1
|
Xiao Y, Yang D, Zhang SB, Mo YX, Dong YY, Wang KF, He LY, Dong B, Dossa GGO, Zhang JL. Nitrogen-fixing and non-nitrogen-fixing legume plants differ in leaf nutrient concentrations and relationships between photosynthetic and hydraulic traits. TREE PHYSIOLOGY 2024; 44:tpae048. [PMID: 38691446 DOI: 10.1093/treephys/tpae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/12/2024] [Accepted: 04/30/2024] [Indexed: 05/03/2024]
Abstract
Legumes account for a significant proportion of plants in the terrestrial ecosystems. Nitrogen (N)-fixing capability of certain legumes is a pivotal trait that contributes to their ecological dominance. Yet, the functional traits and trait relationships between N-fixer and non-N-fixer legumes are poorly understood. Here, we investigated 27 functional traits associated with morphology, nutrients, hydraulic conductance and photosynthesis in 42 woody legumes (19 N-fixers and 23 non-N-fixers) in a common garden. Our results showed that N-fixers had higher specific leaf area, photosynthetic phosphorus (P)-use efficiency, leaf N, and iron concentrations on both area and mass basis, N/P ratio, and carbon (C) to P ratio, but lower wood density, area-based maximum photosynthetic rate (Aa), photosynthetic N-use efficiency, leaf mass- and area-based P and molybdenum and area-based boron concentrations, and C/N ratio, compared with non-N-fixers. The mass-based maximum photosynthetic rate (Am), stomatal conductance (gs), intrinsic water-use efficiency (WUEi), mass- and area-based leaf potassium and mass-based boron concentrations, leaf hydraulic conductance (Kleaf), and whole-shoot hydraulic conductance (Kshoot) showed no difference between N-fixers and non-N-fixers. Significant positive associations between all hydraulic and photosynthetic trait pairs were found in N-fixers, but only one pair (Kshoot-Aa) in non-N-fixers, suggesting that hydraulic conductance plays a more important role in mediating photosynthetic capacity in N-fixers compared with non-N-fixers. Higher mass-based leaf N was linked to lower time-integrated gs and higher WUEi among non-N-fixer legumes or all legumes pooled after phylogeny was considered. Moreover, mass-based P concentration was positively related to Am and gs in N-fixers, but not in non-N-fixers, indicating that the photosynthetic capacity and stomatal conductance in N-fixers were more dependent on leaf P status than in non-N-fixers. These findings expand our understanding of the trait-based ecology within and across N-fixer and non-N-fixer legumes in tropics.
Collapse
Affiliation(s)
- Yan Xiao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Millennium Seed Bank, Royal Botanic Gardens Kew, Wakehurst, West Sussex RH17 6TN, UK
| | - Da Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Shu-Bin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Yu-Xuan Mo
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Yi-Yi Dong
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32603, USA
| | - Ke-Fei Wang
- School of Biological and Chemical Sciences, Puer University, Puer, Yunnan 665000, China
| | - Ling-Yun He
- College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bing Dong
- School of Biology, University of St Andrews, Dyers Brae, St Andrews KY16 9TH, UK
| | - Gbadamassi G O Dossa
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| |
Collapse
|
2
|
Zhang C, Huang N, Zhang F, Wu T, He X, Wang J, Li Y. Intraspecific variations of leaf hydraulic, economic, and anatomical traits in Cinnamomum camphora along an urban-rural gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166741. [PMID: 37659523 DOI: 10.1016/j.scitotenv.2023.166741] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Urbanization brings numerous benefits to residents, but it also introduces complex, variable, and heterogeneous habitat conditions to urban plants, resulting in an arid and hot urban environment that decreases tree growth and the ecological service capacity of trees. In this study, we evaluated leaf hydraulic, economic, and anatomical traits and their covariations of Cinnamomum camphora along an urban-rural gradient in Hefei, Eastern China. We found that Cinnamomum camphora in urban adopted a conservative hydraulic strategy with low leaf turgor loss point (Tlp), leaf hydraulic conductance (Kleaf), and leaf water potential resulting in 50 % loss of hydraulic conductance (P50), as well as a quick investment-return economic strategy with low unit leaf dry matter content (LMA) and high leaf nitrogen content (Leaf N). P50, Kleaf and LMA were significantly positively correlated with the urban-rural gradient (PC1urban-rural gradient), while Leaf N exhibited a negative correlation with it. The results showed a trade-off between intraspecific safety and efficiency in leaf hydraulic traits along the urban-rural gradient and an intraspecific coordinated variation in leaf hydraulic and economic traits. In addition, based on the analysis of a trait coordination network, it was revealed that leaf mesophyll and stomata were key structures for trait adjustment and coordination. Furthermore, our findings offer a significant theoretical underpinning for the effective management of landscape trees and the strategic planning of urban tree species.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Changjiang West Road 130, Shushan District, Hefei 230036, China
| | - Nuo Huang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Changjiang West Road 130, Shushan District, Hefei 230036, China
| | - Fengyu Zhang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Changjiang West Road 130, Shushan District, Hefei 230036, China
| | - Ting Wu
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia; Global Centre for Land-based Innovation, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia
| | - Xianjin He
- Laboratoire des Sciences du Climat et de l'Environnement, IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif sur Yvette 91191, France
| | - Jianan Wang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Changjiang West Road 130, Shushan District, Hefei 230036, China; Anhui Hefei Urban Ecosystem Research Station, National Forestry and Grassland Administration, Changjiang West Road 130, Shushan District, Hefei 230036, China
| | - Yiyong Li
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Changjiang West Road 130, Shushan District, Hefei 230036, China; Anhui Hefei Urban Ecosystem Research Station, National Forestry and Grassland Administration, Changjiang West Road 130, Shushan District, Hefei 230036, China.
| |
Collapse
|
3
|
Coupling Relationship of Leaf Economic and Hydraulic Traits of Alhagisparsifolia Shap. in a Hyper-Arid Desert Ecosystem. PLANTS 2021; 10:plants10091867. [PMID: 34579402 PMCID: PMC8465641 DOI: 10.3390/plants10091867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/03/2022]
Abstract
In this study, Alhagisparsifolia Shap. was used to test the hypothesis that leaf economic and hydraulic traits are coupled in plants in a hyper-arid region. Five economic traits and six hydraulic traits were examined to explore the relationship. Results showed that the stomatal density (SD) on both surfaces was coupled with maximum stomatal conductance to water vapor (gwmax) and leaf tissue density (TD). SD on adaxial surface (SDaba) was significantly positively related to vein density (VD) but negatively related to leaf thickness (LT) and stomatal length on adaxial surface (SLada). Nitrogen concentration based on mass (Nmass) was significantly negatively correlated with leaf mass per area (LMA), LT, and VD, whereas nitrogen concentration based on area (Narea) was significantly positively related to LMA and TD. Mean annual precipitation (MAP) contributed the most to the changes in LT and stomatal length (SL). Soil salt contributed the most to TD, SD, and gwmax. Soli nutrients influenced the most of LMA and VD. Mean annual temperature contributed the most to Nmass and Narea. In conclusion, the economics of leaves coupled with their hydraulic traits provides an economical and efficient strategy to adapt to the harsh environment in hyper-arid regions.
Collapse
|