1
|
Biswas I, Precilla S D, Kuduvalli SS, K B, R S, T S A. Ultrastructural and immunohistochemical insights on the anti-glioma effects of a dual-drug cocktail in an in vivo experimental model. J Chemother 2024; 36:593-606. [PMID: 38240036 DOI: 10.1080/1120009x.2024.2302741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 10/23/2024]
Abstract
Glioma coined as 'butterfly tumor' exhibits intense heterogeneity at the molecular and cellular levels. Although, Temozolomide exerted a long-ranging and prevailing therapeutic effect against glioma, albeit it has provided modest survival outcome. Fucoidan, (marine brown algal derivative) has demonstrated potent anti-tumor effects including glioma. Nevertheless, there is paucity of studies conducted on Fucoidan to enhance the anti-glioma efficacy of Temozolomide. The present study aimed to explore the plausible synergistic anti-glioma efficacy of Fucoidan in combination with Temozolomide in an in vivo experimental model. The dual-drug combination significantly inhibited tumor growth in in vivo and prolonged the survival rate when compared with the other treatment and tumor-control groups, via down-regulation of inflammatory cascade- IL-6/T LR4 and JAK/STAT3 as per the immunohistochemistry findings. Furthermore, the ultrastructural analysis indicated that the combinatorial treatment had restored the normal neuronal architecture of glioma-induced rats. Overall, the dual-drug cocktail might enhance the therapeutic outcome in glioma patients.
Collapse
Affiliation(s)
- Indrani Biswas
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Daisy Precilla S
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Shreyas S Kuduvalli
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Bhavani K
- Department of Pathology, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | | | - Anitha T S
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| |
Collapse
|
2
|
Matin M, Koszarska M, Atanasov AG, Król-Szmajda K, Jóźwik A, Stelmasiak A, Hejna M. Bioactive Potential of Algae and Algae-Derived Compounds: Focus on Anti-Inflammatory, Antimicrobial, and Antioxidant Effects. Molecules 2024; 29:4695. [PMID: 39407623 PMCID: PMC11477577 DOI: 10.3390/molecules29194695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Algae, both micro- and macroalgae, are recognized for their rich repository of bioactive compounds with potential therapeutic applications. These marine organisms produce a variety of secondary metabolites that exhibit significant anti-inflammatory, antioxidant, and antimicrobial properties, offering promising avenues for the development of new drugs and nutraceuticals. Algae-derived compounds, including polyphenols, carotenoids, lipids, and polysaccharides, have demonstrated efficacy in modulating key inflammatory pathways, reducing oxidative stress, and inhibiting microbial growth. At the molecular level, these compounds influence macrophage activity, suppress the production of pro-inflammatory cytokines, and regulate apoptotic processes. Studies have shown that algae extracts can inhibit inflammatory signaling pathways such as NF-κB and MAPK, reduce oxidative damage by activating Nrf2, and offer an alternative to traditional antibiotics by combatting bacterial infections. Furthermore, algae's therapeutic potential extends to addressing diseases such as cardiovascular disorders, neurodegenerative conditions, and cancer, with ongoing research exploring their efficacy in preclinical animal models. The pig model, due to its physiological similarities to humans, is highlighted as particularly suitable for validating the bioactivities of algal compounds in vivo. This review underscores the need for further investigation into the specific mechanisms of action and clinical applications of algae-derived biomolecules.
Collapse
Affiliation(s)
- Maima Matin
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| | - Magdalena Koszarska
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| | - Atanas G. Atanasov
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, 1090 Vienna, Austria
| | - Karolina Król-Szmajda
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| | - Artur Jóźwik
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| | - Adrian Stelmasiak
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, University of Life Sciences of Warsaw, 02-787 Warsaw, Poland;
| | - Monika Hejna
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| |
Collapse
|
3
|
Mary Martin T, K MS. Seaweeds and Their Secondary Metabolites: A Promising Drug Candidate With Novel Mechanisms Against Cancers and Tumor Angiogenesis. Cureus 2024; 16:e66662. [PMID: 39262521 PMCID: PMC11387980 DOI: 10.7759/cureus.66662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024] Open
Abstract
Cancer continually remains a severe threat to public health and requires constant demand for novel therapeutic drug candidates. Due to their multi-target orientation, lesser toxicity, and easy availability, natural compounds attract more attention from current scientific research interest than synthetic drug molecules. The plants and microorganisms produce a huge variety of secondary metabolites because of their physiological diversification, and the seaweeds occupy a prominent position as effective drug resources. Seaweeds comprise microscopic or macroscopic photosynthetic, multicellular, eukaryotic marine algae that commonly inhabit the coastal regions. Several molecules (such as polysaccharides, lipids, proteinaceous fractions, phenolic compounds, and alkaloids) are derived from seaweeds, and those small molecules are well attractive and more effective in cancer research programs. Their structural variation, derivative diversity, and quantity vary with seaweed species and geographical origin. Their smaller molecular weight, unique derivatives, hydrophobicity, and degree of sulfation are reported to be causes of their crucial role against different cancer cells in vitro. Several reports showed that those compounds selectively discriminate between normal and cancer cells based on receptor variations, enzyme deficiency, and structural properties. The present review aimed to give a concise explanation regarding their structural diversity, extractability, and mechanism of action related to their anti-cancer activities based on recently published data.
Collapse
Affiliation(s)
- Taniya Mary Martin
- Zebrafish Facility, Department of Anatomy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Meenakshi Sundaram K
- Zebrafish Facility, Department of Anatomy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| |
Collapse
|
4
|
Zhang M, Liu H, Xu L, Zhang X, Chen W, Wang C. Therapeutic Potential of Fucoidan in Alleviating Histamine-Induced Liver Injury: Insights from Mice Studies. Foods 2024; 13:1523. [PMID: 38790823 PMCID: PMC11120395 DOI: 10.3390/foods13101523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Histamine, a bioactive component in certain foods such as Huangjiu has been associated with liver injury and disrupted intestinal balance. This study explored the potential therapeutic effects of fucoidan (FCD) in mitigating histamine-induced imbalances in mice. We found that FCD mitigated liver injury, reducing transaminases, oxidative stress, and inflammation. Histological improvements included decreased cell infiltration and necrosis. FCD restored tight junction proteins and suppressed inflammation-related genes. Western blot analysis revealed FCD's impact on TGF-β1, p-AKT, AKT, CYP2E1, Grp78, NLRP3, Cas-1, and GSDMD. Gut LPS levels decreased with FCD. Gut microbiota analysis showed FCD's modulation effect, reducing Firmicutes and increasing Bacteroides. FCD demonstrates potential in alleviating histamine-induced liver injury, regulating inflammation, and influencing gut microbiota. Further research exploring higher dosages and additional parameters is warranted.
Collapse
Affiliation(s)
| | | | | | | | | | - Chengtao Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (M.Z.); (H.L.); (L.X.); (X.Z.); (W.C.)
| |
Collapse
|
5
|
Roberto T AD, Virginia CA, Ángeles AAM, Casimiro CG, Claudia PM, Eduardo U, Félix ÁG, Nathalie K, Félix L F, Sergey D. Antitumor and antioxidant activities of polysaccharides from the seaweed Durvillaea antarctica. Chem Biol Drug Des 2024; 103:e14392. [PMID: 37945521 DOI: 10.1111/cbdd.14392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 11/12/2023]
Abstract
The present study was carried out to determine the antitumor and antioxidant activities of the seaweed Durvillaea antarctica. Extraction and purification of polysaccharides from D. antarctica were performed. They were characterized by FT-IR and GC-MS, identifying isomers of arabinose, fucose, mannose, and galactose. The antioxidant capacity of polysaccharides was analyzed using the ABTS method (14.3 ± 0.5 μmol TE g-1 PS) and the DPPH method (21.82 ± 0.32 μmol TE g-1 PS). The antitumor capacity of polysaccharides was studied by MTT colorimetric assays in human leukemia, colon, breast, and lung cancer cell lines, obtaining the lowest IC50 in colon cancer (19.99 μg mL-1 ). In the line of healthy human gingival fibroblasts (HGF-1), an IC50 of 444.39 μg mL-1 was obtained. Flow cytometry in the HL60 cell line showed that polysaccharides at concentrations higher than IC50 inhibited cell proliferation, demonstrating a possible antitumor capacity in vitro. In the proteomic analysis with HGF-1, nine proteins involved in different biological processes were identified. In conclusion, polysaccharides from D. antarctica could be considered powerful nutraceuticals, mainly against colon cancer.
Collapse
Affiliation(s)
- Abdala Díaz Roberto T
- Universidad de Málaga, Facultad de Ciencias, Departamento de Ecología, Malaga, Spain
| | - Casas-Arrojo Virginia
- Universidad de Málaga, Facultad de Ciencias, Departamento de Ecología, Malaga, Spain
| | | | | | - Pérez Manríquez Claudia
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Uribe Eduardo
- Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Álvarez-Gómez Félix
- Universidad de Málaga, Facultad de Ciencias, Departamento de Ecología, Malaga, Spain
| | - Korbee Nathalie
- Universidad de Málaga, Facultad de Ciencias, Departamento de Ecología, Malaga, Spain
| | - Figueroa Félix L
- Universidad de Málaga, Instituto de Biotecnologia y Desarrollo Azul (IBYDA), Experimental Center Grice Hutchinson, Malaga, Spain
| | - Dobretsov Sergey
- Department of Marine Science and Fisheries, Sultan Qaboos University, Muscat, Oman
- UNESCO Chair in Marine Biotechnology, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
6
|
Zhang J, Wang C, Li Q, Liang W. Polysaccharides from Radix Peucedani: Extraction, Structural Characterization and Antioxidant Activity. Molecules 2023; 28:7845. [PMID: 38067574 PMCID: PMC10707930 DOI: 10.3390/molecules28237845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
In this study, an ultrasound-assisted green extraction method was applied for the extraction of polysaccharides from Radix Peucedani based on deep eutectic solvents (DESs), and the result showed that a DES system composed of betaine and 1,2-propylene glycol with a molar ratio of 1:2 possessed the optimal extraction efficiency for polysaccharides. Single-factor and Box-Behnken designs were used to determine the optimum extraction conditions for the maximum yields of polysaccharides from Radix Peucedani by using DESs. The maximum yields of polysaccharides attained 11.372% within a DES water content of 19%, an extraction time of 36 min, an extraction temperature of 54 °C, a solid-liquid ratio of 1:30 and an ultrasonic irradiation power of 420 W. The physicochemical properties of polysaccharides were analyzed using ICS and FT-IR, and the structure morphology was observed by SEM. The polysaccharides extracted from Radix Peucedani exhibited general antioxidant activities in vitro including DPPH, Hydroxyl and ABTS+ radical-scavenging activity. The antioxidant mechanism of Radix Peucedani polysaccharides was investigated using network pharmacology and molecular docking methods. The result showed that the high binding activity of glucose and IL1B, galactose and CASP3 was recognized as a potential mechanism for the antioxidant effects of Radix Peucedani polysaccharides.
Collapse
Affiliation(s)
| | | | - Qian Li
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (C.W.); (W.L.)
| | | |
Collapse
|
7
|
Hsieh CY, Lin JN, Kang TY, Wen YH, Yu SH, Wu CC, Wu HP. Otoprotective Effects of Fucoidan Reduce Cisplatin-Induced Ototoxicity in Mouse Cochlear UB/OC-2 Cells. Int J Mol Sci 2023; 24:ijms24043561. [PMID: 36834972 PMCID: PMC9959567 DOI: 10.3390/ijms24043561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
Cisplatin is a widely used standard chemotherapy for various cancers. However, cisplatin treatment is associated with severe ototoxicity. Fucoidan is a complex sulfated polysaccharide mainly derived from brown seaweeds, and it shows multiple bioactivities such as antimicrobial, anti-inflammatory, anticancer, and antioxidant activities. Despite evidence of the antioxidant effects of fucoidan, research on its otoprotective effects remains limited. Therefore, the present study investigated the otoprotective effects of fucoidan in vitro using the mouse cochlear cell line UB/OC-2 to develop new strategies to attenuate cisplatin-induced ototoxicity. We quantified the cell membrane potential and analyzed regulators and cascade proteins in the apoptotic pathway. Mouse cochlear UB/OC-2 cells were pre-treated with fucoidan before cisplatin exposure. The effects on cochlear hair cell viability, mitochondrial function, and apoptosis-related proteins were determined via flow cytometry, Western blot analysis, and fluorescence staining. Fucoidan treatment reduced cisplatin-induced intracellular reactive oxygen species production, stabilized mitochondrial membrane potential, inhibited mitochondrial dysfunction, and successfully protected hair cells from apoptosis. Furthermore, fucoidan exerted antioxidant effects against oxidative stress by regulating the Nrf2 pathway. Therefore, we suggest that fucoidan may represent a potential therapeutic agent for developing a new otoprotective strategy.
Collapse
Affiliation(s)
- Cheng-Yu Hsieh
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan
| | - Jia-Ni Lin
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan
| | - Ting-Ya Kang
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan
| | - Yu-Hsuan Wen
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
- Department of Otolaryngology, Head and Neck Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 970473, Taiwan
| | - Szu-Hui Yu
- Department of Music, Tainan University of Technology, Tainan 710302, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100225, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100225, Taiwan
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 300195, Taiwan
| | - Hung-Pin Wu
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
- Correspondence:
| |
Collapse
|
8
|
Seaweed-Derived Sulfated Polysaccharides; The New Age Chemopreventives: A Comprehensive Review. Cancers (Basel) 2023; 15:cancers15030715. [PMID: 36765670 PMCID: PMC9913163 DOI: 10.3390/cancers15030715] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Seaweed-derived bioactive compounds are regularly employed to treat human diseases. Sulfated polysaccharides are potent chemotherapeutic or chemopreventive medications since it has been discovered. They have exhibited anti-cancer properties by enhancing immunity and driving apoptosis. Through dynamic modulation of critical intracellular signalling pathways, such as control of ROS generation and preservation of essential cell survival and death processes, sulfated polysaccharides' antioxidant and immunomodulatory potentials contribute to their disease-preventive effectiveness. Sulfated polysaccharides provide low cytotoxicity and good efficacy therapeutic outcomes via dynamic modulation of apoptosis in cancer. Understanding how sulfated polysaccharides affect human cancer cells and their molecular involvement in cell death pathways will showcase a new way of chemoprevention. In this review, the significance of apoptosis and autophagy-modulating sulfated polysaccharides has been emphasized, as well as the future direction of enhanced nano-formulation for greater clinical efficacy. Moreover, this review focuses on the recent findings about the possible mechanisms of chemotherapeutic use of sulfated polysaccharides, their potential as anti-cancer drugs, and proposed mechanisms of action to drive apoptosis in diverse malignancies. Because of their unique physicochemical and biological properties, sulfated polysaccharides are ideal for their bioactive ingredients, which can improve function and application in disease. However, there is a gap in the literature regarding the physicochemical properties and functionalities of sulfated polysaccharides and the use of sulfated polysaccharide-based delivery systems in functional cancer. Furthermore, the preclinical and clinical trials will reveal the drug's efficacy in cancer.
Collapse
|
9
|
Li M, Hu Z, Guo T, Xie T, Tang Y, Wu X, Luo F. Targeting mTOR Signaling by Dietary Polysaccharides in Cancer Prevention: Advances and Challenges. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:96-109. [PMID: 36541706 DOI: 10.1021/acs.jafc.2c06780] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cancer is the most serious problem for public health. Traditional treatments often come with unavoidable side effects. Therefore, the therapeutic effects of natural products with wide sources and low toxicity are attracting more and more attention. Polysaccharides have been shown to have cancer-fighting potential, but the molecular mechanisms remain unclear. The mammalian target of rapamycin (mTOR) pathway has become an attractive target of antitumor therapy research in recent years. The regulation of mTOR pathway not only affects cell proliferation and growth but also has an important effect in tumor metabolism. Recent studies indicate that dietary polysaccharides play a vital role in cancer prevention and treatment by regulating mTOR pathway. Here, the progress in targeting mTOR signaling by dietary polysaccharides in cancer prevention and their molecular mechanisms are systemically summarized. It will promote the understanding of the anticancer effects of polysaccharides and provide reference to investigators of this cutting edge field.
Collapse
Affiliation(s)
- Mengyuan Li
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Tiantian Xie
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yanqin Tang
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiuxiu Wu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| |
Collapse
|
10
|
Shvabskaia OB, Karamnova NS, Izmailova OV, Drapkina OM. Healthy Eating in Population Models of Nutrition: Asian Diet Style Summary. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2023. [DOI: 10.20996/1819-6446-2022-12-08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The population of Japan and Okinawa is known for the longest life expectancy, which many researchers rightly associate with the nature of nutrition existing in these territories. The Japanese diet and Okinawan diet, along with other traditional diets, are real examples of historically established sustainable patterns of healthy eating. Asian eating styles have marked differences from European eating patterns, not only in differences in food sources, but also in eating habits. The article presents the historical, climatic and cultural features of these diets; the issues of food composition, energy and nutritional value of these models of nutrition are considered in detail with an analysis of the differences existing between them; highlights the benefits of products grown mainly in Japan, which are ration-forming for the population of this country; as well as the results of scientific studies on the protective effect of the Japanese and Okinawan diets on human health and disease prevention.
Collapse
Affiliation(s)
- O. B. Shvabskaia
- National Medical Research Center for Therapy and Preventive Medicine
| | - N. S. Karamnova
- National Medical Research Center for Therapy and Preventive Medicine
| | - O. V. Izmailova
- National Medical Research Center for Therapy and Preventive Medicine
| | - O. M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine
| |
Collapse
|
11
|
Abdollah MRA, Ali AA, Elgohary HH, Elmazar MM. Antiangiogenic drugs in combination with seaweed fucoidan: A mechanistic in vitro and in vivo study exploring the VEGF receptor and its downstream signaling molecules in hepatic cancer. Front Pharmacol 2023; 14:1108992. [PMID: 36874031 PMCID: PMC9982147 DOI: 10.3389/fphar.2023.1108992] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers reported worldwide with poor morbidity and high mortality rates. HCC is a very vascular solid tumour as angiogenesis is not only a key driver for tumour progression but also an exciting therapeutic target. Our research investigated the use of fucoidan, a sulfated polysaccharide readily abundant in edible seaweeds commonly consumed in Asian diet due to their extensive health benefits. Fucoidan was reported to possess a strong anti-cancer activity, but its anti-angiogenic potential is still to be fully unraveled. Our research investigated fucoidan in combination with sorafenib (an anti-VEGFR tyrosine kinase inhibitor) and Avastin® (bevacizumab, an anti-VEGF monoclonal antibody) in HCC both in vitro and in vivo. In vitro on HUH-7 cells, fucoidan had a potent synergistic effect when combined with the anti-angiogenic drugs and significantly reduced HUH-7 cell viability in a dose dependent manner. Using the scratch wound assay to test cancer cell motility, sorafenib, A + F (Avastin and fucoidan) or S + F (sorafenib and fucoidan) treated cells consistently showed an unhealed wound and a significantly smaller %wound closure (50%-70%) versus untreated control (91%-100%) (p < 0.05, one-way ANOVA). Using RT-qPCR; fucoidan, sorafenib, A + F and S + F significantly reduced the expression of the pro-angiogenic PI3K/AKT/mTOR and KRAS/BRAF/MAPK pathways by up to 3 folds (p < 0.05, one-way ANOVA versus untreated control). While ELISA results revealed that in fucoidan, sorafenib, A + F and S + F treated cells, the protein levels of caspases 3, 8, and 9 was significantly increased especially in the S + F group showing 40- and 16-times higher caspase 3 and 8 protein levels, respectively (p < 0.05, one-way-ANOVA versus untreated control). Finally, in a DEN-HCC rat model, H&E staining revealed larger sections of apoptosis and necrosis in the tumour nodules of rats treated with the combination therapies and immunohistochemical analysis of the apoptotic marker caspase 3, the proliferation marker Ki67 and the marker for angiogenesis CD34 showed significant improvements when the combination therapies were used. Despite the promising findings reported herein that highlighted a promising chemomodulatory effect of fucoidan when combined with sorafenib and Avastin, further investigations are required to elucidate potential beneficial or adversary interactions between the tested agents.
Collapse
Affiliation(s)
- Maha R A Abdollah
- Department of Pharmacology, Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Egypt.,Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Egypt
| | - Aya A Ali
- Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Egypt
| | - Hassnaa H Elgohary
- Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Egypt
| | - Mohamed M Elmazar
- Department of Pharmacology, Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Egypt.,Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Egypt
| |
Collapse
|
12
|
The Chemotherapeutic Potentials of Compounds Isolated from the Plant, Marine, Fungus, and Microorganism: Their Mechanism of Action and Prospects. J Trop Med 2022; 2022:5919453. [PMID: 36263439 PMCID: PMC9576449 DOI: 10.1155/2022/5919453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/10/2022] [Indexed: 12/02/2022] Open
Abstract
Research on natural products mainly focuses on developing a suitable drug to treat human disease. There has been a sharp increase in the development of drugs from natural products. Most of the drugs that are available are from the terrestrial origin. Marine natural products are less explored. Oceans are considered as a vast ecosystem with a wide variety of living organisms and natural products that are unexplored. Large numbers of antitumor drugs are from natural sources such as plants, marine, and microorganisms. 80% new chemical entities that were launched over the past 60 decades were from a natural source. In this article, the anticancer potential from the natural source such as plants, fungi, microorganisms, marine, and endophytes has been reviewed. Emphasis is given on the compound from the marine, plant, and of bacterial origin. Finally, we consider the future and how we might achieve better sustainability to alleviate human cancer suffering while having fewer side effects, more efficacies, and causing less harm than the present treatments.
Collapse
|
13
|
Seaweeds in the Oncology Arena: Anti-Cancer Potential of Fucoidan as a Drug—A Review. Molecules 2022; 27:molecules27186032. [PMID: 36144768 PMCID: PMC9506145 DOI: 10.3390/molecules27186032] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Marine natural products are a discerning arena to search for the future generation of medications to treat a spectrum of ailments. Meanwhile, cancer is becoming more ubiquitous over the world, and the likelihood of dying from it is rising. Surgery, radiation, and chemotherapy are the mainstays of cancer treatment worldwide, but their extensive side effects limit their curative effect. The quest for low-toxicity marine drugs to prevent and treat cancer is one of the current research priorities of researchers. Fucoidan, an algal sulfated polysaccharide, is a potent therapeutic lead candidate against cancer, signifying that far more research is needed. Fucoidan is a versatile, nontoxic marine-origin heteropolysaccharide that has received much attention due to its beneficial biological properties and safety. Fucoidan has been demonstrated to exhibit a variety of conventional bioactivities, such as antiviral, antioxidant, and immune-modulatory characteristics, and anticancer activity against a wide range of malignancies has also recently been discovered. Fucoidan inhibits tumorigenesis by prompting cell cycle arrest and apoptosis, blocking metastasis and angiogenesis, and modulating physiological signaling molecules. This review compiles the molecular and cellular aspects, immunomodulatory and anticancer actions of fucoidan as a natural marine anticancer agent. Specific fucoidan and membranaceous polysaccharides from Ecklonia cava, Laminaria japonica, Fucus vesiculosus, Astragalus, Ascophyllum nodosum, Codium fragile serving as potential anticancer marine drugs are discussed in this review.
Collapse
|
14
|
He X, Wang S, Liu B, Jiang D, Chen F, Mao G, Jin W, Pan H, Zhong W. Sulfated modification of hyaluronan tetrasaccharide enhances its antitumor activity on human lung adenocarcinoma A549 cells in vitro and in vivo. Bioorg Med Chem Lett 2022; 75:128945. [PMID: 35987509 DOI: 10.1016/j.bmcl.2022.128945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 11/19/2022]
Abstract
Hyaluronan (HA) is a glycosaminoglycan polymer involved in cell phenotype change, inflammation modulation, and tumor metastasis progression. HA oligosaccharides have a higher solubility and drug-forming ability than polysaccharides. HA tetrasaccharide was reported as the smallest fragment required for inhibiting triple-negative breast cancer, but the anti-tumor activity of HA tetrasaccharide (HA4) and its sulfated derivatives in lung cancer is still unknown. In this study, HA4 was prepared via HA degradation by chondroitinase ABC (CSABC), while its sulfated derivatives were prepared by sulfur pyridine trioxide complex in N, N-dimethylformamide (DMF). Then, the anti-tumor activity was detected via MTT assay and xenograft tumor experiments, while the expression level change of apoptosis genes was analyzed by qRT-PCR. Electrospray mass spectrometry (ESI-MS) analysis showed several HA4 sulfated derivatives, GlcA2GlcNAc2 (SO3H)n contains 0-6 sulfation groups, which mainly contain 3-6, 2-3, and 0-1 sulfation groups were classified as HA4S1, HA4S2, and HA4S3, respectively. After the addition of 1.82 mg/mL HA4, HA4S1, HA4S2, and HA4S3, the cell viability of A549 cells was reduced to 81.2 %, 62.1 %, 50.3 %, and 65.9 %, respectively. Thus, HA4S2 was chosen for further measurement, the qRT-PCR results showed it significantly up-regulated the expression of genes in the apoptosis pathway. Moreover, HA4S2 exhibited stronger antitumor activity than HA4 in vivo and the tumor inhibition rate reached 36.90 %. In summary, this study indicated that the CSABC enzyme could effectively degrade HA into oligosaccharides, and sulfation modification was an effective method to enhance the antitumor activity of HA tetrasaccharides.
Collapse
Affiliation(s)
- Xinyue He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Sanying Wang
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310013, China
| | - Bing Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Di Jiang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fen Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310013, China
| | - Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Hongying Pan
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
15
|
Balbinot-Alfaro E, Novello CR, Düsman E, Alfaro AT, Barddal HP, Almeida IV, Vicentini VE, Martins VG. Bioactive properties of glycosaminoglycans extracted from Turkey (Meleagris gallopavo) by-products. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Ahmad T, Eapen MS, Ishaq M, Park AY, Karpiniec SS, Stringer DN, Sohal SS, Fitton JH, Guven N, Caruso V, Eri R. Anti-Inflammatory Activity of Fucoidan Extracts In Vitro. Mar Drugs 2021; 19:702. [PMID: 34940701 PMCID: PMC8704339 DOI: 10.3390/md19120702] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Fucoidans are sulfated, complex, fucose-rich polymers found in brown seaweeds. Fucoidans have been shown to have multiple bioactivities, including anti-inflammatory effects, and are known to inhibit inflammatory processes via a number of pathways such as selectin blockade and enzyme inhibition, and have demonstrated inhibition of inflammatory pathologies in vivo. In this current investigation, fucoidan extracts from Undaria pinnatifida, Fucus vesiculosus, Macrocystis pyrifera, Ascophyllum nodosum, and Laminaria japonica were assessed for modulation of pro-inflammatory cytokine production (TNF-α, IL-1β, and IL-6) by human peripheral blood mononuclear cells (PBMCs) and in a human macrophage line (THP-1). Fucoidan extracts exhibited no signs of cytotoxicity in THP-1 cells after incubation of 48 h. Additionally, all fucoidan extracts reduced cytokine production in LPS stimulated PBMCs and human THP-1 cells in a dose-dependent fashion. Notably, the 5-30 kDa subfraction from Macrocystis pyrifera was a highly effective inhibitor at lower concentrations. Fucoidan extracts from all species had significant anti-inflammatory effects, but the lowest molecular weight subfractions had maximal effects at low concentrations. These observations on various fucoidan extracts offer insight into strategies that improve their efficacy against inflammation-related pathology. Further studies should be conducted to elucidate the mechanism of action of these extracts.
Collapse
Affiliation(s)
- Tauseef Ahmad
- School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia; (M.S.E.); (S.S.S.)
| | - Muhammad Ishaq
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (M.I.); (N.G.); (V.C.)
| | - Ah Young Park
- Marinova Pty Ltd., Cambridge, TAS 7170, Australia; (A.Y.P.); (S.S.K.); (D.N.S.)
| | - Samuel S. Karpiniec
- Marinova Pty Ltd., Cambridge, TAS 7170, Australia; (A.Y.P.); (S.S.K.); (D.N.S.)
| | - Damien N. Stringer
- Marinova Pty Ltd., Cambridge, TAS 7170, Australia; (A.Y.P.); (S.S.K.); (D.N.S.)
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia; (M.S.E.); (S.S.S.)
| | - J. Helen Fitton
- Marinova Pty Ltd., Cambridge, TAS 7170, Australia; (A.Y.P.); (S.S.K.); (D.N.S.)
- RDadvisor, Hobart, TAS 7006, Australia
| | - Nuri Guven
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (M.I.); (N.G.); (V.C.)
| | - Vanni Caruso
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (M.I.); (N.G.); (V.C.)
- ISAL Foundation, Research on Pain, Torre Pedrera, 204-47922 Rimini, Italy
| | - Rajaraman Eri
- School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
| |
Collapse
|
17
|
Li Y, Zheng Y, Zhang Y, Yang Y, Wang P, Imre B, Wong ACY, Hsieh YSY, Wang D. Brown Algae Carbohydrates: Structures, Pharmaceutical Properties, and Research Challenges. Mar Drugs 2021; 19:620. [PMID: 34822491 PMCID: PMC8623139 DOI: 10.3390/md19110620] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
Brown algae (Phaeophyceae) have been consumed by humans for hundreds of years. Current studies have shown that brown algae are rich sources of bioactive compounds with excellent nutritional value, and are considered functional foods with health benefits. Polysaccharides are the main constituents of brown algae; their diverse structures allow many unique physical and chemical properties that help to moderate a wide range of biological activities, including immunomodulation, antibacterial, antioxidant, prebiotic, antihypertensive, antidiabetic, antitumor, and anticoagulant activities. In this review, we focus on the major polysaccharide components in brown algae: the alginate, laminarin, and fucoidan. We explore how their structure leads to their health benefits, and their application prospects in functional foods and pharmaceuticals. Finally, we summarize the latest developments in applied research on brown algae polysaccharides.
Collapse
Affiliation(s)
- Yanping Li
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Yuting Zheng
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Ye Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Yuanyuan Yang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Peiyao Wang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Balázs Imre
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan; (B.I.); (A.C.Y.W.)
| | - Ann C. Y. Wong
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan; (B.I.); (A.C.Y.W.)
| | - Yves S. Y. Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan; (B.I.); (A.C.Y.W.)
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 11421 Stockholm, Sweden
| | - Damao Wang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| |
Collapse
|
18
|
Metabolic and enzymatic elucidation of cooperative degradation of red seaweed agarose by two human gut bacteria. Sci Rep 2021; 11:13955. [PMID: 34230500 PMCID: PMC8260779 DOI: 10.1038/s41598-021-92872-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/09/2021] [Indexed: 01/21/2023] Open
Abstract
Various health beneficial outcomes associated with red seaweeds, especially their polysaccharides, have been claimed, but the molecular pathway of how red seaweed polysaccharides are degraded and utilized by cooperative actions of human gut bacteria has not been elucidated. Here, we investigated the enzymatic and metabolic cooperation between two human gut symbionts, Bacteroides plebeius and Bifidobacterium longum ssp. infantis, with regard to the degradation of agarose, the main carbohydrate of red seaweed. More specifically, B. plebeius initially decomposed agarose into agarotriose by the actions of the enzymes belonging to glycoside hydrolase (GH) families 16 and 117 (i.e., BpGH16A and BpGH117) located in the polysaccharide utilization locus, a specific gene cluster for red seaweed carbohydrates. Then, B. infantis extracted energy from agarotriose by the actions of two agarolytic β-galactosidases (i.e., Bga42A and Bga2A) and produced neoagarobiose. B. plebeius ultimately acted on neoagarobiose by BpGH117, resulting in the production of 3,6-anhydro-l-galactose, a monomeric sugar possessing anti-inflammatory activity. Our discovery of the cooperative actions of the two human gut symbionts on agarose degradation and the identification of the related enzyme genes and metabolic intermediates generated during the metabolic processes provide a molecular basis for agarose degradation by gut bacteria.
Collapse
|
19
|
Nivedita PS, Joy HH, Torvi AI, Shettar AK. Applications of Polysaccharides in Cancer Treatment. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
20
|
Yun EJ, Yu S, Kim YA, Liu JJ, Kang NJ, Jin YS, Kim KH. In Vitro Prebiotic and Anti-Colon Cancer Activities of Agar-Derived Sugars from Red Seaweeds. Mar Drugs 2021; 19:md19040213. [PMID: 33921308 PMCID: PMC8070132 DOI: 10.3390/md19040213] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 01/09/2023] Open
Abstract
Numerous health benefits of diets containing red seaweeds or agar-derived sugar mixtures produced by enzymatic or acid hydrolysis of agar have been reported. However, among various agar-derived sugars, the key components that confer health-beneficial effects, such as prebiotic and anti-colon cancer activities, remain unclear. Here, we prepared various agar-derived sugars by multiple enzymatic reactions using an endo-type and an exo-type of β-agarase and a neoagarobiose hydrolase and tested their in vitro prebiotic and anti-colon cancer activities. Among various agar-derived sugars, agarotriose exhibited prebiotic activity that was verified based on the fermentability of agarotriose by probiotic bifidobacteria. Furthermore, we demonstrated the anti-colon cancer activity of 3,6-anhydro-l-galactose, which significantly inhibited the proliferation of human colon cancer cells and induced their apoptosis. Our results provide crucial information regarding the key compounds derived from red seaweeds that confer beneficial health effects, including prebiotic and anti-colon cancer activities, to the host.
Collapse
Affiliation(s)
- Eun Ju Yun
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Korea; (E.J.Y.); (S.Y.)
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Sora Yu
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Korea; (E.J.Y.); (S.Y.)
| | - Young-Ah Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea; (Y.-A.K.); (N.J.K.)
| | - Jing-Jing Liu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nam Joo Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea; (Y.-A.K.); (N.J.K.)
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence: (Y.-S.J.); (K.H.K.)
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Korea; (E.J.Y.); (S.Y.)
- Correspondence: (Y.-S.J.); (K.H.K.)
| |
Collapse
|
21
|
de Moura HC, Novello CR, Balbinot-Alfaro E, Düsman E, Barddal HPO, Almeida IV, Vicentini VEP, Prentice-Hernández C, Alfaro AT. Obtaining glycosaminoglycans from tilapia (oreochromis niloticus) scales and evaluation of its anticoagulant and cytotoxic activities: Glycosaminoglycans from tilapia scales: anticoagulant and cytotoxic activities. Food Res Int 2021; 140:110012. [PMID: 33648244 DOI: 10.1016/j.foodres.2020.110012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/24/2020] [Accepted: 12/08/2020] [Indexed: 11/24/2022]
Abstract
Large amounts of by-products are generated during fish processing. The study aimed to assess whether tilapia scales are a potential source for obtaining glycosaminoglycans, as well as to determine their anticoagulant and cytotoxic/antiproliferative activities, against different tumor lines. The glycosaminoglycans were extracted, purified, and fractionated. The fractions that indicated the presence of uronic acid and sulfated GAGs were characterized by electrophoresis, NMR, and degree of sulfation (DS). The extraction process using the papain enzyme had a yield of 0.86%. Fraction V (FV) revealed the presence of chondroitin sulfate chains CS-A and CS-C, with DS of 0.146. FV demonstrated anticoagulant potential, as it was able to increase aPTT time. FV showed a cytotoxic effect for HTC metabolizing cells at 24, 48, and 72 h. However, it did not show activity for neuroblastoma cells in any of the evaluated times. The results indicate that the tilapia scales are a possible source for obtaining chondroitin sulfate, with potential use as anticoagulant and cytotoxic/antitumor.
Collapse
Affiliation(s)
- Heloisa C de Moura
- Department of Food Technology, Federal University of Technology - Paraná, Francisco Beltrão, PR, Brazil
| | - Claudio R Novello
- Department of Food Technology, Federal University of Technology - Paraná, Francisco Beltrão, PR, Brazil
| | | | - Elisângela Düsman
- Department of Food Technology, Federal University of Technology - Paraná, Francisco Beltrão, PR, Brazil
| | - Helyn P O Barddal
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Igor V Almeida
- Federal Rural University of Amazonia, Capitão Poço, PA, Brazil
| | | | | | - Alexandre T Alfaro
- Department of Food Technology, Federal University of Technology - Paraná, Francisco Beltrão, PR, Brazil.
| |
Collapse
|
22
|
Protein kinases as targets for developing anticancer agents from marine organisms. Biochim Biophys Acta Gen Subj 2020; 1865:129759. [PMID: 33038451 DOI: 10.1016/j.bbagen.2020.129759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/03/2020] [Accepted: 10/03/2020] [Indexed: 01/11/2023]
Abstract
Protein kinases play a fundamental role in the intracellular transduction because of their ability to phosphorylate plethora of proteins. Over the past three decades, numerous protein kinase inhibitors have been identified and are being used clinically successfully. The biodiversity of marine organisms provides a rich source for the discovery and development of novel anticancer agents in the treatment of human malignancies and a lot of bioactive ingredients from marine organisms display anticancer effects by affecting the protein kinases-mediated pathways. In the present mini-review, anticancer compounds from marine source were reviewed and discussed in context of their targeted pathways associated with protein kinases and the progress of these compounds as anticancer agents in recent five years were emphasized. The molecular entities and their modes of actions were presented. We focused on protein kinases-mediated signaling pathways including PI3K/Akt/mTOR, p38 MAPK, and EGFR. The marine compounds targeting special pathways of protein kinases were highlighted. We have also discussed the existing challenges and prospects related to design and development of novel protein kinase inhibitors from marine sources.
Collapse
|
23
|
Zhang J, Sun Z, Lin N, Lu W, Huang X, Weng J, Sun S, Zhang C, Yang Q, Zhou G, Guo H, Chi J. Fucoidan from Fucus vesiculosus attenuates doxorubicin-induced acute cardiotoxicity by regulating JAK2/STAT3-mediated apoptosis and autophagy. Biomed Pharmacother 2020; 130:110534. [PMID: 32711244 DOI: 10.1016/j.biopha.2020.110534] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/05/2020] [Accepted: 07/11/2020] [Indexed: 12/21/2022] Open
Abstract
Doxorubicin (DOX) is well-known for its potent antitumor activity but limited by its multiple and serious adverse effects. A major adverse effect is acute cardiotoxicity; yet, its mechanism has not been elucidated. Fucoidan is a multifunctional and nontoxic polysaccharide that is widely studied because of its favorable biological activities and safety. Hence, we proposed that fucoidan may play a protective role in DOX-induced acute cardiotoxicity without causing additional side effects. Sprague-Dawley rats were injected intraperitoneally with a single high dose of DOX to induce acute cardiac injury. Fucoidan was administered orally before DOX injection and AG490, a JAK2 inhibitor, was applied to verify the participation of the JAK2/STAT3 pathway. In vitro, H9C2 cells were treated with the same drugs at different concentrations and intervention times. in vivo and in vitro results demonstrated that DOX administration induced myocardial damage accompanied by acceleratory apoptosis and deficient autophagy in heart tissues or cells, which could be significantly improved by fucoidan supplement. AG490 partly abolished the cardioprotective effects of fucoidan, suggesting the involvement of JAK2 signaling. Additionally, western blotting revealed DOX-induced JAK2/STAT3 pathway activation, which was enhanced by fucoidan and weaken by AG490. Hence, fucoidan exerted a favorable effect on DOX-induced cardiotoxicity by enhancing autophagy and suppressing apoptosis in a JAK2/STAT3-dependent manner, which may provide a promising and novel therapeutic strategy against negative chemotherapy-induced effects.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Zhenzhu Sun
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Na Lin
- Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, China
| | - Wenqiang Lu
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang, China
| | - Xingxiao Huang
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang, China
| | - Jingfan Weng
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang, China
| | - Shimin Sun
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Chuanjing Zhang
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang, China
| | - Qi Yang
- Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, China
| | - Guozhong Zhou
- Department of Medical, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Hangyuan Guo
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, China.
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
24
|
Mondal A, Bose S, Banerjee S, Patra JK, Malik J, Mandal SK, Kilpatrick KL, Das G, Kerry RG, Fimognari C, Bishayee A. Marine Cyanobacteria and Microalgae Metabolites-A Rich Source of Potential Anticancer Drugs. Mar Drugs 2020; 18:E476. [PMID: 32961827 PMCID: PMC7551136 DOI: 10.3390/md18090476] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is at present one of the utmost deadly diseases worldwide. Past efforts in cancer research have focused on natural medicinal products. Over the past decades, a great deal of initiatives was invested towards isolating and identifying new marine metabolites via pharmaceutical companies, and research institutions in general. Secondary marine metabolites are looked at as a favorable source of potentially new pharmaceutically active compounds, having a vast structural diversity and diverse biological activities; therefore, this is an astonishing source of potentially new anticancer therapy. This review contains an extensive critical discussion on the potential of marine microbial compounds and marine microalgae metabolites as anticancer drugs, highlighting their chemical structure and exploring the underlying mechanisms of action. Current limitation, challenges, and future research pathways were also presented.
Collapse
Affiliation(s)
- Arijit Mondal
- Department of Pharmaceutical Chemistry, Bengal College of Pharmaceutical Technology, Dubrajpur 731 123, West Bengal, India
| | - Sankhadip Bose
- Department of Pharmacognosy, Bengal School of Technology, Chuchura 712 102, West Bengal, India;
| | - Sabyasachi Banerjee
- Department of Phytochemistry, Gupta College of Technological Sciences, Asansol 713 301, West Bengal, India;
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyang-si 10326, Korea; (J.K.P.); (G.D.)
| | - Jai Malik
- Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Punjab University, Chandigarh 160 014, Punjab, India;
| | - Sudip Kumar Mandal
- Department of Pharmaceutical Chemistry, Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur 713 206, West Bengal, India;
| | | | - Gitishree Das
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyang-si 10326, Korea; (J.K.P.); (G.D.)
| | - Rout George Kerry
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751 004, Odisha, India;
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, 47921 Rimini, Italy
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| |
Collapse
|
25
|
Pradhan B, Patra S, Nayak R, Behera C, Dash SR, Nayak S, Sahu BB, Bhutia SK, Jena M. Multifunctional role of fucoidan, sulfated polysaccharides in human health and disease: A journey under the sea in pursuit of potent therapeutic agents. Int J Biol Macromol 2020; 164:4263-4278. [PMID: 32916197 DOI: 10.1016/j.ijbiomac.2020.09.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/20/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022]
Abstract
Fucoidan is a complex polysaccharide (molecular weight 10,000-100,000 Da) derived from brown algae which comprises of L-fucose and sulfate groups have potential as therapeutic diligences against several human diseases. The fucoidan has expanded a widespread range of pharmacological properties as an anti-inflammatory, anticoagulant, antiangiogenic, immunomodulatory, anti-adhesive, anticancer, antidiabetic, antiviral and anti-neurodegenerative agents owing to their diverse chemical conformation and potent antioxidant activity. The antioxidant and immunomodulatory activities of the fucoidan contribute towards their disease preventive potency through dynamic modulation of key intracellular signalling pathways, regulation of ROS accumulation, and maintenance of principal cell survival and death pathways. Additionally, it also reduces cancer-associated cachexia. Despite the wide range of therapeutic potency, the fucoidan is heavily regarded as an unexplored plethora of druggable entities in the current situation. The isolation, screening, biological application, pre-clinical, and clinical assessment along with large scale cost-effective production remain a foremost task to be assessed. Moreover, the chemical synthesis of the present bioactive drug with confirmational rearrangement for enhanced availability and bioactivity also need tenacious investigation. Hence, in the present review, we give attention to the source of isolation of fucoidan, their principle strategic deployment in disease prevention, and the mechanistic investigation of how it works to combat different diseases that can be used for future therapeutic intervention.
Collapse
Affiliation(s)
- Biswajita Pradhan
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India
| | - Srimanta Patra
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Rabindra Nayak
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India
| | - Chhandashree Behera
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India
| | - Soumya Ranjan Dash
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India
| | - Sneha Nayak
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India
| | - Binod Bihari Sahu
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Sujit K Bhutia
- Department of Life Science, National Institute of Technology Rourkela, India.
| | - Mrutyunjay Jena
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India.
| |
Collapse
|
26
|
Ko H, Huh G, Jung SH, Kwon H, Jeon Y, Park YN, Kim YJ. Diospyros kaki leaves inhibit HGF/Met signaling-mediated EMT and stemness features in hepatocellular carcinoma. Food Chem Toxicol 2020; 142:111475. [PMID: 32522589 DOI: 10.1016/j.fct.2020.111475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/07/2020] [Accepted: 05/27/2020] [Indexed: 11/29/2022]
Abstract
Persimmon (Diospyros kaki L.f.) trees are widely cultivated for their edible fruits in Asia. D. kaki leaves are abundant in phytochemicals that have numerous medicinal properties. Hepatocyte growth factor (HGF) and its receptor Met lead to poor prognosis via the promotion of metastasis and chemoresistance in hepatocellular carcinoma (HCC). Therefore, inhibitors targeting the HGF/Met pathway are regarded as promising drugs against HCC. Here, we investigated the effects of D. kaki leaves on HGF-induced epithelial-to-mesenchymal transition (EMT) and stemness traits in HCC. The ethanol extract of D. kaki leaves (EEDK) markedly suppressed HGF-mediated cell migration and invasion through upregulation of CDH1 and downregulation of SNAI1, VIM, MMP1, MMP2, and MMP9. Moreover, EEDK increased the cytotoxicity of sorafenib, which was reduced by HGF, and decreased the expression of the stemness markers KRT19 and CD44. Additionally, we found a clear correlation between stemness and EMT markers in HCC patients. Importantly, EEDK reduced Met activity and attenuated HGF-mediated activation of JNK/c-Jun. Our findings provide new evidence that EEDK can ameliorate HCC with poor prognosis and aggressive phenotype by blocking HGF/Met signaling.
Collapse
Affiliation(s)
| | - Gyuwon Huh
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, South Korea; Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon, South Korea
| | - Sang Hoon Jung
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, South Korea; Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon, South Korea
| | - Hyukjoon Kwon
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, South Korea
| | - Youngsic Jeon
- Department of Pathology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Nyun Park
- Department of Pathology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Young-Joo Kim
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, South Korea.
| |
Collapse
|
27
|
Tran PHL, Tran TTD. Current Designs and Developments of Fucoidan-based Formulations for Cancer Therapy. Curr Drug Metab 2020; 20:933-941. [PMID: 31589118 DOI: 10.2174/1389200220666191007154723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND Natural nanostructure materials have been involved in antitumor drug delivery systems due to their biocompatibility, biodegradation, and bioactive properties. METHODS These materials have contributed to advanced drug delivery systems in the roles of both bioactive compounds and delivery nanocarriers. Fucoidan, a valuable ocean material used in drug delivery systems, has been exploited in research on cancer and a variety of other diseases. RESULTS Although the uniqueness, structure, properties, and health benefits of fucoidan have been mentioned in various prominent reviews, current developments and designs of fucoidan-based formulations still need to be assessed to further develop an effective anticancer therapy. In this review, current important formulations using fucoidan as a functional material and as an anticancer agent will be discussed. This article will also provide a brief principle of the methods that incorporate functional nanostructure materials in formulations exploiting fucoidan. CONCLUSION Current research and future perspectives on the use of fucoidan in anticancer therapy will advance innovative and important products for clinical uses.
Collapse
Affiliation(s)
| | - Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
28
|
Bilal M, Iqbal HMN. Biologically active macromolecules: Extraction strategies, therapeutic potential and biomedical perspective. Int J Biol Macromol 2020; 151:1-18. [PMID: 32035954 DOI: 10.1016/j.ijbiomac.2020.02.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 02/05/2023]
Abstract
Marine biome exhibits an immense essence of excellence and enriched with high-value bioactive compounds of therapeutic and biomedical value. During the past several years, an array of biologically active molecules has been extracted/isolated and purified from numerous sources of marine origin with the aid of distinct techniques and methodologies for newer applications. The growing demand for bioactive molecules with unique functionalities in various industrial divisions, such as therapeutic sectors and biomedical, has endorsed the necessity for highly suitable and standardized strategies to extract these bioactive components using a state-of-the-art and inexpensive measures. This is also because many in practice conventional extraction methodologies suffer from processing limitations and low-yield issues. Besides that, other major issues include (i) decrease efficacy, (ii) excessive energy cost, (iii) low yield, (iv) lower cost-effective ratio, (v) minimal selectivity, (vi) low activity, and (vii) stability, etc. In this context, there is an urgent need for new and robust extraction strategies. The synergies of modern extraction techniques with efficient and novel pretreatment approaches, such as the integration of enzymes, accompanied by conventional extraction processes, should be the utmost goal of current research and development studies. The typical effectivity of the extraction techniques mostly relies on these points, i.e., (i) know-how about the source nature and type, (ii) understanding the structural and compositional profile, (iii) influence of the processing factors, (iv) interplay between the extraction conditions and the end-product, (v) understanding the available functional entities, (vi) reaction chemistry of the extract bioactive compounds, and (vii) effective exploitation of the end-product in the marketplace. Marine biome, among numerous naturally occurring sources, has been appeared an immense essence of excellence to isolate an array of biologically active constituents with medicinal values and related point-of-care applications. Herein, we reviewed the salient information covering various therapeutic potential and biomedical perspectives. Following a brief introduction and marine pharmacognosy, an array of high-value biomolecules of marine origin are discussed with suitable examples. From the robust extraction strategies viewpoint, a part of the review focuses on three techniques, i.e., (1) enzyme-assisted extraction (EAE), (2) supercritical-fluid extraction (SFE), and (3) microwave-assisted extraction (MAE). Each technique is further enriched with processing and workflow environment. The later part of the review is mainly focused on the therapeutic and biomedical perspectives of under-reviewed bio-active compounds or biomolecules. The previous and latest research on the anticancer, skin curative, cardio-protective, immunomodulatory and UV-protectant potentialities of marine-derived biologically active entities have been summarized with suitable examples and related pathways illustrations. Finally, the work is wrapped-up with current research challenges, future aspects, and concluding remarks.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
29
|
do-Amaral C, Pacheco B, Seixas F, Pereira C, Collares T. Antitumoral effects of fucoidan on bladder cancer. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Algae-Derived Bioactive Compounds with Anti-Lung Cancer Potential. Mar Drugs 2020; 18:md18040197. [PMID: 32276401 PMCID: PMC7230368 DOI: 10.3390/md18040197] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is one of the major causes of death worldwide. Natural molecules with anti-lung cancer potential are of a great interest and considered as very promising alternative to substitute or enhance the efficiency of the conventional drugs. Recently, algae as source of high value-added compounds are considered as very promising source of these bioactive molecules. These are secondary metabolites that consist mainly of derivatives of peptides, carbohydrates, and lipids with various structures. Accordingly, various mechanisms by which different algae molecules demonstrate attenuation of tumor angiogenesis were stated and discussed. The mode of action of the algae bioactives is closely related to their nature and chemical structure. Furthermore, this literature review considers the synergistic effect between microalgae bioactives and conventional drugs and discuss the economic feasibility of producing microalgae bioactives at large scale to conclude with some future perspectives related to algae-based drug discovery.
Collapse
|
31
|
Gupta D, Silva M, Radziun K, Martinez DC, Hill CJ, Marshall J, Hearnden V, Puertas-Mejia MA, Reilly GC. Fucoidan Inhibition of Osteosarcoma Cells Is Species and Molecular Weight Dependent. Mar Drugs 2020; 18:E104. [PMID: 32046368 PMCID: PMC7074035 DOI: 10.3390/md18020104] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
Fucoidan is a brown algae-derived polysaccharide having several biomedical applications. This study simultaneously compares the anti-cancer activities of crude fucoidans from Fucus vesiculosus and Sargassum filipendula, and effects of low (LMW, 10-50 kDa), medium (MMW, 50-100 kDa) and high (HMW, >100 kDa) molecular weight fractions of S. filipendula fucoidan against osteosarcoma cells. Glucose, fucose and acid levels were lower and sulphation was higher in F. vesiculosus crude fucoidan compared to S. filipendula crude fucoidan. MMW had the highest levels of sugars, acids and sulphation among molecular weight fractions. There was a dose-dependent drop in focal adhesion formation and proliferation of cells for all fucoidan-types, but F. vesiculosus fucoidan and HMW had the strongest effects. G1-phase arrest was induced by F. vesiculosus fucoidan, MMW and HMW, however F. vesiculosus fucoidan treatment also caused accumulation in the sub-G1-phase. Mitochondrial damage occurred for all fucoidan-types, however F. vesiculosus fucoidan led to mitochondrial fragmentation. Annexin V/PI, TUNEL and cytochrome c staining confirmed stress-induced apoptosis-like cell death for F. vesiculosus fucoidan and features of stress-induced necrosis-like cell death for S. filipendula fucoidans. There was also variation in penetrability of different fucoidans inside the cell. These differences in anti-cancer activity of fucoidans are applicable for osteosarcoma treatment.
Collapse
Affiliation(s)
- Dhanak Gupta
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK;
| | - Melissa Silva
- Institute of Chemistry, University of Antioquia, Medellín A.A.1226, Colombia; (M.S.); (M.A.P.-M.)
| | - Karolina Radziun
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK;
- Cell Bank, Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Diana C. Martinez
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
| | - Christopher J. Hill
- Department of Molecular Biology and Biotechnology (MBB), University of Sheffield, Sheffield S10 2TN, UK;
| | - Julie Marshall
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK;
| | - Vanessa Hearnden
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
| | - Miguel A. Puertas-Mejia
- Institute of Chemistry, University of Antioquia, Medellín A.A.1226, Colombia; (M.S.); (M.A.P.-M.)
| | - Gwendolen C. Reilly
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK;
| |
Collapse
|
32
|
Yao YL, Shu C, Feng G, Wang Q, Yan YY, Yi Y, Wang HX, Zhang XF, Wang LM. Polysaccharides from Pyracantha fortuneana and its biological activity. Int J Biol Macromol 2019; 150:1162-1174. [PMID: 31794823 DOI: 10.1016/j.ijbiomac.2019.10.125] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/09/2019] [Accepted: 10/13/2019] [Indexed: 01/27/2023]
Abstract
This study used response surface methodology to determine the optimal conditions for extraction of polysaccharides from Pyracantha. fortuneana (PSPF), and studied the mechanism of PSPF-inducing apoptosis in human ovarian carcinoma Skov3 cells. Response surface methodology (RSM) were adopted to extract PSPF. The maximum value of polysaccharide yield was obtained under these optimal conditions. PSPF had good potential as an antioxidant. Exposure of cells to PSPF resulted in cytotoxicity through the induction of apoptosis, and the reactive oxygen species were increased, mitochondrial membrane potential decreased, DNA damage (detected as γ- H2AX and RAD51 foci) was observed in Skov3 cells. In addition, PSPF could induce apoptosis of cancer cells. Therefore, PSPF should be explored as novel potential antioxidants and an anti-tumor drug in a clinical setting.
Collapse
Affiliation(s)
- Yi-Lan Yao
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chang Shu
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ge Feng
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qing Wang
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - You-Yu Yan
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yang Yi
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hong-Xun Wang
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xi-Feng Zhang
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China; College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266100, China
| | - Li-Mei Wang
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
33
|
Barbosa AI, Coutinho AJ, Costa Lima SA, Reis S. Marine Polysaccharides in Pharmaceutical Applications: Fucoidan and Chitosan as Key Players in the Drug Delivery Match Field. Mar Drugs 2019; 17:md17120654. [PMID: 31766498 PMCID: PMC6950187 DOI: 10.3390/md17120654] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022] Open
Abstract
The use of marine-origin polysaccharides has increased in recent research because they are abundant, cheap, biocompatible, and biodegradable. These features motivate their application in nanotechnology as drug delivery systems; in tissue engineering, cancer therapy, or wound dressing; in biosensors; and even water treatment. Given the physicochemical and bioactive properties of fucoidan and chitosan, a wide range of nanostructures has been developed with these polysaccharides per se and in combination. This review provides an outline of these marine polysaccharides, including their sources, chemical structure, biological properties, and nanomedicine applications; their combination as nanoparticles with descriptions of the most commonly used production methods; and their physicochemical and biological properties applied to the design of nanoparticles to deliver several classes of compounds. A final section gives a brief overview of some biomedical applications of fucoidan and chitosan for tissue engineering and wound healing.
Collapse
|
34
|
Delma CR, Thirugnanasambandan S, Srinivasan GP, Raviprakash N, Manna SK, Natarajan M, Aravindan N. Fucoidan from marine brown algae attenuates pancreatic cancer progression by regulating p53 - NFκB crosstalk. PHYTOCHEMISTRY 2019; 167:112078. [PMID: 31450091 DOI: 10.1016/j.phytochem.2019.112078] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Poor pancreatic cancer (PC) prognosis has been attributed to its resistance to apoptosis and propensity for early systemic dissemination. Existing therapeutic strategies are often circumvented by the molecular crosstalk between cell-signalling pathways. p53 is mutated in more than 50% of PC and NFκB is constitutively activated in therapy-resistant residual disease; these mutations and activations account for the avoidance of cell death and metastasis. Recently, we demonstrated the anti-PC potential of fucoidan extract from marine brown alga, Turbinaria conoides (J. Agardh) Kützing (Sargassaceae). In this study, we aimed to characterize the active fractions of fucoidan extract to identify their select anti-PC efficacy, and to define the mechanism(s) involved. Five fractions of fucoidan isolated by ion exchange chromatography were tested for their potential in genetically diverse human PC cell lines. All fractions exerted significant dose-dependent and time-dependent regulation of cell survival. Fucoidans induced apoptosis, activated caspase -3, -8 and -9, and cleaved Poly ADP ribose polymerase (PARP). Pathway-specific transcriptional analysis recognized inhibition of 57 and 38 nuclear factor κB (NFκB) pathway molecules with fucoidan-F5 in MiaPaCa-2 and Panc-1 cells, respectively. In addition, fucoidan-F5 inhibited both the constitutive and Tumor necrosis factor-α (TNFα)-mediated NFκB DNA-binding activity in PC cells. Upregulation of cytoplasmic IκB levels and significant reduction of NFκB-dependent luciferase activity further substantiate the inhibitory potential of seaweed fucoidans on NFκB. Moreover, fucoidan(s) treatment increased cellular p53 in PC cells and reverted NFκB forced-expression-related p53 reduction. The results suggest that fucoidan regulates PC progression and that fucoidans may target p53-NFκB crosstalk and dictate apoptosis in PC cells.
Collapse
Affiliation(s)
- Caroline R Delma
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, TN, India; Department of Pathology, University of Texas Health Sciences Center at San Antonio, TX, USA.
| | | | - Guru Prasad Srinivasan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, TN, India
| | - Nune Raviprakash
- Laboratory of Immunology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, AP, India
| | - Sunil K Manna
- Laboratory of Immunology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, AP, India
| | - Mohan Natarajan
- Department of Pathology, University of Texas Health Sciences Center at San Antonio, TX, USA
| | - Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
35
|
Juárez-Portilla C, Olivares-Bañuelos T, Molina-Jiménez T, Sánchez-Salcedo JA, Moral DID, Meza-Menchaca T, Flores-Muñoz M, López-Franco Ó, Roldán-Roldán G, Ortega A, Zepeda RC. Seaweeds-derived compounds modulating effects on signal transduction pathways: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:153016. [PMID: 31325683 DOI: 10.1016/j.phymed.2019.153016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Recently, the study of marine natural products has gained interest due to their relevant biological activities. Specially, seaweeds produce bioactive compounds that could act as modulators of cell signaling pathways involved in a plethora of diseases. Thereby, the description of the molecular mechanisms by which seaweeds elicit its biological functions will certainly pave the way to the pharmacological development of drugs. AIM This review describes the molecular mechanisms by which seaweeds act and its possible utilization in the design of new drugs. METHODS This review was conducted according to the PRISMA-P guidelines for systematic reviews. Two independent authors searched into four different databases using combinations of keywords. Two more authors selected the articles following the eligibility criteria. Information extraction was conducted by two separated authors and entered into spreadsheets. Methodological quality and risk of bias were determined applying a 12-question Risk of Bias criteria tool. RESULTS AND DISCUSSION We found 2360 articles (SCOPUS: 998; PubMed: 678; Wiley: 645 and EBSCO: 39) using the established keywords, of which 113 articles fit the inclusion criteria and were included in the review. This work comprises studies in cell lines, and animal models, any clinical trial was excluded. The articles were published from 2005 up to March 31st 2018. The biggest amount of articles was published in 2017. Furthermore, the seaweeds tested in the studies were collected in 15 countries, mainly in Eastern countries. We found that the main modulated signaling pathways by seaweeds-derivate extracts and compounds were: L-Arginine/NO, TNF-α, MAPKs, PI3K/AKT/GSK, mTOR, NF-κB, extrinsic and intrinsic apoptosis, cell cycle, MMPs and Nrf2. Finally, the articles we analyzed showed moderate risk of bias in almost all the parameters evaluated. However, the studies fail to describe the place and characteristics of sample collection, the sample size, and the blindness of the experimental design. CONCLUSION In this review we identified and summarized relevant information related to seaweed-isolated compounds and extracts having biological activity; their role in different signal pathways to better understand their potential to further development of cures for cancer, diabetes, and inflammation-related diseases.
Collapse
Affiliation(s)
- Claudia Juárez-Portilla
- Centro de Investigaciones Biomédicas, Universidad Veracruzana. Av. Dr. Luis Castelazo Ayala s/n. Col. Industrial Ánimas, C.P. 91190, Xalapa, Veracruz, México
| | - Tatiana Olivares-Bañuelos
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California. Km 103 autopista Tijuana-Ensenada, A.P. 453. Ensenada, Baja California, México
| | - Tania Molina-Jiménez
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana. Circuito Gonzalo Aguirre Beltrán s/n. Zona Universitaria, C.P. 91000, Xalapa, Veracruz, México
| | - José Armando Sánchez-Salcedo
- Programa de Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana. Av. San Rafael Atlixco No. 186, Col. Vicentina, C.P. 09340, Iztapalapa, Ciudad de México
| | - Diana I Del Moral
- Programa de Doctorado en Ciencias Biomédicas, Universidad Veracruzana. Av. Dr. Luis Castelazo Ayala s/n. Col. Industrial Ánimas, C.P. 91190, Xalapa, Veracruz, México
| | - Thuluz Meza-Menchaca
- Laboratorio de Genómica Humana, Facultad de Medicina, Universidad Veracruzana. Médicos y Odontólogos s/n. Col. Unidad del Bosque, C.P. 91010, Xalapa, Veracruz, México
| | - Mónica Flores-Muñoz
- Instituto de Ciencias de la Salud, Universidad Veracruzana. Av. Dr. Luis Castelazo Ayala s/n. Col. Industrial Ánimas, C.P. 91190, Xalapa, Veracruz, México
| | - Óscar López-Franco
- Instituto de Ciencias de la Salud, Universidad Veracruzana. Av. Dr. Luis Castelazo Ayala s/n. Col. Industrial Ánimas, C.P. 91190, Xalapa, Veracruz, México
| | - Gabriel Roldán-Roldán
- Laboratorio de Neurobiología Conductual, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Arturo Ortega
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, A.P. 14-740, 07300, Ciudad de México, México
| | - Rossana C Zepeda
- Centro de Investigaciones Biomédicas, Universidad Veracruzana. Av. Dr. Luis Castelazo Ayala s/n. Col. Industrial Ánimas, C.P. 91190, Xalapa, Veracruz, México.
| |
Collapse
|
36
|
Wali AF, Majid S, Rasool S, Shehada SB, Abdulkareem SK, Firdous A, Beigh S, Shakeel S, Mushtaq S, Akbar I, Madhkali H, Rehman MU. Natural products against cancer: Review on phytochemicals from marine sources in preventing cancer. Saudi Pharm J 2019; 27:767-777. [PMID: 31516319 PMCID: PMC6733955 DOI: 10.1016/j.jsps.2019.04.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/20/2019] [Indexed: 12/14/2022] Open
Abstract
Marine natural products have as of now been acknowledged as the most important source of bioactive substances and drug leads. Marine flora and fauna, such as algae, bacteria, sponges, fungi, seaweeds, corals, diatoms, ascidian etc. are important resources from oceans, accounting for more than 90% of the total oceanic biomass. They are taxonomically different with huge productive and are pharmacologically active novel chemical signatures and bid a tremendous opportunity for discovery of new anti-cancer molecules. The water bodies a rich source of potent molecules which improve existence suitability and serve as chemical shield against microbes and little or huge creatures. These molecules have exhibited a range of biological properties antioxidant, antibacterial, antitumour etc. In spite of huge resources enriched with exciting chemicals, the marine floras and faunas are largely unexplored for their anticancer properties. In recent past, numerous marine anticancer compounds have been isolated, characterized, identified and are under trials for human use. In this write up we have tried to compile about marine-derived compounds anticancer biological activities of diverse flora and fauna and their underlying mechanisms and the generous raise in these compounds examined for malignant growth treatment in the course of the most recent quite a long while.
Collapse
Affiliation(s)
- Adil Farooq Wali
- RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Sabhiya Majid
- Department of Biochemistry, Govt. Medical College (GMC), Karan Nagar, Srinagar 190010, J&K, India
| | - Shabhat Rasool
- Department of Biochemistry, Govt. Medical College (GMC), Karan Nagar, Srinagar 190010, J&K, India
| | - Samar Bassam Shehada
- RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Shahad Khalid Abdulkareem
- RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Aimen Firdous
- Department of Processing Technology, Kerala University of Fisheries and Ocean Studies (KUFOS), Panangad 682506, Kerala, India
| | - Saba Beigh
- Institut de Biologie, Molecular et Cellulaire, CNRS, immunopathologie et Chimie Therapeutique, Strasbourg Cedex, France
| | - Sheeba Shakeel
- Department of Pharmaceutical Sciences, Faculty of Applied Sciences, University of Kashmir, Srinagar 110006, J&K, India
| | - Saima Mushtaq
- Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama 190006, J&K, India
| | - Imra Akbar
- School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Hassan Madhkali
- Department of Pharmacology, College of Pharmacy, Prince Sattan Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Muneeb U. Rehman
- Department of Biochemistry, Govt. Medical College (GMC), Karan Nagar, Srinagar 190010, J&K, India
| |
Collapse
|
37
|
Khalifa SAM, Elias N, Farag MA, Chen L, Saeed A, Hegazy MEF, Moustafa MS, Abd El-Wahed A, Al-Mousawi SM, Musharraf SG, Chang FR, Iwasaki A, Suenaga K, Alajlani M, Göransson U, El-Seedi HR. Marine Natural Products: A Source of Novel Anticancer Drugs. Mar Drugs 2019; 17:E491. [PMID: 31443597 PMCID: PMC6780632 DOI: 10.3390/md17090491] [Citation(s) in RCA: 288] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/11/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer remains one of the most lethal diseases worldwide. There is an urgent need for new drugs with novel modes of action and thus considerable research has been conducted for new anticancer drugs from natural sources, especially plants, microbes and marine organisms. Marine populations represent reservoirs of novel bioactive metabolites with diverse groups of chemical structures. This review highlights the impact of marine organisms, with particular emphasis on marine plants, algae, bacteria, actinomycetes, fungi, sponges and soft corals. Anti-cancer effects of marine natural products in in vitro and in vivo studies were first introduced; their activity in the prevention of tumor formation and the related compound-induced apoptosis and cytotoxicities were tackled. The possible molecular mechanisms behind the biological effects are also presented. The review highlights the diversity of marine organisms, novel chemical structures, and chemical property space. Finally, therapeutic strategies and the present use of marine-derived components, its future direction and limitations are discussed.
Collapse
Affiliation(s)
- Shaden A M Khalifa
- Clinical Research Centre, Karolinska University Hospital, Novum, 14157 Huddinge, Stockholm, Sweden
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Nizar Elias
- Department of Laboratory Medicine, Faculty of Medicine, University of Kalamoon, P.O. Box 222 Dayr Atiyah, Syria
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., P.B. 11562 Cairo, Egypt
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, 11835 New Cairo, Egypt
| | - Lei Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Aamer Saeed
- Department of Chemitry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Mohamed-Elamir F Hegazy
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudingerweg 5, 55128 Mainz, Germany
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, 12622 Giza, Egypt
| | - Moustafa S Moustafa
- Department of Chemistry, Faculty of Science, University of Kuwait, 13060 Safat, Kuwait
| | - Aida Abd El-Wahed
- Department of Chemistry, Faculty of Science, University of Kuwait, 13060 Safat, Kuwait
| | - Saleh M Al-Mousawi
- Department of Chemistry, Faculty of Science, University of Kuwait, 13060 Safat, Kuwait
| | - Syed G Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Arihiro Iwasaki
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan
| | - Kiyotake Suenaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan
| | - Muaaz Alajlani
- Department of Pharmaceutical Biology/Pharmacognosy, Institute of Pharmacy, University of HalleWittenberg, Hoher Weg 8, DE 06120 Halle (Saale), Germany
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75 123 Uppsala, Sweden
| | - Ulf Göransson
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75 123 Uppsala, Sweden
| | - Hesham R El-Seedi
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75 123 Uppsala, Sweden.
- Department of Chemistry, Faculty of Science, Menoufia University, 32512 Shebin El-Koom, Egypt.
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
- Al-Rayan Research and Innovation Center, Al-Rayan Colleges, 42541 Medina, Saudi Arabia.
| |
Collapse
|
38
|
Khalifa SAM, Elias N, Farag MA, Chen L, Saeed A, Hegazy MEF, Moustafa MS, Abd El-Wahed A, Al-Mousawi SM, Musharraf SG, Chang FR, Iwasaki A, Suenaga K, Alajlani M, Göransson U, El-Seedi HR. Marine Natural Products: A Source of Novel Anticancer Drugs. Mar Drugs 2019; 17:491. [DOI: https:/doi.org/10.3390/md17090491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Abstract
Cancer remains one of the most lethal diseases worldwide. There is an urgent need for new drugs with novel modes of action and thus considerable research has been conducted for new anticancer drugs from natural sources, especially plants, microbes and marine organisms. Marine populations represent reservoirs of novel bioactive metabolites with diverse groups of chemical structures. This review highlights the impact of marine organisms, with particular emphasis on marine plants, algae, bacteria, actinomycetes, fungi, sponges and soft corals. Anti-cancer effects of marine natural products in in vitro and in vivo studies were first introduced; their activity in the prevention of tumor formation and the related compound-induced apoptosis and cytotoxicities were tackled. The possible molecular mechanisms behind the biological effects are also presented. The review highlights the diversity of marine organisms, novel chemical structures, and chemical property space. Finally, therapeutic strategies and the present use of marine-derived components, its future direction and limitations are discussed.
Collapse
|
39
|
Bittkau KS, Dörschmann P, Blümel M, Tasdemir D, Roider J, Klettner A, Alban S. Comparison of the Effects of Fucoidans on the Cell Viability of Tumor and Non-Tumor Cell Lines. Mar Drugs 2019; 17:E441. [PMID: 31357497 PMCID: PMC6722501 DOI: 10.3390/md17080441] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/15/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022] Open
Abstract
Fucoidans extracted from brown algae exert manifold biological activities paving the way for the development of numerous applications including treatments outside tumor therapy such as age-related macular degeneration or tissue engineering. In this study, we investigated the antiproliferative effects of fucoidans extracted from six different algae (Fucus vesiculosus, F. serratus, F. distichus subsp. evanescens, Dictyosiphon foeniculaceus, Laminaria digitata, Saccharina latissima) as well as three reference compounds (Sigma fucoidan, heparin, enoxaparin) on tumor (HL-60, Raji, HeLa, OMM-1, A-375, HCT-116, Hep G2) and non-tumor (ARPE-19, HaCaT) cell lines. All fucoidans were extracted according to a standardized procedure and tested in a commercially available MTS assay. Cell viability was measured after 24 h incubation with test compounds (1-100 µg/mL). Apart from few exceptions, fucoidans and heparins did not impair cell viability. In contrast, fucoidans significantly increased cell viability of suspension cell lines, but not of adherent cells. Fucoidans slightly increased viability of tumor cells and had no impact on the viability of non-tumor cells. The cell viability of HeLa and ARPE-19 cells negatively correlated with protein content and total phenolic content (TPC) of fucoidans, respectively. In summary, none of the tested fucoidans turned out to be anti-proliferative, rendering them interesting for future studies and applications.
Collapse
Affiliation(s)
- Kaya Saskia Bittkau
- Pharmaceutical Institute, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Philipp Dörschmann
- University of Kiel, University Medical Center, Department of Ophthalmology, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany
| | - Martina Blümel
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
- Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Johann Roider
- University of Kiel, University Medical Center, Department of Ophthalmology, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany
| | - Alexa Klettner
- University of Kiel, University Medical Center, Department of Ophthalmology, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany.
| | - Susanne Alban
- Pharmaceutical Institute, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany.
| |
Collapse
|
40
|
Tran TTD, Tran PHL. Nanoconjugation and Encapsulation Strategies for Improving Drug Delivery and Therapeutic Efficacy of Poorly Water-Soluble Drugs. Pharmaceutics 2019; 11:E325. [PMID: 31295947 PMCID: PMC6680391 DOI: 10.3390/pharmaceutics11070325] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/25/2019] [Accepted: 05/10/2019] [Indexed: 01/14/2023] Open
Abstract
Nanoconjugations have been demonstrated to be a dominant strategy for drug delivery and biomedical applications. In this review, we intend to describe several strategies for drug formulation, especially to improve the bioavailability of poorly water-soluble molecules for future application in the therapy of numerous diseases. The context of current studies will give readers an overview of the conjugation strategies for fabricating nanoparticles, which have expanded from conjugated materials to the surface conjugation of nanovehicles. Moreover, nanoconjugates for theranostics are also discussed and highlighted. Overall, these state-of-the-art conjugation methods and these techniques and applications for nanoparticulate systems of poorly water-soluble drugs will inspire scientists to explore and discover more productive techniques and methodologies for drug development.
Collapse
Affiliation(s)
- Thao T. D. Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam;
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
41
|
Wang Y, Xing M, Cao Q, Ji A, Liang H, Song S. Biological Activities of Fucoidan and the Factors Mediating Its Therapeutic Effects: A Review of Recent Studies. Mar Drugs 2019; 17:E183. [PMID: 30897733 PMCID: PMC6471298 DOI: 10.3390/md17030183] [Citation(s) in RCA: 242] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 02/06/2023] Open
Abstract
The marine acid polysaccharide fucoidan has attracted attention from both the food and pharmaceutical industries due to its promising therapeutic effects. Fucoidan is a polysaccharide that mainly consists of L-fucose and sulphate groups. Its excellent biological function is attributed to its unique biological structure. Classical activities include antitumor, antioxidant, anticoagulant, antithrombotic, immunoregulatory, antiviral and anti-inflammatory effects. More recently, fucoidan has been shown to alleviate metabolic syndrome, protect the gastrointestinal tract, benefit angiogenesis and bone health. This review focuses on the progress in our understanding of the biological activities of fucoidan, highlighting its benefits for the treatment of human disease. We hope that this review can provide some theoretical basis and inspiration for the product development of fucoidan.
Collapse
Affiliation(s)
- Yu Wang
- Marine College, Shandong University, Weihai 264209, China.
| | - Maochen Xing
- Marine College, Shandong University, Weihai 264209, China.
| | - Qi Cao
- Marine College, Shandong University, Weihai 264209, China.
| | - Aiguo Ji
- Marine College, Shandong University, Weihai 264209, China.
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| | - Hao Liang
- Marine College, Shandong University, Weihai 264209, China.
| | - Shuliang Song
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|
42
|
Ercolano G, De Cicco P, Ianaro A. New Drugs from the Sea: Pro-Apoptotic Activity of Sponges and Algae Derived Compounds. Mar Drugs 2019; 17:E31. [PMID: 30621025 PMCID: PMC6356258 DOI: 10.3390/md17010031] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 12/12/2022] Open
Abstract
Natural compounds derived from marine organisms exhibit a wide variety of biological activities. Over the last decades, a great interest has been focused on the anti-tumour role of sponges and algae that constitute the major source of these bioactive metabolites. A substantial number of chemically different structures from different species have demonstrated inhibition of tumour growth and progression by inducing apoptosis in several types of human cancer. The molecular mechanisms by which marine natural products activate apoptosis mainly include (1) a dysregulation of the mitochondrial pathway; (2) the activation of caspases; and/or (3) increase of death signals through transmembrane death receptors. This great variety of mechanisms of action may help to overcome the multitude of resistances exhibited by different tumour specimens. Therefore, products from marine organisms and their synthetic derivates might represent promising sources for new anticancer drugs, both as single agents or as co-adjuvants with other chemotherapeutics. This review will focus on some selected bioactive molecules from sponges and algae with pro-apoptotic potential in tumour cells.
Collapse
Affiliation(s)
- Giuseppe Ercolano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| | - Paola De Cicco
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| | - Angela Ianaro
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| |
Collapse
|
43
|
van Weelden G, Bobiński M, Okła K, van Weelden WJ, Romano A, Pijnenborg JMA. Fucoidan Structure and Activity in Relation to Anti-Cancer Mechanisms. Mar Drugs 2019; 17:E32. [PMID: 30621045 PMCID: PMC6356449 DOI: 10.3390/md17010032] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
Fucoidan is a natural derived compound found in different species of brown algae and in some animals, that has gained attention for its anticancer properties. However, the exact mechanism of action is currently unknown. Therefore, this review will address fucoidans structure, the bioavailability, and all known different pathways affected by fucoidan, in order to formulate fucoidans structure and activity in relation to its anti-cancer mechanisms. The general bioactivity of fucoidan is difficult to establish due to factors like species-related structural diversity, growth conditions, and the extraction method. The main pathways influenced by fucoidan are the PI3K/AKT, the MAPK pathway, and the caspase pathway. PTEN seems to be important in the fucoidan-mediated effect on the AKT pathway. Furthermore, the interaction with VEGF, BMP, TGF-β, and estrogen receptors are discussed. Also, fucoidan as an adjunct seems to have beneficial effects, for both the enhanced effectiveness of chemotherapy and reduced toxicity in healthy cells. In conclusion, the multipotent character of fucoidan is promising in future anti-cancer treatment. However, there is a need for more specified studies of the structure⁻activity relationship of fucoidan from the most promising seaweed species.
Collapse
Affiliation(s)
- Geert van Weelden
- Faculty of Science, (Medical) Biology, Radboud University, 6525 XZ Nijmegen, The Netherlands.
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland.
| | - Marcin Bobiński
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland.
| | - Karolina Okła
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland.
| | - Willem Jan van Weelden
- Department of Obstetrics & Gynecology, Radboud University Nijmegen, Medical Centre, 6525 GA Nijmegen, The Netherlands.
| | - Andrea Romano
- Department of Obstetrics and Gynecology, GROW-School for Oncology and Developmental Biology Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands.
| | - Johanna M A Pijnenborg
- Department of Obstetrics & Gynecology, Radboud University Nijmegen, Medical Centre, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
44
|
Li J, Cai C, Yang C, Li J, Sun T, Yu G. Recent Advances in Pharmaceutical Potential of Brown Algal Polysaccharides and their Derivatives. Curr Pharm Des 2019; 25:1290-1311. [PMID: 31237200 DOI: 10.2174/1381612825666190618143952] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
Abstract
Marine plants, animals and microorganisms display steady growth in the ocean and are abundant carbohydrate resources. Specifically, natural polysaccharides obtained from brown algae have been drawing increasing attention owing to their great potential in pharmaceutical applications. This review describes the structural and biological features of brown algal polysaccharides, including alginates, fucoidans, and laminarins, and it highlights recently developed approaches used to obtain the oligo- and polysaccharides with defined structures. Functional modification of these polysaccharides promotes their advanced applications in biomedical materials for controlled release and targeted drug delivery, etc. Moreover, brown algal polysaccharides and their derivatives possess numerous biological activities with anticancer, anticoagulant, wound healing, and antiviral properties. In addition, we also discuss carbohydrate- based substrates from brown algae, which are currently in clinical and preclinical studies, as well as the marine drugs that are already on the market. The present review summarizes the recent development in carbohydratebased products from brown algae, with promising findings that could rapidly facilitate the future discovery of novel marine drugs.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Chendong Yang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jianghua Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tiantian Sun
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
45
|
Fucoidan Exerts Anticancer Effects Against Head and Neck Squamous Cell Carcinoma In Vitro. Molecules 2018; 23:molecules23123302. [PMID: 30545161 PMCID: PMC6321539 DOI: 10.3390/molecules23123302] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 12/28/2022] Open
Abstract
Fucoidans have been reported to exert anticancer effects with simultaneous low toxicity against healthy tissue. That correlation was observed in several cancer models, however, it has never been investigated in head and neck cancer before. To magnify the efficacy of conventional therapy, the administration of agents like fucoidan could be beneficial. The aim of this study was to evaluate the anticancer effect of Fucus vesiculosus (FV) extract alone and with co-administration of cisplatin in head and neck squamous cell carcinoma (HNSCC) in vitro. MTT assay results revealed an FV-induced inhibition of proliferation in all tested cell lines (H103, FaDu, KB). Flow cytometric cell cycle analysis showed an FV-induced, dose-dependent arrest in either S/G2 phase (H103, FaDu) or G1 arrest (KB). Furthermore, a dose-dependent gain in apoptotic fraction was observed. Western blot analysis confirmed the induction of apoptosis. A significant dose-dependent increase in reactive oxygen species (ROS) production was revealed in the H103 cell line, while FaDu cells remained unresponsive. On the contrary, an HPV-positive cell line, KB, demonstrated a dose-dependent decrease in ROS synthesis. Moreover, fucoidan enhanced the response to cisplatin (synergistic effect) in all cell lines with the HPV-positive one (KB) being the most sensitive. These results have been confirmed by flow-cytometric apoptosis analysis. In conclusion, we confirmed that fucoidan exhibits anticancer properties against HNSCC, which are manifested by the induction of apoptosis, regulation of ROS production, cell cycle arrest, and inhibition of proliferation.
Collapse
|
46
|
Lee J, Lee S, Synytsya A, Capek P, Lee CW, Choi JW, Cho S, Kim WJ, Park YI. Low Molecular Weight Mannogalactofucans Derived from Undaria pinnatifida Induce Apoptotic Death of Human Prostate Cancer Cells In Vitro and In Vivo. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:813-828. [PMID: 30159630 DOI: 10.1007/s10126-018-9851-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Low molecular weight mannogalactofucans (LMMGFs) prepared by enzymatic degradation of high molecular weight Undaria galactofucan (MF) were evaluated for their anti-cancer effects against human prostate cancer. Correlation NMR and linkage analyses confirmed that LMMGFs consist mainly of α-fucose and β-galactose units: α-fucose units are 1,3-linked; β-galactose units are terminal, 1,3- and/or 1,6-linked; both sugars are partially sulphated, fucose at positions O-2 and/or O-4 and galactose at O-3. Mannose residue, as a minor sugar, presents as the 1,4-linked terminal units. LMMGFs more significantly induced cell cycle arrest at the G0/G1 phase and cell death via suppression of the Akt/GSK-3β/β-catenin pathway than MF in human PC-3 prostate cancer cells. LMMGFs upregulated mRNA expression of death receptor-5 (DR-5), the ratio of Bax to Bcl-2, the cleavage of caspases and PARP, the depolarisation of mitochondrial membrane potential, and ROS generation. LMMGFs (200-400 mg/kg) effectively reduced both tumour volume and size in a xenografted mouse model. These results demonstrated that LMMGFs attenuate the growth of human prostate cancer cells both in vitro and in vivo, suggesting that LMMGFs can be used as a potent functional ingredient in health-beneficial foods or as a therapeutic agent to prevent or treat androgen-independent human prostate cancer. Graphical Abstract.
Collapse
Affiliation(s)
- Jisun Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, South Korea
| | - Seul Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, South Korea
| | - Andriy Synytsya
- Department of Carbohydrate Chemistry and Technology, University of Chemical Technology in Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Peter Capek
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Chang Won Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, South Korea
| | - Ji Won Choi
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, South Korea
| | - Sarang Cho
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, South Korea
| | - Woo Jung Kim
- Biocenter, Gyeonggido Business and Science Accelerator (GBSA), Suwon, Gyeonggi-do, 16229, South Korea
| | - Yong Il Park
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, South Korea.
| |
Collapse
|
47
|
Lu J, Shi KK, Chen S, Wang J, Hassouna A, White LN, Merien F, Xie M, Kong Q, Li J, Ying T, White WL, Nie S. Fucoidan Extracted from the New Zealand Undaria pinnatifida-Physicochemical Comparison against Five Other Fucoidans: Unique Low Molecular Weight Fraction Bioactivity in Breast Cancer Cell Lines. Mar Drugs 2018; 16:E461. [PMID: 30469516 PMCID: PMC6316445 DOI: 10.3390/md16120461] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 02/05/2023] Open
Abstract
Fucoidan, the complex fucose-containing sulphated polysaccharide varies considerably in structure, composition, and bioactivity, depending on the source, species, seasonality, and extraction method. In this study, we examined five fucoidans extracted from the same seaweed species Undaria pinnatifida but from different geological locations, and compared them to the laboratory-grade fucoidan from Sigma (S). The five products differed in molecular composition. The amount of over 2 kDa low molecular weight fraction (LMWF) of the New Zealand crude fucoidan (S1) was larger than that of S, and this fraction was unique, compared to the other four fucoidans. The difference of molecular compositions between S and S1 explained our previous observation that S1 exhibited different anticancer profile in some cancer cell lines, compared with S. Since we observed this unique LMWF, we compared the cytotoxic effects of a LMWF and a high molecular weight fucoidan (HMWF) in two breast cancer cell lines-MCF-7 and MDA-MB-231. Results indicated that the molecular weight is a critical factor in determining the anti-cancer potential of fucoidan, from the New Zealand U. pinnatifida, as the LMWF exhibited a dose-dependent inhibition on the proliferation of breast cancer cells, significantly better than the HMWF, in both cell lines. A time-dependent inhibition was only observed in the MCF-7. Induction of caspase-dependent apoptosis was observed in the MDA-MB-231 cells, through the intrinsic apoptosis pathway alone, or with the extrinsic pathway. LMWF stimulated a dose-dependent NOS activation in the MDA-MB-231 cells. In conclusion, the fucoidan extracted from the New Zealand U. pinnatifida contains a unique LMWF, which could effectively inhibit the growth of breast cancer cell lines. Therefore, the LMWF from New Zealand U. pinnatifida could be used as a supplement cancer treatment.
Collapse
Affiliation(s)
- Jun Lu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518071, China.
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
- School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
- Institute of Biomedical Technology, Auckland University of Technology, Auckland 1010, New Zealand.
| | - Keyu Kally Shi
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
| | - Shuping Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Junqiao Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Amira Hassouna
- School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo 12613, Egypt.
| | - Loretta Nicole White
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
| | - Fabrice Merien
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
- AUT-Roche Diagnostics Laboratory, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Qingjun Kong
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, China.
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai 200032, China.
| | - William Lindsey White
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
48
|
Yang X, Wang S, Trangle SS, Li Y, White WL, Li J, Ying T, Kong Q, Zhao Y, Lu J. Investigation of Different Molecular Weight Fucoidan Fractions Derived from New Zealand Undaria pinnatifida in Combination with GroA Therapy in Prostate Cancer Cell Lines. Mar Drugs 2018; 16:E454. [PMID: 30453677 PMCID: PMC6266598 DOI: 10.3390/md16110454] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 02/06/2023] Open
Abstract
Fucoidan, a sulfated polysaccharide extracted from brown seaweeds, has been shown to possess various antioxidant, anticoagulant, antiviral, and anticancer functions. In this study, we focused on low molecular weight fucoidan (LMWF) which was extracted from New Zealand Undaria pinnatifida, and investigated its anti-proliferative effects, combined with a quadruplex-forming oligonucleotide aptamer (GroA, AS1411), a powerful cell surface Nucleolin inhibitor, in prostate cancer cells. We examined LMWF (<10 kDa) and compared it with laboratory grade Fucoidan purchased from Sigma (FS), all extracted from the same seaweed species U. pinnatifida. We found that LMWF significantly improved the anti-proliferative effect of GroA, as it decreased cancer cell growth and viability and increased cell death. This research may provide the foundation for LMWF to be used against prostate cancers as a supplement therapy in combination with other therapeutic agents.
Collapse
Affiliation(s)
- Xu Yang
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
| | - Sheng Wang
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
| | | | - Yan Li
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
- School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
| | - William Lindsey White
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, China.
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai 200032, China.
| | - Qingjun Kong
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| | - Yu Zhao
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
- School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.
- Institute of Biomedical Technology, Auckland University of Technology, Auckland 1010, New Zealand.
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518071, China.
| |
Collapse
|
49
|
Palanisamy S, Vinosha M, Manikandakrishnan M, Anjali R, Rajasekar P, Marudhupandi T, Manikandan R, Vaseeharan B, Prabhu NM. Investigation of antioxidant and anticancer potential of fucoidan from Sargassum polycystum. Int J Biol Macromol 2018; 116:151-161. [PMID: 29729339 DOI: 10.1016/j.ijbiomac.2018.04.163] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/02/2018] [Accepted: 04/29/2018] [Indexed: 01/10/2023]
Abstract
The present study was aimed to evaluate the antioxidant and anticancer potential of fucoidan isolated from Sargassum polycystum. The isolated fucoidan was successfully purified by DEAE cellulose-ion exchange chromatography and dialysis. Totally four active fractions (F1-F4) were collected and explored its chemical constitution by calorimetric assays. Among them, fraction 2 (F2) showed the higher yield percentage, fucose and sulphate content. Further, monosaccharide composition, structural and functional properties of the F2 was analyzed by HPLC, FTIR and NMR. F2 shows highest DPPH radical scavenging activity (55.94 ± 0.69%), reducing power (0.33 absorbance rate), hydrogen peroxide scavenging activity (71.76 ± 2.14%) and nitric oxide radical scavenging activity (51.81 ± 1.04%) at 1000 μg/ml. The cell viability of MCF-7 and HCT-15 cell lines was proportionate to the concentration of F2 with an estimated IC50 was 20 and 50 μg/ml respectively. The fluorescence and confocal laser scanning microscopic analysis demonstrated the apoptotic morphological changes and cell mediated death in F2 treated cancer cells. Higher amount of LDH release was found in the F2 treated cancer cells than the control group. Thus, the present finding proved that the isolated F2 encompasses significant antioxidant and anticancer property.
Collapse
Affiliation(s)
- Subramanian Palanisamy
- Disease control and Prevention Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Manoharan Vinosha
- Disease control and Prevention Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Muthushanmugam Manikandakrishnan
- Disease control and Prevention Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Ravichandran Anjali
- Disease control and Prevention Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Periyannan Rajasekar
- Disease control and Prevention Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Thangapandi Marudhupandi
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Ramar Manikandan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Narayanasamy Marimuthu Prabhu
- Disease control and Prevention Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630 004, Tamil Nadu, India.
| |
Collapse
|
50
|
Phull AR, Kim SJ. Undaria pinnatifida a Rich Marine Reservoir of Nutritional and Pharmacological Potential: Insights into Growth Signaling and Apoptosis Mechanisms in Cancer. Nutr Cancer 2018; 70:956-970. [PMID: 30616379 DOI: 10.1080/01635581.2018.1490449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 06/04/2018] [Indexed: 02/04/2023]
Abstract
Seaweeds are an important part of diet consumed in a different part of the world such as New Zealand, Ireland, Wales, and Asian countries including Korea, China, and Japan. In addition, seaweed is nutritious sources possessing health improving effects and therapeutic potential. Recently, one of the widely eaten seaweed species Undaria pinnatifida (U. pinnatifida) has got much attention because of its pharmacological properties for the prevention of various ailments, including cancer, inflammation, and other diseases. It is rich in all essential amino acids, physiologically significant fatty acids, vitamins, minerals, and has a variety of bioactive constituents which include fucoidan, carotenoids, and fucoxanthin. The present study reviews the nutritional aspects, key bioactivities specifically focusing on anticancer potential along with apoptosis and growth signaling mechanisms of U. pinnatifida or its constituents. It exhibited anticancer effects both in vitro and in vivo studies in a variety of experimental models. Due to a variety of pharmacological properties of U. pinnatifida can not only fulfilling nutritional necessities, but it can be used for treating, curing and preventing cancer.
Collapse
Affiliation(s)
- Abdul Rehman Phull
- a Department of Biological Sciences, College of Natural Sciences , Kongju National University , Chungnam , Republic of Korea
- b Department of Biochemistry , Shah Abdul Latif University , Khairpur , Sindh , Pakistan
| | - Song Ja Kim
- a Department of Biological Sciences, College of Natural Sciences , Kongju National University , Chungnam , Republic of Korea
| |
Collapse
|