1
|
Zhou Z, Hu M, Ru J, Yang S, Zhang Y, Wang X, Chen J, Cui Y. Delay impacts of ant nests on plant reproductive phenology in a temperate steppe. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:1260-1264. [PMID: 39284019 DOI: 10.1111/plb.13721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/02/2024] [Indexed: 11/16/2024]
Abstract
Increasing ant abundance associated with climate warming has been observed in temperate ecosystems. However, how enhanced ant activity affects plant development and phenology remains unclear. In this study, individuals of a perennial forb (Potentilla tanacetifolia) during flowering with and without an ant (Proformica) nest were marked to explore the impacts of ant nests on plant growth and phenology in a temperate steppe on the Mongolian Plateau. Ant nests delayed the start and end flowering dates simultaneously and, consequently, had no effect on flowering duration. However, presence of an ant nest postponed the fruiting date of individuals. Nests further increased numbers of aborted flowers and thus decreased fruit set. These observations suggest that the delayed flowering phenology disrupted synchrony between plant reproduction and pollinators and thus reduced pollination efficiency under ant nests. Given the increasing abundance of ants with rising temperatures under climate warming, plant delayed reproductive phenology and reduced reproductive output will potentially have negative consequences for plant fitness and plant-arthropod interactions, with consequent impacts on resistance and resilience of perennial species in temperate steppes under climate change.
Collapse
Affiliation(s)
- Z Zhou
- School of Biological and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
- Taihang Mountain Forest Pests Observation and Research Station of Henan Province, Linzhou, Henan, China
| | - M Hu
- College of Resources and Environmental Science and Engineering, Hubei University of Science and Technology, Xianning, China
| | - J Ru
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - S Yang
- College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Y Zhang
- School of Biological and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
- Taihang Mountain Forest Pests Observation and Research Station of Henan Province, Linzhou, Henan, China
| | - X Wang
- School of Biological and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
- Taihang Mountain Forest Pests Observation and Research Station of Henan Province, Linzhou, Henan, China
| | - J Chen
- Henan Association for Science and Technology, Zhengzhou, Henan, China
| | - Y Cui
- School of Biological and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
| |
Collapse
|
2
|
Zhang T, Chen Y, Yang X, Zhang H, Guo Z, Hu G, Bai H, Sun Y, Huang L, Ma M. Warming reduces mid-summer flowering plant reproductive success through advancing fruiting phenology in an alpine meadow. Proc Biol Sci 2024; 291:20241110. [PMID: 39474908 PMCID: PMC11523106 DOI: 10.1098/rspb.2024.1110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/31/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Changes in reproductive phenology induced by warming are happening across the globe, with significant implications for plant sexual reproduction. However, the changes in plant reproductive output (number of flowers and fruits) and success (successful fruits/total flowers) in response to climate change have not been well characterized. Here, we conducted a warming and altered precipitation experiment in an alpine meadow on the eastern Tibetan Plateau to investigate the effects of climate change on the reproductive phenology and success of six common species belonging to two flowering functional groups. We found that warming advanced the start of flowering and the start of fruiting in mid-summerflowering plants. Warming reduced the reproductive output of early-spring flowering plants but did not change their reproductive success. The effects of warming and altered precipitation on the reproductive output and success of mid-summer flowering plants were year-dependent, and the fruiting phenology regulated the response of the mid-summer flowering plant's reproductive success to climate change. These findings highlight the critical role of fruiting phenology in the reproductive success of alpine plants and imply that alpine plants may reduce their fitness by producing fewer flowers and fruits under climate warming, especially for later flowering plants.
Collapse
Affiliation(s)
- Tianwu Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu Province730000, People’s Republic of China
| | - Yaya Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu Province730000, People’s Republic of China
| | - Xiangrong Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu Province730000, People’s Republic of China
| | - Hui Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu Province730000, People’s Republic of China
| | - Zengpeng Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu Province730000, People’s Republic of China
| | - Guorui Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu Province730000, People’s Republic of China
| | - Haonan Bai
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu Province730000, People’s Republic of China
| | - Yinguang Sun
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu Province730000, People’s Republic of China
| | - Li Huang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu Province730000, People’s Republic of China
| | - Miaojun Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu Province730000, People’s Republic of China
| |
Collapse
|
3
|
Tourville JC, Murray GLD, Nelson SJ. Distinct latitudinal patterns of shifting spring phenology across the Appalachian Trail Corridor. Ecology 2024; 105:e4403. [PMID: 39205387 DOI: 10.1002/ecy.4403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 06/27/2024] [Indexed: 09/04/2024]
Abstract
Warming associated with climate change will advance the onset of spring phenology for many forest plants across the Eastern United States. Understory forbs and spring ephemerals that fix a disproportionate amount of carbon during early spring may be negatively affected by earlier canopy closure; however, information on the spatial patterns of phenological change for these communities is still lacking. To assess the potential for changes in spring phenological windows, we synthesized observations from the Appalachian Mountain Club's (AMCs) Mountain Watch (MW) project, the National Phenology Network (NPN), and AMC's iNaturalist projects between 2004 and 2022 (n = 118,250) across the length of the Appalachian Trail (AT) Corridor (34° N-46° N latitude). We used hierarchical Bayesian modeling to examine the sensitivity of spring flowering and leaf-out for 11 understory species and 14 canopy tree species to mean spring temperature (April-June). We conducted analyses across the AT Corridor, partitioned by regions of 4° latitude (south, mid-Atlantic, and north). Spring phenologies for both understory plants and canopy trees advanced with warming (~6 and ~3 days/°C, respectively). However, the sensitivity of each group varied by latitude, with the phenology of trees and understory plants advancing to a greater degree in the mid-Atlantic region (~10 days/°C) than in the southern or northern regions (~5 days/°C). While we find evidence that phenological windows remain stable in the southern and mid-Atlantic portions of the AT, we observed an expansion of the spring phenological window in the north where there was greater understory forb temperature sensitivity compared with trees (~2.7 days/°C). Our analyses indicate the differential sensitivity of forest plant phenology to potential warming across a large latitudinal gradient in the Eastern United States. Further, evidence for a temperature-driven expansion of the spring phenological window suggests a potential beneficial effect for understory plants in the northern AT, although phenological mismatch with potential pollinators and increased vulnerability to late winter frosts are possible. Using extensive citizen-science datasets allows us to synthesize regional- and continental-scale data to explore spatial and temporal trends in spring phenology related to warming. Such data can help to standardize approaches in phenological research and its application to forest climate resiliency.
Collapse
|
4
|
Zettlemoyer MA, Conner RJ, Seaver MM, Waddle E, DeMarche ML. A Long-Lived Alpine Perennial Advances Flowering under Warmer Conditions but Not Enough to Maintain Reproductive Success. Am Nat 2024; 203:E157-E174. [PMID: 38635358 DOI: 10.1086/729438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
AbstractAssessing whether phenological shifts in response to climate change confer a fitness advantage requires investigating the relationships among phenology, fitness, and environmental drivers of selection. Despite widely documented advancements in phenology with warming climate, we lack empirical estimates of how selection on phenology varies in response to continuous climate drivers or how phenological shifts in response to warming conditions affect fitness. We leverage an unusual long-term dataset with repeated, individual measurements of phenology and reproduction in a long-lived alpine plant. We analyze phenotypic plasticity in flowering phenology in relation to two climate drivers, snowmelt timing and growing degree days (GDDs). Plants flower earlier with increased GDDs and earlier snowmelt, and directional selection also favors earlier flowering under these conditions. However, reproduction still declines with warming and early snowmelt, even when flowering is early. Furthermore, the steepness of this reproductive decline increases dramatically with warming conditions, resulting in very little fruit production regardless of flowering time once GDDs exceed approximately 225 degree days or snowmelt occurs before May 15. Even though advancing phenology confers a fitness advantage relative to stasis, these shifts are insufficient to maintain reproduction under warming, highlighting limits to the potential benefits of phenological plasticity under climate change.
Collapse
|
5
|
Buonaiuto DM, Davies TJ, Collins SC, Wolkovich EM. Ecological drivers of flower-leaf sequences: aridity and proxies for pollinator attraction select for flowering-first in the American plums. THE NEW PHYTOLOGIST 2024. [PMID: 38561636 DOI: 10.1111/nph.19685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
Across temperate forests, many tree species produce flowers before their leaves emerge. This flower-leaf phenological sequence, known as hysteranthy, is generally described as an adaptation for wind pollination. However, this explanation does not address why hysteranthy is also common in biotically pollinated taxa. We quantified flower-leaf sequence variation in the American plums (Prunus, subg. Prunus sect. Prunocerasus), a clade of insect-pollinated trees, using herbaria specimens and Bayesian hierarchical modeling. We tested two common, but rarely interrogated hypotheses - that hysteranthy confers aridity tolerance and/or pollinator visibility - by modeling the associations between hysteranthy and related traits. To understand how these phenology-trait associations were sensitive to taxonomic scale and flower-leaf sequence classification, we then extended these analyses to all Prunus species in North America. Our findings across two taxonomic levels support the hypotheses that hysteranthy may help temporally partition hydraulic demand to reduce water stress and increase pollinator visibility - thereby reducing selective pressure on inflorescence size. Our results provide foundational insights into the evolution of flower-leaf sequences in the genus Prunus, with implications for understanding these patterns in biotically pollinated plants in general. Our approach suggests a path to advance these hypotheses to other clades, but teasing out drivers fully will require new experiments.
Collapse
Affiliation(s)
- D M Buonaiuto
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA, 01003, USA
- Arnold Arboretum of Harvard University, Boston, MA, 02131, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - T J Davies
- Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - S C Collins
- Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - E M Wolkovich
- Arnold Arboretum of Harvard University, Boston, MA, 02131, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
6
|
Guo L, Liu X, Alatalo JM, Wang C, Xu J, Yu H, Chen J, Yu Q, Peng C, Dai J, Luedeling E. Climatic drivers and ecological implications of variation in the time interval between leaf-out and flowering. Curr Biol 2023; 33:3338-3349.e3. [PMID: 37490919 DOI: 10.1016/j.cub.2023.06.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/01/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023]
Abstract
Leaf-out and flowering in any given species have evolved to occur in a predetermined sequence, with the inter-stage time interval optimized to maximize plant fitness. Although warming-induced advances of both leaf-out and flowering are well documented, it remains unclear whether shifts in these phenological phases differ in magnitudes and whether changes have occurred in the length of the inter-stage intervals. Here, we present an extensive synthesis of warming effects on flower-leaf time intervals, using long-term (1963-2014) and in situ data consisting of 11,858 leaf-out and flowering records for 183 species across China. We found that the timing of both spring phenological events was generally advanced, indicating a dominant impact of forcing conditions compared with chilling. Stable time intervals between leaf-out and flowering prevailed for most of the time series despite increasing temperatures; however, some of the investigated cases featured significant changes in the time intervals. The latter could be explained by differences in the temperature sensitivity (ST) between leaf and flower phenology. Greater ST for flowering than for leaf-out caused flowering times to advance faster than leaf emergence. This shortened the inter-stage intervals in leaf-first species and lengthened them in flower-first species. Variation in the time intervals between leaf-out and flowering events may have far-reaching ecological and evolutionary consequences, with implications for species fitness, intra/inter-species interactions, and ecosystem structure, function, and stability.
Collapse
Affiliation(s)
- Liang Guo
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaowei Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juha M Alatalo
- Environmental Science Center, Qatar University, Doha 2713, Qatar
| | - Chuanyao Wang
- College of Forestry (Academy of Forestry), Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianchu Xu
- Center for Mountain Ecosystem Studies, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; World Agroforestry Center, Nairobi 00100, Kenya
| | - Haiying Yu
- College of A&F Engineering and Planning, Tongren University, Tongren, Guizhou 554300, China
| | - Ji Chen
- Department of Agroecology, Aarhus University, Tjele, Jutland 8830, Denmark
| | - Qiang Yu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Changhui Peng
- School of Geographic Sciences, Hunan Normal University, Changsha, Hunan 410081, China; Department of Biology Science, Institute of Environment Sciences, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada.
| | - Junhu Dai
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; China-Pakistan Joint Research Center on Earth Sciences, Chinese Academy of Sciences-Higher Education Commission of Pakistan, Islamabad 45320, Pakistan.
| | - Eike Luedeling
- INRES-Horticultural Sciences, University of Bonn, Bonn, Nordrhein-Westfalen 53121, Germany
| |
Collapse
|
7
|
Chamberlain C, Wolkovich E. Variation across space, species and methods in models of spring phenology. CLIMATE CHANGE ECOLOGY 2023. [DOI: 10.1016/j.ecochg.2023.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
8
|
Stemkovski M, Bell JR, Ellwood ER, Inouye BD, Kobori H, Lee SD, Lloyd-Evans T, Primack RB, Templ B, Pearse WD. Disorder or a new order: How climate change affects phenological variability. Ecology 2023; 104:e3846. [PMID: 36199230 DOI: 10.1002/ecy.3846] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/12/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023]
Abstract
Advancing spring phenology is a well documented consequence of anthropogenic climate change, but it is not well understood how climate change will affect the variability of phenology year to year. Species' phenological timings reflect the adaptation to a broad suite of abiotic needs (e.g., thermal energy) and biotic interactions (e.g., predation and pollination), and changes in patterns of variability may disrupt those adaptations and interactions. Here, we present a geographically and taxonomically broad analysis of phenological shifts, temperature sensitivity, and changes in interannual variability encompassing nearly 10,000 long-term phenology time series representing more than 1000 species across much of the Northern Hemisphere. We show that the timings of leaf-out, flowering, insect first-occurrence, and bird arrival were the most sensitive to temperature variation and have advanced at the fastest pace for early-season species in colder and less seasonal regions. We did not find evidence for changing variability in warmer years in any phenophase groups, although leaf-out and flower phenology have become moderately but significantly less variable over time. Our findings suggest that climate change has not to this point fundamentally altered the patterns of interannual phenological variability.
Collapse
Affiliation(s)
- Michael Stemkovski
- Department of Biology & Ecology Center, Utah State University, Logan, Utah, USA.,Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
| | | | - Elizabeth R Ellwood
- Natural History Museum of Los Angeles County, Los Angeles, California, USA.,iDigBio, Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Brian D Inouye
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA.,Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | | | - Sang Don Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | | | - Richard B Primack
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | | | - William D Pearse
- Department of Biology & Ecology Center, Utah State University, Logan, Utah, USA.,Department of Life Sciences, Imperial College London, Berkshire, UK
| |
Collapse
|
9
|
Park HJ, Nam BE, Lee G, Kim SG, Joo Y, Kim JG. Ontogeny-dependent effects of elevated CO 2 and watering frequency on interaction between Aristolochia contorta and its herbivores. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156065. [PMID: 35597357 DOI: 10.1016/j.scitotenv.2022.156065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Effects of environmental change on plants can differ due to sequential changes in their life-history strategies (i.e., ontogenetic variations). The fitness of herbivorous insects by physiological changes of the host plant could be affected depending on their diet breadth. However, little is known regarding the combinational effects of plant ontogeny and climate change on plant-herbivore interactions. This study examined the plant ontogeny-dependent effects of climate change on the interaction between a host plant (Aristolochia contorta), its specialist herbivore (Sericinus montela), and a generalist herbivore (Spodoptera exigua). Plants were grown under a factorial design of two distinct CO2 concentrations (ambient, 400 ppm; elevated, 560 ppm) and two watering frequencies (control, once a week; increased, twice a week). Plant ontogeny ameliorated the effects of climate change by altering its defensive traits, where nutrient-related factors were cumulatively affected by climate change. Herbivore performance was assessed at three different plant ontogenetic stages (1st-year juvenile, 1st-year senescence, and 2nd-year juvenile). Elevated CO2 levels reduced the growth and survival of the specialist herbivore, whereas increased watering frequency partially alleviated this reduced performance. Generalist herbivore performance slightly increased under elevated CO2 levels with progressing ontogenetic stages. The effects of climate change, both elevated CO2 and increased watering frequency were weaker in 2nd-year juveniles than in 1st-year juveniles. Elevated CO2 levels detrimentally affected the nutritional quality of A. contorta leaves. The effects of climate change on both specialist and generalist herbivore performance differed as plant ontogenetic stage proceeded. Increased growth rates and survival of the generalist herbivore at the latter ontogenetic stage might negatively affect the population dynamics of a specialist herbivore. This study suggests that biases are possible when the plant-herbivore interaction under a changing environment is predicted from a singular plant ontogenetic stage.
Collapse
Affiliation(s)
- Hyun Jun Park
- Department of Biology Education, Seoul National University, Seoul 08826, Republic of Korea
| | - Bo Eun Nam
- Department of Biology Education, Seoul National University, Seoul 08826, Republic of Korea; Department of Biology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Gisuk Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Youngsung Joo
- Department of Biology, Chungbuk National University, Cheongju 28644, Republic of Korea; Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Jae Geun Kim
- Department of Biology Education, Seoul National University, Seoul 08826, Republic of Korea; Center for Education Research, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
10
|
Sporbert M, Jakubka D, Bucher SF, Hensen I, Freiberg M, Heubach K, König A, Nordt B, Plos C, Blinova I, Bonn A, Knickmann B, Koubek T, Linstädter A, Mašková T, Primack RB, Rosche C, Shah MA, Stevens AD, Tielbörger K, Träger S, Wirth C, Römermann C. Functional traits influence patterns in vegetative and reproductive plant phenology - a multi-botanical garden study. THE NEW PHYTOLOGIST 2022; 235:2199-2210. [PMID: 35762815 DOI: 10.1111/nph.18345] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Phenology has emerged as key indicator of the biological impacts of climate change, yet the role of functional traits constraining variation in herbaceous species' phenology has received little attention. Botanical gardens are ideal places in which to investigate large numbers of species growing under common climate conditions. We ask whether interspecific variation in plant phenology is influenced by differences in functional traits. We recorded onset, end, duration and intensity of initial growth, leafing out, leaf senescence, flowering and fruiting for 212 species across five botanical gardens in Germany. We measured functional traits, including plant height, absolute and specific leaf area, leaf dry matter content, leaf carbon and nitrogen content and seed mass and accounted for species' relatedness. Closely related species showed greater similarities in timing of phenological events than expected by chance, but species' traits had a high degree of explanatory power, pointing to paramount importance of species' life-history strategies. Taller plants showed later timing of initial growth, and flowered, fruited and underwent leaf senescence later. Large-leaved species had shorter flowering and fruiting durations. Taller, large-leaved species differ in their phenology and are more competitive than smaller, small-leaved species. We assume climate warming will change plant communities' competitive hierarchies with consequences for biodiversity.
Collapse
Affiliation(s)
- Maria Sporbert
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, Jena, 07743, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
| | - Desiree Jakubka
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Solveig Franziska Bucher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Isabell Hensen
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
| | - Martin Freiberg
- Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Katja Heubach
- Palmengarten and Botanical Garden Frankfurt, Frankfurt am Main, 60323, Germany
| | - Andreas König
- Palmengarten and Botanical Garden Frankfurt, Frankfurt am Main, 60323, Germany
| | - Birgit Nordt
- Botanic Garden Berlin, Freie Universität Berlin, Berlin, 14195, Germany
| | - Carolin Plos
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, Jena, 07743, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
| | | | - Aletta Bonn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Department of Ecosystem Services, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, 04318, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Barbara Knickmann
- Core Facility Botanical Garden, University Vienna, Vienna, 1030, Austria
| | - Tomáš Koubek
- Department of Botany, Faculty of Science, Charles University, Prague, 12801, Czech Republic
| | - Anja Linstädter
- Institute of Biochemistry and Biology, Department of Biodiversity Research/ Systematic Botany with Botanical Garden, University of Potsdam, Potsdam, 14469, Germany
| | - Tereza Mašková
- Department of Botany, Faculty of Science, Charles University, Prague, 12801, Czech Republic
- Ecology and Conservation Biology, Institute of Plant Sciences, University of Regensburg, Regensburg, 93053, Germany
| | | | - Christoph Rosche
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190006, India
| | | | - Katja Tielbörger
- Institute of Evolution and Ecology, University of Tübingen, Tübingen, 72076, Germany
| | - Sabrina Träger
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
| | - Christian Wirth
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biology, Leipzig University, Leipzig, 04103, Germany
- Max-Planck-Institute for Biogeochemistry, Jena, 07745, Germany
| | - Christine Römermann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, Jena, 07743, Germany
| |
Collapse
|
11
|
Pagter M, Kjær KH. Winter warming stimulates vegetative growth and alters fruit quality of blackcurrant (Ribes nigrum). INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:1391-1401. [PMID: 35412081 DOI: 10.1007/s00484-022-02284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/03/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
The rate of global warming varies in magnitude between seasons, with warming being more pronounced in winter and spring than in summer and autumn at high latitudes. Winter warming can have profound effects on dormancy release and spring phenology of perennial fruit crops, but potential follow-on impacts on growth, fruit yield or quality have only rarely been investigated. We studied the effects of mild winter warming on spring phenology, current year shoot growth, cropping performance and fruit quality in four field-grown cultivars of blackcurrant with different chilling requirements. Plants were exposed to ambient or slightly elevated (+ 0.5 °C) temperatures from early October to mid-April the following year. Winter warming had few effects on spring phenology and fruit yield, but caused significant changes in berry contents of phenolic compounds and a reduction in soluble sugars. Increased vegetative growth of warmed plants likely accounts for the changes in berry quality. The results demonstrate a persistent effect of winter warming on shoot growth, which indirectly changes fruit quality.
Collapse
Affiliation(s)
- Majken Pagter
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers vej 7H, 9220, Aalborg, Denmark.
| | - Katrine Heinsvig Kjær
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200, Aarhus, Denmark
- Hortiadvice, Hvidkærvej 29, 5250, Odense, Denmark
| |
Collapse
|
12
|
Sandor ME, Aslan CE, Pejchar L, Bronstein JL. A Mechanistic Framework for Understanding the Effects of Climate Change on the Link Between Flowering and Fruiting Phenology. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.752110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phenological shifts are a widely studied consequence of climate change. Little is known, however, about certain critical phenological events, nor about mechanistic links between shifts in different life-history stages of the same organism. Among angiosperms, flowering times have been observed to advance with climate change, but, whether fruiting times shift as a direct consequence of shifting flowering times, or respond differently or not at all to climate change, is poorly understood. Yet, shifts in fruiting could alter species interactions, including by disrupting seed dispersal mutualisms. In the absence of long-term data on fruiting phenology, but given extensive data on flowering, we argue that an understanding of whether flowering and fruiting are tightly linked or respond independently to environmental change can significantly advance our understanding of how fruiting phenologies will respond to warming climates. Through a case study of biotically and abiotically dispersed plants, we present evidence for a potential functional link between the timing of flowering and fruiting. We then propose general mechanisms for how flowering and fruiting life history stages could be functionally linked or independently driven by external factors, and we use our case study species and phenological responses to distinguish among proposed mechanisms in a real-world framework. Finally, we identify research directions that could elucidate which of these mechanisms drive the timing between subsequent life stages. Understanding how fruiting phenology is altered by climate change is essential for all plant species but is particularly critical to sustaining the large numbers of plant species that rely on animal-mediated dispersal, as well as the animals that rely on fruit for sustenance.
Collapse
|
13
|
Pathogen infection influences the relationship between spring and autumn phenology at the seedling and leaf level. Oecologia 2021; 197:447-457. [PMID: 34553245 DOI: 10.1007/s00442-021-05044-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/14/2021] [Indexed: 01/08/2023]
Abstract
Seasonal life history events are often interdependent, but we know relatively little about how the relationship between different events is influenced by the abiotic and biotic environment. Such knowledge is important for predicting the immediate and evolutionary phenological response of populations to changing conditions. We manipulated germination timing and shade in a multi-factorial experiment to investigate the relationship between spring and autumn phenology in seedlings of the pedunculate oak, Quercus robur, and whether this relationship was mediated by natural colonization of leaves by specialist fungal pathogens (i.e., the oak powdery mildew complex). Each week delay in germination corresponded to about 2 days delay in autumn leaf senescence, and heavily shaded seedlings senesced 5-8 days later than seedlings in light shade or full sun. Within seedlings, leaves on primary-growth shoots senesced later than those on secondary-growth shoots in some treatments. Path analyses demonstrated that germination timing and shade affected autumn phenology both directly and indirectly via pathogen load, though the specific pattern differed among and within seedlings. Pathogen load increased with later germination and greater shade. Greater pathogen load was in turn associated with later senescence for seedlings, but with earlier senescence for individual leaves. Our findings show that relationships between seasonal events can be partly mediated by the biotic environment and suggest that these relationships may differ between the plant and leaf level. The influence of biotic interactions on phenological correlations across scales has implications for understanding phenotypic variation in phenology and for predicting how populations will respond to climatic perturbation.
Collapse
|
14
|
Stuble KL, Bennion LD, Kuebbing SE. Plant phenological responses to experimental warming-A synthesis. GLOBAL CHANGE BIOLOGY 2021; 27:4110-4124. [PMID: 33993588 DOI: 10.1111/gcb.15685] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Although there is abundant evidence that plant phenology is shifting with climatic warming, the magnitude and direction of these shifts can depend on the environmental context, plant species, and even the specific phenophase of study. These disparities have resulted in difficulties predicting future phenological shifts, detecting phenological mismatches and identifying other ecological consequences. Experimental warming studies are uniquely poised to help us understand how climate warming will impact plant phenology, and meta-analyses allow us to expose broader trends from individual studies. Here, we review 70 studies comprised 1226 observations of plant phenology under experimental warming. We find that plants are advancing their early-season phenophases (bud break, leaf-out, and flowering) in response to warming while marginally delaying their late-season phenophases (leaf coloration, leaf fall, and senescence). We find consistency in the magnitude of phenological shifts across latitude, elevation, and habitat types, whereas the effect of warming on nonnative annual plants is two times larger than the effect of warming on native perennial plants. Encouragingly for researchers, plant phenological responses were generally consistent across a variety of experimental warming methods. However, we found numerous gaps in the experimental warming literature, limiting our ability to predict the effects of warming on phenological shifts. In particular, studies outside of temperate ecosystems in the Northern Hemisphere, or those that focused on late-season phenophases, annual plants, nonnative plants, or woody plants and grasses, were underrepresented in our data set. Future experimental warming studies could further refine our understanding of phenological responses to warming by setting up experiments outside of traditionally studied biogeographic zones and measuring multiple plant phenophases (especially late-season phenophases) across species of varying origin, growth form, and life cycle.
Collapse
Affiliation(s)
| | - Leland D Bennion
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Sara E Kuebbing
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Primack RB, Ellwood ER, Gallinat AS, Miller-Rushing AJ. The growing and vital role of botanical gardens in climate change research. THE NEW PHYTOLOGIST 2021; 231:917-932. [PMID: 33890323 DOI: 10.1111/nph.17410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Botanical gardens make unique contributions to climate change research, conservation, and public engagement. They host unique resources, including diverse collections of plant species growing in natural conditions, historical records, and expert staff, and attract large numbers of visitors and volunteers. Networks of botanical gardens spanning biomes and continents can expand the value of these resources. Over the past decade, research at botanical gardens has advanced our understanding of climate change impacts on plant phenology, physiology, anatomy, and conservation. For example, researchers have utilized botanical garden networks to assess anatomical and functional traits associated with phenological responses to climate change. New methods have enhanced the pace and impact of this research, including phylogenetic and comparative methods, and online databases of herbarium specimens and photographs that allow studies to expand geographically, temporally, and taxonomically in scope. Botanical gardens have grown their community and citizen science programs, informing the public about climate change and monitoring plants more intensively than is possible with garden staff alone. Despite these advances, botanical gardens are still underutilized in climate change research. To address this, we review recent progress and describe promising future directions for research and public engagement at botanical gardens.
Collapse
Affiliation(s)
| | - Elizabeth R Ellwood
- iDigBio, Florida Museum of Natural History, University of Florida, Gainesville, FL, 33430, USA
- La Brea Tar Pits and Museum, Natural History Museum of Los Angeles County, Los Angeles, CA, 90036, USA
| | - Amanda S Gallinat
- Department of Biology and Ecology Center, Utah State University, Logan, UT, 84322, USA
- Department of Geography, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | | |
Collapse
|
16
|
Miller TK, Gallinat AS, Smith LC, Primack RB. Comparing fruiting phenology across two historical datasets: Thoreau's observations and herbarium specimens. ANNALS OF BOTANY 2021; 128:159-170. [PMID: 33830225 PMCID: PMC8324031 DOI: 10.1093/aob/mcab019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS Fruiting remains under-represented in long-term phenology records, relative to leaf and flower phenology. Herbarium specimens and historical field notes can fill this gap, but selecting and synthesizing these records for modern-day comparison requires an understanding of whether different historical data sources contain similar information, and whether similar, but not equivalent, fruiting metrics are comparable with one another. METHODS For 67 fleshy-fruited plant species, we compared observations of fruiting phenology made by Henry David Thoreau in Concord, Massachusetts (1850s), with phenology data gathered from herbarium specimens collected across New England (mid-1800s to 2000s). To identify whether fruiting times and the order of fruiting among species are similar between datasets, we compared dates of first, peak and last observed fruiting (recorded by Thoreau), and earliest, mean and latest specimen (collected from herbarium records), as well as fruiting durations. KEY RESULTS On average, earliest herbarium specimen dates were earlier than first fruiting dates observed by Thoreau; mean specimen dates were similar to Thoreau's peak fruiting dates; latest specimen dates were later than Thoreau's last fruiting dates; and durations of fruiting captured by herbarium specimens were longer than durations of fruiting observed by Thoreau. All metrics of fruiting phenology except duration were significantly, positively correlated within (r: 0.69-0.88) and between (r: 0.59-0.85) datasets. CONCLUSIONS Strong correlations in fruiting phenology between Thoreau's observations and data from herbaria suggest that field and herbarium methods capture similar broad-scale phenological information, including relative fruiting times among plant species in New England. Differences in the timing of first, last and duration of fruiting suggest that historical datasets collected with different methods, scales and metrics may not be comparable when exact timing is important. Researchers should strongly consider matching methodology when selecting historical records of fruiting phenology for present-day comparisons.
Collapse
Affiliation(s)
- Tara K Miller
- Boston University, Biology Department, Boston, MA 02215, USA
| | - Amanda S Gallinat
- Department of Biology and Ecology Center, Utah State University, Logan, UT 84322, USA
| | - Linnea C Smith
- German Centre for Integrative Biodiversity Research, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Leipzig 04103, Germany
| | | |
Collapse
|
17
|
Meineke EK, Davis CC, Davies TJ. Phenological sensitivity to temperature mediates herbivory. GLOBAL CHANGE BIOLOGY 2021; 27:2315-2327. [PMID: 33735502 DOI: 10.1111/gcb.15600] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/18/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Species interactions drive ecosystem processes and are a major focus of global change research. Among the most consequential interactions expected to shift with climate change are those between insect herbivores and plants, both of which are highly sensitive to temperature. Insect herbivores and their host plants display varying levels of synchrony that could be disrupted or enhanced by climate change, yet empirical data on changes in synchrony are lacking. Using evidence of herbivory on herbarium specimens collected from the northeastern United States and France from 1900 to 2015, we provide evidence that plant species with temperature-sensitive phenologies experience higher levels of insect damage in warmer years, while less temperature-sensitive, co-occurring species do not. While herbivory might be mediated by interactions between warming and phenology through multiple pathways, we suggest that warming might lengthen growing seasons for phenologically sensitive plant species, exposing their leaves to herbivores for longer periods of time in warm years. We propose that elevated herbivory in warm years may represent a previously underappreciated cost to phenological tracking of climate change over longer timescales.
Collapse
Affiliation(s)
- Emily K Meineke
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, USA
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Cambridge, MA, USA
| | - T Jonathan Davies
- Departments of Botany, Forest & Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
- African Centre for DNA Barcoding, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
18
|
Ettinger AK, Buonaiuto DM, Chamberlain CJ, Morales-Castilla I, Wolkovich EM. Spatial and temporal shifts in photoperiod with climate change. THE NEW PHYTOLOGIST 2021; 230:462-474. [PMID: 33421152 DOI: 10.1111/nph.17172] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/08/2020] [Indexed: 05/28/2023]
Abstract
Climate change causes both temporal (e.g. advancing spring phenology) and geographic (e.g. range expansion poleward) species shifts, which affect the photoperiod experienced at critical developmental stages ('experienced photoperiod'). As photoperiod is a common trigger of seasonal biological responses - affecting woody plant spring phenology in 87% of reviewed studies that manipulated photoperiod - shifts in experienced photoperiod may have important implications for future plant distributions and fitness. However, photoperiod has not been a focus of climate change forecasting to date, especially for early-season ('spring') events, often assumed to be driven by temperature. Synthesizing published studies, we find that impacts on experienced photoperiod from temporal shifts could be orders of magnitude larger than from spatial shifts (1.6 h of change for expected temporal vs 1 min for latitudinal shifts). Incorporating these effects into forecasts is possible by leveraging existing experimental data; we show that results from growth chamber experiments on woody plants often have data relevant for climate change impacts, and suggest that shifts in experienced photoperiod may increasingly constrain responses to additional warming. Further, combining modeling approaches and empirical work on when, where and how much photoperiod affects phenology could rapidly advance our understanding and predictions of future spatio-temporal shifts from climate change.
Collapse
Affiliation(s)
- A K Ettinger
- The Nature Conservancy, Washington Field Office, Seattle, WA, 98121, USA
- Arnold Arboretum of Harvard University, Boston, MA, 02130, USA
| | - D M Buonaiuto
- Arnold Arboretum of Harvard University, Boston, MA, 02130, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - C J Chamberlain
- Arnold Arboretum of Harvard University, Boston, MA, 02130, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - I Morales-Castilla
- Arnold Arboretum of Harvard University, Boston, MA, 02130, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Global Change Ecology and Evolution (GloCEE) Research Group, Department of Life Sciences, University of Alcalá, Alcalá de Henares, MA, 28805, Spain
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, 22030, USA
| | - E M Wolkovich
- Arnold Arboretum of Harvard University, Boston, MA, 02130, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
19
|
Buonaiuto DM, Morales-Castilla I, Wolkovich EM. Reconciling competing hypotheses regarding flower-leaf sequences in temperate forests for fundamental and global change biology. THE NEW PHYTOLOGIST 2021; 229:1206-1214. [PMID: 32750742 DOI: 10.1111/nph.16848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Phenology is a major component of an organism's fitness. While individual phenological events affect fitness, there is growing evidence to suggest that the relationship between events could be equally or more important. This could explain why temperate deciduous woody plants exhibit considerable variation in the order of reproductive and vegetative events, or flower-leaf sequences (FLSs). There is evidence to suggest that FLSs may be adaptive, with several competing hypotheses to explain their function. Here, we advance existing hypotheses with a new framework that accounts for quantitative FLS variation at multiple taxonomic scales using case studies from temperate forests. Our inquiry provides several major insights towards a better understanding of FLS variation. First, we show that support for FLS hypotheses is sensitive to how FLSs are defined, with quantitative definitions being the most useful for robust hypothesis testing. Second, we demonstrate that concurrent support for multiple hypotheses should be the starting point for future FLS analyses. Finally, we highlight how adopting a quantitative, intraspecific approach generates new avenues for evaluating fitness consequences of FLS variation and provides cascading benefits to improving predictions of how climate change will alter FLSs and thereby reshape plant communities and ecosystems.
Collapse
Affiliation(s)
- D M Buonaiuto
- Arnold Arboretum of Harvard University, Boston, MA, 02131, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Ignacio Morales-Castilla
- Global Change Ecology and Evolution (GloCEE), Department of Life Sciences, University of Alcalà, Alcalà de Henares, 28805, Spain
| | - E M Wolkovich
- Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
20
|
Sethi ML, Theobald EJ, Breckheimer I, Hille Ris Lambers J. Early snowmelt and warmer, drier summers shrink postflowering transition times in subalpine wildflowers. Ecology 2020; 101:e03171. [PMID: 32852790 DOI: 10.1002/ecy.3171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/11/2020] [Accepted: 06/28/2020] [Indexed: 12/26/2022]
Abstract
Plant reproductive phenology-the timing of reproduction-is shifting rapidly with global climate change. Many studies focus on flowering responses to climate, but few investigate how postflowering processes, such as how quickly plants develop from flowering to seed dispersal, respond to environmental factors. We examined the climatic drivers of postflowering phenology in 28 species of western North American subalpine meadow plants over large spatial and temporal climate gradients. We took a Bayesian hierarchical approach to address whether and how climate influences the time it takes for wildflower populations to transition from flower to seed. Our previous work on the same species demonstrated that the initiation of flowering depends on snowmelt timing, with warmer temperatures and soil moisture also playing a role. Here, we found that for the majority of the flowering community, the same climate drivers also affected the time it takes to move from flowering to seed dispersal. Climate-sensitive species shortened flower-seed transitions when snow melted earlier, temperatures were warmer, and/or soil dried down more quickly-conditions we expect with higher frequency under climate change. Our work underscores the fact that predicting the impact of climate change on plant reproductive phenology demands empirical data on phases beyond flowering. Additionally, it suggests that some species face a future in which multiple environmental factors will push them towards more rapid transitions from flowering to postflowering phases, with potential effects on plants themselves and the many animal associates that rely on them, including frugivores and seed predators.
Collapse
Affiliation(s)
- Meera Lee Sethi
- Department of Biology, University of Washington, Box 351800 Seattle, Seattle, Washington, 98195-1800, USA
| | - Elli J Theobald
- Department of Biology, University of Washington, Box 351800 Seattle, Seattle, Washington, 98195-1800, USA
| | - Ian Breckheimer
- Harvard University Herbaria, 22 Divinity Avenue, Cambridge, Massachusetts, 02138, USA.,Rocky Mountain Biological Laboratory, PO Box 519, Crested Butte, Colorado, 81224, USA
| | - Janneke Hille Ris Lambers
- Department of Biology, University of Washington, Box 351800 Seattle, Seattle, Washington, 98195-1800, USA
| |
Collapse
|
21
|
Stemkovski M, Pearse WD, Griffin SR, Pardee GL, Gibbs J, Griswold T, Neff JL, Oram R, Rightmyer MG, Sheffield CS, Wright K, Inouye BD, Inouye DW, Irwin RE. Bee phenology is predicted by climatic variation and functional traits. Ecol Lett 2020; 23:1589-1598. [DOI: 10.1111/ele.13583] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Michael Stemkovski
- Department of Biology & Ecology Center Utah State University 5305 Old Main Hill Logan UT 84322 USA
- Rocky Mountain Biological Laboratory Crested Butte CO 81224 USA
| | - William D. Pearse
- Department of Biology & Ecology Center Utah State University 5305 Old Main Hill Logan UT 84322 USA
- Department of Life Sciences Imperial College London, Silwood Park Campus Buckhurst Rd., Ascot Berkshire SL5 7PY UK
| | - Sean R. Griffin
- Rocky Mountain Biological Laboratory Crested Butte CO 81224 USA
- Department of Integrative Biology University of Texas at Austin 2415 Speedway, Stop C0930 Austin TX 78712 USA
| | - Gabriella L. Pardee
- Rocky Mountain Biological Laboratory Crested Butte CO 81224 USA
- Department of Integrative Biology University of Texas at Austin 2415 Speedway, Stop C0930 Austin TX 78712 USA
| | - Jason Gibbs
- Department of Entomology University of Manitoba Winnipeg Manitoba R3T 2N2Canada
| | - Terry Griswold
- USDA‐ARS Pollinating Insects Research UnitUtah State University Logan UT84322‐5310USA
| | - John L. Neff
- Central Texas Melittological Institute 7307 Running Rope Austin TX78731USA
| | - Ryan Oram
- Royal Saskatchewan Museum 2340 Albert Street Regina SaskatchewanS4P 2V7Canada
| | | | - Cory S. Sheffield
- Royal Saskatchewan Museum 2340 Albert Street Regina SaskatchewanS4P 2V7Canada
| | - Karen Wright
- Department of Entomology Texas A&M University 2475 TAMU College Station TX77845USA
| | - Brian D. Inouye
- Rocky Mountain Biological Laboratory Crested Butte CO 81224 USA
- Department of Biological Science Florida State University Tallahassee FL32306USA
| | - David W. Inouye
- Rocky Mountain Biological Laboratory Crested Butte CO 81224 USA
- Department of Biology University of Maryland College Park MD20742USA
| | - Rebecca E. Irwin
- Rocky Mountain Biological Laboratory Crested Butte CO 81224 USA
- Department of Applied Ecology North Carolina State University Campus Box 7617 Raleigh NC27695USA
| |
Collapse
|
22
|
Augspurger CK, Zaya DN. Concordance of long‐term shifts with climate warming varies among phenological events and herbaceous species. ECOL MONOGR 2020. [DOI: 10.1002/ecm.1421] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Carol K. Augspurger
- Department of Plant Biology University of Illinois Urbana Illinois 61801 USA
| | - David N. Zaya
- Illinois Natural History Survey University of Illinois Champaign Illinois 61820 USA
| |
Collapse
|
23
|
Tessier JT. Early spring warming may hasten leaf emergence in Erythronium americanum. AMERICAN JOURNAL OF BOTANY 2019; 106:1392-1396. [PMID: 31553817 DOI: 10.1002/ajb2.1367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Climate change is making spring arrive earlier than in the past, causing some species to alter the timing of their spring activities. This study addressed whether Erythronium americanum Ker Gawl. (trout lily), a common spring ephemeral, can emerge earlier if exposed to early spring warming. METHODS I collected corms of Erythronium americanum in the fall, overwintered them in soil, and exposed them to warming in either mid (early treatment) or late (late treatment) February. The timing of leaf emergence was monitored and compared between treatments. RESULTS Leaves exposed to early warming emerged earlier than those in the late treatment. Bud break happened closer to date of exposure to warming in the late treatment than in the early treatment. CONCLUSIONS Spring ephemerals may be able to produce leaves early in response to early spring warming induced by climate change. Risk of late frost and eventual shading by the canopy may limit the duration of a potentially extended growing season.
Collapse
Affiliation(s)
- Jack T Tessier
- State University of New York at Delhi, 454 Delhi Dr., Delhi, New York, 13753, USA
| |
Collapse
|
24
|
MacKenzie CM, Johnston J, Miller-Rushing AJ, Sheehan W, Pinette R, Primack R. Advancing Leaf-Out and Flowering Phenology is Not Matched by Migratory Bird Arrivals Recorded in Hunting Guide's Journal in Aroostook County, Maine. Northeast Nat (Steuben) 2019. [DOI: 10.1656/045.026.0309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Jason Johnston
- Department of Biology, University of Maine at Presque Isle, 181 Main Street, Presque Isle, ME 04769
| | | | | | - Robert Pinette
- Professor Emeritus, University of Maine at Presque Isle, 18 Melden Drive, Brunswick, ME 04011
| | - Richard Primack
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215
| |
Collapse
|
25
|
Diggle PK, Mulder CPH. Diverse Developmental Responses to Warming Temperatures Underlie Changes in Flowering Phenologies. Integr Comp Biol 2019; 59:559-570. [DOI: 10.1093/icb/icz076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Climate change has resulted in increased temperature means across the globe. Many angiosperms flower earlier in response to rising temperature and the phenologies of these species are reasonably well predicted by models that account for spring (early growing season) and winter temperatures. Surprisingly, however, exceptions to the general pattern of precocious flowering are common. Many species either do not appear to respond or even delay flowering in, or following, warm growing seasons. Existing phenological models have not fully addressed such exceptions to the common association of advancing phenologies with warming temperatures. The phenological events that are typically recorded (e.g., onset of flowering) are but one phase in a complex developmental process that often begins one or more years previously, and flowering time may be strongly influenced by temperature over the entire multi-year course of flower development. We propose a series of models that explore effects of growing-season temperature increase on the multiple processes of flower development and how changes in development may impact the timing of anthesis. We focus on temperate forest trees, which are characterized by preformation, the initiation of flower primordia one or more years prior to anthesis. We then synthesize the literature on flower development to evaluate the models. Although fragmentary, the existing data suggest the potential for temperature to affect all aspects of flower development in woody perennials. But, even for relatively well studied taxa, the critical developmental responses that underlie phenological patterns are difficult to identify. Our proposed models explain the seemingly counter-intuitive observations that warmer growing-season temperatures delay flowering in many species. Future research might concentrate on taxa that do not appear to respond to temperature, or delay flowering in response to warm temperatures, to understand what processes contribute to this pattern.
Collapse
Affiliation(s)
- Pamela K Diggle
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Christa P H Mulder
- Department of Biology and Wildlife & Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| |
Collapse
|
26
|
Heberling JM, McDonough MacKenzie C, Fridley JD, Kalisz S, Primack RB. Phenological mismatch with trees reduces wildflower carbon budgets. Ecol Lett 2019; 22:616-623. [DOI: 10.1111/ele.13224] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/23/2018] [Accepted: 12/29/2018] [Indexed: 01/23/2023]
Affiliation(s)
- J. Mason Heberling
- Section of Botany Carnegie Museum of Natural History Pittsburgh PA15213 USA
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee37996 USA
| | - Caitlin McDonough MacKenzie
- School of Biology and Ecology Climate Change Institute University of Maine Orono ME04469 USA
- Biology Department Boston University Boston MA02215 USA
| | | | - Susan Kalisz
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee37996 USA
| | | |
Collapse
|