1
|
Greenwood MP, Capblancq T, Wahlberg N, Després L. Whole genome data confirm pervasive gene discordance in the evolutionary history of Coenonympha (Nymphalidae) butterflies. Mol Phylogenet Evol 2024; 202:108222. [PMID: 39477173 DOI: 10.1016/j.ympev.2024.108222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/09/2024]
Abstract
Phylogenetic inference is challenged by genealogical heterogeneity amongst molecular markers. Such discordance is driven predominantly by incomplete lineage sorting (ILS) and interspecific gene flow, and bears attendant consequences for the accurate resolution of species relationships. Understanding the distribution of gene conflict in organismal genomes is, therefore, a key aspect of phylogenetic analysis. In this study, three large phylogenomic datasets (i.e., whole mitogenomes, conserved nuclear protein-coding loci, and genomic windows) are used to probe the extent to which discordance pervades the unresolved phylogeny of Coenonympha (Nymphalidae) butterflies. Gene tree discordance is found to be elevated at multiple historically recalcitrant phylogenetic positions. In particular, species relationships near the crown of Coenonympha and within a rapidly diversifying subclade (the hero group) remain difficult to resolve, suggesting that ILS and gene flow have obscured the evolution of this genus. These findings have implications for the taxonomy of this butterfly group and the study of its diversification history. In addition, this work lends support to a growing body of evidence that gene conflict driven by biological processes stands to confound phylogeny, even when extensive data are used.
Collapse
Affiliation(s)
- Matthew P Greenwood
- Laboratoire d'Écologie Alpine, Université Grenoble Alpes, Université Savoie Mont-Blanc, CNRS, 38058 Grenoble cedex 9, France.
| | - Thibaut Capblancq
- Laboratoire d'Écologie Alpine, Université Grenoble Alpes, Université Savoie Mont-Blanc, CNRS, 38058 Grenoble cedex 9, France
| | - Niklas Wahlberg
- Department of Biology, Lund University, SWE-22362 Lund, Sweden
| | - Laurence Després
- Laboratoire d'Écologie Alpine, Université Grenoble Alpes, Université Savoie Mont-Blanc, CNRS, 38058 Grenoble cedex 9, France
| |
Collapse
|
2
|
Llaberia-Robledillo M, Lucas-Lledó JI, Pérez-Escobar OA, Krasnov BR, Balbuena JA. Rtapas: An R Package to Assess Cophylogenetic Signal between Two Evolutionary Histories. Syst Biol 2023; 72:946-954. [PMID: 36964756 DOI: 10.1093/sysbio/syad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 03/26/2023] Open
Abstract
Cophylogeny represents a framework to understand how ecological and evolutionary process influence lineage diversification. The recently developed algorithm Random Tanglegram Partitions provides a directly interpretable statistic to quantify the strength of cophylogenetic signal and incorporates phylogenetic uncertainty into its estimation, and maps onto a tanglegram the contribution to cophylogenetic signal of individual host-symbiont associations. We introduce Rtapas, an R package to perform Random Tanglegram Partitions. Rtapas applies a given global-fit method to random partial tanglegrams of a fixed size to identify the associations, terminals, and internal nodes that maximize phylogenetic congruence. This new package extends the original implementation with a new algorithm that examines the contribution to phylogenetic incongruence of each host-symbiont association and adds ParaFit, a method designed to test for topological congruence between two phylogenies, to the list of global-fit methods than can be applied. Rtapas facilitates and speeds up cophylogenetic analysis, as it can handle large phylogenies (100+ terminals) in affordable computational time as illustrated with two real-world examples. Rtapas can particularly cater for the need for causal inference in cophylogeny in two domains: (i) Analysis of complex and intricate host-symbiont evolutionary histories and (ii) assessment of topological (in)congruence between phylogenies produced with different DNA markers and specifically identify subsets of loci for phylogenetic analysis that are most likely to reflect gene-tree evolutionary histories. [Cophylogeny; cophylogenetic signal; gene tree incongruence; phylogenetic congruence; phylogenomics.].
Collapse
Affiliation(s)
- Mar Llaberia-Robledillo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, PO Box 22085, ES-46071 Valencia, Spain
| | - J Ignacio Lucas-Lledó
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, PO Box 22085, ES-46071 Valencia, Spain
| | | | - Boris R Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute of Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Midreshet Ben-Gurion, Israel
| | - Juan Antonio Balbuena
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, PO Box 22085, ES-46071 Valencia, Spain
| |
Collapse
|
3
|
Scheunert A, Lautenschlager U, Ott T, Oberprieler C. Nano-Strainer: A workflow for the identification of single-copy nuclear loci for plant systematic studies, using target capture kits and Oxford Nanopore long reads. Ecol Evol 2023; 13:e10190. [PMID: 37475726 PMCID: PMC10354226 DOI: 10.1002/ece3.10190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/18/2023] [Accepted: 06/01/2023] [Indexed: 07/22/2023] Open
Abstract
In modern plant systematics, target enrichment enables simultaneous analysis of hundreds of genes. However, when dealing with reticulate or polyploidization histories, few markers may suffice, but often are required to be single-copy, a condition that is not necessarily met with commercial capture kits. Also, large genome sizes can render target capture ineffective, so that amplicon sequencing would be preferable; however, knowledge about suitable loci is often missing. Here, we present a comprehensive workflow for the identification of putative single-copy nuclear markers in a genus of interest, by mining a small dataset from target capture using a few representative taxa. The proposed pipeline assesses sequence variability contained in the data from targeted loci and assigns reads to their respective genes, via a combined BLAST/clustering procedure. Cluster consensus sequences are then examined based on four pre-defined criteria presumably indicative for absence of paralogy. This is done by calculating four specialized indices; loci are ranked according to their performance in these indices, and top-scoring loci are considered putatively single- or low copy. The approach can be applied to any probe set. As it relies on long reads, the present contribution also provides template workflows for processing Nanopore-based target capture data. Obtained markers are further tested and then entered into amplicon sequencing. For the detection of possibly remaining paralogy in these data, which might occur in groups with rampant paralogy, we also employ the long-read assembly tool canu. In diploid representatives of the young Compositae genus Leucanthemum, characterized by high levels of polyploidy, our approach resulted in successful amplification of 13 loci. Modifications to remove traces of paralogy were made in seven of these. A species tree from the markers correctly reproduced main relationships in the genus, however, at low resolution. The presented workflow has the potential to valuably support phylogenetic research, for example in polyploid plant groups.
Collapse
Affiliation(s)
- Agnes Scheunert
- Evolutionary and Systematic Botany Group, Institute of Plant SciencesUniversity of RegensburgRegensburgGermany
| | - Ulrich Lautenschlager
- Evolutionary and Systematic Botany Group, Institute of Plant SciencesUniversity of RegensburgRegensburgGermany
| | - Tankred Ott
- Evolutionary and Systematic Botany Group, Institute of Plant SciencesUniversity of RegensburgRegensburgGermany
| | - Christoph Oberprieler
- Evolutionary and Systematic Botany Group, Institute of Plant SciencesUniversity of RegensburgRegensburgGermany
| |
Collapse
|
4
|
H Tomasco I, Giorello FM, Boullosa N, Feijoo M, Lanzone C, Lessa EP. The contribution of incomplete lineage sorting and introgression to the evolutionary history of the fast-evolving genus Ctenomys (Rodentia, Ctenomyidae). Mol Phylogenet Evol 2022; 176:107593. [PMID: 35905819 DOI: 10.1016/j.ympev.2022.107593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/28/2022] [Accepted: 07/21/2022] [Indexed: 10/31/2022]
Abstract
Incomplete lineage sorting and introgression have been increasingly recognized as important processes involved in biological differentiation. Both incomplete lineage sorting and introgression result in incongruences between gene trees and species trees, consequently causing difficulties in phylogenetic reconstruction. This is particularly the case for rapid radiations, as short internodal distances and incomplete reproductive isolation increase the likelihood of both ILS and introgression. Estimation of the relative frequency of these processes requires assessments across many genomic regions. We use transcriptomics to test for introgression and estimate the frequency of incomplete lineage sorting in a set of three closely related and geographically adjacent South American tuco-tucos species (Ctenomys), a genus comprising 64 species resulting from recent, rapid radiation. After cleaning and filtering, 5764 orthologous genes strongly support paraphyly of C. pearsoni relative to C. brasiliensis (putatively represented by the population of Villa Serrana). In line with earlier phylogenetic work, the C. pearsoni - C. brasiliensis pair is closely related to C. torquatus, whereas C. rionegrensis is more distantly related to these three nominal species. Classical Patterson's D-statistic shows significant signals of introgression from C. torquatus into C. brasiliensis. However, a 5-taxon test shows no significant results. Incomplete lineage sorting was estimated to have involved about 9% of the loci, suggesting it represents an important process in the incipient diversification of tuco-tucos.
Collapse
Affiliation(s)
- Ivanna H Tomasco
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República. Iguá 4225. Montevideo, 11400. Uruguay.
| | - Facundo M Giorello
- Facundo M. Giorello. PDU Espacio de Biología Vegetal del Noreste, Centro Universitario de Tacuarembó (CUT), Universidad de la República, Ruta 5 km 386,200, 45000, Tacuarembó, Uruguay
| | - Nicolás Boullosa
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República. Iguá 4225. Montevideo, 11400. Uruguay
| | - Matías Feijoo
- Matías Feijoo. Departamento de Sistemas Agrarios y Paisajes Culturales, Centro Universitario Regional Este (CURE). Universidad de la República. Ruta 8 Km 281, Treinta y Tres, Uruguay
| | - Cecilia Lanzone
- Cecilia Lanzone. Laboratorio de Genética Evolutiva, IBS (CONICET-UNaM), FCEQyN, Félix de Azara 1553, Posadas,3300. Misiones, Argentina
| | - Enrique P Lessa
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República. Iguá 4225. Montevideo, 11400. Uruguay
| |
Collapse
|
5
|
Out of chaos: Phylogenomics of Asian Sonerileae. Mol Phylogenet Evol 2022; 175:107581. [PMID: 35810973 DOI: 10.1016/j.ympev.2022.107581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/22/2022]
Abstract
Sonerileae is a diverse Melastomataceae lineage comprising ca. 1000 species in 44 genera, with >70% of genera and species distributed in Asia. Asian Sonerileae are taxonomically intractable with obscure generic circumscriptions. The backbone phylogeny of this group remains poorly resolved, possibly due to complexity caused by rapid species radiation in early and middle Miocene, which hampers further systematic study. Here, we used genome resequencing data to reconstruct the phylogeny of Asian Sonerileae. Three parallel datasets, viz. single-copy ortholog (SCO), genomic SNPs, and whole plastome, were assembled from genome resequencing data of 205 species for this purpose. Based on these genome-scale data, we provided the first well resolved phylogeny of Asian Sonerileae, with 34 major clades identified and 74% of the interclade relationships consistently resolved by both SCO and genomic data. Meanwhile, widespread phylogenetic discordance was detected among SCO gene trees as well as species trees reconstructed using different tree estimation methods (concatenation/site-based coalescent method/summary method) or different datasets (SCO/genomic/plastome). We explored sources of discordance using multiple approaches and found that the observed discordance in Asian Sonerileae was mainly caused by a combination of biased distribution of missing data, random noise from uninformative genes, incomplete lineage sorting, and hybridization/introgression. Exploration of these sources can enable us to generate hypotheses for future testing, which is the first step towards understanding the evolution of Asian Sonerileae. We also detected high levels of homoplasy for some characters traditionally used in taxonomy, which explains current chaotic generic delimitations. The backbone phylogeny of Asian Sonerileae revealed in this study offers a solid basis for future taxonomic revision at the generic level.
Collapse
|
6
|
Interpreting phylogenetic conflict: Hybridization in the most speciose genus of lichen-forming fungi. Mol Phylogenet Evol 2022; 174:107543. [PMID: 35690378 DOI: 10.1016/j.ympev.2022.107543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 02/06/2022] [Accepted: 05/13/2022] [Indexed: 11/24/2022]
Abstract
While advances in sequencing technologies have been invaluable for understanding evolutionary relationships, increasingly large genomic data sets may result in conflicting evolutionary signals that are often caused by biological processes, including hybridization. Hybridization has been detected in a variety of organisms, influencing evolutionary processes such as generating reproductive barriers and mixing standing genetic variation. Here, we investigate the potential role of hybridization in the diversification of the most speciose genus of lichen-forming fungi, Xanthoparmelia. As Xanthoparmelia is projected to have gone through recent, rapid diversification, this genus is particularly suitable for investigating and interpreting the origins of phylogenomic conflict. Focusing on a clade of Xanthoparmelia largely restricted to the Holarctic region, we used a genome skimming approach to generate 962 single-copy gene regions representing over 2 Mbp of the mycobiont genome. From this genome-scale dataset, we inferred evolutionary relationships using both concatenation and coalescent-based species tree approaches. We also used three independent tests for hybridization. Although different species tree reconstruction methods recovered largely consistent and well-supported trees, there was widespread incongruence among individual gene trees. Despite challenges in differentiating hybridization from ILS in situations of recent rapid radiations, our genome-wide analyses detected multiple potential hybridization events in the Holarctic clade, suggesting one possible source of trait variability in this hyperdiverse genus. This study highlights the value in using a pluralistic approach for characterizing genome-scale conflict, even in groups with well-resolved phylogenies, while highlighting current challenges in detecting the specific impacts of hybridization.
Collapse
|
7
|
Pyron RA, O’Connell KA, Lemmon EM, Lemmon AR, Beamer DA. Candidate-species delimitation in Desmognathus salamanders reveals gene flow across lineage boundaries, confounding phylogenetic estimation and clarifying hybrid zones. Ecol Evol 2022; 12:e8574. [PMID: 35222955 PMCID: PMC8848459 DOI: 10.1002/ece3.8574] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/19/2022] Open
Abstract
Dusky Salamanders (genus Desmognathus) currently comprise only 22 described, extant species. However, recent mitochondrial and nuclear estimates indicate the presence of up to 49 candidate species based on ecogeographic sampling. Previous studies also suggest a complex history of hybridization between these lineages. Studies in other groups suggest that disregarding admixture may affect both phylogenetic inference and clustering-based species delimitation. With a dataset comprising 233 Anchored Hybrid Enrichment (AHE) loci sequenced for 896 Desmognathus specimens from all 49 candidate species, we test three hypotheses regarding (i) species-level diversity, (ii) hybridization and admixture, and (iii) misleading phylogenetic inference. Using phylogenetic and population-clustering analyses considering gene flow, we find support for at least 47 candidate species in the phylogenomic dataset, some of which are newly characterized here while others represent combinations of previously named lineages that are collapsed in the current dataset. Within these, we observe significant phylogeographic structure, with up to 64 total geographic genetic lineages, many of which hybridize either narrowly at contact zones or extensively across ecological gradients. We find strong support for both recent admixture between terminal lineages and ancient hybridization across internal branches. This signal appears to distort concatenated phylogenetic inference, wherein more heavily admixed terminal specimens occupy apparently artifactual early-diverging topological positions, occasionally to the extent of forming false clades of intermediate hybrids. Additional geographic and genetic sampling and more robust computational approaches will be needed to clarify taxonomy, and to reconstruct a network topology to display evolutionary relationships in a manner that is consistent with their complex history of reticulation.
Collapse
Affiliation(s)
- Robert Alexander Pyron
- Department of Biological SciencesThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
- Division of Amphibians and ReptilesDepartment of Vertebrate ZoologyNational Museum of Natural History Smithsonian InstitutionWashingtonDistrict of ColumbiaUSA
| | - Kyle A. O’Connell
- Department of Biological SciencesThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
- Division of Amphibians and ReptilesDepartment of Vertebrate ZoologyNational Museum of Natural History Smithsonian InstitutionWashingtonDistrict of ColumbiaUSA
- Global Genome InitiativeNational Museum of Natural History Smithsonian InstitutionWashingtonDistrict of ColumbiaUSA
- Biomedical Data Science LabDeloitte Consulting LLPArlingtonVirginiaUSA
| | | | - Alan R. Lemmon
- Department of Scientific ComputingFlorida State UniversityTallahasseeFloridaUSA
| | - David A. Beamer
- Department of Natural SciencesNash Community CollegeRocky MountNorth CarolinaUSA
| |
Collapse
|
8
|
Singhal S, Derryberry GE, Bravo GA, Derryberry EP, Brumfield RT, Harvey MG. The dynamics of introgression across an avian radiation. Evol Lett 2021; 5:568-581. [PMID: 34917397 PMCID: PMC8645201 DOI: 10.1002/evl3.256] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/11/2021] [Accepted: 08/31/2021] [Indexed: 01/20/2023] Open
Abstract
Hybridization and resulting introgression can play both a destructive and a creative role in the evolution of diversity. Thus, characterizing when and where introgression is most likely to occur can help us understand the causes of diversification dynamics. Here, we examine the prevalence of and variation in introgression using phylogenomic data from a large (1300+ species), geographically widespread avian group, the suboscine birds. We first examine patterns of gene tree discordance across the geographic distribution of the entire clade. We then evaluate the signal of introgression in a subset of 206 species triads using Patterson's D‐statistic and test for associations between introgression signal and evolutionary, geographic, and environmental variables. We find that gene tree discordance varies across lineages and geographic regions. The signal of introgression is highest in cases where species occur in close geographic proximity and in regions with more dynamic climates since the Pleistocene. Our results highlight the potential of phylogenomic datasets for examining broad patterns of hybridization and suggest that the degree of introgression between diverging lineages might be predictable based on the setting in which they occur.
Collapse
Affiliation(s)
- Sonal Singhal
- Department of Biology California State University, Dominguez Hills Carson California 90747
| | - Graham E Derryberry
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee 37996
| | - Gustavo A Bravo
- Department of Organismic and Evolutionary Biology Harvard University Cambridge Massachusetts 02138.,Museum of Comparative Zoology Harvard University Cambridge Massachusetts 02138
| | - Elizabeth P Derryberry
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee 37996
| | - Robb T Brumfield
- Museum of Natural Science Louisiana State University Baton Rouge Louisiana 70803.,Department of Biological Sciences Louisiana State University Baton Rouge Louisiana 70803
| | - Michael G Harvey
- Department of Biological Sciences The University of Texas at El Paso El Paso Texas 79968.,Biodiversity Collections The University of Texas at El Paso El Paso Texas 79968
| |
Collapse
|
9
|
Ferrer Obiol J, James HF, Chesser RT, Bretagnolle V, González-Solís J, Rozas J, Riutort M, Welch AJ. Integrating Sequence Capture and Restriction Site-Associated DNA Sequencing to Resolve Recent Radiations of Pelagic Seabirds. Syst Biol 2021; 70:976-996. [PMID: 33512506 PMCID: PMC8357341 DOI: 10.1093/sysbio/syaa101] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/13/2020] [Accepted: 12/15/2020] [Indexed: 01/01/2023] Open
Abstract
The diversification of modern birds has been shaped by a number of radiations. Rapid diversification events make reconstructing the evolutionary relationships among taxa challenging due to the convoluted effects of incomplete lineage sorting (ILS) and introgression. Phylogenomic data sets have the potential to detect patterns of phylogenetic incongruence, and to address their causes. However, the footprints of ILS and introgression on sequence data can vary between different phylogenomic markers at different phylogenetic scales depending on factors such as their evolutionary rates or their selection pressures. We show that combining phylogenomic markers that evolve at different rates, such as paired-end double-digest restriction site-associated DNA (PE-ddRAD) and ultraconserved elements (UCEs), allows a comprehensive exploration of the causes of phylogenetic discordance associated with short internodes at different timescales. We used thousands of UCE and PE-ddRAD markers to produce the first well-resolved phylogeny of shearwaters, a group of medium-sized pelagic seabirds that are among the most phylogenetically controversial and endangered bird groups. We found that phylogenomic conflict was mainly derived from high levels of ILS due to rapid speciation events. We also documented a case of introgression, despite the high philopatry of shearwaters to their breeding sites, which typically limits gene flow. We integrated state-of-the-art concatenated and coalescent-based approaches to expand on previous comparisons of UCE and RAD-Seq data sets for phylogenetics, divergence time estimation, and inference of introgression, and we propose a strategy to optimize RAD-Seq data for phylogenetic analyses. Our results highlight the usefulness of combining phylogenomic markers evolving at different rates to understand the causes of phylogenetic discordance at different timescales. [Aves; incomplete lineage sorting; introgression; PE-ddRAD-Seq; phylogenomics; radiations; shearwaters; UCEs.].
Collapse
Affiliation(s)
- Joan Ferrer Obiol
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia, Spain
| | - Helen F James
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - R Terry Chesser
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- U.S. Geological Survey, Patuxent Wildlife Research Center, Laurel, MD, USA
| | - Vincent Bretagnolle
- Centre d’Études Biologiques de Chizé, CNRS & La Rochelle Université, 79360, Villiers en Bois, France
| | - Jacob González-Solís
- Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia, Spain
| | - Marta Riutort
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia, Spain
| | | |
Collapse
|
10
|
G J Hodel R, Zimmer E, Wen J. A phylogenomic approach resolves the backbone of Prunus (Rosaceae) and identifies signals of hybridization and allopolyploidy. Mol Phylogenet Evol 2021; 160:107118. [PMID: 33609711 DOI: 10.1016/j.ympev.2021.107118] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
The genus Prunus, which contains 250-400 species, has ample genomic resources for the economically important taxa in the group including cherries, peaches, and almonds. However, the backbone of Prunus, specifically the position of the racemose group relative to the solitary and corymbose groups, remains phylogenetically uncertain. Surprisingly, phylogenomic analyses to resolve relationships in the genus are lacking. Here, we assemble transcriptomes from 17 Prunus species representing four subgenera, and use existing transcriptome assemblies, to resolve key relationships in the genus using a phylogenomic approach. From the transcriptomes, we constructed 21-taxon datasets of putatively single-copy nuclear genes with 591 and 379 genes, depending on taxon-occupancy filtering. Plastome sequences were obtained or assembled for all species present in the nuclear data set. The backbone of Prunus was resolved consistently in the nuclear and chloroplast phylogenies, but we found substantial cytonuclear discord within subgenera. Our nuclear phylogeny recovered a monophyletic racemose group, contrasting with previous studies finding paraphyly that suggests repeated allopolyploidy early in the evolutionary history of the genus. However, we detected multiple species with histories consistent with hybridization and allopolyploidy, including a deep hybridization event involving subgenus Amygdalus and the Armeniaca clade in subgenus Prunus. Analyses of gene tree conflict revealed substantial discord at several nodes, including the crown node of the racemose group. Alternative gene tree topologies that conflicted with the species tree were consistent with a paraphyletic racemose group, highlighting the complex reticulated evolutionary history of this group.
Collapse
Affiliation(s)
- Richard G J Hodel
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20013-7012, USA.
| | - Elizabeth Zimmer
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20013-7012, USA
| |
Collapse
|
11
|
Meerow AW, Gardner EM, Nakamura K. Phylogenomics of the Andean Tetraploid Clade of the American Amaryllidaceae (Subfamily Amaryllidoideae): Unlocking a Polyploid Generic Radiation Abetted by Continental Geodynamics. FRONTIERS IN PLANT SCIENCE 2020; 11:582422. [PMID: 33250911 PMCID: PMC7674842 DOI: 10.3389/fpls.2020.582422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/12/2020] [Indexed: 05/27/2023]
Abstract
One of the two major clades of the endemic American Amaryllidaceae subfam. Amaryllidoideae constitutes the tetraploid-derived (n = 23) Andean-centered tribes, most of which have 46 chromosomes. Despite progress in resolving phylogenetic relationships of the group with plastid and nrDNA, certain subclades were poorly resolved or weakly supported in those previous studies. Sequence capture using anchored hybrid enrichment was employed across 95 species of the clade along with five outgroups and generated sequences of 524 nuclear genes and a partial plastome. Maximum likelihood phylogenetic analyses were conducted on concatenated supermatrices, and coalescent-based species tree analyses were run on the gene trees, followed by hybridization network, age diversification and biogeographic analyses. The four tribes Clinantheae, Eucharideae, Eustephieae, and Hymenocallideae (sister to Clinantheae) are resolved in all analyses with > 90 and mostly 100% support, as are almost all genera within them. Nuclear gene supermatrix and species tree results were largely in concordance; however, some instances of cytonuclear discordance were evident. Hybridization network analysis identified significant reticulation in Clinanthus, Hymenocallis, Stenomesson and the subclade of Eucharideae comprising Eucharis, Caliphruria, and Urceolina. Our data support a previous treatment of the latter as a single genus, Urceolina, with the addition of Eucrosia dodsonii. Biogeographic analysis and penalized likelihood age estimation suggests an origin in the Cauca, Desert and Puna Neotropical bioprovinces for the complex in the mid-Oligocene, with more dispersals than vicariances in its history, but no extinctions. Hymenocallis represents the only instance of long-distance vicariance from the tropical Andean origin of its tribe Hymenocallideae. The absence of extinctions correlates with the lack of diversification rate shifts within the clade. The Eucharideae experienced a sudden lineage radiation ca. 10 Mya. We tie much of the divergences in the Andean-centered lineages to the rise of the Andes, and suggest that the Amotape-Huancabamba Zone functioned as both a corridor (dispersal) and a barrier to migration (vicariance). Several taxonomic changes are made. This is the largest DNA sequence data set to be applied within Amaryllidaceae to date.
Collapse
Affiliation(s)
- Alan W. Meerow
- USDA-ARS-SHRS, National Clonal Germplasm Repository, Miami, FL, United States
| | - Elliot M. Gardner
- Singapore Botanic Gardens, National Parks Board, Singapore, Singapore
- Institute of Environment, Florida International University, Miami, FL, United States
| | - Kyoko Nakamura
- USDA-ARS-SHRS, National Clonal Germplasm Repository, Miami, FL, United States
| |
Collapse
|
12
|
Singhal S, Colston TJ, Grundler MR, Smith SA, Costa GC, Colli GR, Moritz C, Pyron RA, Rabosky DL. Congruence and Conflict in the Higher-Level Phylogenetics of Squamate Reptiles: An Expanded Phylogenomic Perspective. Syst Biol 2020; 70:542-557. [PMID: 32681800 DOI: 10.1093/sysbio/syaa054] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 05/05/2020] [Accepted: 07/05/2020] [Indexed: 12/16/2022] Open
Abstract
Genome-scale data have the potential to clarify phylogenetic relationships across the tree of life but have also revealed extensive gene tree conflict. This seeming paradox, whereby larger data sets both increase statistical confidence and uncover significant discordance, suggests that understanding sources of conflict is important for accurate reconstruction of evolutionary history. We explore this paradox in squamate reptiles, the vertebrate clade comprising lizards, snakes, and amphisbaenians. We collected an average of 5103 loci for 91 species of squamates that span higher-level diversity within the clade, which we augmented with publicly available sequences for an additional 17 taxa. Using a locus-by-locus approach, we evaluated support for alternative topologies at 17 contentious nodes in the phylogeny. We identified shared properties of conflicting loci, finding that rate and compositional heterogeneity drives discordance between gene trees and species tree and that conflicting loci rarely overlap across contentious nodes. Finally, by comparing our tests of nodal conflict to previous phylogenomic studies, we confidently resolve 9 of the 17 problematic nodes. We suggest this locus-by-locus and node-by-node approach can build consensus on which topological resolutions remain uncertain in phylogenomic studies of other contentious groups. [Anchored hybrid enrichment (AHE); gene tree conflict; molecular evolution; phylogenomic concordance; target capture; ultraconserved elements (UCE).].
Collapse
Affiliation(s)
- Sonal Singhal
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.,Museum of Zoology, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Biology, CSU Dominguez Hills, Carson, CA 90747, USA
| | - Timothy J Colston
- Department of Biological Sciences, The George Washington University, Washington D.C. 20052, USA.,Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Maggie R Grundler
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.,Museum of Zoology, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Environmental Science, Policy, & Management, University of California Berkeley, Berkeley, CA 94720, USA
| | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gabriel C Costa
- Department of Biology and Environmental Sciences, Auburn University at Montgomery, Montgomery, AL, USA
| | - Guarino R Colli
- Departamento de Zoologia, Universidade de Brasília, Brasília, DF, Brazil
| | - Craig Moritz
- Division of Ecology and Evolution, Research School of Biology, and Centre for Biodiversity Analysis, The Australian National University, 46 Sullivans Creek Road, Acton, ACT 2601, Australia
| | - R Alexander Pyron
- Department of Biological Sciences, The George Washington University, Washington D.C. 20052, USA
| | - Daniel L Rabosky
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.,Museum of Zoology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Morales-Briones DF, Kadereit G, Tefarikis DT, Moore MJ, Smith SA, Brockington SF, Timoneda A, Yim WC, Cushman JC, Yang Y. Disentangling Sources of Gene Tree Discordance in Phylogenomic Data Sets: Testing Ancient Hybridizations in Amaranthaceae s.l. Syst Biol 2020; 70:219-235. [PMID: 32785686 PMCID: PMC7875436 DOI: 10.1093/sysbio/syaa066] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/01/2020] [Accepted: 09/03/2020] [Indexed: 12/26/2022] Open
Abstract
Gene tree discordance in large genomic data sets can be caused by evolutionary processes such as incomplete lineage sorting and hybridization, as well as model violation, and errors in data processing, orthology inference, and gene tree estimation. Species tree methods that identify and accommodate all sources of conflict are not available, but a combination of multiple approaches can help tease apart alternative sources of conflict. Here, using a phylotranscriptomic analysis in combination with reference genomes, we test a hypothesis of ancient hybridization events within the plant family Amaranthaceae s.l. that was previously supported by morphological, ecological, and Sanger-based molecular data. The data set included seven genomes and 88 transcriptomes, 17 generated for this study. We examined gene-tree discordance using coalescent-based species trees and network inference, gene tree discordance analyses, site pattern tests of introgression, topology tests, synteny analyses, and simulations. We found that a combination of processes might have generated the high levels of gene tree discordance in the backbone of Amaranthaceae s.l. Furthermore, we found evidence that three consecutive short internal branches produce anomalous trees contributing to the discordance. Overall, our results suggest that Amaranthaceae s.l. might be a product of an ancient and rapid lineage diversification, and remains, and probably will remain, unresolved. This work highlights the potential problems of identifiability associated with the sources of gene tree discordance including, in particular, phylogenetic network methods. Our results also demonstrate the importance of thoroughly testing for multiple sources of conflict in phylogenomic analyses, especially in the context of ancient, rapid radiations. We provide several recommendations for exploring conflicting signals in such situations. [Amaranthaceae; gene tree discordance; hybridization; incomplete lineage sorting; phylogenomics; species network; species tree; transcriptomics.]
Collapse
Affiliation(s)
- Diego F Morales-Briones
- Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, 1445 Gortner Avenue, St. Paul, MN 55108, USA
| | - Gudrun Kadereit
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - Delphine T Tefarikis
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - Michael J Moore
- Department of Biology, Oberlin College, Science Center K111, 119 Woodland Street, Oberlin, OH 44074-1097, USA
| | - Stephen A Smith
- Department of Ecology & Evolutionary Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048, USA
| | - Samuel F Brockington
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge CB2 3EA, UK
| | - Alfonso Timoneda
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge CB2 3EA, UK
| | - Won C Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89577, USA
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89577, USA
| | - Ya Yang
- Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, 1445 Gortner Avenue, St. Paul, MN 55108, USA
| |
Collapse
|
14
|
Multilocus phylogeny of Bornean Bent-Toed geckos (Gekkonidae: Cyrtodactylus) reveals hidden diversity, taxonomic disarray, and novel biogeographic patterns. Mol Phylogenet Evol 2020; 147:106785. [PMID: 32135306 DOI: 10.1016/j.ympev.2020.106785] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/03/2020] [Accepted: 02/27/2020] [Indexed: 11/24/2022]
Abstract
The gekkonid genus Cyrtodactylus is a highly diverse group of lizards (280 + species), which covers an expansive geographic range. Although this genus has been the focus of many taxonomic and molecular systematic studies, species on the Southeast Asian island of Borneo have remained understudied, leading to an unclear evolutionary history with cascading effects on taxonomy and biogeographic inferences. We assembled the most comprehensive multilocus Bornean dataset (one mitochondrial and three nuclear loci) that included 129 novel sequences and representatives from each known Cyrtodactylus species on the island to validate taxonomic status, assess species diversity, and elucidate biogeographic patterns. Our results uncovered a high proportion of cryptic diversity and revealed numerous taxonomic complications, especially within the C. consobrinus, C. malayanus, and C. pubisulcus groups. Comparisons of pairwise genetic distances and a preliminary species delimitation analysis using the Automatic Barcode Gap Discovery (ABGD) method demonstrated that some wide-ranging species on Borneo likely comprise multiple distinct and deeply divergent lineages, each with more restricted distributional ranges. We also tested the prevailing biogeographic hypothesis of a single invasion from Borneo into the Philippines. Our analyses revealed that Philippine taxa were not monophyletic, but were likely derived from multiple separate invasions into the geopolitical areas comprising the Philippines. Although our investigation of Bornean Cyrtodactylus is the most comprehensive to-date, it highlights the need for expanded taxonomic sampling and suggests that our knowledge of the evolutionary history, systematics, and biogeography of Bornean Cyrtodactylus is far from complete.
Collapse
|
15
|
Smith SA, Walker-Hale N, Walker JF, Brown JW. Phylogenetic Conflicts, Combinability, and Deep Phylogenomics in Plants. Syst Biol 2019; 69:579-592. [DOI: 10.1093/sysbio/syz078] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 10/16/2019] [Accepted: 11/18/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
Studies have demonstrated that pervasive gene tree conflict underlies several important phylogenetic relationships where different species tree methods produce conflicting results. Here, we present a means of dissecting the phylogenetic signal for alternative resolutions within a data set in order to resolve recalcitrant relationships and, importantly, identify what the data set is unable to resolve. These procedures extend upon methods for isolating conflict and concordance involving specific candidate relationships and can be used to identify systematic error and disambiguate sources of conflict among species tree inference methods. We demonstrate these on a large phylogenomic plant data set. Our results support the placement of Amborella as sister to the remaining extant angiosperms, Gnetales as sister to pines, and the monophyly of extant gymnosperms. Several other contentious relationships, including the resolution of relationships within the bryophytes and the eudicots, remain uncertain given the low number of supporting gene trees. To address whether concatenation of filtered genes amplified phylogenetic signal for relationships, we implemented a combinatorial heuristic to test combinability of genes. We found that nested conflicts limited the ability of data filtering methods to fully ameliorate conflicting signal amongst gene trees. These analyses confirmed that the underlying conflicting signal does not support broad concatenation of genes. Our approach provides a means of dissecting a specific data set to address deep phylogenetic relationships while also identifying the inferential boundaries of the data set. [Angiosperms; coalescent; gene-tree conflict; genomics; phylogenetics; phylogenomics.]
Collapse
Affiliation(s)
- Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave, Biological Sciences Building, Ann Arbor, MI 48109-1085, USA
| | - Nathanael Walker-Hale
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave, Biological Sciences Building, Ann Arbor, MI 48109-1085, USA
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, Cambridge, UK
| | - Joseph F Walker
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave, Biological Sciences Building, Ann Arbor, MI 48109-1085, USA
- Sainsbury Laboratory (SLCU), University of Cambrige, Bateman St, Cambridge CB2 1LR, Cambridge, UK
| | - Joseph W Brown
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, Sheffield, UK
| |
Collapse
|
16
|
Herrando-Moraira S, Calleja JA, Galbany-Casals M, Garcia-Jacas N, Liu JQ, López-Alvarado J, López-Pujol J, Mandel JR, Massó S, Montes-Moreno N, Roquet C, Sáez L, Sennikov A, Susanna A, Vilatersana R. Nuclear and plastid DNA phylogeny of tribe Cardueae (Compositae) with Hyb-Seq data: A new subtribal classification and a temporal diversification framework. Mol Phylogenet Evol 2019; 137:313-332. [DOI: 10.1016/j.ympev.2019.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/04/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
|
17
|
Widhelm TJ, Grewe F, Huang JP, Mercado-Díaz JA, Goffinet B, Lücking R, Moncada B, Mason-Gamer R, Lumbsch HT. Multiple historical processes obscure phylogenetic relationships in a taxonomically difficult group (Lobariaceae, Ascomycota). Sci Rep 2019; 9:8968. [PMID: 31222061 PMCID: PMC6586878 DOI: 10.1038/s41598-019-45455-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
In the age of next-generation sequencing, the number of loci available for phylogenetic analyses has increased by orders of magnitude. But despite this dramatic increase in the amount of data, some phylogenomic studies have revealed rampant gene-tree discordance that can be caused by many historical processes, such as rapid diversification, gene duplication, or reticulate evolution. We used a target enrichment approach to sample 400 single-copy nuclear genes and estimate the phylogenetic relationships of 13 genera in the lichen-forming family Lobariaceae to address the effect of data type (nucleotides and amino acids) and phylogenetic reconstruction method (concatenation and species tree approaches). Furthermore, we examined datasets for evidence of historical processes, such as rapid diversification and reticulate evolution. We found incongruence associated with sequence data types (nucleotide vs. amino acid sequences) and with different methods of phylogenetic reconstruction (species tree vs. concatenation). The resulting phylogenetic trees provided evidence for rapid and reticulate evolution based on extremely short branches in the backbone of the phylogenies. The observed rapid and reticulate diversifications may explain conflicts among gene trees and the challenges to resolving evolutionary relationships. Based on divergence times, the diversification at the backbone occurred near the Cretaceous-Paleogene (K-Pg) boundary (65 Mya) which is consistent with other rapid diversifications in the tree of life. Although some phylogenetic relationships within the Lobariaceae family remain with low support, even with our powerful phylogenomic dataset of up to 376 genes, our use of target-capturing data allowed for the novel exploration of the mechanisms underlying phylogenetic and systematic incongruence.
Collapse
Affiliation(s)
- Todd J Widhelm
- Field Museum, Science and Education, Chicago, 60605, USA.
- University of Illinois at Chicago, Biological Sciences, Chicago, 60607, USA.
| | - Felix Grewe
- Field Museum, Grainger Bioinformatics Center, Chicago, 60605, USA
| | - Jen-Pan Huang
- Field Museum, Science and Education, Chicago, 60605, USA
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Bernard Goffinet
- University of Connecticut, Ecology and Evolutionary Biology, Storrs, 06268, USA
| | - Robert Lücking
- Botanischer Garten und Botanisches Museum, Herbarium, Berlin, 14195, Germany
| | - Bibiana Moncada
- Universidad Distrital Francisco José de Caldas, Torre de Laboratorios, Herbario, Bogotá, 11021, Colombia
| | | | | |
Collapse
|
18
|
Bravo GA, Antonelli A, Bacon CD, Bartoszek K, Blom MPK, Huynh S, Jones G, Knowles LL, Lamichhaney S, Marcussen T, Morlon H, Nakhleh LK, Oxelman B, Pfeil B, Schliep A, Wahlberg N, Werneck FP, Wiedenhoeft J, Willows-Munro S, Edwards SV. Embracing heterogeneity: coalescing the Tree of Life and the future of phylogenomics. PeerJ 2019; 7:e6399. [PMID: 30783571 PMCID: PMC6378093 DOI: 10.7717/peerj.6399] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 01/07/2019] [Indexed: 12/23/2022] Open
Abstract
Building the Tree of Life (ToL) is a major challenge of modern biology, requiring advances in cyberinfrastructure, data collection, theory, and more. Here, we argue that phylogenomics stands to benefit by embracing the many heterogeneous genomic signals emerging from the first decade of large-scale phylogenetic analysis spawned by high-throughput sequencing (HTS). Such signals include those most commonly encountered in phylogenomic datasets, such as incomplete lineage sorting, but also those reticulate processes emerging with greater frequency, such as recombination and introgression. Here we focus specifically on how phylogenetic methods can accommodate the heterogeneity incurred by such population genetic processes; we do not discuss phylogenetic methods that ignore such processes, such as concatenation or supermatrix approaches or supertrees. We suggest that methods of data acquisition and the types of markers used in phylogenomics will remain restricted until a posteriori methods of marker choice are made possible with routine whole-genome sequencing of taxa of interest. We discuss limitations and potential extensions of a model supporting innovation in phylogenomics today, the multispecies coalescent model (MSC). Macroevolutionary models that use phylogenies, such as character mapping, often ignore the heterogeneity on which building phylogenies increasingly rely and suggest that assimilating such heterogeneity is an important goal moving forward. Finally, we argue that an integrative cyberinfrastructure linking all steps of the process of building the ToL, from specimen acquisition in the field to publication and tracking of phylogenomic data, as well as a culture that values contributors at each step, are essential for progress.
Collapse
Affiliation(s)
- Gustavo A. Bravo
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Alexandre Antonelli
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
- Gothenburg Botanical Garden, Göteborg, Sweden
| | - Christine D. Bacon
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Krzysztof Bartoszek
- Department of Computer and Information Science, Linköping University, Linköping, Sweden
| | - Mozes P. K. Blom
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Stella Huynh
- Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Graham Jones
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - L. Lacey Knowles
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sangeet Lamichhaney
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Thomas Marcussen
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Hélène Morlon
- Institut de Biologie, Ecole Normale Supérieure de Paris, Paris, France
| | - Luay K. Nakhleh
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Bengt Oxelman
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Bernard Pfeil
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Alexander Schliep
- Department of Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden
| | | | - Fernanda P. Werneck
- Coordenação de Biodiversidade, Programa de Coleções Científicas Biológicas, Instituto Nacional de Pesquisa da Amazônia, Manaus, AM, Brazil
| | - John Wiedenhoeft
- Department of Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden
- Department of Computer Science, Rutgers University, Piscataway, NJ, USA
| | - Sandi Willows-Munro
- School of Life Sciences, University of Kwazulu-Natal, Pietermaritzburg, South Africa
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
- Gothenburg Centre for Advanced Studies in Science and Technology, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
19
|
Soltis DE, Moore MJ, Sessa EB, Smith SA, Soltis PS. Using and navigating the plant tree of life. AMERICAN JOURNAL OF BOTANY 2018; 105:287-290. [PMID: 29702724 DOI: 10.1002/ajb2.1071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/07/2018] [Indexed: 05/24/2023]
Affiliation(s)
- Douglas E Soltis
- Florida Museum of Natural History, University of Florida, P. O. Box 117800, Gainesville, FL, 32611, USA
- Department of Biology, University of Florida, P. O. Box 118525, Gainesville, FL, 32611, USA
| | - Michael J Moore
- Department of Biology, Oberlin College, 119 Woodland Street, Oberlin, OH, 44074, USA
| | - Emily B Sessa
- Department of Biology, University of Florida, P. O. Box 118525, Gainesville, FL, 32611, USA
| | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University, Ann Arbor, MI, 48109, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, P. O. Box 117800, Gainesville, FL, 32611, USA
| |
Collapse
|