1
|
Samadi Z, Hao K, Askary A. SMORE: spatial motifs reveal patterns in cellular architecture of complex tissues. Genome Biol 2025; 26:3. [PMID: 39754206 PMCID: PMC11697875 DOI: 10.1186/s13059-024-03467-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025] Open
Abstract
Deciphering the link between tissue architecture and function requires methods to identify and interpret patterns in spatial arrangement of cells. We present SMORE, an approach to detect patterns in sequential arrangements of cells and examine their associated gene expression specializations. Applied to retina, brain, and embryonic tissue maps, SMORE identifies novel spatial motifs, including one that offers a new mechanism of action for type 1b bipolar cells. Structural signatures detected by SMORE also form a basis for classifying tissues. Together, our method provides a new framework for uncovering spatial complexity in tissue organization and offers novel insights into tissue function.
Collapse
Affiliation(s)
- Zainalabedin Samadi
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 90095, CA, USA
| | - Kai Hao
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 90095, CA, USA
| | - Amjad Askary
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 90095, CA, USA.
| |
Collapse
|
2
|
The impact of isotretinoin on the pituitary-ovarian axis: An interpretative review of the literature. Reprod Toxicol 2021; 104:85-95. [PMID: 34224824 DOI: 10.1016/j.reprotox.2021.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022]
Abstract
Isotretinoin (13-cis-retinoic acid), a derivative of vitamin A, is used in the treatment of severe acne resulting in sebum suppression induced by sebocyte apoptosis. Isotretinoin treatment is associated with several adverse effects including teratogenicity, hepatotoxicity, and dyslipidemia. Isotretinoin's effects on endocrine systems and its potential role as an endocrine disruptor are not yet adequately investigated. This review presents clinical, endocrine, and molecular evidence showing that isotretinoin treatment adversely affects the pituitary-ovarian axis and enhances the risk of granulosa cell apoptosis reducing follicular reserve. Isotretinoin is associated with pro-apoptotic signaling in sebaceous glands through upregulated expression of p53, forkhead box O transcription factors (FOXO1, FOXO3), and tumor necrosis factor-related apoptosis inducing ligand (TRAIL). Two literature searches including clinical and experimental studies respectively support the hypothesis that isotretinoin's toxicological mode of action on the pituitary-ovarian axis might be caused by over-expressed p53/FOXO1 signaling resulting in gonadotropin suppression and granulosa cell apoptosis. The reduction of follicular reserve by isotretinoin treatment should be especially considered when this drug will be administered for the treatment of acne in post-adolescent women, in whom fertility may be adversely affected. In contrast, isotretinoin treatment may exert beneficial effects in states of hyperandrogenism, especially in patients with polycystic ovary syndrome.
Collapse
|
3
|
Roberts C. Regulating Retinoic Acid Availability during Development and Regeneration: The Role of the CYP26 Enzymes. J Dev Biol 2020; 8:jdb8010006. [PMID: 32151018 PMCID: PMC7151129 DOI: 10.3390/jdb8010006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
This review focuses on the role of the Cytochrome p450 subfamily 26 (CYP26) retinoic acid (RA) degrading enzymes during development and regeneration. Cyp26 enzymes, along with retinoic acid synthesising enzymes, are absolutely required for RA homeostasis in these processes by regulating availability of RA for receptor binding and signalling. Cyp26 enzymes are necessary to generate RA gradients and to protect specific tissues from RA signalling. Disruption of RA homeostasis leads to a wide variety of embryonic defects affecting many tissues. Here, the function of CYP26 enzymes is discussed in the context of the RA signalling pathway, enzymatic structure and biochemistry, human genetic disease, and function in development and regeneration as elucidated from animal model studies.
Collapse
Affiliation(s)
- Catherine Roberts
- Developmental Biology of Birth Defects, UCL-GOS Institute of Child Health, 30 Guilford St, London WC1N 1EH, UK;
- Institute of Medical and Biomedical Education St George’s, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
| |
Collapse
|
4
|
Halakos EG, Connell AJ, Glazewski L, Wei S, Mason RW. Bottom up proteomics reveals novel differentiation proteins in neuroblastoma cells treated with 13-cis retinoic acid. J Proteomics 2019; 209:103491. [PMID: 31472280 DOI: 10.1016/j.jprot.2019.103491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/15/2019] [Accepted: 08/15/2019] [Indexed: 12/19/2022]
Abstract
Neuroblastoma, a cancer of the sympathetic nervous system, is the second most common pediatric cancer. A unique feature of neuroblastoma is remission in some patients due to spontaneous differentiation of metastatic tumors. 13-cis retinoic acid (13-cis RA) is currently used in the clinic to treat neuroblastoma due to its differentiation inducing effects. In this study, we used shotgun proteomics to identify proteins affected by 13-cis RA treatment in neuroblastoma SK-N-SH cells. Our results showed that 13-cis RA reduced proteins involved in extracellular matrix synthesis and organization and increased proteins involved in cell adhesion and neurofilament formation. These changes indicate that 13-cis RA induces tumor cell differentiation by decreasing extracellular matrix rigidity and increasing neurite overgrowth. Differentially-affected proteins identified in this study may be novel biomarkers of drug efficacy in the treatment of neuroblastoma. SIGNIFICANCE: As neuroblastoma can spontaneously differentiate, determining which proteins are involved in differentiation can guide development of novel treatments. 13-cis retinoic acid is currently used in the clinic as a differentiation inducer. Here we have established a proteome map of SK-N-SH cells treated with 13-cis retinoic acid. Bioinformatic analysis revealed the involvement of development, differentiation, extracellular matrix assembly, collagen biosynthesis, and neurofilament bundle association. This proteome map provides information as to which proteins are important for differentiation and identifies networks that can be targeted by drugs to treat neuroblastoma [1].
Collapse
Affiliation(s)
- Effie G Halakos
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Andrew J Connell
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Lisa Glazewski
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Shuo Wei
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Robert W Mason
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
5
|
Zhang HL, Cao H, Yang ZQ, Geng S, Wang K, Yu HF, Guo B, Yue ZP. 13cRA regulates the differentiation of antler chondrocytes through targeting Runx3. Cell Biol Int 2017; 41:296-308. [PMID: 28067449 DOI: 10.1002/cbin.10724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 12/21/2016] [Indexed: 11/09/2022]
Abstract
Although 13cRA is involved in the regulation of cellular proliferation and differentiation, its physiological roles in chondrocyte proliferation and differentiation still remain unknown. Here, we showed that 13cRA could induce the proliferation of sika deer antler chondrocytes and expression of Ccnd3 and Cdk6. Administration of 13cRA to antler chondrocytes resulted in an obvious increase in the expression of chondrocyte marker Col II and hypertrophic chondrocyte marker Col X. Silencing of Crabp2 expression by specific siRNA could prevent the 13cRA-induced up-regulation of Col X, whereas overexpression of Crabp2 showed the opposite effects. Further study found that Crabp2 mediated the regulation of 13cRA on the expression of Runx3 which was highly expressed in the antler cartilage and inhibited the differentiation of antler chondrocytes. Moreover, attenuation of Runx3 expression greatly raised 13cRA-induced chondrocyte differentiation. Simultaneously, 13cRA could stimulate the expression of Cyp26a1 and Cyp26b1 in the antler chondrocytes. Inhibition of Cyp26a1 and/or Cyp26b1 reinforced the effects of 13cRA on the expression of Col X and Runx3, while overexpression of Cyp26b1 rendered the antler chondrocytes hyposensitive to 13cRA. Collectively, 13cRA may play an important role in the differentiation of antler chondrocytes through targeting Runx3. Crabp2 enhances the effects of 13cRA on chondrocyte differentiation, while Cyp26a1 and Cyp26b1 weaken the sensitivity of antler chondrocytes to 13cRA.
Collapse
Affiliation(s)
- Hong-Liang Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| | - Hang Cao
- College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| | - Zhan-Qing Yang
- College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| | - Shuang Geng
- College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| | - Kai Wang
- College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| | - Hai-Fan Yu
- College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| | - Bin Guo
- College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| | - Zhan-Peng Yue
- College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| |
Collapse
|
6
|
Ohse K, Ohtsu M, Onoda F, Murakami Y. Development of effective isolation method of ES cells for analysis of differentiation. Biochem Biophys Res Commun 2009; 387:64-9. [PMID: 19559667 DOI: 10.1016/j.bbrc.2009.06.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 06/22/2009] [Indexed: 11/19/2022]
Abstract
Neuroectoderm development is a milestone of vertebrate neurogenesis. However, the molecular mechanism underlying the differentiation of neuroectoderm is still unclear, especially in mammals. ES cells co-cultured with PA6 cells can differentiate to neuroectoderm by the stromal cell-derived inducing activity method (SDIA method), but contamination of PA6 cells is an obstacle to the analysis of molecular mechanisms of differentiation. Here we describe a novel method by which differentiated ES cells are easily isolated from PA6 cells. We attempted to induce the differentiation of ES cells using paraformaldehyde-fixed PA6 cells. RT-PCR and DNA microarray analysis revealed that the background noise derived from contaminated PA6 cells disappeared when fixed PA6 cells were used. Furthermore, genes up-regulated during the differentiation of ES cells were expressed in a developing mouse embryo. Thus, our newly developed method will be very useful for identifying novel genes associated with mouse neuroectoderm development in vitro and in vivo.
Collapse
Affiliation(s)
- Kensuke Ohse
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, Japan
| | | | | | | |
Collapse
|
7
|
Sharma MK, Saxena V, Liu RZ, Thisse C, Thisse B, Denovan-Wright EM, Wright JM. Differential expression of the duplicated cellular retinoic acid-binding protein 2 genes (crabp2a and crabp2b) during zebrafish embryonic development. Gene Expr Patterns 2005; 5:371-9. [PMID: 15661643 DOI: 10.1016/j.modgep.2004.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 09/16/2004] [Accepted: 09/27/2004] [Indexed: 10/26/2022]
Abstract
The cellular retinoic acid-binding protein 2 (CRABP2) is believed to be involved in regulating access of retinoic acid to nuclear retinoic acid receptors. We have determined the cDNA sequence and the genomic organization of the duplicated crabp2 gene (crabp2b) in zebrafish. The crabp2b cDNA was 522bp in length and encodes a polypeptide consisting of 146 amino acids. Radiation hybrid mapping assigned the crabp2b gene to zebrafish linkage group 19. The comparison of the mapped human CRABP2 gene, zebrafish crabp2a and zebrafish crabp2b genes revealed that human chromosome 1 has a syntenic relationship to zebrafish linkage groups 16 and 19. Reverse transcription-polymerase chain reaction (RT-PCR) detected crabp2b mRNA in total RNA extracted from whole adult zebrafish, but not in any of the adult zebrafish tissues examined. The crabp2a mRNA was detected in total RNA extracted from whole adult zebrafish, adult zebrafish muscle, testes, and skin and to a lesser extent in heart, ovary and brain. No crabp2a mRNA-specific product was detected in kidney, liver or intestine of the adult zebrafish. Whole mount in situ hybridization detected crabp2b and crabp2a mRNA in a number of structures known to require retinoic acid signaling during embryonic development. The crabp2b mRNA was detected in the central nervous system, branchial arches, pectoral fins, retina (dorsal to the lens), epidermis and otic vesicle of the developing zebrafish. The crabp2a transcripts were detected by whole mount in situ hybridization in the central nervous system, epidermis, proliferative zone of the retina, intestinal bulb, oesophagus, pectoral fins and branchial arches during zebrafish embryonic development.
Collapse
Affiliation(s)
- Mukesh K Sharma
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS, Canada B3H 4J1
| | | | | | | | | | | | | |
Collapse
|
8
|
Perrotta S, Nobili B, Rossi F, Di Pinto D, Cucciolla V, Borriello A, Oliva A, Della Ragione F. Vitamin A and infancy. Biochemical, functional, and clinical aspects. VITAMINS AND HORMONES 2003; 66:457-591. [PMID: 12852263 DOI: 10.1016/s0083-6729(03)01013-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Vitamin A is a very intriguing natural compound. The molecule not only has a complex array of physiological functions, but also represents the precursor of promising and powerful new pharmacological agents. Although several aspects of human retinol metabolism, including absorption and tissue delivery, have been clarified, the type and amounts of vitamin A derivatives that are intracellularly produced remain quite elusive. In addition, their precise function and targets still need to be identified. Retinoic acids, undoubtedly, play a major role in explaining activities of retinol, but, recently, a large number of physiological functions have been attributed to different retinoids and to vitamin A itself. One of the primary roles this vitamin plays is in embryogenesis. Almost all steps in organogenesis are controlled by retinoic acids, thus suggesting that retinol is necessary for proper development of embryonic tissues. These considerations point to the dramatic importance of a sufficient intake of vitamin A and explain the consequences if intake of retinol is deficient. However, hypervitaminosis A also has a number of remarkable negative consequences, which, in same cases, could be fatal. Thus, the use of large doses of retinol in the treatment of some human diseases and the use of megavitamin therapy for certain chronic disorders as well as the growing tendency toward vitamin faddism should alert physicians to the possibility of vitamin overdose.
Collapse
Affiliation(s)
- Silverio Perrotta
- Department of Pediatric, Medical School, Second University of Naples, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Chen AC, Yu K, Lane MA, Gudas LJ. Homozygous deletion of the CRABPI gene in AB1 embryonic stem cells results in increased CRABPII gene expression and decreased intracellular retinoic acid concentration. Arch Biochem Biophys 2003; 411:159-73. [PMID: 12623064 DOI: 10.1016/s0003-9861(02)00732-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cellular retinoic acid (RA) binding proteins I and II (CRABPI and CRABPII), intracellular proteins which bind retinoic acid with high affinity, are involved in the actions of RA, though their exact roles are not fully understood. We have generated several genetically engineered AB1 cell lines in which both alleles of the CRABPI gene have been deleted by homologous recombination. We have used these CRABPI knockout cell lines to examine the consequences of functional loss of CRABPI on RA-induced gene expression and RA metabolism in the murine embryonic stem cell line, AB1, which undergoes differentiation in response to RA. Complete lack of CRABPI results in decreased intracellular [3H]RA concentrations under conditions in which external concentrations of [3H]RA are low (1-10nM) and in an altered distribution of [3H] polar metabolites of [3H]RA in the cell and in the medium. Fewer [3H] polar metabolites are retained within the CRABPI(-/-) cells compared to the wild-type cells. These data suggest that CRABPI functions to regulate the intracellular concentrations of retinoic acid and to maintain high levels of oxidized retinoic acid metabolites such as 4-oxoretinoic acid within cells.
Collapse
Affiliation(s)
- Anne C Chen
- Department of Pharmacology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
10
|
Maden M. Role and distribution of retinoic acid during CNS development. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 209:1-77. [PMID: 11580199 DOI: 10.1016/s0074-7696(01)09010-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Retinoic acid (RA), the biologically active derivative of vitamin A, induces a variety of embryonal carcinoma and neuroblastoma cell lines to differentiate into neurons. The molecular events underlying this process are reviewed with a view to determining whether these data can lead to a better understanding of the normal process of neuronal differentiation during development. Several transcription factors, intracellular signaling molecules, cytoplasmic proteins, and extracellular molecules are shown to be necessary and sufficient for RA-induced differentiation. The evidence that RA is an endogenous component of the developing central nervous system (CNS) is then reviewed, data which include high-pressure liquid chromotography (HPLC) measurements, reporter systems and the distribution of the enzymes that synthesize RA. The latter is particularly relevant to whether RA signals in a paracrine fashion on adjacent tissues or whether it acts in an autocrine manner on cells that synthesize it. It seems that a paracrine system may operate to begin early patterning events within the developing CNS from adjacent somites and later within the CNS itself to induce subsets of neurons. The distribution of retinoid-binding proteins, retinoid receptors, and RA-synthesizing enzymes is described as well as the effects of knockouts of these genes. Finally, the effects of a deficiency and an excess of RA on the developing CNS are described from the point of view of patterning the CNS, where it seems that the hindbrain is the most susceptible part of the CNS to altered levels of RA or RA receptors and also from the point of view of neuronal differentiation where, as in the case of embryonal carcinoma (EC) cells, RA promotes neuronal differentiation. The crucial roles played by certain genes, particularly the Hox genes in RA-induced patterning processes, are also emphasized.
Collapse
Affiliation(s)
- M Maden
- MRC Centre for Developmental Neurobiology, King's College London, United Kingdom
| |
Collapse
|
11
|
Methner A, Leypoldt F, Joost P, Lewerenz J. Human septin 3 on chromosome 22q13.2 is upregulated by neuronal differentiation. Biochem Biophys Res Commun 2001; 283:48-56. [PMID: 11322766 DOI: 10.1006/bbrc.2001.4741] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An expression sequence tag identified in a screen for genes upregulated by retinoic acid induced neuronal differentiation of the human teratocarcinoma cell line Ntera2/D1 was found in close genomic proximity to a region of high sequence homology to the septin subfamily of GTPase genes. We could show that the tag corresponds to the 3' untranslated region of this novel gene named septin 3 and cloned three isoforms A (2191 bp), B (4378 bp), and C (1896 bp) from human Ntera2/D1 cDNA. We present the genomic localization and organization on chromosome 22q13.2, a chromosomal hot spot for translocations implicated in leukemia. Interestingly, MSF the closest paralog of septin 3 is a fusion partner in a therapy-related acute myeloid leukemia. Quantitative PCR confirmed the upregulation of the putative septin by neuronal differentiation and northern blotting showed only one band corresponding to sep3B with a neurospecific expression pattern in adult human tissues.
Collapse
Affiliation(s)
- A Methner
- Department of Neurology and Zentrum für Molekulare Neurobiologie, University Hospital Hamburg, Falkenried 94, Hamburg, D-20251, Germany.
| | | | | | | |
Collapse
|
12
|
Christiansen JH, Coles EG, Robinson V, Pasini A, Wilkinson DG. Screening from a subtracted embryonic chick hindbrain cDNA library: identification of genes expressed during hindbrain, midbrain and cranial neural crest development. Mech Dev 2001; 102:119-33. [PMID: 11287186 DOI: 10.1016/s0925-4773(01)00294-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The vertebrate hindbrain is segmented into a series of transient structures called rhombomeres. Despite knowing several factors that are responsible for the segmentation and maintenance of the rhombomeres, there are still large gaps in understanding the genetic pathways that govern their development. To find previously unknown genes that are expressed within the embryonic hindbrain, a subtracted chick hindbrain cDNA library has been made and 445 randomly picked clones from this library have been analysed using whole mount in situ hybridisation. Thirty-six of these clones (8%) display restricted expression patterns within the hindbrain, midbrain or cranial neural crest and of these, twenty-two are novel and eleven encode peptides that correspond to or are highly related to proteins with previously uncharacterised roles during early neural development. The large proportion of genes with restricted expression patterns and previously unknown functions in the embryonic brain identified during this screen provides insights into the different types of molecules that have spatially regulated expression patterns in cranial neural tissue.
Collapse
Affiliation(s)
- J H Christiansen
- Division of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, NW7 1AA, London, UK
| | | | | | | | | |
Collapse
|
13
|
Leypoldt F, Lewerenz J, Methner A. Identification of genes up-regulated by retinoic-acid-induced differentiation of the human neuronal precursor cell line NTERA-2 cl.D1. J Neurochem 2001; 76:806-14. [PMID: 11158252 DOI: 10.1046/j.1471-4159.2001.00079.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The human teratocarcinoma cell line NTERA-2 cl.D1 (NT2 cells) can be induced with retinoic acid and cell aggregation to yield postmitotic neurones. This seems to model the in vivo situation, as high concentrations of retinoic acid, retinoic acid binding proteins, and receptors have been detected in the embryonic CNS and the developing spinal cord suggesting a role for retinoic acid in neurogenesis. Suppression subtractive hybridization was used to detect genes up-regulated by this paradigm of neuronal differentiation. Microfibril-associated glycoprotein 2 was found to be drastically up-regulated and has not been implicated in neuronal differentiation before. Suppression subtractive hybridization also identified DYRK4, a homologue of the Drosophila gene minibrain. Minibrain mutations result in specific defects in the development of the fly central nervous system. In adult rats, DYRK4 is only expressed in testis, but our results suggest an additional role for DYRK4 in neuronal differentiation. We have shown that suppression subtractive hybridization in conjunction with an efficient screening procedure is a valuable tool to produce a repertoire of differentially expressed genes and propose a new physiological role for several identified genes and expressed sequence tags.
Collapse
Affiliation(s)
- F Leypoldt
- Zentrum für Molekulare Neurobiologie, Hamburg, Germany
| | | | | |
Collapse
|
14
|
HIV-1 protease inhibitors decrease proliferation and induce differentiation of human myelocytic leukemia cells. Blood 2000. [DOI: 10.1182/blood.v96.10.3553] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractInhibitors of the protease of human immunodeficiency virus type 1 (HIV-1) may inhibit cytoplasmic retinoic acid-binding proteins, cytochrome P450 isoforms, as well as P-glycoproteins. These features of the protease inhibitors might enhance the activity of retinoids. To explore this hypothesis, myeloid leukemia cells were cultured with all-trans retinoic acid (ATRA) either alone or in combination with the HIV-1 protease inhibitors indinavir, ritonavir, and saquinavir. Consistent with the hypothesis, the HIV-1 protease inhibitors enhanced the ability of ATRA to inhibit growth and induce differentiation of HL-60 and NB4 myeloid leukemia cells, as measured by expression of CD11b and CD66b cell surface antigens, as well as reduction of nitroblue tetrazolium. Growth of ATRA-resistant UF-1 cells was also inhibited when cultured with the combination of ATRA and indinavir. Moreover, indinavir enhanced the ability of ATRA to induce expression of the myeloid differentiation-related transcription factor C/EBPε messenger RNA in NB4 cells by 9.5-fold. Taken together, the results show that HIV-1 protease inhibitors enhance the antiproliferative and differentiating effects of ATRA on myeloid leukemia cells. An HIV-1 protease inhibitor might be a useful adjuvant with ATRA for patients with acute promyelocytic leukemia and possibly retinoid-resistant cancers.
Collapse
|
15
|
Abstract
Inhibitors of the protease of human immunodeficiency virus type 1 (HIV-1) may inhibit cytoplasmic retinoic acid-binding proteins, cytochrome P450 isoforms, as well as P-glycoproteins. These features of the protease inhibitors might enhance the activity of retinoids. To explore this hypothesis, myeloid leukemia cells were cultured with all-trans retinoic acid (ATRA) either alone or in combination with the HIV-1 protease inhibitors indinavir, ritonavir, and saquinavir. Consistent with the hypothesis, the HIV-1 protease inhibitors enhanced the ability of ATRA to inhibit growth and induce differentiation of HL-60 and NB4 myeloid leukemia cells, as measured by expression of CD11b and CD66b cell surface antigens, as well as reduction of nitroblue tetrazolium. Growth of ATRA-resistant UF-1 cells was also inhibited when cultured with the combination of ATRA and indinavir. Moreover, indinavir enhanced the ability of ATRA to induce expression of the myeloid differentiation-related transcription factor C/EBPε messenger RNA in NB4 cells by 9.5-fold. Taken together, the results show that HIV-1 protease inhibitors enhance the antiproliferative and differentiating effects of ATRA on myeloid leukemia cells. An HIV-1 protease inhibitor might be a useful adjuvant with ATRA for patients with acute promyelocytic leukemia and possibly retinoid-resistant cancers.
Collapse
|
16
|
Trainor PA, Manzanares M, Krumlauf R. Genetic interactions during hindbrain segmentation in the mouse embryo. Results Probl Cell Differ 2000; 30:51-89. [PMID: 10857185 DOI: 10.1007/978-3-540-48002-0_3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- P A Trainor
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, Mill Hill, London, UK
| | | | | |
Collapse
|
17
|
Abstract
The key role of vitamin A in embryonal development is reviewed. Special emphasis is given to the physiological action of retinoids, as evident from the retinoid ligand knockout models. Retinoid metabolism in embryonic tissues and teratogenic consequences of retinoid administration at high doses are presented. Physiological and pharmacological actions of retinoids are outlined and explained on the basis of their interactions as ligands of the nuclear retinoid receptors. Immediate target genes and the retinoid response elements of their promoters are summarized. The fundamental role of homeobox genes in embryonal development and the actions of retinoids on their expression are discussed. The similarity of the effects of retinoid ligand knockouts to effects of compound retinoid receptor knockouts on embryogenesis is presented. Although much remains to be clarified, the emerging landscape offers exciting views for future research.
Collapse
Affiliation(s)
- S A Ross
- Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Nutritional Products, Labeling, and Dietary Supplements, Washington, DC, USA
| | | | | | | |
Collapse
|
18
|
Abstract
Retinoic acid (RA) is a vitamin A derivative that has been well documented to be involved in cell differentiation. Using RNA fingerprinting by arbitrarily primed PCR, we have previously identified a number of transcripts that are regulated during RA-induced neuronal differentiation of embryonal carcinoma NT2/D1 cells. DEAD box protein p72 is one of the clones found to be down-regulated following treatment with RA. To further investigate the regulation of p72, the mRNA expression of p72 in various neuronal cell lines and primary neuronal cultures was examined. Transcripts of p72 were reduced in differentiated PC12 and IMR-32 cells but not in SH-SYSY cells. Partial cDNA fragments of p72 were isolated from rat and chick for the systematic analysis of p72 expression in different adult tissues and developmental stages. While prominent expression of p72 was observed in brain and testis, the expression was down-regulated in brain, muscle and liver during development. Taken together, our findings provide the first demonstration on the spatial and temporal expression profile of p72 in rat and chick tissues which is consistent with a role of p72 during early development.
Collapse
Affiliation(s)
- F C Ip
- Department of Biology and Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, China
| | | | | | | |
Collapse
|
19
|
Napoli JL. Retinoic acid: its biosynthesis and metabolism. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 63:139-88. [PMID: 10506831 DOI: 10.1016/s0079-6603(08)60722-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This article presents a model that integrates the functions of retinoid-binding proteins with retinoid metabolism. One of these proteins, the widely expressed (throughout retinoid target tissues and in all vertebrates) and highly conserved cellular retinol-binding protein (CRBP), sequesters retinol in an internal binding pocket that segregates it from the intracellular milieu. The CRBP-retinol complex appears to be the quantitatively major form of retinol in vivo, and may protect the promiscuous substrate from nonenzymatic degradation and/or non-specific enzymes. For example, at least seven types of dehydrogenases catalyze retinal synthesis from unbound retinol in vitro (NAD+ vs. NADP+ dependent, cytosolic vs. microsomal, short-chain dehydrogenases/reductases vs. medium-chain alcohol dehydrogenases). But only a fraction of these (some of the short-chain de-hydrogenases/reductases) have the fascinating additional ability of catalyzing retinal synthesis from CRBP-bound retinol as well. Similarly, CRBP and/or other retinoid-binding proteins function in the synthesis of retinal esters, the reduction of retinal generated from intestinal beta-carotene metabolism, and retinoic acid metabolism. The discussion details the evidence supporting an integrated model of retinoid-binding protein/metabolism. Also addressed are retinoid-androgen interactions and evidence incompatible with ethanol causing fetal alcohol syndrome by competing directly with retinol dehydrogenation to impair retinoic acid biosynthesis.
Collapse
Affiliation(s)
- J L Napoli
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo 14214, USA
| |
Collapse
|
20
|
Napoli JL. Interactions of retinoid binding proteins and enzymes in retinoid metabolism. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1440:139-62. [PMID: 10521699 DOI: 10.1016/s1388-1981(99)00117-1] [Citation(s) in RCA: 285] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Naturally occurring retinoids (vitamin A or retinol and its active metabolites) are vital for vision, controlling the differentiation program of epithelial cells in the digestive tract and respiratory system, skin, bone, the nervous system, the immune system, and for hematopoiesis. Retinoids are essential for growth, reproduction (conception and embryonic development), and resistance to and recovery from infection. The functions of retinoids in the embryo begin soon after conception and continue throughout the lifespan of all vertebrates. Both naturally occurring and synthetic retinoids are used in the therapy of various skin diseases, especially acne, for augmenting the treatment of diabetes, and as cancer chemopreventive agents. Retinol metabolites serve as ligands that activate specific transcription factors in the superfamily of steroid/retinoid/thyroid/vitamin D/orphan receptors and thereby control gene expression. Additionally, retinoids may also function through non-genomic actions. Various retinoid binding proteins serve as partners in retinoid function. These binding proteins show high specificity and affinity for specific retinoids and seem to control retinoid metabolism in vivo qualitatively and quantitatively by reducing 'free' retinoid concentrations, protecting retinoids from non-specific interactions, and chaperoning access of metabolic enzymes to retinoids. Implementation of the physiological effects of retinoids depends on the spatial-temporal expressions of binding proteins, receptors and metabolic enzymes. This review will discuss current understanding of the enzymes that catalyze retinol and retinoic acid metabolism and their unique and integral relationship to retinoid binding proteins.
Collapse
Affiliation(s)
- J L Napoli
- Department of Nutritional Sciences, 119 Morgan Hall, University of California, Berkeley, USA.
| |
Collapse
|
21
|
Abstract
All vertebrate embryos require retinoic acid (RA) for fulfilment of the developmental program encoded in the genome. In mammals, maternal homeostatic mechanisms minimize variation of retinoid levels reaching the embryo. Retinol is transported as a complex with retinol-binding protein (RBP): transplacental transfer of retinol and its uptake by the embryonic tissues involves binding to an RBP receptor at the cell surface. Embryonic tissues in which this receptor is present also contain the retinol-binding protein CRBP I and the enzymes involved in RA synthesis; the same tissues are particularly vulnerable to vitamin A deficiency. In the nucleus, the RA signal is transduced by binding to a heterodimeric pair of retinoid receptors (RAR/RXR). In general, the receptors show functional plasticity, disruption of one RAR or RXR gene having minor or no effects on embryogenesis. However, genetic studies indicate that RXR alpha is essential for normal development of the heart and eye. Excess RA causes abnormalities of many systems; altered susceptibility to RA excess in mice lacking RAR gamma or RXR alpha suggests that the teratogenic signal is transduced through different receptors compared with physiological RA function in the same tissue.
Collapse
Affiliation(s)
- G M Morriss-Kay
- Department of Human Anatomy and Genetics, University of Oxford, United Kingdom
| | | |
Collapse
|
22
|
Gaub MP, Lutz Y, Ghyselinck NB, Scheuer I, Pfister V, Chambon P, Rochette-Egly C. Nuclear detection of cellular retinoic acid binding proteins I and II with new antibodies. J Histochem Cytochem 1998; 46:1103-11. [PMID: 9742066 DOI: 10.1177/002215549804601002] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Apart from the retinoic acid nuclear receptor family, there are two low molecular weight (15 kD) cellular retinoic acid binding proteins, named CRABPI and II. Mouse monoclonal and rabbit polyclonal antibodies were raised against these proteins by using as antigens either synthetic peptides corresponding to amino acid sequences unique to CRABPI or CRABPII, or purified CRABP proteins expressed in E. coli. Antibodies specific for mouse and/or human CRABPI and CRABPII were obtained and characterized by immunocytochemistry and immunoblotting. They allowed the detection not only of CRABPI but also of CRABPII in both nuclear and cytosolic extracts from transfected COS-1 cells, mouse embryos, and various cell lines.
Collapse
Affiliation(s)
- M P Gaub
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP/Collège de France, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Kleinjan DA, Dekker S, Guy JA, Grosveld FG. Cloning and sequencing of the CRABP-I locus from chicken and pufferfish: analysis of the promoter regions in transgenic mice. Transgenic Res 1998; 7:85-94. [PMID: 9608736 DOI: 10.1023/a:1008864224100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Retinoic acid (RA), a derivative of vitamin A, is an important molecule for development and homeostasis of vertebrate organisms. The intracellular retinoic acid binding protein CRABP-I has a high affinity for RA, and is thought to be involved in the mechanism of RA signalling. CRABP-I is well conserved in evolution and shows a specific expression pattern during development, but mice made deficient for the protein by gene targeting appear normal. However, the high degree of homology with CRABP-I from other species indicates that the protein has been subject to strong selective conservation, indicative of an important biological function. In this paper we have compared the conservation in the expression pattern of the mouse, chicken and pufferfish CRABP-I genes to substantiate this argument further. First we cloned and sequenced genes and promoter regions of the CRABP-I genes from chicken and the Japanese pufferfish, Fugu rubripes. Sequence comparison with the mouse gene did not show any large blocks of homology in the promoter regions. Nevertheless, the promoter of the chicken gene directed expression to a subset of the tissues that show expression with the promoter from the mouse gene. The pattern observed with the pufferfish promoter is even more restricted, essentially to rhombomere 4 only, indicating that this region may be functionally the most important for CRABP-I expression in the developing embryo.
Collapse
Affiliation(s)
- D A Kleinjan
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
24
|
Kleinjan DA, Dekker S, Vaessen MJ, Grosveld F. Regulation of the CRABP-I gene during mouse embryogenesis. Mech Dev 1997; 67:157-69. [PMID: 9392513 DOI: 10.1016/s0925-4773(97)00116-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The cellular retinoic acid binding protein type I (CRABP-I) shows a highly specific expression pattern during mouse embryonic development. The tissues that express CRABP-I, i.e. the central nervous system (CNS), neural crest, branchial arches, limb bud and frontonasal mass, coincide with those that are most sensitive to unphysiological retinoic acid (RA) concentrations. We have investigated the transcriptional elements that are responsible for the spatiotemporal regulation of CRABP-I expression in the mouse embryo. We show here that a 16 kb fragment harbours all the elements needed for the correct spatiotemporal expression pattern. Upon further dissection of this fragment we have found that expression in the CNS is driven by elements in the upstream region of the gene, while expression in mesenchymal and neural crest tissue is regulated via element(s) located downstream of exon II of the gene. Two distinct fragments in the upstream region are required for expression in the CNS, as neither of these fragments alone is able to drive correct expression of a reporter gene in transgenic mice. DNAseI footprinting analysis of the two upstream fragments revealed the presence of a number of protected elements. One of these regulatory elements has the hallmarks of an RA response element, suggesting that CRABP-I expression in neural tissue can be directly modulated by RA via the RARs/RXRs.
Collapse
Affiliation(s)
- D A Kleinjan
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
25
|
Means AL, Gudas LJ. The CRABP I gene contains two separable, redundant regulatory regions active in neural tissues in transgenic mouse embryos. Dev Dyn 1997; 209:59-69. [PMID: 9142496 DOI: 10.1002/(sici)1097-0177(199705)209:1<59::aid-aja6>3.0.co;2-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The CRABP I gene is expressed in a spatiotemporal pattern in neural and mesenchymal tissues at the onset of organogenesis. The neural pattern of CRABP I expression includes specific rhombomeres of the hindbrain, neural crest cells and their derivatives the optic stalk, and the central area of the neural retina. We have created transgenic mouse lines with CRABP I 5' and transcribed regions fused to the lacZ structural gene that recapitulate much of this neural pattern of expression. Sequences 5' of the transcription initiation site between -7.8 and -3.2 kb confer beta-galactosidase expression to specific rhombomeres, migrating neural crest cells, trigeminal ganglion, the optic stalk, and the neural retina. We have also defined a region located between exon 1 and exon 8 that confers a portion of this expression pattern, including the mesencephalic projections of the trigeminal ganglion, the inner layer of the neural retina, and the peripheral layer of the posterior hindbrain. CRABP I expression in mesenchyme appears to require sequences in addition to or outside of those examined here.
Collapse
Affiliation(s)
- A L Means
- Department of Pharmacology, Cornell University Medical College, New York 10021, USA
| | | |
Collapse
|
26
|
Abstract
Clinical trials demonstrate that up to 70% of neural tube defects (NTDs) can be prevented by folic acid supplementation in early pregnancy, whereas the remaining NTDs are resistant to folate. Here, we show that a second vitamin, myo-inositol, is capable of significantly reducing the incidence of spinal NTDs in curly tail mice, a genetic model of folate-resistant NTDs. Inositol increases flux through the inositol/lipid cycle, stimulating protein kinase C activity and upregulating expression of retinoic acid receptor beta, specifically in the caudal portion of the embryonic hindgut. This reduces the delay in closure of the posterior neuropore, the embryonic defect that is known to lead directly to spina bifida in curly tail embryos. Our findings reveal a molecular pathway of NTD prevention and suggest the possible efficacy of combined treatment with folate and inositol in overcoming the majority of human NTDs.
Collapse
Affiliation(s)
- N D Greene
- Neural Development Unit, Institute of Child Health, University of London, UK
| | | |
Collapse
|
27
|
MESH Headings
- Abnormalities, Drug-Induced/genetics
- Abnormalities, Multiple/chemically induced
- Abnormalities, Multiple/genetics
- Animals
- Cloning, Molecular
- Embryonic and Fetal Development/drug effects
- Exons
- Female
- Genomic Library
- Genotype
- Limb Deformities, Congenital
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Mice, Transgenic
- Placenta/metabolism
- Pregnancy
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Recombinant Fusion Proteins/metabolism
- Signal Transduction
- Tretinoin/toxicity
Collapse
Affiliation(s)
- V Giguere
- Molecular Oncology Group, Royal Victoria Hospital, Québec, Canada
| | | | | | | | | |
Collapse
|
28
|
Wei LN, Chang L. Promoter and upstream regulatory activities of the mouse cellular retinoic acid-binding protein-I gene. J Biol Chem 1996; 271:5073-8. [PMID: 8617785 DOI: 10.1074/jbc.271.9.5073] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The promoter and its upstream regulatory region of the mouse cellular retinoic acid-binding protein I (crabp-I) gene were examined in transgenic mouse embryos, a mouse embryonal carcinoma cell line P19, and a mouse embryonic fibroblast cell line 3T6. In transgenic mouse embryos, a beta-galactosidase reporter gene under the control of crabp-I promoter and its upstream regulatory region displayed a very specific pattern of expression characteristic of crabp-I gene expression during developmental stages. In tissue culture systems, the minimal promoter of this gene was identified, and regions containing positive and negative regulatory activities were dissected from the upstream 3-kilobase sequence using assays for transient reporter activity. It is concluded that the minimal promoter of the mouse crabp-I gene is located between 120 and 150 base pairs upstream from the transcription initiation site. Several cell type-specific positive and negative regulatory regions for this promoter have been identified. A region encoding a common negative regulatory activity in both P19 and 3T6 cells is also inhibitory to two heterologous promoters, and specific protein-DNA interactions between this DNA fragment and nuclear extracts of P19 and 3T6 are demonstrated by gel retardation experiments.
Collapse
Affiliation(s)
- L N Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
29
|
Fisher C, Blumenberg M, Tomić-Canić M. Retinoid receptors and keratinocytes. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1995; 6:284-301. [PMID: 8664420 DOI: 10.1177/10454411950060040201] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In 1987, a tremendous boost in our understanding of the action of dietary vitamin A occurred with the discovery and characterization of nuclear receptors for retinoic acid, the active form of the vitamin, in the laboratories of P. Chambon and R. Evans. They have shown that the nuclear receptors are ligand-activated transcription factors capable of specific gene regulation. Since that discovery, it has been determined that there are at least six retinoic acid receptors belonging to two families, RARs and RXRs, that they are differentially expressed in various mammalian tissues, and that they act as homo- and heterodimers interacting with other ligand-activated nuclear receptors. The domain structure of the receptors has been described, and their DNA-binding, ligand-binding, dimerization, and transcriptional activation regions characterized. Among the most important retinoid-regulated genes are the homeobox proteins, regulatory transcription factors which are responsible for body axis formation, patterning, limb formation, and other crucial processes during development. Retinoic acid and its receptors also regulate many differentiation markers which are particularly important in stratified epithelia, such as skin and oral epithelia. Our increased understanding led to improved therapy of a large number of skin disorders, ranging from acne to wrinkles and including epidermal and oral carcinomas.
Collapse
Affiliation(s)
- C Fisher
- Department of Biology, Vassar College, New York, NY, USA
| | | | | |
Collapse
|
30
|
Colbert MC, Rubin WW, Linney E, LaMantia AS. Retinoid signaling and the generation of regional and cellular diversity in the embryonic mouse spinal cord. Dev Dyn 1995; 204:1-12. [PMID: 8563020 DOI: 10.1002/aja.1002040102] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Retinoid-dependent gene expression accompanies the emergence of distinct regions and cell classes in the mouse spinal cord around midgestation. We asked whether changes in the expression of retinoid signaling molecules and retinoid-responsive genes reflect the establishment of this regional and cellular diversity. At E10.5, retinoic acid (RA) receptors (RAR)alpha, RAR beta, the retinoid X receptor (RXR) gamma, cellular RA binding protein (CRABP)I, CRAPBII, and cellular retinol binding protein (CRBP)I mRNAs are found throughout the entire anterior-posterior (AP) axis of the cord, as is RA (Colbert et al. [1993] Proc. Natl. Acad. Sci. U.S.A. 90:6572-6576) and RA-sensitive transgene expression (Balkan et al. [1992] Proc. Natl. Acad. Sci. U.S.A. 89:3347-3351). At E12.5, RA, transgene expression, and RAR beta become restricted to the cervical and lumbar cord. RAR alpha, CRABPI, and RXR gamma, however, are found throughout the AP extent. CRABPII and CRBPI, although expanded within the cervical and lumbar regions, are also found throughout the AP axis. Thus, several retinoid signaling molecules continue to be expressed beyond distinct regions of the spinal cord where RA is available and some RA-responsive genes are either restricted or enhanced. Exogenous RA can activate a more widespread response resulting in ectopic transgene and RAR beta expression in the thoracic and sacral cord. Not all RA-sensitive genes, however, respond; CRABPII and CRBPI expression patterns are unchanged. Finally, not every cell within the normal or exogenously induced domains of RA-dependent gene expression responds to RA, nor does every cell express RA receptors or binding proteins. Thus, regional and cellular differences in the distribution of the known retinoid receptors and binding proteins do not predict absolutely where or whether retinoid sensitive genes will be expressed or where retinoids will be available in the developing spinal cord. Instead, retinoid-mediated gene expression in the cervical and lumbar cord seems to reflect retinoid responses that rely both on the local availability of retinoids, the identity of the responding gene, and an indeterminate array of retinoid signaling molecules.
Collapse
Affiliation(s)
- M C Colbert
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
31
|
Donovan M, Olofsson B, Gustafson AL, Dencker L, Eriksson U. The cellular retinoic acid binding proteins. J Steroid Biochem Mol Biol 1995; 53:459-65. [PMID: 7626495 DOI: 10.1016/0960-0760(95)00092-e] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The two cellular retinoic acid binding proteins, CRABP I and CRABP II, belong to a family of small cytosolic lipid binding proteins and are highly conserved during evolution. Both proteins are expressed during embryogenesis, particularly in the developing nervous system, craniofacial region and limb bud. CRABP I is also expressed in several adult tissues, however, in contrast, CRABP II expression appears to be limited to the skin. It is likely that these proteins serve as regulators in the transport and metabolism of retinoic acid in the developing embryo and throughout adult life. It has been proposed that CRABP I sequesters retinoic acid in the cytoplasm and prevents nuclear uptake of retinoic acid. A role in catabolism of retinoic acid has also been proposed. Recent gene targeting experiments have shown that neither of the two CRABPs are essential for normal embryonic development or adult life. Examination of CRABP I expression at subcellular resolution reveals a differential cytoplasmic and/or nuclear localization of the protein. A regulated nuclear uptake of CRABP I implies a role for this protein in the intracellular transport of retinoic acid. A protein mediated mechanism which controls the nuclear uptake of retinoic acid may play an important role in the transactivation of the nuclear retinoic acid receptors.
Collapse
Affiliation(s)
- M Donovan
- Ludwig Institute for Cancer Research, Stockholm Branch, Sweden
| | | | | | | | | |
Collapse
|
32
|
Fawcett D, Pasceri P, Fraser R, Colbert M, Rossant J, Giguère V. Postaxial polydactyly in forelimbs of CRABP-II mutant mice. Development 1995; 121:671-9. [PMID: 7720575 DOI: 10.1242/dev.121.3.671] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cytoplasmic retinoic acid (RA)-binding protein CRABP-II is expressed widely throughout early morphogenesis in mouse embryo, but its expression becomes more restricted as organogenesis progresses. CRABP-II expression remains strong in the developing limb bud suggesting a role for this protein in limb patterning. Here, we show that the CRABP-II promoter can direct expression of a lacZ transgene in a specific posterior domain during limb bud development. In order to investigate in more detail the role played by CRABP-II in RA signal transduction, we have also generated mice homozygous for a null mutation of this gene. CRABPII−/− mice are viable and fertile but show a developmental defect of the forelimb, specifically an additional, postaxial digit. This digit is generally, but not exclusively, limited to a single forepaw of an individual animal. The penetrance of the phenotype varies according to the genetic background, occurring most frequently on the inbred 129Sv background (50%), less frequently on the C57Bl/6 background (30%) and rarely on the outbred CD1 background (10%). This developmental abnormality implies a role for CRABP-II in normal patterning of the limb.
Collapse
Affiliation(s)
- D Fawcett
- Division of Endocrinology, Hospital for Sick Children, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Lampron C, Rochette-Egly C, Gorry P, Dollé P, Mark M, Lufkin T, LeMeur M, Chambon P. Mice deficient in cellular retinoic acid binding protein II (CRABPII) or in both CRABPI and CRABPII are essentially normal. Development 1995; 121:539-48. [PMID: 7768191 DOI: 10.1242/dev.121.2.539] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have disrupted the CRABPII gene using homologous recombination in embryonic stem cells, and shown that this disruption results in a null mutation. CRABPII null mutant mice are essentially indistinguishable from wild-type mice as judged by their normal development, fertility, life span and general behaviour, with the exception of a minor limb malformation. Moreover, CRABPI−/−/CRABPII−/− double mutant mice also appear to be essentially normal, and both CRABPII−/− single mutant and CRABPI−/−/CRABPII−/− double mutant embryos are not more sensitive than wild-type embryos to retinoic acid excess treatment in utero. Thus, CRABPI and CRABPII are dispensable both during mouse development and adult life. Our present results demonstrate that CRABPs are not critically involved in the retinoic acid signaling pathway, and that none of the functions previously proposed for CRABPs are important enough to account for their evolutionary conservation.
Collapse
Affiliation(s)
- C Lampron
- Laboratoire de Génétique Moléculaire des Eucaryotes du CNRS, Institut de Chimie Biologique, Faculté de Médecine, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Underhill TM, Kotch LE, Linney E. Retinoids and mouse embryonic development. VITAMINS AND HORMONES 1995; 51:403-57. [PMID: 7483329 DOI: 10.1016/s0083-6729(08)61046-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- T M Underhill
- Department of Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
35
|
Maden M. Distribution of cellular retinoic acid-binding proteins I and II in the chick embryo and their relationship to teratogenesis. TERATOLOGY 1994; 50:294-301. [PMID: 7716736 DOI: 10.1002/tera.1420500404] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The distribution of cellular retinoic acid-binding proteins I and II (CRABP I and II) during the first 6 days of chick development has been investigated using immunoblotting. Since retinoic acid (RA) is teratogenic to some parts of the embryo, stimulatory to other parts, and has no effect on others it may be that the distribution of cytoplasmic proteins such as CRABP I and II plays some role in this differential activity. Neither protein is expressed in the day 2 embryo, but from day 3 onwards both proteins are expressed and CRABP I is in considerable excess over CRABP II. Within the day 4 embryo there is some significant variation in the distribution according to tissue type. Neural tissues, neural crest derivatives, and limb buds most strongly express CRABP I whilst other tissues contain only moderate levels, and heart and epidermis do not express CRABP I at all. CRABP II has a widespread distribution, although at a lower level than CRABP I, with the exception of somites and ectoderm which do not express it at all. In the limb buds, there is a significant variation in CRABP I levels across the anteroposterior axis which suggests that these two CRABPs may have different functions during development. The relationship of these distributions in the embryo to the role of endogenous RA and the teratogenic effects of RA is discussed.
Collapse
Affiliation(s)
- M Maden
- Developmental Biology Research Centre, King's College, London, United Kingdom
| |
Collapse
|
36
|
Gorry P, Lufkin T, Dierich A, Rochette-Egly C, Décimo D, Dollé P, Mark M, Durand B, Chambon P. The cellular retinoic acid binding protein I is dispensable. Proc Natl Acad Sci U S A 1994; 91:9032-6. [PMID: 8090764 PMCID: PMC44741 DOI: 10.1073/pnas.91.19.9032] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The cellular retinoic acid binding proteins I and II (CRABPI and CRABPII) bind retinoic acid with high affinity, exhibit distinct patterns of expression during embryonic development, and are thought to play important roles in the RA signaling pathway. We have generated a targeted mutation of the CRABPI gene using the "hit-and-run" strategy and shown that it prevents the production of a functional CRABPI protein. Homozygous mutant mice were normal, indicating that CRABPI does not play a crucial role in the RA signaling pathway.
Collapse
Affiliation(s)
- P Gorry
- Laboratoire de Génétique Moléculaire des Eucaryotes du Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|