB isoforms are reliable markers for identifying the differentiation status of chondrocytes but their biological function in the context of skeletal development is still not yet fully understood. Specific antibodies against IIA and IIB procollagen isoforms are already available. In this study, a synthetic peptide spanning the junction between exon 1 and exon 3 of the murine sequence was used as an immunogen to generate a novel rabbit polyclonal antibody directed against procollagen IIB. Characterization of this antibody by Western-blotting analysis of murine cartilage extracts and ELISA tests demonstrated its specificity to the type IIB isoform. Furthermore, by immunohistochemical studies, this antibody allowed the detection of procollagen IIB in embryonic cartilage as well as in articular cartilage and growth plate of young adult mice. Interestingly, this is the first antibody that has allowed the detection of procollagen IIB at both the intra- and extracellular level. This antibody therefore represents an interesting new tool for monitoring the spatial and temporal distribution of IIB isoforms in skeletal tissues of mouse models and for tracking the trafficking and processing of type IIB procollagen.
Collapse
Affiliation(s)
| | | | | | | | | | - Frédéric Mallein-Gerin
- Corresponding author at: Laboratory of Tissue Biology and Therapeutic Engineering, LBTI CNRS UMR 5305, IBCP building, 7 Passage du Vercors, 69367 Lyon Cedex 07, France.
| |
Collapse
|
4
|
Sorvina A, Antoniou M, Esmaeili Z, Kochetkova M. Unusual Suspects: Bone and Cartilage ECM Proteins as Carcinoma Facilitators. Cancers (Basel) 2023; 15:cancers15030791. [PMID: 36765749 PMCID: PMC9913341 DOI: 10.3390/cancers15030791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The extracellular matrix (ECM) is the complex three-dimensional network of fibrous proteins and proteoglycans that constitutes an essential part of every tissue to provide support for normal tissue homeostasis. Tissue specificity of the ECM in its topology and structure supports unique biochemical and mechanical properties of each organ. Cancers, like normal tissues, require the ECM to maintain multiple processes governing tumor development, progression and spread. A large body of experimental and clinical evidence has now accumulated to demonstrate essential roles of numerous ECM components in all cancer types. Latest findings also suggest that multiple tumor types express, and use to their advantage, atypical ECM components that are not found in the cancer tissue of origin. However, the understanding of cancer-specific expression patterns of these ECM proteins and their exact roles in selected tumor types is still sketchy. In this review, we summarize the latest data on the aberrant expression of bone and cartilage ECM proteins in epithelial cancers and their specific functions in the pathogenesis of carcinomas and discuss future directions in exploring the utility of this selective group of ECM components as future drug targets.
Collapse
|
5
|
Rekad Z, Izzi V, Lamba R, Ciais D, Van Obberghen-Schilling E. The Alternative Matrisome: alternative splicing of ECM proteins in development, homeostasis and tumor progression. Matrix Biol 2022; 111:26-52. [DOI: 10.1016/j.matbio.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
|
6
|
Liu X, Dong H, Gong Y, Wang L, Zhang R, Zheng T, Zheng Y, Shen S, Zheng C, Tian M, Liu N, Zhang X, Zheng QY. A Novel missense mutation of
COL2A1
gene in a large family with stickler syndrome type I. J Cell Mol Med 2022; 26:1530-1539. [PMID: 35064646 PMCID: PMC8899160 DOI: 10.1111/jcmm.17187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 03/27/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
Stickler syndrome type I (STL1, MIM 108300) is characterized by ocular, auditory, skeletal and orofacial manifestations. Nonsyndromic ocular STL1 (MIM 609508) characterized by predominantly ocular features is a subgroup of STL1, and it is inherited in an autosomal dominant manner. In this study, a novel variant c.T100>C (p.Cys34Arg) in COL2A1 related to a large nonsyndromic ocular STL1 family was identified through Exome sequencing (ES). Bioinformatics analysis indicated that the variant site was highly conserved and the pathogenic mechanism of this variant may involve in affected structure of chordin‐like cysteine‐rich (CR) repeats of ColIIA. Minigene assay indicated that this variant did not change alternative splicing of exon2 of COL2A1. Moreover, the nonsyndromic ocular STL1 family with 16 affected members showed phenotype variability and certain male gender trend. None of the family members had hearing loss. Our findings would expand the knowledge of the COL2A1 mutation spectrum, and phenotype variability associated with nonsyndromic ocular STL1. Search for genetic modifiers and related molecular pathways leading to the phenotype variation warrants further studies.
Collapse
Affiliation(s)
- Xiuzhen Liu
- Medical Research Center Binzhou Medical University Hospital Binzhou China
| | - Hongliang Dong
- Medical Research Center Binzhou Medical University Hospital Binzhou China
| | - Yuerong Gong
- Department of Ophthalmology Binzhou Medical University Hospital Binzhou China
| | - Lianqing Wang
- Center of Translational Medicine Central Hospital of Zibo Zibo China
| | - Ruyi Zhang
- Department of Anesthesiology Binzhou Medical University Hospital Binzhou China
| | - Tihua Zheng
- Hearing and Speech Rehabilitation Institute College of Special Education Binzhou Medical University Yantai China
| | - Yuxi Zheng
- Department of Ophthalmology Duke University Durham North Carolina USA
| | - Shuang Shen
- Hearing and Speech Rehabilitation Institute College of Special Education Binzhou Medical University Yantai China
| | - Chelsea Zheng
- Department of Otolaryngology‐HNS Case Western Reserve University Cleveland USA
| | - Mingming Tian
- Medical Research Center Binzhou Medical University Hospital Binzhou China
| | - Naiguo Liu
- Medical Research Center Binzhou Medical University Hospital Binzhou China
| | - Xiaolin Zhang
- Department of Otolaryngology/Head and Neck Surgery Institute of Otolaryngology Binzhou Medical University Hospital Binzhou China
| | - Qing Yin Zheng
- Department of Otolaryngology‐HNS Case Western Reserve University Cleveland USA
| |
Collapse
|
7
|
McAlinden A, Hudson DM, Fernandes AA, Ravindran S, Fernandes RJ. Biochemical and immuno-histochemical localization of type IIA procollagen in annulus fibrosus of mature bovine intervertebral disc. Matrix Biol Plus 2021; 12:100077. [PMID: 34337380 PMCID: PMC8313739 DOI: 10.1016/j.mbplus.2021.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 11/05/2022] Open
Abstract
For next generation tissue-engineered constructs and regenerative medicine to succeed clinically, the basic biology and extracellular matrix composition of tissues that these repair techniques seek to restore have to be fully determined. Using the latest reagents coupled with tried and tested methodologies, we continue to uncover previously undetected structural proteins in mature intervertebral disc. In this study we show that the “embryonic” type IIA procollagen isoform (containing a cysteine-rich amino propeptide) was biochemically detectable in the annulus fibrosus of both calf and mature steer caudal intervertebral discs, but not in the nucleus pulposus where the type IIB isoform was predominantly localized. Specifically, the triple-helical type IIA procollagen isoform immunolocalized in the outer margins of the inner annulus fibrosus. Triple helical processed type II collagen exclusively localized within the inter-lamellae regions and with type IIA procollagen in the intra-lamellae regions. Mass spectrometry of the α1(II) collagen chains from the region where type IIA procollagen localized showed high 3-hydroxylation of Proline-944, a post-translational modification that is correlated with thin collagen fibrils as in the nucleus pulposus. The findings implicate small diameter fibrils of type IIA procollagen in select regions of the annulus fibrosus where it likely contributes to the organization of collagen bundles and structural properties within the type I-type II collagen transition zone.
Collapse
Affiliation(s)
- Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO, USA.,Department of Cell Biology & Physiology, Washington University School of Medicine, St Louis, MO, USA.,Shriners Hospitals for Children- St Louis, MO, USA
| | - David M Hudson
- Department of Orthopaedic & Sports Medicine, University of Washington, Seattle, WA, USA
| | - Aysel A Fernandes
- Department of Orthopaedic & Sports Medicine, University of Washington, Seattle, WA, USA
| | - Soumya Ravindran
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Russell J Fernandes
- Department of Orthopaedic & Sports Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Xing Z, Jiang X, Si Q, Finne-Wistrand A, Liu B, Xue Y, Mustafa K. Endochondral Ossification Induced by Cell Transplantation of Endothelial Cells and Bone Marrow Stromal Cells with Copolymer Scaffold Using a Rat Calvarial Defect Model. Polymers (Basel) 2021; 13:polym13091521. [PMID: 34065081 PMCID: PMC8125936 DOI: 10.3390/polym13091521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
It has been recently reported that, in a rat calvarial defect model, adding endothelial cells (ECs) to a culture of bone marrow stromal cells (BMSCs) significantly enhanced bone formation. The aim of this study is to further investigate the ossification process of newly formed osteoid and host response to the poly(L-lactide-co-1,5-dioxepan-2-one) [poly(LLA-co-DXO)] scaffolds based on previous research. Several different histological methods and a PCR Array were applied to evaluate newly formed osteoid after 8 weeks after implantation. Histological results showed osteoid formed in rat calvarial defects and endochondral ossification-related genes, such as dentin matrix acidic phosphoprotein 1 (Dmp1) and collagen type II, and alpha 1 (Col2a1) exhibited greater expression in the CO (implantation with BMSC/EC/Scaffold constructs) than the BMSC group (implantation with BMSC/Scaffold constructs) as demonstrated by PCR Array. It was important to notice that cartilage-like tissue formed in the pores of the copolymer scaffolds. In addition, multinucleated giant cells (MNGCs) were observed surrounding the scaffold fragments. It was concluded that the mechanism of ossification might be an endochondral ossification process when the copolymer scaffolds loaded with co-cultured ECs/BMSCs were implanted into rat calvarial defects. MNGCs were induced by the poly(LLA-co-DXO) scaffolds after implantation, and more specific in vivo studies are needed to gain a better understanding of host response to copolymer scaffolds.
Collapse
Affiliation(s)
- Zhe Xing
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; (Z.X.); (X.J.); (Q.S.)
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway;
| | - Xiaofeng Jiang
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; (Z.X.); (X.J.); (Q.S.)
| | - Qingzong Si
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; (Z.X.); (X.J.); (Q.S.)
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE 100-44 Stockholm, Sweden;
| | - Bin Liu
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; (Z.X.); (X.J.); (Q.S.)
- Correspondence: (B.L.); (Y.X.); Tel.: +86-9318915051 (B.L.); +47-55586519 (Y.X.)
| | - Ying Xue
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway;
- Correspondence: (B.L.); (Y.X.); Tel.: +86-9318915051 (B.L.); +47-55586519 (Y.X.)
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway;
| |
Collapse
|
9
|
Wang Z, Lu A. Cartilage type IIB procollagen NH<sub>2</sub>-propeptide, PIIBNP, inhibits angiogenesis. AIMS MOLECULAR SCIENCE 2021. [DOI: 10.3934/molsci.2021022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
<abstract>
<p>Cartilage tissue is avascular and resistant to tumor invasion, but the basis for these properties is still unclear. Here we report that the NH<sub>2</sub>-propeptide of type IIB procollagen (PIIBNP), a product of collagen biosynthesis, is capable of inhibiting angiogenesis both <italic>in vitro</italic> and <italic>in vivo</italic>. PIIBNP inhibits tube formation in human umbilical vein cells (HUVEC), inhibits endogenous endothelial cell outgrowth in mouse aortic ring angiogenesis bioassay and is anti-angiogenic in the mouse cornea angiogenesis assay. As α<sub>V</sub>ß<sub>3</sub> and α<sub>V</sub>ß<sub>5</sub> integrins are expressed primarily in endothelial cells, cancer cells and osteoclasts, but not in normal chondrocytes and PIIBNP binds to cell surface integrin α<sub>V</sub>ß<sub>3</sub> and αVß<sub>5</sub>, we propose that natural occurring PIIBNP protects cartilage by targeting endothelial cells during chondrogenesis, thus inhibiting angiogenesis, and rendering the tissue avascular.</p>
</abstract>
Collapse
|
10
|
Wang D, Gao F, Hu F, Li J, Zhang S, Xu P, Chang Q, Jiang R, Wu J. Next-generation sequencing-aided precise diagnosis of Stickler syndrome type I. Acta Ophthalmol 2020; 98:e440-e446. [PMID: 31736238 DOI: 10.1111/aos.14302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/15/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE To explore an early, rapid and precise diagnosis of Stickler syndrome type I (STL1) and to enrich the spectrum of COL2A1 mutations in the Chinese population, which is poorly studied at present. METHODS In the current study, we analysed 115 patients with high myopia by next-generation sequencing and identified five STL1 patients from four unrelated Chinese families. The clinical features of all patients were reviewed in detail. RESULTS Four variants of COL2A1 were identified, including two novel variants (c.1435delG and c.184delG) and two previously reported variants (c.1221+1G>A and c.1030C>T). Three variants caused premature termination codons which were common in STL1. In addition, we proposed a new diagnostic tactic to improve early diagnostics of STL1 in patients. CONCLUSION In this study, our findings expanded the spectrum of COL2A1 mutations with two novel variants and provided a new diagnostic tactic for reference, which was of great significance. Precise diagnosis on the basis of clinical manifestations and genetic testing will become the gold standard to diagnose inherited ocular disorders or syndromes in the future.
Collapse
Affiliation(s)
- Dan‐Dan Wang
- Eye Institute Eye and ENT Hospital Shanghai Medical College Fudan University Shanghai China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality Shanghai China
- Key Laboratory of Myopia (Fudan University) Chinese Academy of Medical Sciences National Health Commission Shanghai China
| | - Feng‐Juan Gao
- Eye Institute Eye and ENT Hospital Shanghai Medical College Fudan University Shanghai China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality Shanghai China
- Key Laboratory of Myopia (Fudan University) Chinese Academy of Medical Sciences National Health Commission Shanghai China
| | - Fang‐Yuan Hu
- Eye Institute Eye and ENT Hospital Shanghai Medical College Fudan University Shanghai China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality Shanghai China
- Key Laboratory of Myopia (Fudan University) Chinese Academy of Medical Sciences National Health Commission Shanghai China
| | | | - Sheng‐Hai Zhang
- Eye Institute Eye and ENT Hospital Shanghai Medical College Fudan University Shanghai China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality Shanghai China
- Key Laboratory of Myopia (Fudan University) Chinese Academy of Medical Sciences National Health Commission Shanghai China
| | - Ping Xu
- Eye Institute Eye and ENT Hospital Shanghai Medical College Fudan University Shanghai China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality Shanghai China
- Key Laboratory of Myopia (Fudan University) Chinese Academy of Medical Sciences National Health Commission Shanghai China
| | - Qing Chang
- Eye Institute Eye and ENT Hospital Shanghai Medical College Fudan University Shanghai China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality Shanghai China
- Key Laboratory of Myopia (Fudan University) Chinese Academy of Medical Sciences National Health Commission Shanghai China
| | - Rui Jiang
- Eye Institute Eye and ENT Hospital Shanghai Medical College Fudan University Shanghai China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality Shanghai China
- Key Laboratory of Myopia (Fudan University) Chinese Academy of Medical Sciences National Health Commission Shanghai China
| | - Ji‐Hong Wu
- Eye Institute Eye and ENT Hospital Shanghai Medical College Fudan University Shanghai China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality Shanghai China
- Key Laboratory of Myopia (Fudan University) Chinese Academy of Medical Sciences National Health Commission Shanghai China
| |
Collapse
|
11
|
Expression and function of cartilage-derived pluripotent cells in joint development and repair. Stem Cell Res Ther 2020; 11:111. [PMID: 32160923 PMCID: PMC7066750 DOI: 10.1186/s13287-020-01604-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 02/08/2023] Open
Abstract
Cartilage-derived pluripotent cells reside in hyaline cartilage and fibrocartilage. These cells have the potential for multidirectional differentiation; can undergo adipogenesis, osteogenesis, and chondrogenesis; and have been classified as mesenchymal stem cells (MSCs) conforming to the minimal criteria of the International Society for Cellular Therapy. Cartilage tissue is prone to injury and is difficult to repair. As cartilage-derived pluripotent cells are the closest cell source to cartilage tissue, they are expected to have the strongest ability to differentiate into cartilage compared to other MSCs. This review focuses on the organizational distribution, expression, and function of cartilage-derived pluripotent cells in joint development and repair to help explore the therapeutic potential of in situ cartilage-derived pluripotent cells for joint cartilage repair.
Collapse
|
12
|
Nguyen JKB, Eames BF. Evolutionary repression of chondrogenic genes in the vertebrate osteoblast. FEBS J 2020; 287:4354-4361. [PMID: 31994313 DOI: 10.1111/febs.15228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/30/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022]
Abstract
Gene expression in extant animals might reveal how skeletal cells have evolved over the past 500 million years. The cells that make up cartilage (chondrocytes) and bone (osteoblasts) express many of the same genes, but they also have important molecular differences that allow us to distinguish them as separate cell types. For example, traditional studies of later-diverged vertebrates, such as mouse and chick, defined the genes Col2a1 and sex-determining region Y-box 9 as cartilage-specific. However, recent studies have shown that osteoblasts of earlier-diverged vertebrates, such as frog, gar, and zebrafish, express these 'chondrogenic' markers. In this review, we examine the resulting hypothesis that chondrogenic gene expression became repressed in osteoblasts over evolutionary time. The amphibian is an underexplored skeletal model that is uniquely positioned to address this hypothesis, especially given that it diverged when life transitioned from water to land. Given the relationship between phylogeny and ontogeny, a novel discovery for skeletal cell evolution might bolster our understanding of skeletal cell development.
Collapse
Affiliation(s)
- Jason K B Nguyen
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - B Frank Eames
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
13
|
Ye F, Xu H, Yin H, Zhao X, Li D, Zhu Q, Wang Y. The role of BMP6 in the proliferation and differentiation of chicken cartilage cells. PLoS One 2019; 14:e0204384. [PMID: 31260450 PMCID: PMC6602178 DOI: 10.1371/journal.pone.0204384] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 05/28/2019] [Indexed: 11/18/2022] Open
Abstract
Previous studies have indicated that bone morphogenetic protein (BMP) 6 may play an important role in skeletal system development and progression. However, the mechanism underlying the effects of BMP6 in cartilage cell proliferation and differentiation remains unknown. In this study, cartilage cells were isolated from shanks of chicken embryos and treated with different concentrations of Growth Hormone. Cell proliferation potential was assessed using real-time polymerase chain reaction (RT-PCR), western blotting and CCK-8 assays in vitro. The results showed that at 48 h, the Collagen II and BMP6 expression levels in 50 ng/μl GH-treated cartilage cells were significantly higher than in groups treated with 100 ng/μl or 200 ng/μl GH. We further observed that knockdown of BMP6 in cartilage cells led to significantly decreased expression mRNAs and proteins of Collagen II and Collagen X. Moreover, the suppression of BMP6 expression by a specific siRNA led to significantly decreased expression mRNA levels of IGF1R, JAK2, PKC, PTH, IHH and PTHrP and decreased protein levels of PKC, IHH and PTHrP. Taken together, our data suggest that BMP6 may play a critical role in chicken cartilage cell proliferation and differentiation through the regulation of IGF1, JAK2, PKC, PTH, and IHH-PTHrP signaling pathways.
Collapse
Affiliation(s)
- Fei Ye
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - Hengyong Xu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - Huadong Yin
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Zhao
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - Diyan Li
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - Qing Zhu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
14
|
Charlier E, Deroyer C, Ciregia F, Malaise O, Neuville S, Plener Z, Malaise M, de Seny D. Chondrocyte dedifferentiation and osteoarthritis (OA). Biochem Pharmacol 2019; 165:49-65. [PMID: 30853397 DOI: 10.1016/j.bcp.2019.02.036] [Citation(s) in RCA: 280] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/28/2019] [Indexed: 02/08/2023]
|
15
|
Ihanamäki T, Metsäranta M, Rintala M, Vuorio E, Sandberg-Lall M. Ocular Abnormalities in Transgenic Mice Harboring Mutations in the Type Ii Collagen Gene. Eur J Ophthalmol 2018; 6:427-35. [PMID: 8997587 DOI: 10.1177/112067219600600415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE To characterize the morphological changes in the eyes of transgenic mice harboring different mutations in type II collagen gene to elucidate the function of this collagen in the eye, and to find out whether these animals could function as models for the human arthro-ophthalmopathies of the Kniest, Stickler and Wagner types. METHODS Three genetically engineered mouse lines representing two types of mutations in the triple-helical domain of type II collagen and their nontransgenic littermates used as controls were analyzed on day 18.5 embryonic development. After genotyping by polymerase chain reaction (PCR) and Southern hybridization the embryos were prepared for routine histology. Polarization microscopy was done on hyaluronidase-treated sections. RESULTS Histological analysis revealed several genotype-dependent abnormalities in the eyes of the transgenic mice. Most striking changes were observed in the vitreous architecture; in one line of mice the vitreous was tightly packed in the posterior region of the vitreous space with thick fibrils, empty cavities and dense membrane-like material. The other mutation resulted in reduced filament density of the vitreous. In the most severely affected phenotype the internal limiting membrane was detached from the retinal layers and was markedly thickened, and the posterior lens capsule was thickened. The anterior chamber was shallow or absent in all transgenic lines but was well formed in the normal animals. Changes were also observed in the lens, corneal and scleral structures. CONCLUSIONS The ocular changes observed in transgenic mice harboring mutations in type II collagen gene show similarities to the human ocular findings in Kniest dysplasia, and in Stickler and Wagner syndromes. We therefore propose that these animals could serve as models for systematic analysis of vitreoretinal degeneration and other abnormalities, as seen in these syndromes.
Collapse
Affiliation(s)
- T Ihanamäki
- University of Turku, Department of Ophthalmology, Findland
| | | | | | | | | |
Collapse
|
16
|
Improvement of the Chondrocyte-Specific Phenotype upon Equine Bone Marrow Mesenchymal Stem Cell Differentiation: Influence of Culture Time, Transforming Growth Factors and Type I Collagen siRNAs on the Differentiation Index. Int J Mol Sci 2018; 19:ijms19020435. [PMID: 29389887 PMCID: PMC5855657 DOI: 10.3390/ijms19020435] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 02/06/2023] Open
Abstract
Articular cartilage is a tissue characterized by its poor intrinsic capacity for self-repair. This tissue is frequently altered upon trauma or in osteoarthritis (OA), a degenerative disease that is currently incurable. Similar musculoskeletal disorders also affect horses and OA incurs considerable economic loss for the equine sector. In the view to develop new therapies for humans and horses, significant progress in tissue engineering has led to the emergence of new generations of cartilage therapy. Matrix-associated autologous chondrocyte implantation is an advanced 3D cell-based therapy that holds promise for cartilage repair. This study aims to improve the autologous chondrocyte implantation technique by using equine mesenchymal stem cells (MSCs) from bone marrow differentiated into chondrocytes that can be implanted in the chondral lesion. The optimized protocol relies on culture under hypoxia within type I/III collagen sponges. Here, we explored three parameters that influence MSC differentiation: culture times, growth factors and RNA interference strategies. Our results suggest first that an increase in culture time from 14 to 28 or 42 days lead to a sharp increase in the expression of chondrocyte markers, notably type II collagen (especially the IIB isoform), along with a concomitant decrease in HtrA1 expression. Nevertheless, the expression of type I collagen also increased with longer culture times. Second, regarding the growth factor cocktail, TGF-β3 alone showed promising result but the previously tested association of BMP-2 and TGF-β1 better limits the expression of type I collagen. Third, RNA interference targeting Col1a2 as well as Col1a1 mRNA led to a more significant knockdown, compared with a conventional strategy targeting Col1a1 alone. This chondrogenic differentiation strategy showed a strong increase in the Col2a1:Col1a1 mRNA ratio in the chondrocytes derived from equine bone marrow MSCs, this ratio being considered as an index of the functionality of cartilage. These data provide evidence of a more stable chondrocyte phenotype when combining Col1a1 and Col1a2 siRNAs associated to a longer culture time in the presence of BMP-2 and TGF-β1, opening new opportunities for preclinical trials in the horse. In addition, because the horse is an excellent model for human articular cartilage disorders, the equine therapeutic approach developed here can also serve as a preclinical step for human medicine.
Collapse
|
17
|
Xu ER, Blythe EE, Fischer G, Hyvönen M. Structural analyses of von Willebrand factor C domains of collagen 2A and CCN3 reveal an alternative mode of binding to bone morphogenetic protein-2. J Biol Chem 2017; 292:12516-12527. [PMID: 28584056 DOI: 10.1074/jbc.m117.788992] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/18/2017] [Indexed: 01/10/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are secreted growth factors that promote differentiation processes in embryogenesis and tissue development. Regulation of BMP signaling involves binding to a variety of extracellular proteins, among which are many von Willebrand factor C (vWC) domain-containing proteins. Although the crystal structure of the complex of crossveinless-2 (CV-2) vWC1 and BMP-2 previously revealed one mode of the vWC/BMP-binding mechanism, other vWC domains may bind to BMP differently. Here, using X-ray crystallography, we present for the first time structures of the vWC domains of two proteins thought to interact with BMP-2: collagen IIA and matricellular protein CCN3. We found that these two vWC domains share a similar N-terminal fold that differs greatly from that in CV-2 vWC, which comprises its BMP-2-binding site. We analyzed the ability of these vWC domains to directly bind to BMP-2 and detected an interaction only between the collagen IIa vWC and BMP-2. Guided by the collagen IIa vWC domain crystal structure and conservation of surface residues among orthologous domains, we mapped the BMP-binding epitope on the subdomain 1 of the vWC domain. This binding site is different from that previously observed in the complex between CV-2 vWC and BMP-2, revealing an alternative mode of interaction between vWC domains and BMPs.
Collapse
Affiliation(s)
- Emma-Ruoqi Xu
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Emily E Blythe
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Gerhard Fischer
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom.
| |
Collapse
|
18
|
Jayasuriya CT, Chen Y, Liu W, Chen Q. The influence of tissue microenvironment on stem cell-based cartilage repair. Ann N Y Acad Sci 2016; 1383:21-33. [PMID: 27464254 PMCID: PMC5599120 DOI: 10.1111/nyas.13170] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/07/2016] [Accepted: 06/13/2016] [Indexed: 12/26/2022]
Abstract
Mesenchymal stem/progenitor cells and induced pluripotent stem cells have become viable cell sources for prospective cell-based cartilage engineering and tissue repair. The development and function of stem cells are influenced by the tissue microenvironment. Specifically, the local tissue microenvironment can dictate how stem cells integrate into the existing tissue matrix and how successfully they can restore function to the damaged area in question. This review focuses on the microenvironmental features of articular cartilage and how they influence stem cell-based cartilage tissue repair. Also discussed are current tissue-engineering strategies used in combination with cell-based therapies, all of which are designed to mimic the natural properties of cartilage tissue in order to achieve a better healing response.
Collapse
Affiliation(s)
- Chathuraka T Jayasuriya
- Department of Orthopaedics, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island.,Bone and Joint Research Center, The First Affiliated Hospital, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yupeng Chen
- Department of Orthopaedics, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island.,Bone and Joint Research Center, The First Affiliated Hospital, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Wenguang Liu
- Bone and Joint Research Center, The First Affiliated Hospital, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qian Chen
- Department of Orthopaedics, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island.,Bone and Joint Research Center, The First Affiliated Hospital, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
19
|
Alternative Splicing Shapes the Phenotype of a Mutation in BBS8 To Cause Nonsyndromic Retinitis Pigmentosa. Mol Cell Biol 2015; 35:1860-70. [PMID: 25776555 DOI: 10.1128/mcb.00040-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/10/2015] [Indexed: 01/27/2023] Open
Abstract
Bardet-Biedl syndrome (BBS) is a genetic disorder affecting multiple systems and organs in the body. Several mutations in genes associated with BBS affect only photoreceptor cells and cause nonsyndromic retinitis pigmentosa (RP), raising the issue of why certain mutations manifest as a systemic disorder whereas other changes in the same gene affect only a specific cell type. Here, we show that cell-type-specific alternative splicing is responsible for confining the phenotype of the A-to-G substitution in the 3' splice site of BBS8 exon 2A (IVS1-2A>G mutation) in the BBS8 gene to photoreceptor cells. The IVS1-2A>G mutation leads to missplicing of BBS8 exon 2A, producing a frameshift in the BBS8 reading frame and thus eliminating the protein specifically in photoreceptor cells. Cell types other than photoreceptors skip exon 2A from the mature BBS8 transcript, which renders them immune to the mutation. We also show that the splicing of Bbs8 exon 2A in photoreceptors is directed exclusively by redundant splicing enhancers located in the adjacent introns. These intronic sequences are sufficient for photoreceptor-cell-specific splicing of heterologous exons, including an exon with a randomized sequence.
Collapse
|
20
|
Wu SC, Hsiao HF, Ho ML, Hung YL, Chang JK, Wang GJ, Wang CZ. Suppression of discoidin domain receptor 1 expression enhances the chondrogenesis of adipose-derived stem cells. Am J Physiol Cell Physiol 2015; 308:C685-96. [PMID: 25673773 DOI: 10.1152/ajpcell.00398.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/03/2015] [Indexed: 01/17/2023]
Abstract
Effectively directing the chondrogenesis of adipose-derived stem cells (ADSCs) to engineer articular cartilage represents an important challenge in ADSC-based articular cartilage tissue engineering. The discoidin domain receptor 1 (DDR1) has been shown to affect cartilage homeostasis; however, little is known about the roles of DDR1 in ADSC chondrogenesis. In this study, we used the three-dimensional culture pellet culture model system with chondrogenic induction to investigate the roles of DDR1 in the chondrogenic differentiation of human ADSCs (hADSCs). Real-time polymerase chain reaction and Western blot were used to detect the expression of DDRs and chondrogenic genes. Sulfated glycosaminoglycan (sGAG) was detected by Alcian blue and dimethylmethylene blue (DMMB) assays. Terminal deoxy-nucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining was used to assess cell death. During the chondrogenesis of hADSCs, the expression of DDR1 but not DDR2 was significantly elevated. The depletion of DDR1 expression in hADSCs using short hairpin RNA increased the expression of chondrogenic genes (SOX-9, collagen type II, and aggrecan) and cartilaginous matrix deposition (collagen type II and sGAG) and only slightly increased cell death (2-8%). DDR1 overexpression in hADSCs decreased the expression of chondrogenic genes (SOX-9, collagen type II, and aggrecan) and sGAG and enhanced hADSC survival. Moreover, DDR1-depleted hADSCs showed decreased expression of the terminal differentiation genes runt-related transcription factor 2 (Runx2) and matrix metalloproteinase 13 (MMP-13). These results suggest that DDR1 suppression may enhance ADSC chondrogenesis by enhancing the expression of chondrogenic genes and cartilaginous matrix deposition. We proposed that the suppression of DDR1 in ADSCs may be a candidate strategy of genetic modification to optimize ADSC-based articular cartilage tissue engineering.
Collapse
Affiliation(s)
- Shun-Cheng Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsu-Feng Hsiao
- Department of Family Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Mei-Ling Ho
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yung-Li Hung
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Je-Ken Chang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Gwo-Jaw Wang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedic Surgery, University of Virginia, Charlottesville, Virginia; Medical Device Innovation Center, National Cheng-Kung University, Tainan, Taiwan; and Skeleton-Joint Research Center, National Cheng-Kung University, Tainan, Taiwan
| | - Chau-Zen Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan;
| |
Collapse
|
21
|
Abstract
Chondroprogenitor cells are a subpopulation of multipotent progenitors that are primed for chondrogenesis. They are believed to have the biological repertoire to be ideal for cell-based cartilage therapy. In addition to summarizing recent advances in chondroprogenitor cell characterization, this review discusses the projected pros and cons of utilizing chondroprogenitors in regenerative medicine and compares them with that of pre-existing methods, including autologous chondrocyte implantation (ACI) and the utilization of bone marrow derived mesenchymal stem cells (MSCs) for the purpose of cartilage tissue repair.
Collapse
Affiliation(s)
- Chathuraka T Jayasuriya
- Department of Orthopedics, Warren Alpert Medical School of Brown University , Providence, RI , USA
| | | |
Collapse
|
22
|
Pawelczyk T, Sakowicz-Burkiewicz M, Wesserling M, Grden M, Kuczkowski J. Altered response of fibroblasts from human tympanosclerotic membrane to interacting mast cells: implication for tissue remodeling. Int J Biochem Cell Biol 2014; 57:35-44. [PMID: 25310903 DOI: 10.1016/j.biocel.2014.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/05/2014] [Accepted: 10/02/2014] [Indexed: 01/10/2023]
Abstract
Several lines of evidence suggest that a tympanosclerotic (TMS) lesion often develops secondary to acute and chronic otitis media. Histological findings indicate that fibroblasts and inflammatory cells, including mast cells, play a key role in the tympanosclerotic plaque formation. However, details on the functional characteristics of tympanosclerotic fibroblasts (Fs(TMS)) are scanty. Therefore the aim of our study was to examine the activity of human fibroblasts from tympanosclerotic lesions and to evaluate the influence of stimulated by crosslinking of IgE receptor mast cells (HMC-1(FcɛRI)) on fibroblast functional behavior. We observed that fibroblasts from normal tympanic membrane (Fs(TM)) released less TNF-α, TGF-β1 and IL-6 compared to Fs(TMS). Fs(TMS) but not Fs(TM) upon interaction with HMC-1(FcɛRI) released increased quantities of TNF-α and TGF-β1. Exposing the fibroblast to HMC-1(FcɛRI) cells resulted in an increased synthesis of proteins including collagen. We noted that the COL2A1 transcript level increased ∼5- and ∼12-fold in Fs(TM) and Fs(TMS) co-cultured with HMC-1(FcɛRI), respectively. Both Fs(TM) and Fs(TMS) upon maintenance in the primary culture released significant quantities of matrix metalloproteinase 9 (MMP-9). However, Fs(TMS) released ∼5-fold more MMP-9 activity compared to the Fs(TM) cultures. The mast cell-induced release of TNF-α, TGF-β1 and MMP-9 sustained for a longer time in Fs(TMS) cultures compared to Fs(TM). Concluding, our data strongly indicate that increased fibroblast sensitivity to mast cell stimulation greatly contributes to the excessive fibrosis and pathological remodeling of the tympanic membrane. We postulate that the persistency of the Fs(TMS) activated state could be an important factor in the pathogenesis of tympanosclerosis.
Collapse
Affiliation(s)
| | | | | | | | - Jerzy Kuczkowski
- Department of Otolaryngology, Medical University of Gdansk, 80-211 Gdansk, Poland
| |
Collapse
|
23
|
Abstract
Over two decades ago, two isoforms of the type II procollagen gene (COL2A1) were discovered. These isoforms, named IIA and IIB, are generated in a developmentally-regulated manner by alternative splicing of exon 2. Chondroprogenitor cells synthesize predominantly IIA isoforms (containing exon 2) while differentiated chondrocytes produce mainly IIB transcripts (devoid of exon 2). Importantly, this IIA-to-IIB alternative splicing switch occurs only during chondrogenesis. More recently, two other isoforms have been reported (IIC and IID) that also involve splicing of exon 2; these findings highlight the complexities involving regulation of COL2A1 expression. The biological significance of why different isoforms of COL2A1 exist within the context of skeletal development and maintenance is still not completely understood. This review will provide current knowledge on COL2A1 isoform expression during chondrocyte differentiation and what is known about some of the mechanisms that control exon 2 alternative splicing. Utilization of mouse models to address the biological significance of Col2a1 alternative splicing in vivo will also be discussed. From the knowledge acquired to date, some new questions and concepts are now being proposed on the importance of Col2a1 alternative splicing in regulating extracellular matrix assembly and how this may subsequently affect cartilage and endochondral bone quality and function.
Collapse
Affiliation(s)
- Audrey McAlinden
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine , St Louis, MO , USA
| |
Collapse
|
24
|
Changes in type II procollagen isoform expression during chondrogenesis by disruption of an alternative 5' splice site within Col2a1 exon 2. Matrix Biol 2014; 36:51-63. [PMID: 24735995 DOI: 10.1016/j.matbio.2014.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/03/2014] [Accepted: 04/05/2014] [Indexed: 01/18/2023]
Abstract
This study describes a new mechanism controlling the production of alternatively spliced isoforms of type II procollagen (Col2a1) in vivo. During chondrogenesis, precursor chondrocytes predominantly produce isoforms containing alternatively spliced exon 2 (type IIA and IID) while Col2a1 mRNA devoid of exon 2 (type IIB) is the major isoform produced by differentiated chondrocytes. We previously identified an additional Col2a1 isoform containing a truncated exon 2 and premature termination codons in exon 6 (type IIC). This transcript is produced by utilization of another 5' splice site present in exon 2. To determine the role of this IIC splicing event in vivo, we generated transgenic mice containing silent knock-in mutations at the IIC 5' splice site (Col2a1-mIIC), thereby inhibiting production of IIC transcripts. Heterozygous and homozygous knock-in mice were viable and display no overt skeletal phenotype to date. However, RNA expression profiles revealed that chondrocytes in cartilage from an age range of Col2a1-mIIC mice produced higher levels of IIA and IID mRNAs and decreased levels of IIB mRNAs throughout pre-natal and post-natal development, when compared to chondrocytes from littermate control mice. Immunofluorescence analyses showed a clear increase in expression of embryonic type II collagen protein isoforms (i.e. containing the exon 2-encoded cysteine-rich (CR) protein domain) in cartilage extracellular matrix (ECM). Interestingly, at P14, P28 and P56, expression of embryonic Col2a1 isoforms in Col2a1-mIIC mice persisted in the pericellular domain of the ECM in articular and growth plate cartilage. We also show that persistent expression of the exon 2-encoded CR domain in the ECM of post-natal cartilage tissue may be due, in part, to the embryonic form of type XI collagen (the α3 chain of which is also encoded by the Col2a1 gene). In conclusion, expression of the Col2a1 IIC splice form may have a regulatory function in controlling alternative splicing of exon 2 to generate defined proportions of IIA, IID and IIB procollagen isoforms during cartilage development. Future studies will involve ultrastructural and biomechanical analysis of the collagen ECM to determine the effects of persistent mis-expression of embryonic collagen isoforms in mature cartilage tissue.
Collapse
|
25
|
Cartilage tissue engineering: molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. Biochim Biophys Acta Gen Subj 2014; 1840:2414-40. [PMID: 24608030 DOI: 10.1016/j.bbagen.2014.02.030] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 02/06/2014] [Accepted: 02/26/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Articular cartilage defects are a veritable therapeutic problem because therapeutic options are very scarce. Due to the poor self-regeneration capacity of cartilage, minor cartilage defects often lead to osteoarthritis. Several surgical strategies have been developed to repair damaged cartilage. Autologous chondrocyte implantation (ACI) gives encouraging results, but this cell-based therapy involves a step of chondrocyte expansion in a monolayer, which results in the loss in the differentiated phenotype. Thus, despite improvement in the quality of life for patients, reconstructed cartilage is in fact fibrocartilage. Successful ACI, according to the particular physiology of chondrocytes in vitro, requires active and phenotypically stabilized chondrocytes. SCOPE OF REVIEW This review describes the unique physiology of cartilage, with the factors involved in its formation, stabilization and degradation. Then, we focus on some of the most recent advances in cell therapy and tissue engineering that open up interesting perspectives for maintaining or obtaining the chondrogenic character of cells in order to treat cartilage lesions. MAJOR CONCLUSIONS Current research involves the use of chondrocytes or progenitor stem cells, associated with "smart" biomaterials and growth factors. Other influential factors, such as cell sources, oxygen pressure and mechanical strain are considered, as are recent developments in gene therapy to control the chondrocyte differentiation/dedifferentiation process. GENERAL SIGNIFICANCE This review provides new information on the mechanisms regulating the state of differentiation of chondrocytes and the chondrogenesis of mesenchymal stem cells that will lead to the development of new restorative cell therapy approaches in humans. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
|
26
|
Neacsu CD, Ko YP, Tagariello A, Røkenes Karlsen K, Neiss WF, Paulsson M, Wagener R. Matrilin-1 is essential for zebrafish development by facilitating collagen II secretion. J Biol Chem 2013; 289:1505-18. [PMID: 24293366 DOI: 10.1074/jbc.m113.529933] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Matrilin-1 is the prototypical member of the matrilin protein family and is highly expressed in cartilage. However, gene targeting of matrilin-1 in mouse did not lead to pronounced phenotypes. Here we used the zebrafish as an alternative model to study matrilin function in vivo. Matrilin-1 displays a multiphasic expression during zebrafish development. In an early phase, with peak expression at about 15 h post-fertilization, matrilin-1 is present throughout the zebrafish embryo with exception of the notochord. Later, when the skeleton develops, matrilin-1 is expressed mainly in cartilage. Morpholino knockdown of matrilin-1 results both in overall growth defects and in disturbances in the formation of the craniofacial cartilage, most prominently loss of collagen II deposition. In fish with mild phenotypes, certain cartilage extracellular matrix components were present, but the tissue did not show features characteristic for cartilage. The cells showed endoplasmic reticulum aberrations but no activation of XBP-1, a marker for endoplasmic reticulum stress. In severe phenotypes nearly all chondrocytes died. During the early expression phase the matrilin-1 knockdown had no effects on cell morphology, but increased cell death was observed. In addition, the broad deposition of collagen II was largely abolished. Interestingly, the early phenotype could be rescued by the co-injection of mRNA coding for the von Willebrand factor C domain of collagen IIα1a, indicating that the functional loss of this domain occurs as a consequence of matrilin-1 deficiency. The results show that matrilin-1 is indispensible for zebrafish cartilage formation and plays a role in the early collagen II-dependent developmental events.
Collapse
|
27
|
Characterization of a murine type IIB procollagen-specific antibody. Matrix Biol 2013; 34:154-60. [PMID: 24211541 DOI: 10.1016/j.matbio.2013.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/25/2013] [Accepted: 10/30/2013] [Indexed: 12/20/2022]
Abstract
Type II collagen is the major collagenous component of the cartilage extracellular matrix; formation of a covalently cross-linked type II collagen network provides cartilage with important tensile properties. The Col2a1 gene is encoded by 54 exons, of which exon 2 is subject to alternative splicing, resulting in different isoforms named IIA, IIB, IIC and IID. The two major procollagen protein isoforms are type IIA and type IIB procollagen. Type IIA procollagen mRNA contains exon 2 and is generated predominantly by chondroprogenitor cells and other non-cartilaginous tissues. Differentiated chondrocytes generate type IIB procollagen, devoid of exon 2. Although type IIA procollagen is produced in certain non-collagenous tissues during development, this developmentally-regulated alternative splicing switch to type IIB procollagen is restricted to cartilage cells. Though a much studied and characterized molecule, the importance of the various type II collagen protein isoforms in cartilage development and homeostasis is still not completely understood. Effective antibodies against specific epitopes of these isoforms can be useful tools to decipher function. However, most type II collagen antibodies to date recognize either all isoforms or the IIA procollagen isoform. To specifically identify the murine type IIB procollagen, we have generated a rabbit antibody (termed IIBN) directed to a peptide sequence that spans the murine exon 1-3 peptide junction. Characterization of the affinity-purified antibody by western blotting of collagens extracted from wild type murine cartilage or cartilage from Col2a1(+ex2) knock-in mice (which generates predominantly the type IIA procollagen isoform) demonstrated that the IIBN antibody is specific to the type IIB procollagen isoform. IIBN antibody was also able to detect the native type IIB procollagen in the hypertrophic chondrocytes of the wild type growth plate, but not in those of the Col2a1(+ex2) homozygous knock-in mice, by both immunofluorescence and immunohistochemical studies. Thus the IIBN antibody will permit an in-depth characterization of the distribution of IIB procollagen isoform in mouse skeletal tissues. In addition, this antibody will be an important reagent for characterizing mutant type II collagen phenotypes and for monitoring type II procollagen processing and trafficking.
Collapse
|
28
|
McAlinden A, Traeger G, Hansen U, Weis MA, Ravindran S, Wirthlin L, Eyre DR, Fernandes RJ. Molecular properties and fibril ultrastructure of types II and XI collagens in cartilage of mice expressing exclusively the α1(IIA) collagen isoform. Matrix Biol 2013; 34:105-13. [PMID: 24113490 DOI: 10.1016/j.matbio.2013.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 01/26/2023]
Abstract
Until now, no biological tools have been available to determine if a cross-linked collagen fibrillar network derived entirely from type IIA procollagen isoforms, can form in the extracellular matrix (ECM) of cartilage. Recently, homozygous knock-in transgenic mice (Col2a1(+ex2), ki/ki) were generated that exclusively express the IIA procollagen isoform during post-natal development while type IIB procollagen, normally present in the ECM of wild type mice, is absent. The difference between these Col2a1 isoforms is the inclusion (IIA) or exclusion (IIB) of exon 2 that is alternatively spliced in a developmentally regulated manner. Specifically, chondroprogenitor cells synthesize predominantly IIA mRNA isoforms while differentiated chondrocytes produce mainly IIB mRNA isoforms. Recent characterization of the Col2a1(+ex2) mice has surprisingly shown that disruption of alternative splicing does not affect overt cartilage formation. In the present study, biochemical analyses showed that type IIA collagen extracted from ki/ki mouse rib cartilage can form homopolymers that are stabilized predominantly by hydroxylysyl pyridinoline (HP) cross-links at levels that differed from wild type rib cartilage. The findings indicate that mature type II collagen derived exclusively from type IIA procollagen molecules can form hetero-fibrils with type XI collagen and contribute to cartilage structure and function. Heteropolymers with type XI collagen also formed. Electron microscopy revealed mainly thin type IIA collagen fibrils in ki/ki mouse rib cartilage. Immunoprecipitation and mass spectrometry of purified type XI collagen revealed a heterotrimeric molecular composition of α1(XI)α2(XI)α1(IIA) chains where the α1(IIA) chain is the IIA form of the α3(XI) chain. Since the N-propeptide of type XI collagen regulates type II collagen fibril diameter in cartilage, the retention of the exon 2-encoded IIA globular domain would structurally alter the N-propeptide of type XI collagen. This structural change may subsequently affect the regulatory function of type XI collagen resulting in the collagen fibril and cross-linking differences observed in this study.
Collapse
Affiliation(s)
- Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University, St Louis MO, USA; Department of Cell Biology & Physiology, Washington University, St Louis MO, USA
| | - Geoffrey Traeger
- Department of Orthopaedic & Sports Medicine, University of Washington, Seattle WA, USA
| | - Uwe Hansen
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Germany
| | - Mary Ann Weis
- Department of Orthopaedic & Sports Medicine, University of Washington, Seattle WA, USA
| | - Soumya Ravindran
- Department of Orthopaedic Surgery, Washington University, St Louis MO, USA
| | - Louisa Wirthlin
- Department of Orthopaedic Surgery, Washington University, St Louis MO, USA
| | - David R Eyre
- Department of Orthopaedic & Sports Medicine, University of Washington, Seattle WA, USA
| | - Russell J Fernandes
- Department of Orthopaedic & Sports Medicine, University of Washington, Seattle WA, USA.
| |
Collapse
|
29
|
McAlinden A, Varghese N, Wirthlin L, Chang LW. Differentially expressed microRNAs in chondrocytes from distinct regions of developing human cartilage. PLoS One 2013; 8:e75012. [PMID: 24040378 PMCID: PMC3767648 DOI: 10.1371/journal.pone.0075012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/11/2013] [Indexed: 12/21/2022] Open
Abstract
There is compelling in vivo evidence from reports on human genetic mutations and transgenic mice that some microRNAs (miRNAs) play an important functional role in regulating skeletal development and growth. A number of published in vitro studies also point toward a role for miRNAs in controlling chondrocyte gene expression and differentiation. However, information on miRNAs that may regulate a specific phase of chondrocyte differentiation (i.e. production of progenitor, differentiated or hypertrophic chondrocytes) is lacking. To attempt to bridge this knowledge gap, we have investigated miRNA expression patterns in human embryonic cartilage tissue. Specifically, a developmental time point was selected, prior to endochondral ossification in the embryonic limb, to permit analysis of three distinct populations of chondrocytes. The location of chondroprogenitor cells, differentiated chondrocytes and hypertrophic chondrocytes in gestational day 54-56 human embryonic limb tissue sections was confirmed both histologically and by specific collagen expression patterns. Laser capture microdissection was utilized to separate the three chondrocyte populations and a miRNA profiling study was carried out using TaqMan® OpenArray® Human MicroRNA Panels (Applied Biosystems®). Here we report on abundantly expressed miRNAs in human embryonic cartilage tissue and, more importantly, we have identified miRNAs that are significantly differentially expressed between precursor, differentiated and hypertrophic chondrocytes by 2-fold or more. Some of the miRNAs identified in this study have been described in other aspects of cartilage or bone biology, while others have not yet been reported in chondrocytes. Finally, a bioinformatics approach was applied to begin to decipher developmental cellular pathways that may be regulated by groups of differentially expressed miRNAs during distinct stages of chondrogenesis. Data obtained from this work will serve as an important resource of information for the field of cartilage biology and will enhance our understanding of miRNA-driven mechanisms regulating cartilage and endochondral bone development, regeneration and repair.
Collapse
Affiliation(s)
- Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University, St Louis, Missouri, United States of America
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, United States of America
| | - Nobish Varghese
- Department of Pathology and Immunology, Washington University, St Louis, Missouri, United States of America
| | - Louisa Wirthlin
- Department of Orthopaedic Surgery, Washington University, St Louis, Missouri, United States of America
| | - Li-Wei Chang
- Department of Pathology and Immunology, Washington University, St Louis, Missouri, United States of America
| |
Collapse
|
30
|
Hsu W, Mohyeldin A, Shah SR, Gokaslan ZL, Quinones-Hinojosa A. Role of cancer stem cells in spine tumors: review of current literature. Neurosurgery 2012; 71:117-25. [PMID: 22418583 DOI: 10.1227/neu.0b013e3182532e71] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The management of spinal column tumors continues to be a challenge for clinicians. The mechanisms of tumor recurrence after surgical intervention as well as resistance to radiation and chemotherapy continue to be elucidated. Furthermore, the pathophysiology of metastatic spread remains an area of active investigation. There is a growing body of evidence pointing to the existence of a subset of tumor cells with high tumorigenic potential in many spine cancers that exhibit characteristics similar to those of stem cells. The ability to self-renew and differentiate into multiple lineages is the hallmark of stem cells, and tumor cells that exhibit these characteristics have been described as cancer stem cells (CSCs). The mechanisms that allow nonmalignant stem cells to promote normal developmental programming by way of enhanced proliferation, promotion of angiogenesis, and increased motility may be used by CSCs to fuel carcinogenesis. The purpose of this review is to discuss what is known about the role of CSCs in tumors of the osseous spine. First, this article reviews the fundamental concepts critical to understanding the role of CSCs with respect to chemoresistance, radioresistance, and metastatic disease. This discussion is followed by a review of what is known about the role of CSCs in the most common primary tumors of the osseous spine.
Collapse
Affiliation(s)
- Wesley Hsu
- Department of Neurosurgery, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157-1029, USA.
| | | | | | | | | |
Collapse
|
31
|
Lewis R, Ravindran S, Wirthlin L, Traeger G, Fernandes RJ, McAlinden A. Disruption of the developmentally-regulated Col2a1 pre-mRNA alternative splicing switch in a transgenic knock-in mouse model. Matrix Biol 2012; 31:214-26. [PMID: 22248926 PMCID: PMC3295890 DOI: 10.1016/j.matbio.2011.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/16/2011] [Accepted: 12/19/2011] [Indexed: 12/17/2022]
Abstract
The present study describes the generation of a knock-in mouse model to address the role of type II procollagen (Col2a1) alternative splicing in skeletal development and maintenance. Alternative splicing of Col2a1 precursor mRNA is a developmentally-regulated event that only occurs in chondrogenic tissue. Normally, chondroprogenitor cells synthesize predominantly exon 2-containing mRNA isoforms (type IIA and IID) while Col2a1 mRNA devoid of exon 2 (type IIB) is the major isoform produced by differentiated chondrocytes. Another isoform, IIC, has also been identified that contains a truncated exon 2 and is not translated into protein. The biological significance of this IIA/IID to IIB splicing switch is not known. Utilizing a splice site targeting knock-in approach, a 4 nucleotide mutation was created to convert the 5' splice site of Col2a1 exon 2 from a weak, non-consensus sequence to a strong, consensus splice site. This resulted in apparent expression of only the IIA mRNA isoform, as confirmed in vitro by splicing of a type II procollagen mini-gene containing the 5' splice site mutation. To test the splice site targeting approach in vivo, homozygote mice engineered to retain IIA exon 2 (Col2a1(+ex2)) were generated. Chondrocytes from hindlimb epiphyseal cartilage of homozygote mice were shown to express only IIA mRNA and protein at all pre- and post-natal developmental stages analyzed (E12.5, E16.5, P0, P3, P7, P14, P28 and P70). As expected, type IIB procollagen was the major isoform produced in wild type cartilage at all post-natal time points. Col2a1(+ex2) homozygote mice are viable, appear healthy and display no overt phenotype to date. However, research is currently underway to investigate the biological consequence of persistent expression of the exon 2-encoded conserved cysteine-rich domain in post-natal skeletal tissues.
Collapse
Affiliation(s)
- Renate Lewis
- Department of Neurology, Washington University School of Medicine, St Louis, MO
| | - Soumya Ravindran
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO
| | - Louisa Wirthlin
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO
| | - Geoffrey Traeger
- Department of Orthopaedic and Sports Medicine, University of Washington, Seattle, WA
| | - Russell J. Fernandes
- Department of Orthopaedic and Sports Medicine, University of Washington, Seattle, WA
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO
| |
Collapse
|
32
|
Abstract
In this article, development of articular cartilage and endochondral ossification is reviewed, from the perspective of both morphologic aspects of histogenesis and molecular biology, particularly with respect to key signaling molecules and extracellular matrix components most active in cartilage development. The current understanding of the roles of transforming growth factor β and associated signaling molecules, bone morphogenic proteins, and molecules of the Wnt-β catenin system in chondrogenesis are described. Articular cartilage development is a highly conserved complex biological process that is dynamic and robust in nature, which proceeds well without incident or failure in all joints of most young growing individuals.
Collapse
|
33
|
Hayashi S, Wang Z, Bryan J, Kobayashi C, Faccio R, Sandell LJ. The type II collagen N-propeptide, PIIBNP, inhibits cell survival and bone resorption of osteoclasts via integrin-mediated signaling. Bone 2011; 49:644-52. [PMID: 21708300 PMCID: PMC3166963 DOI: 10.1016/j.bone.2011.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 06/10/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Type IIB procollagen is characteristic of cartilage, comprising 50% of the extracellular matrix. The NH(2)-propeptide of type IIB collagen, PIIBNP, can kill tumor cells via binding to integrins α(V)β(3) and α(V)β(5). As osteoclasts rely on α(V)β(3) integrins for function in bone erosion, we sought to determine whether PIIBNP could inhibit osteoclast function. METHODS We undertook in vitro and in vivo experiments to evaluate both osteoblast and osteoclast functions in the presence of recombinant PIIBNP. Adhesion of osteoclasts to PIIBNP was analyzed by staining of attached cells with crystal violet. PIIBNP-induced cell death was evaluated by counting Trypan Blue stained cells. The mechanism of cell death was evaluated by DNA fragmentation, TUNEL staining and western blotting to detect cleaved caspases. To determine the role of α(V)β(3) integrin, osteoclasts were pretreated with α(V) or β(3) integrin specific siRNA before the treatment with PIIBNP. To explore PIIBNP function in vivo, a lipopolysaccharide-induced mouse calvaria lysis model was employed. RESULTS Osteoclasts adhered to PIIBNP via an RGD-mediated mechanism. When osteoclasts were plated on extracellular matrix proteins, PIIBNP induced apoptosis of osteoclasts via caspase 3/8 activation. Osteoblasts and macrophages were not killed. Reduction of α(V) or β(3) integrin levels on osteoclasts by siRNA reduced cell death in a dose-dependent manner. In vivo, PIIBNP could inhibit bone resorption. CONCLUSION We conclude that PIIBNP can inhibit osteoclast survival and bone resorption via signal transduction through the α(V)β(3) integrins. Because of this property and the cell specificity, we propose that PIIBNP may play a role in vivo in protecting cartilage from osteoclast invasion and also could be a new therapeutic strategy for decreasing bone loss.
Collapse
Affiliation(s)
- Shinya Hayashi
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhepeng Wang
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer Bryan
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Chikashi Kobayashi
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Roberta Faccio
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Linda J. Sandell
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
34
|
Pitsillides AA, Beier F. Cartilage biology in osteoarthritis--lessons from developmental biology. Nat Rev Rheumatol 2011; 7:654-63. [PMID: 21947178 DOI: 10.1038/nrrheum.2011.129] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cellular and molecular mechanisms responsible for the initiation and progression of osteoarthritis (OA), and in particular cartilage degeneration in OA, are not completely understood. Increasing evidence implicates developmental processes in OA etiology and pathogenesis. Herein, we review this evidence. We first examine subtle changes in cartilage development and the specification and formation of joints, which predispose to OA development, and second, we review the switch from an articular to a hypertrophic chondrocyte phenotype that is thought to be part of the OA pathological process ultimately resulting in cartilage degeneration. The latest studies are summarized and we discuss the concepts emerging from these findings in cartilage biology, in the light of our understanding of the developmental processes involved.
Collapse
Affiliation(s)
- Andrew A Pitsillides
- Department of Veterinary Basic Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK.
| | | |
Collapse
|
35
|
Kramer J, Hegert C, Hargus G, Rohwedel J. Chondrocytes derived from mouse embryonic stem cells. Cytotechnology 2011; 41:177-87. [PMID: 19002954 DOI: 10.1023/a:1024835025011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Our knowledge of cellular differentiation processes during chondro- and osteogenesis, in particular the complex interaction of differentiation factors, is still limited. We used the model system of embryonic stem (ES) cell differentiation in vitro via cellular aggregates, so called embryoid bodies (EBs), to analyze chondrogenic and osteogenic differentiation. ES cells differentiated into chondrocytes and osteocytes throughout a series of developmental stages resembling cellular differentiation events during skeletal development in vivo. A lineage from pluripotent ES cells via mesenchymal, prechondrogenic cells, chondrocytes and hypertrophicchondrocytes up to osteogenic cells was characterized. Furthermore, we found evidence for another osteogenic lineage, bypassing the chondrogenic stage. Together our results suggest that this in vitro system will be helpful to answer so far unacknowledged questions regarding chondrogenic and osteogenic differentiation. For example, we isolated an as yet unknown cDNA fragment from ES cell-derived chondrocytes, which showed a developmentally regulated expression pattern during EB differentiation. Considering ES cell differentiation as an alternative approach for cellular therapy, we used two different methods to obtain pure chondrocyte cultures from the heterogenous EBs. First, members of the transforming growth factor (TGF)-beta family were applied and found to modulate chondrogenic differentiation but were not effective enough to produce sufficient amounts of chondrocytes. Second, chondrocytes were isolated from EBs by micro-manipulation. These cells initially showed dedifferentiation into fiboblastoid cells in culture, but later redifferentiated into mature chondrocytes. However, a small amount of chondrocytes isolated from EBs transdifferentiated into other mesenchymal cell types, indicating that chondrocytes derived from ES cells posses a distinct differentiation plasticity.
Collapse
Affiliation(s)
- Jan Kramer
- Department of Medical Molecular Biology, University of Lübeck, Lübeck, Germany
| | | | | | | |
Collapse
|
36
|
Leung AWL, Wong SYY, Chan D, Tam PPL, Cheah KSE. Loss of procollagen IIA from the anterior mesendoderm disrupts the development of mouse embryonic forebrain. Dev Dyn 2011; 239:2319-29. [PMID: 20730911 DOI: 10.1002/dvdy.22366] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Morphogenesis of the mammalian forebrain is influenced by the patterning activity of signals emanating from the anterior mesendoderm. In this study, we show that procollagen IIA (IIA), an isoform of the cartilage extracellular matrix protein encoded by an alternatively spliced transcript of Col2a1, is expressed in the prechordal plate and the anterior definitive endoderm. In the absence of IIA activity, the null mutants displayed a partially penetrant phenotype of loss of head tissues, holoprosencephaly, and loss of mid-facial structures, which is associated with reduced sonic hedgehog (Shh) expression in the prechordal mesoderm. Genetic interaction studies reveal that IIA function in forebrain and face development does not involve bone morphogenetic protein receptor 1A (BMPR1A)- or NODAL-mediated signaling activity.
Collapse
Affiliation(s)
- Alan W L Leung
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | |
Collapse
|
37
|
Sala FG, Del Moral PM, Tiozzo C, Alam DA, Warburton D, Grikscheit T, Veltmaat JM, Bellusci S. FGF10 controls the patterning of the tracheal cartilage rings via Shh. Development 2011; 138:273-82. [PMID: 21148187 PMCID: PMC3005603 DOI: 10.1242/dev.051680] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2010] [Indexed: 12/19/2022]
Abstract
During embryonic development, appropriate dorsoventral patterning of the trachea leads to the formation of periodic cartilage rings from the ventral mesenchyme and continuous smooth muscle from the dorsal mesenchyme. In this work, we have investigated the role of two crucial morphogens, fibroblast growth factor 10 and sonic hedgehog, in the formation of periodically alternating cartilaginous and non-cartilaginous domains in the ventral mesenchyme. Using a combination of gain- and loss-of-function approaches for FGF10 and SHH, we demonstrate that precise spatio-temporal patterns and appropriate levels of expression of these two signaling molecules in the ventral area are crucial between embryonic day 11.5 and 13.5 for the proper patterning of the cartilage rings. We conclude that the expression level of FGF10 in the mesenchyme has to be within a critical range to allow for periodic expression of Shh in the ventral epithelium, and consequently for the correct patterning of the cartilage rings. We propose that disturbed balances of Fgf10 and Shh may explain a subset of human tracheomalacia without tracheo-esophageal fistula or tracheal atresia.
Collapse
Affiliation(s)
- Frédéric G. Sala
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Pierre-Marie Del Moral
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Caterina Tiozzo
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Denise Al Alam
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - David Warburton
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Tracy Grikscheit
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Jacqueline M. Veltmaat
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Saverio Bellusci
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
- University of Giessen Lung Center, Excellence Cluster in Cardio-Pulmonary Systems, Department of Internal Medicine II, Klinikstrasse 36, 35392 Giessen, Germany
| |
Collapse
|
38
|
Snelling SJB, Hulley PA, Loughlin J. BMP5 activates multiple signaling pathways and promotes chondrogenic differentiation in the ATDC5 growth plate model. Growth Factors 2010; 28:268-79. [PMID: 20402566 DOI: 10.3109/08977191003752296] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The bone morphogenetic protein 5 (BMP5) participates in skeletal development but its direct effects on the function of growth plate chondrocytes during chondrogenesis have not been explored. We have investigated the signaling pathways activated by BMP5 and its effect on chondrogenic differentiation in the ATDC5 growth plate chondrocyte model. BMP5 transiently activated p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase signaling after 10 days of differentiation; sustained Smad and p38 MAPK signaling were seen after 15 days differentiation. All three pathways were activated by BMP5 in human adult articular chondrocytes. BMP5 alone and in combination with the chondrogenic enhancer, insulin, induced proteoglycan synthesis, aggrecan core protein 1 expression, and alkaline phosphatase activity. Upregulation of hypertrophic markers parathyroid receptor 1 and collagen type X alpha 1 occurred in BMP5-treated ATDC5 cultures. BMP5 is clearly chondrogenic and exhibits stage-specific regulation of multiple signaling pathways in this growth plate model. In particular, BMP5 accelerates expression of hypertrophy markers which is of relevance in both development and diseases such as osteoarthritis.
Collapse
Affiliation(s)
- Sarah J B Snelling
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich, NR4 7TJ, UK.
| | | | | |
Collapse
|
39
|
Wang Z, Bryan J, Franz C, Havlioglu N, Sandell LJ. Type IIB procollagen NH(2)-propeptide induces death of tumor cells via interaction with integrins alpha(V)beta(3) and alpha(V)beta(5). J Biol Chem 2010; 285:20806-17. [PMID: 20439458 DOI: 10.1074/jbc.m110.118521] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cartilage is resistant to tumor invasion. In the present study, we found that the NH(2)-propeptide of the cartilage-characteristic collagen, type IIB, PIIBNP, is capable of killing tumor cells. The NH(2)-propeptide is liberated into the extracellular matrix prior to deposition of the collagen fibrils. This peptide adheres to and kills cells from chondrosarcoma and cervical and breast cancer cell lines via the integrins alpha(v)beta(5) and alpha(v)beta(3). Adhesion is abrogated by blocking with anti alpha(v)beta(5) and alpha(v)beta(3) antibodies. When alpha(v) is suppressed by small intefering RNA, adhesion and cell killing are blocked. Normal chondrocytes from developing cartilage do not express alpha(v)beta(3) and alpha(v)beta(5) integrins and are thus protected from cell death. Morphological, DNA, and biochemical evidence indicates that the cell death is not by apoptosis but probably by necrosis. In an assay for invasion, PIIBNP reduced the number of cells crossing the membrane. In vivo, in a tumor model for breast cancer, PIIBNP was consistently able to reduce the size of the tumor.
Collapse
Affiliation(s)
- Zhepeng Wang
- Department of Orthopedic Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MI 63110, USA
| | | | | | | | | |
Collapse
|
40
|
Gouttenoire J, Bougault C, Aubert-Foucher E, Perrier E, Ronzière MC, Sandell L, Lundgren-Akerlund E, Mallein-Gerin F. BMP-2 and TGF-beta1 differentially control expression of type II procollagen and alpha 10 and alpha 11 integrins in mouse chondrocytes. Eur J Cell Biol 2010; 89:307-14. [PMID: 20129696 DOI: 10.1016/j.ejcb.2009.10.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 09/28/2009] [Accepted: 10/29/2009] [Indexed: 11/15/2022] Open
Abstract
Bone morphogenetic protein (BMP)-2 and transforming growth factor (TGF)-beta1 are multifunctional cytokines both proposed as stimulants for cartilage repair. Thus it is crucial to closely examine and compare their effects on the expression of key markers of the chondrocyte phenotype, at the gene and protein level. In this study, the expression of alpha 10 and alpha 11 integrin subunits and the IIA/IIB spliced forms of type II procollagen have been monitored for the first time in parallel in the same in vitro model of mouse chondrocyte dedifferentiation/redifferentiation. We demonstrated that TGF-beta1 stimulates the expression of the non-chondrogenic form of type II procollagen, IIA isoform, and of a marker of mesenchymal tissues, i.e. the alpha 11 integrin subunit. On the contrary, BMP-2 stimulates the cartilage-specific form of type II procollagen, IIB isoform, and a specific marker of chondrocytes, i.e. the alpha 10 integrin subunit. Collectively, our results demonstrate that BMP-2 has a better capability than TGF-beta1 to stimulate chondrocyte redifferentiation and reveal that the relative expressions of type IIB to type IIA procollagens and alpha 10 to alpha 11 integrin subunits are good markers to define the differentiation state of chondrocytes. In addition, adenoviral expression of Smad6, an inhibitor of BMP canonical Smad signaling, did not affect expression of total type II procollagen or the ratio of type IIA and type IIB isoforms in mouse chondrocytes exposed to BMP-2. This result strongly suggests that signaling pathways other than Smad proteins are involved in the effect of BMP-2 on type II procollagen expression.
Collapse
Affiliation(s)
- Jérôme Gouttenoire
- Institut de Biologie et Chimie des Protéines, CNRS UMR 5086, Université de Lyon, and IFR 128 BioSciences Gerland-Lyon Sud, 7 passage du Vercors, Lyon F-69367, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Cellular mechanobiology of the intervertebral disc: new directions and approaches. J Biomech 2009; 43:137-45. [PMID: 19828150 DOI: 10.1016/j.jbiomech.2009.09.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2009] [Indexed: 01/08/2023]
Abstract
The more we learn about the intervertebral disc (IVD), the more we come to appreciate the intricacies involved in transmission of forces through the ECM to the cell, and in the biological determinants of its response to mechanical stress. This review highlights recent developments in our knowledge of IVD physiology and examines their impact on cellular mechanobiology. Discussion centers around the continually evolving cellular and microstructural anatomy of the nucleus pulposus (NP) and the annulus fibrosus (AF) in response to complex stresses generated in support of axial load and spinal motion. Particular attention has been given to cells from the immature NP and the interlamellar AF, and assessment of their potential mechanobiologic contributions to the health and function of the IVD. In addition, several innovative approaches that have been brought to bear on studying the interplay between disc cells and their micromechanical environment are discussed. Techniques for "engineering" cellular function and technologies for fabricating more structurally defined biomaterial scaffolds have recently been employed in disc research. Such tools can be used to elucidate the biological and physical mechanisms by which different IVD cell populations are regulated by mechanical stress, and contribute to advancement of preventative and therapeutic measures.
Collapse
|
42
|
Roberts S, Menage J, Sandell LJ, Evans EH, Richardson JB. Immunohistochemical study of collagen types I and II and procollagen IIA in human cartilage repair tissue following autologous chondrocyte implantation. Knee 2009; 16:398-404. [PMID: 19269183 PMCID: PMC2739934 DOI: 10.1016/j.knee.2009.02.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 02/03/2009] [Accepted: 02/05/2009] [Indexed: 02/02/2023]
Abstract
This study has assessed the relative proportions of type I and II collagens and IIA procollagen in full depth biopsies of repair tissue in a large sample of patients treated with autologous chondrocyte implantation (ACI). Sixty five full depth biopsies were obtained from knees of 58 patients 8-60 months after treatment by ACI alone (n=55) or in combination with mosaicplasty (n=10). In addition articular cartilage was examined from eight individuals (aged 10-50) as controls. Morphology and semi-quantitative immunohistochemistry for collagen types I and II and procollagen IIA in the repair tissue were studied. Repair cartilage thickness was 2.89+/-1.5 mm and there was good basal integration between the repair cartilage, calcified cartilage and subchondral bone. Sixty five percent of the biopsies were predominantly fibrocartilage (mostly type I collagen and IIA procollagen), 15% were hyaline cartilage (mostly type II collagen), 17% were of mixed morphology and 3% were fibrous tissue (mostly type I collagen). Type II collagen and IIA procollagen were usually found in the lower regions near the bone and most type II collagen was present 30-60 months after treatment. The presence of type IIA procollagen in the repair tissue supports our hypothesis that this is indicative of a developing cartilage, with the ratio of type II collagen:procollagen IIA increasing from <2% in the first two years post-treatment to 30% three to five years after treatment. This suggests that cartilage repair tissue produced following ACI treatment, is likely to take some years to mature.
Collapse
Affiliation(s)
- S Roberts
- Centre for Spinal Studies, Robert Jones & Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, UK.
| | | | | | | | | |
Collapse
|
43
|
Rastogi A, Thakore P, Leung A, Benavides M, Machado M, Morschauser MA, Hsieh AH. Environmental regulation of notochordal gene expression in nucleus pulposus cells. J Cell Physiol 2009; 220:698-705. [DOI: 10.1002/jcp.21816] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Salentey V, Claus S, Bougault C, Paumier A, Aubert-Foucher E, Perrier-Groult E, Ronzière MC, Freyria AM, Galéra P, Beauchef G, Duterque-Coquillaud M, Piperno M, Damour O, Herbage B, Mallein-Gerin F. Réponse des chondrocytes humains à la bone morphogenetic protein-2 après leur dédifférenciation in vitro : utilisation potentielle de la bone morphogenetic protein-2 pour la thérapie cellulaire du cartilage. ACTA ACUST UNITED AC 2009; 57:282-9. [DOI: 10.1016/j.patbio.2008.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 04/16/2008] [Indexed: 10/22/2022]
|
45
|
Andriamanalijaona R, Duval E, Raoudi M, Lecourt S, Vilquin JT, Marolleau JP, Pujol JP, Galera P, Boumediene K. Differentiation potential of human muscle-derived cells towards chondrogenic phenotype in alginate beads culture. Osteoarthritis Cartilage 2008; 16:1509-18. [PMID: 18554936 DOI: 10.1016/j.joca.2008.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 04/19/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate the differentiation potential of two populations of muscle-derived cells (CD56- and CD56+) towards chondrogenic phenotype in alginate beads culture and to compare the effect of transforming growth factor beta 1 (TGFbeta1) on the differentiation process in these populations. METHODS Muscle CD56- and CD56+ cells were cultured in alginate beads, in a chondrogenic medium, containing or not TGFbeta1 (10 ng/ml). Cultures were maintained for 3, 7, 14 or 21 days in a humidified culture incubator. At harvest, one culture of each set was fixed for alcian blue staining and aggrecan detection. The steady-state level of matrix macromolecules mRNA was assessed by real-time polymerase chain reaction (PCR). Protein detection was performed by western-blot analysis. The binding activity of nuclear extracts to Cbfa1 DNA sequence was also evaluated by electrophoretic mobility shift assays (EMSA). RESULTS Chondrogenic differentiation of both CD56+ and CD56- muscle-derived cells was improved in alginate scaffold, even without growth factor, as suggested by increased chondrogenesis markers expression during the culture. Furthermore, TGFbeta1 enhanced the differentiation process and allowed to maintain a high expression of markers of mature chondrocytes. Of importance, the combination of alginate and TGFbeta1 treatment resulted in a further down-regulation of collagen type I and type X, as well as Cbfa1 both expression and binding activity. CONCLUSIONS Thus, alginate scaffold and chondrogenic medium are sufficient to lead both populations CD56+ and CD56- towards chondrogenic differentiation. Moreover, TGFbeta1 enhances this process and allows to maintain the chondrogenic phenotype by inhibiting terminal differentiation, particularly for CD56- cells.
Collapse
Affiliation(s)
- R Andriamanalijaona
- Laboratory of Extracellular Matrix and Pathology, EA 3214, IFR 146 ICORE, University of Caen Basse-Normandie, Caen Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Singh Khillan J. Differentiation of embryonic stem cells into cartilage cells. CURRENT PROTOCOLS IN STEM CELL BIOLOGY 2008; Chapter 1:Unit 1F.1. [PMID: 18785169 DOI: 10.1002/9780470151808.sc01f01s2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Embryonic stem (ES) cells have complete potential to form all types of cells. Although these cells have indefinite capacity for self-renewal, the mechanisms that control their lineage-restricted differentiation are not well understood. Due to their potential to form all types of cells, these cells are expected to have applications in regenerative medicine to cure human diseases. Osteoarthritis (OA) is a degenerative disease of articular cartilage of weight bearing joints. Approximately twenty million people suffer from this debilitating disease. Therefore, the induced differentiation of ES cells into cartilage-producing cells will have potential application to cure OA. This unit describes a system to induce differentiation of a high percentage of ES cells into mesenchymal cells that differentiate into chondrocytes, the cartilage-producing cells. A quantitative production of chondrocytes can be a powerful resource to alleviate the suffering of those patients with OA. Furthermore, this can be an excellent system to investigate the upstream events of cell-restricted differentiation during the inaccessible period of development.
Collapse
|
47
|
Pitsillides A, Ashhurst DE. A critical evaluation of specific aspects of joint development. Dev Dyn 2008; 237:2284-94. [DOI: 10.1002/dvdy.21654] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
48
|
Hautier A, Salentey V, Aubert-Foucher E, Bougault C, Beauchef G, Ronzière MC, De Sobarnitsky S, Paumier A, Galéra P, Piperno M, Damour O, Mallein-Gerin F. Bone morphogenetic protein-2 stimulates chondrogenic expression in human nasal chondrocytes expanded in vitro. Growth Factors 2008; 26:201-11. [PMID: 18720162 DOI: 10.1080/08977190802242488] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Articular cartilage contains an extracellular matrix with characteristic macromolecules such as type II collagen. Because this tissue is avascular and mature chondrocytes do not proliferate, cartilage lesions have a limited capacity for healing after trauma. Autologous chondrocyte implantation (ACI) is widely used for the treatment of patients with focal damage to articular cartilage. However, this method faces a major issue: dedifferentiation of chondrocytes occurs during the long-term culture necessary for mass cell production. The aim of this study was to determine if the step of cell amplification required for ACI could benefit from the use of bone morphogenetic protein (BMP)-2, a potent regulator of chondrogenic expression. Chondrocytes were isolated from human nasal cartilage, a hyaline cartilage like articular cartilage and were serially cultured in monolayers. After one, two or three passages, BMP-2 was used to evaluate the chondrogenic potential of the dedifferentiated chondrocytes, at the gene and protein level. We found that BMP-2 can reactivate the program of chondrogenic expression in dedifferentiated chondrocytes. To gain insight into the molecular mechanisms involved in the responsiveness of chondrocytes to BMP-2, we examined the phosphorylation of Smad proteins and the interaction of the Sry-type high-mobility-group box (Sox) transcription factors with the cartilage-specific enhancer of the type II procollagen gene. Our results show that BMP-2 acts by stimulating Smad phosphorylation and by enhancing DNA-binding of the Sox transcription factors to the specific enhancer of the type II procollagen gene. Thus, this study reveals the potential use of BMP-2 as a stimulatory agent in conventional ACI strategies.
Collapse
|
49
|
The influence of pre-mRNA splicing on phenotypic modification in Stickler's syndrome and other type II collagenopathies. Eye (Lond) 2008; 22:1243-50. [PMID: 18309338 DOI: 10.1038/eye.2008.34] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE This paper will illustrate how variation in the processing of mutant pre-mRNA can affect the phenotypic outcome of inherited disorders of type II collagen. METHODS Type 1 Stickler's syndrome is one of the different phenotypes resulting from mutations in COL2A1 (the type II collagenopathies). It is also the commonest, but often goes undiagnosed due to the variability of phenotypic features, which in some cases may consist of only abnormal vitreous development. Most cases of type 1 Stickler's syndrome are due to premature termination codons in the mRNA, resulting in haploinsufficiency. This leaves a conundrum as to why the disease is so variable. Using RT-PCR of illegitimate transcript and also minigenes, we have investigated how certain mutations can variably affect mRNA processing. RESULTS Here, we demonstrate and discuss how apparently similar mutations can have a dramatically different effect on splicing of the pre-mRNA, switching transcripts from ones which would be degraded by nonsense-mediated decay into messages that will be translated into mutant proteins that can exert a dominant-negative effect and ultimately modify the resulting phenotype. CONCLUSION Variability of Stickler's syndrome can, in part, be due to the variable effect that mutations have on the processing of the COL2A1 transcript.
Collapse
|
50
|
McAlinden A, Johnstone B, Kollar J, Kazmi N, Hering TM. Expression of two novel alternatively spliced COL2A1 isoforms during chondrocyte differentiation. Matrix Biol 2007; 27:254-66. [PMID: 18023161 DOI: 10.1016/j.matbio.2007.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 10/06/2007] [Accepted: 10/11/2007] [Indexed: 01/06/2023]
Abstract
Alternative splicing of the type II procollagen gene (COL2A1) is developmentally regulated during chondrogenesis. Type IIA procollagen (+ exon 2) is synthesized by chondroprogenitor cells while type IIB procollagen (- exon 2) is synthesized by differentiated chondrocytes. Here, we report expression of two additional alternatively spliced COL2A1 isoforms during chondrocyte differentiation of bone marrow-derived mesenchymal stem cells (MSCs). One isoform, named IIC, contains only the first 34 nucleotides of exon 2 by the use of an alternative 5' splice site, resulting in a premature termination codon and possible nonsense-mediated decay of IIC mRNA. Low levels of the IIC isoform were detected by RT-PCR and Southern analysis of COL2A1 cDNA amplified from differentiating rabbit and human MSCs. A second novel transcript, named IID, arises by the use of another 5' alternative splice site in intron 2. The IID isoform contains exon 2 plus 3 nucleotides, resulting in the insertion of an additional amino acid. The IID isoform was co-expressed with the IIA isoform during chondrogenesis, and was approximately one-third as abundant. Deletion of the IIC alternative 5' splice site from a COL2A1 mini-gene construct resulted in a significant increase in the IIA:IIB ratio. A mutant mini-gene that inhibited production of the IID isoform, however, had differential effects on the production of the IIA and IIB isoforms: this was apparently related to the differentiation status of the cell type used. These data suggest that COL2A1 mRNA abundance and other aspects of chondrocyte differentiation may be regulated by the use of these previously undetermined alternative splice sites.
Collapse
Affiliation(s)
- Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine 4940 Parkview Place, St Louis, MO 63110, United States
| | | | | | | | | |
Collapse
|