1
|
Saraswathi KK, Santhi R, Kim U, Vanniarajan A. Investigating the frequency of somatic MYD88 L265P mutation in primary ocular adnexal B cell lymphoma. Mol Biol Rep 2024; 51:973. [PMID: 39249595 DOI: 10.1007/s11033-024-09903-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Ocular adnexal B cell lymphoma is the most common orbital malignancy in adults. Large chromosomal translocations and alterations in cell-signaling pathways were frequently reported in lymphomas. Among the altered pathways, perturbations of NFκB signaling play a significant role in lymphomagenesis. Specifically, the MYD88 L265P mutation, an activator of NFκB signaling, is extensively studied in intraocular lymphoma but not at other sites. Therefore, this study aims to screen the MYD88 L265P mutation in Ocular adnexal B cell lymphoma tumors and assess its clinical significance. METHODS AND RESULTS Our study of twenty Ocular adnexal B cell lymphoma tumor samples by Allele-Specific Polymerase Chain Reaction identified two samples positive for the MYD88 L265P mutation. Subsequent Sanger sequencing confirmed the presence of the heterozygous mutation in those two samples tested positive in Allele-Specific Polymerase Chain Reaction. A comprehensive review of MYD88 L265P mutation in Ocular adnexal B cell lymphoma revealed variable frequencies, ranging from 0 to 36%. The clinical, pathological, and prognostic features showed no differences between patients with and without the MYD88 L265P mutation. CONCLUSION The present study indicates that the MYD88 L265P mutation is relatively infrequent in our cohort, underscoring the need for further validation in additional cohorts.
Collapse
Affiliation(s)
- Karuvel Kannan Saraswathi
- Department of Molecular Genetics, Aravind Medical Research Foundation, 1, Anna Nagar, Madurai, Tamil Nadu, India
- Department of Molecular Biology, Aravind Medical Research Foundation - Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India
| | | | - Usha Kim
- Department of Orbit, Oculoplasty, Ocular Oncology and Ocular Prosthesis, Aravind Eye Hospital and Post Graduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | - Ayyasamy Vanniarajan
- Department of Molecular Genetics, Aravind Medical Research Foundation, 1, Anna Nagar, Madurai, Tamil Nadu, India.
- Department of Molecular Biology, Aravind Medical Research Foundation - Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
2
|
Alderuccio JP, Lossos IS. Enhancing prognostication and personalizing treatment of extranodal marginal zone lymphoma. Expert Rev Hematol 2023; 16:333-348. [PMID: 37086394 PMCID: PMC10183153 DOI: 10.1080/17474086.2023.2206557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/20/2023] [Indexed: 04/23/2023]
Abstract
INTRODUCTION Extranodal marginal zone lymphoma (EMZL) of mucosa-associated lymphoid tissue is an indolent lymphoma originating from marginal zone B-cells and associated with chronic inflammation. EMZL demonstrates distinct genomic alterations according to the primary extranodal site of disease but commonly affects signaling pathways including NF-ĸB, B-cell receptor, and NOTCH. Treatment with radiation therapy is commonly implemented in localized diseases, and multiple agents are available for patients with advanced-stage diseases in need of therapy. Bendamustine with rituximab is a frontline platform associated with high efficacy. AREAS COVERED Clinical features, diagnosis, genomics, models enabling risk stratification, treatment options, and future directions. EXPERT OPINION The lack of consistent genotyping profile in EMZL precludes the development of tissue and circulatory biomarkers for the diagnosis, risk stratification, and monitoring of minimal residual disease. Furthermore, the biological heterogeneity observed in extranodal sites associated with overall limited genomic data prevents the testing of druggable pathways aiming for a personalized treatment approach. Future clinical trials should focus on EMZL considering the unique clinical characteristics in the eligibility criteria and response assessment to better inform efficacy of novel agents and delineate sequences of therapies.
Collapse
Affiliation(s)
| | - Izidore S. Lossos
- Department of Medicine, Division of Hematology
- Department of Molecular and Cellular Pharmacology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
3
|
McGrath LA, Ryan DA, Warrier SK, Coupland SE, Glasson WJ. Conjunctival Lymphoma. Eye (Lond) 2022; 37:837-848. [PMID: 35882984 PMCID: PMC10049989 DOI: 10.1038/s41433-022-02176-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 11/09/2022] Open
Abstract
Lymphoma of the conjunctiva is an ocular malignancy derived from clonal proliferation of lymphocytes. The majority of conjunctival lymphoma is extranodal marginal zone B-Cell lymphoma (EMZL), however diffuse large B-cell (DLBCL), follicular (FL), mantle cell (MCL) and T- cell subtypes are also seen. Clinical manifestations are non-specific, but include unilateral or bilateral painless salmon-pink conjunctival lesions. Approaches to treatment have centered around local immunomodulation, often with Interferon-α2b or Rituximab (anti-CD20 monoclonal antibody) with or without radiation. Although conjunctival lymphoma is generally considered an indolent disease, recent advances in next-generation sequencing have improved clinicians' ability to predict future recurrence or systemic disease through assessment of cytogenic and molecular features. In this paper, we review the classification, clinical features, diagnostic techniques, and emerging strategies for management and prognostication of conjunctival lymphomas.
Collapse
Affiliation(s)
- Lindsay A McGrath
- Queensland Ocular Oncology Service, Terrace Eye Centre, Brisbane, QLD, Australia. .,University of Queensland, School of Medicine, Brisbane, QLD, Australia.
| | - David A Ryan
- Sullivan Nicolaides Pathology, Brisbane, QLD, Australia
| | - Sunil K Warrier
- Queensland Ocular Oncology Service, Terrace Eye Centre, Brisbane, QLD, Australia
| | - Sarah E Coupland
- Liverpool Clinical Laboratories, Liverpool University Hospitals Foundation Trust, Liverpool, UK.,Department. of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - William J Glasson
- Queensland Ocular Oncology Service, Terrace Eye Centre, Brisbane, QLD, Australia.,University of Queensland, School of Medicine, Brisbane, QLD, Australia
| |
Collapse
|
4
|
Genomic landscape of Epstein-Barr virus-positive extranodal marginal zone lymphomas of mucosa-associated lymphoid tissue. Mod Pathol 2022; 35:938-945. [PMID: 34952945 DOI: 10.1038/s41379-021-01002-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/08/2022]
Abstract
Epstein-Barr virus (EBV)-positive extranodal marginal zone lymphomas of mucosa-associated lymphoid tissue (MALT lymphomas) were initially described in solid organ transplant recipients, and, more recently, in other immunodeficiency settings. The overall prevalence of EBV-positive MALT lymphomas has not been established, and little is known with respect to their genomic characteristics. Eight EBV-positive MALT lymphomas were identified, including 1 case found after screening a series of 88 consecutive MALT lymphomas with EBER in situ hybridization (1%). The genomic landscape was assessed in 7 of the 8 cases with a targeted high throughput sequencing panel and array comparative genomic hybridization. Results were compared to published data for MALT lymphomas. Of the 8 cases, 6 occurred post-transplant, 1 in the setting of primary immunodeficiency, and 1 case was age-related. Single pathogenic/likely pathogenic mutations were identified in 4 of 7 cases, including mutations in IRF8, BRAF, TNFAIP3, and SMARCA4. Other than TNFAIP3, these genes are mutated in <3% of EBV-negative MALT lymphomas. Copy number abnormalities were identified in 6 of 7 cases with a median of 6 gains and 2 losses per case, including 4 cases with gains in regions encompassing several IRF family or interacting genes (IRF2BP2, IRF2, and IRF4). There was no evidence of trisomies of chromosomes 3 or 18. In summary, EBV-positive MALT lymphomas are rare and, like other MALT lymphomas, are usually genetically non-complex. Conversely, while EBV-negative MALT lymphomas typically show mutational abnormalities in the NF-κB pathway, other than the 1 TNFAIP3-mutated case, no other NF-κB pathway mutations were identified in the EBV-positive cases. EBV-positive MALT lymphomas often have either mutations or copy number abnormalities in IRF family or interacting genes, suggesting that this pathway may play a role in these lymphomas.
Collapse
|
5
|
Zhao A, Wu F, Wang Y, Li J, Xu W, Liu H. Analysis of Genetic Alterations in Ocular Adnexal Mucosa-Associated Lymphoid Tissue Lymphoma With Whole-Exome Sequencing. Front Oncol 2022; 12:817635. [PMID: 35359413 PMCID: PMC8962736 DOI: 10.3389/fonc.2022.817635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Next-generation sequencing studies on ocular adnexal marginal zone lymphoma of mucosa-associated lymphoid tissue (OAML) have to date revealed several targets of genetic aberrations. However, most of our current understanding of the pathogenesis and prognosis of OAML is primarily based on studies conducted in populations from Europe and the US. Furthermore, the majority were based on formalin-fixed paraffin-embedded (FFPE) tissue, which generally has poor integrity and creates many sequencing artifacts. To better investigate the coding genome landscapes of OAML, especially in the Chinese population, we performed whole-exome sequencing of 21 OAML cases with fresh frozen tumor tissue and matched peripheral blood samples. IGLL5, as a novel recurrently mutated gene, was found in 24% (5/21) of patients, with a higher relapse rate (P=0.032). In addition, mutations of MSH6, DIS3, FAT1, and TMEM127 were found in 10% of cases. These novel somatic mutations indicate the existence of additional/alternative lymphomagenesis pathways in OAML. Moreover, the difference between our and previous studies suggests genetic heterogeneity of OAML between Asian and Western individuals.
Collapse
Affiliation(s)
- Andi Zhao
- Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Fangtian Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University Jiangsu Province Hospital, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yue Wang
- Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University Jiangsu Province Hospital, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- *Correspondence: Hu Liu, ; Wei Xu, ; Jianyong Li,
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University Jiangsu Province Hospital, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- *Correspondence: Hu Liu, ; Wei Xu, ; Jianyong Li,
| | - Hu Liu
- Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
- *Correspondence: Hu Liu, ; Wei Xu, ; Jianyong Li,
| |
Collapse
|
6
|
Johansson P, Eckstein A, Küppers R. The Biology of Ocular Adnexal Marginal Zone Lymphomas. Cancers (Basel) 2022; 14:1264. [PMID: 35267569 PMCID: PMC8908984 DOI: 10.3390/cancers14051264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/06/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
This review focuses on the biology of ocular adnexal marginal zone B-cell lymphomas of the mucosa-associated lymphatic tissue (MALT) (OAMZL) subtype. The ocular adnexa includes all structures and tissues within the orbit except for the eye bulb. In the region of the ocular adnexa, MALT lymphomas represent the most common subtype of lymphoma, accounting for around 8% of all non-Hodgkin lymphomas. These lymphomas are often preceded by inflammatory precursor lesions. Either autoantigens or infectious antigens may lead to disease development by functioning as continuous antigenic triggers. This triggering leads to a constitutive activation of the NF-κB signaling pathway. The role of antigenic stimulation in the pathogenesis of OAMZL is supported by the detection of somatic mutations (partially with further intraclonal diversity) in their rearranged immunoglobulin V genes; hence, their derivation from germinal-center-experienced B cells, by a restricted IGHV gene usage, and the validation of autoreactivity of the antibodies in selected cases. In the established lymphomas, NF-κB activity is further enforced by mutations in various genes regulating NF-κB activity (e.g., TNFAIP3, MYD88), as well as recurrent chromosomal translocations affecting NF-κB pathway components in a subset of cases. Further pathogenetic mechanisms include mutations in genes of the NOTCH pathway, and of epigenetic regulators. While gene expression and sequencing studies are available, the role of differential methylation of lymphoma cells, the role of micro-RNAs, and the contribution of the microenvironment remain largely unexplored.
Collapse
Affiliation(s)
- Patricia Johansson
- Institute of Cell Biology (Cancer Research), Faculty of Medicine, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Anja Eckstein
- Molecular Ophthalmology Group, Department of Ophthalmology, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Faculty of Medicine, University of Duisburg-Essen, 45147 Essen, Germany;
| |
Collapse
|
7
|
Recent Advances in the Genetic of MALT Lymphomas. Cancers (Basel) 2021; 14:cancers14010176. [PMID: 35008340 PMCID: PMC8750177 DOI: 10.3390/cancers14010176] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Mucosa-associated lymphoid tissue (MALT) lymphoma is the most common subtype of marginal zone lymphomas. These B-cell neoplasms may arise from many organs and usually have an indolent behavior. Recurrent chromosomal translocations and cytogenetic alterations are well characterized, some of them being associated to specific sites. Through next-generation sequencing technologies, the mutational landscape of MALT lymphomas has been explored and available data to date show that there are considerable variations in the incidence and spectrum of mutations among MALT lymphoma of different sites. Interestingly, most of these mutations affect several common pathways and some of them are potentially targetable. Gene expression profile and epigenetic studies have also added new information, potentially useful for diagnosis and treatment. This article provides a comprehensive review of the genetic landscape in MALT lymphomas. Abstract Mucosa-associated lymphoid tissue (MALT) lymphomas are a diverse group of lymphoid neoplasms with B-cell origin, occurring in adult patients and usually having an indolent clinical behavior. These lymphomas may arise in different anatomic locations, sharing many clinicopathological characteristics, but also having substantial variances in the aetiology and genetic alterations. Chromosomal translocations are recurrent in MALT lymphomas with different prevalence among different sites, being the 4 most common: t(11;18)(q21;q21), t(1;14)(p22;q32), t(14;18)(q32;q21), and t(3;14)(p14.1;q32). Several chromosomal numerical abnormalities have also been described, but probably represent secondary genetic events. The mutational landscape of MALT lymphomas is wide, and the most frequent mutations are: TNFAIP3, CREBBP, KMT2C, TET2, SPEN, KMT2D, LRP1B, PRDM1, EP300, TNFRSF14, NOTCH1/NOTCH2, and B2M, but many other genes may be involved. Similar to chromosomal translocations, certain mutations are enriched in specific lymphoma types. In the same line, variation in immunoglobulin gene usage is recognized among MALT lymphoma of different anatomic locations. In the last decade, several studies have analyzed the role of microRNA, transcriptomics and epigenetic alterations, further improving our knowledge about the pathogenic mechanisms in MALT lymphoma development. All these advances open the possibility of targeted directed treatment and push forward the concept of precision medicine in MALT lymphomas.
Collapse
|
8
|
Magistri M, Happ LE, Ramdial J, Lu X, Stathias V, Kunkalla K, Agarwal N, Jiang X, Schürer SC, Dubovy SR, Chapman JR, Vega F, Dave S, Lossos IS. The Genetic Landscape of Ocular Adnexa MALT Lymphoma Reveals Frequent Aberrations in NFAT and MEF2B Signaling Pathways. CANCER RESEARCH COMMUNICATIONS 2021; 1:1-16. [PMID: 35528192 PMCID: PMC9075502 DOI: 10.1158/2767-9764.crc-21-0022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 12/31/2022]
Abstract
A comprehensive constellation of somatic non-silent mutations and copy number (CN) variations in ocular adnexa marginal zone lymphoma (OAMZL) is unknown. By utilizing whole-exome sequencing in 69 tumors we define the genetic landscape of OAMZL. Mutations and CN changes in CABIN1 (30%), RHOA (26%), TBL1XR1 (22%), and CREBBP (17%) and inactivation of TNFAIP3 (26%) were among the most common aberrations. Candidate cancer driver genes cluster in the B-cell receptor (BCR), NFkB, NOTCH and NFAT signaling pathways. One of the most commonly altered genes is CABIN1, a calcineurin inhibitor acting as a negative regulator of the NFAT and MEF2B transcriptional activity. CABIN1 deletions enhance BCR-stimulated NFAT and MEF2B transcriptional activity, while CABIN1 mutations enhance only MEF2B transcriptional activity by impairing binding of mSin3a to CABIN1. Our data provide an unbiased identification of genetically altered genes that may play a role in the molecular pathogenesis of OAMZL and serve as therapeutic targets.
Collapse
Affiliation(s)
- Marco Magistri
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Lanie E. Happ
- Center for Genomic and Computational Biology and Department of Medicine, Duke University, Durham, North Carolina
| | - Jeremy Ramdial
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - XiaoQing Lu
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Vasileios Stathias
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida
- Center for Computational Science, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Kranthi Kunkalla
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami, Miami, Florida
| | - Nitin Agarwal
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami, Miami, Florida
| | - Xiaoyu Jiang
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Stephan C. Schürer
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida
- Center for Computational Science, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Sander R. Dubovy
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Jennifer R. Chapman
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami, Miami, Florida
| | - Francisco Vega
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami, Miami, Florida
| | - Sandeep Dave
- Center for Genomic and Computational Biology and Department of Medicine, Duke University, Durham, North Carolina
| | - Izidore S. Lossos
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
9
|
Jangam D, Sridhar K, Butzmann A, Samghabadi P, Plowey ED, Ohgami RS. TBL1XR1 Mutations in Primary Marginal Zone Lymphomas of Ocular Adnexa are Associated with Unique Morphometric Phenotypes. Curr Eye Res 2020; 45:1583-1589. [PMID: 32339039 DOI: 10.1080/02713683.2020.1762228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE Extranodal marginal zone B-cell lymphoma (EMZL) of mucosa-associated lymphoid tissue (MALT) that affects the ocular adnexa, also known as ocular adnexal MALT lymphomas (OAML), are low-grade lymphomas that mostly affect elderly individuals. This study was conducted to explore the genetic and microbial drivers of OMAL, and unique morphometric phenotypes associated with these mutations and infections. MATERIALS AND METHODS In this study, we performed targeted deep sequencing of 8 OAML cases to identify its potential genetic and microbial drivers. We additionally performed computational digital image analysis of cases to determine if morphologic features corresponded to genetic mutations and disease biology. RESULTS We identified TBL1XR1 as recurrently mutated in OAML (4/8), and mutations in several other oncogenes, tumor suppressors, transcription regulators, and chromatin remodeling genes. Morphologically, OAML cases with mutations in TBL1XR1 showed lymphoma cells with significantly lower circularity and solidity by computational digital image analysis (p-value <0.0001). Additionally, cases of OAML with mutations in TBL1XR1 showed equivalent or increased vascular density compared to cases without mutations in TBL1XR1. Finally, we did not find any infectious microbial organisms associated with OAML. CONCLUSIONS Our study showed recurrent mutations in TBL1XR1 are associated with unique morphometric phenotypes in OMAL cases. Additionally, mutations in genes associated with the methylation status of histone 3, nuclear factor (NF)-κB pathway, and NOTCH pathway were enriched in OMAL cases. Our findings have biologic and clinical implications as mutations in TBL1XR1 and other genes have the potential to be used as markers for the diagnosis of OAML, and also demonstrate a specific biologic phenotypic manifestation of TBL1XR1 mutations.
Collapse
Affiliation(s)
- Diwash Jangam
- Department of Pathology, Stanford University , Stanford, CA, USA
| | - Kaushik Sridhar
- Department of Pathology, University of California , San Francisco, CA, USA
| | - Alexandra Butzmann
- Department of Pathology, Stanford University , Stanford, CA, USA.,Department of Pathology, University of California , San Francisco, CA, USA
| | | | - Edward D Plowey
- Department of Pathology, Stanford University , Stanford, CA, USA
| | - Robert S Ohgami
- Department of Pathology, Stanford University , Stanford, CA, USA.,Department of Pathology, University of California , San Francisco, CA, USA
| |
Collapse
|
10
|
Johansson P, Klein-Hitpass L, Budeus B, Kuhn M, Lauber C, Seifert M, Roeder I, Pförtner R, Stuschke M, Dührsen U, Eckstein A, Dürig J, Küppers R. Identifying Genetic Lesions in Ocular Adnexal Extranodal Marginal Zone Lymphomas of the MALT Subtype by Whole Genome, Whole Exome and Targeted Sequencing. Cancers (Basel) 2020; 12:cancers12040986. [PMID: 32316399 PMCID: PMC7225979 DOI: 10.3390/cancers12040986] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022] Open
Abstract
The pathogenesis of ocular adnexal marginal zone lymphomas of mucosa-associated lymphatic tissue-type (OAML) is not fully understood. We performed whole genome sequencing (WGS) and/or whole exome sequencing (WES) for 13 cases of OAML and sequenced 38 genes selected from this analysis in a large cohort of 82 OAML. Besides confirmation of frequent mutations in the genes transducin beta like 1 X-linked receptor 1 (TBL1XR1) and cAMP response element binding protein (CREBBP), we newly identifed JAK3 as a frequently mutated gene in OAML (11% of cases). In our retrospective cohort, JAK3 mutant cases had a shorter progression-free survival compared with unmutated cases. Other newly identified genes recurrently mutated in 5-10% of cases included members of the collagen family (collagen type XII alpha 1/2 (COL12A1, COL1A2)) and DOCK8. Evaluation of the WGS data of six OAML did not reveal translocations or a current infection of the lymphoma cells by viruses. Evaluation of the WGS data for copy number aberrations confirmed frequent loss of TNFAIP3, and revealed recurrent gains of the NOTCH target HES4, and of members of the CEBP transcription factor family. Overall, we identified several novel genes recurrently affected by point mutations or copy number alterations, but our study also indicated that the landscape of frequently (>10% of cases) mutated protein-coding genes in OAML is now largely known.
Collapse
Affiliation(s)
- Patricia Johansson
- Department of Hematology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (U.D.); (J.D.)
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (L.K.-H.); (B.B.); (R.K.)
- Correspondence: ; Tel.: +49-201-723-85845
| | - Ludger Klein-Hitpass
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (L.K.-H.); (B.B.); (R.K.)
| | - Bettina Budeus
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (L.K.-H.); (B.B.); (R.K.)
| | - Matthias Kuhn
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany; (M.K.); (C.L.); (M.S.); (I.R.)
| | - Chris Lauber
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany; (M.K.); (C.L.); (M.S.); (I.R.)
| | - Michael Seifert
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany; (M.K.); (C.L.); (M.S.); (I.R.)
| | - Ingo Roeder
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany; (M.K.); (C.L.); (M.S.); (I.R.)
| | - Roman Pförtner
- Department of Oral and Cranio-Maxillofacial Surgery, Kliniken Essen-Mitte, Evang. Huyssens-Stiftung/Knappschaft GmbH, University Hospital of Essen, 45136 Essen, Germany;
| | - Martin Stuschke
- Department of Radiotherapy, University Hospital Essen, 45147 Essen, Germany;
| | - Ulrich Dührsen
- Department of Hematology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (U.D.); (J.D.)
| | - Anja Eckstein
- Department of Ophthalmology, Molecular Ophthalmology Group, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Jan Dürig
- Department of Hematology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (U.D.); (J.D.)
- German Cancer Consortium (DKTK), 45147 Essen, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (L.K.-H.); (B.B.); (R.K.)
- German Cancer Consortium (DKTK), 45147 Essen, Germany
| |
Collapse
|
11
|
de Groen RAL, Schrader AMR, Kersten MJ, Pals ST, Vermaat JSP. MYD88 in the driver's seat of B-cell lymphomagenesis: from molecular mechanisms to clinical implications. Haematologica 2019; 104:2337-2348. [PMID: 31699794 PMCID: PMC6959184 DOI: 10.3324/haematol.2019.227272] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022] Open
Abstract
More than 50 subtypes of B-cell non-Hodgkin lymphoma (B-NHL) are recognized in the most recent World Health Organization classification of 2016. The current treatment paradigm, however, is largely based on 'one-size-fits-all' immune-chemotherapy. Unfortunately, this therapeutic strategy is inadequate for a significant number of patients. As such, there is an indisputable need for novel, preferably targeted, therapies based on a biologically driven classification and risk stratification. Sequencing studies identified mutations in the MYD88 gene as an important oncogenic driver in B-cell lymphomas. MYD88 mutations constitutively activate NF-κB and its associated signaling pathways, thereby promoting B-cell proliferation and survival. High frequencies of the hotspot MYD88(L265P) mutation are observed in extranodal diffuse large B-cell lymphoma and Waldenström macroglobulinemia, thereby demonstrating this mutation's potential as a disease marker. In addition, the presence of mutant MYD88 predicts survival outcome in B-NHL subtypes and it provides a therapeutic target. Early clinical trials targeting MYD88 have shown encouraging results in relapsed/refractory B-NHL. Patients with these disorders can benefit from analysis for the MYD88 hotspot mutation in liquid biopsies, as a minimally invasive method to demonstrate treatment response or resistance. Given these clear clinical implications and the crucial role of MYD88 in lymphomagenesis, we expect that analysis of this gene will increasingly be used in routine clinical practice, not only as a diagnostic classifier, but also as a prognostic and therapeutic biomarker directing precision medicine. This review focuses on the pivotal mechanistic role of mutated MYD88 and its clinical implications in B-NHL.
Collapse
Affiliation(s)
| | | | - Marie José Kersten
- Department of Hematology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam.,Lymphoma and Myeloma Center Amsterdam-LYMMCARE, Amsterdam.,Cancer Center Amsterdam, Amsterdam
| | - Steven T Pals
- Department of Hematology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam.,Cancer Center Amsterdam, Amsterdam.,Department of Pathology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | | |
Collapse
|
12
|
Behdad A, Zhou XY, Gao J, Raparia K, Dittman D, Green SJ, Qi C, Betz B, Bryar P, Chen Q, Chen YH. High Frequency of MYD88 L265P Mutation in Primary Ocular Adnexal Marginal Zone Lymphoma and Its Clinicopathologic Correlation: A Study From a Single Institution. Arch Pathol Lab Med 2018; 143:483-493. [PMID: 30444439 DOI: 10.5858/arpa.2018-0092-oa] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT.— The pathogenesis of primary ocular adnexal marginal zone lymphoma (POAMZL) remains unclear. The reported associations with Chlamydia psittaci infection and MYD88 mutations are highly variable. OBJECTIVE.— To examine MYD88 L265P mutation in ocular marginal zone lymphomas and correlate with clinicopathologic features and Chlamydia infection. DESIGN.— Presence of MYD88 L265P mutation and Chlamydia infection in lymphoma was analyzed by using sensitive polymerase chain reaction (PCR) methods. RESULTS.— The MYD88 L265P mutation was identified in 8 of 22 POAMZLs (36%), including 2 of 3 cases in which PCR failed to detect clonal IGH gene rearrangement; none of the 4 secondary marginal zone lymphomas were positive. Test results for Chlamydia were negative in all cases. Patients with and without the MYD88 mutation had similar clinicopathologic features. CONCLUSIONS.— The MYD88 mutational analysis provides important information in diagnostic workup of POAMZL. The frequent MYD88 mutation suggests a critical role of this aberration in the pathogenesis of POAMZL and may serve as a therapeutic target for patients with progressive disease.
Collapse
Affiliation(s)
- Amir Behdad
- From the Departments of Pathology (Drs Behdad, Gao, and Raparia; Mr Dittman; Drs Qi, Q Chen, and Y-H Chen) and Ophthalmology (Dr Bryar), Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Wayne State University School of Medicine, Detroit, Michigan (Dr Zhou); Research Resources Center, University of Illinois at Chicago, Chicago (Dr Green); Department of Pathology, University of Michigan, Ann Arbor (Dr Betz). Dr Zhou is currently at the Department of Ophthalmology, Bascom-Palmer Eye Institute, Miami, Florida. Dr Raparia is currently at the Department of Pathology, Kaiser Permanente, Santa Clara, California
| | - Xiao Yi Zhou
- From the Departments of Pathology (Drs Behdad, Gao, and Raparia; Mr Dittman; Drs Qi, Q Chen, and Y-H Chen) and Ophthalmology (Dr Bryar), Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Wayne State University School of Medicine, Detroit, Michigan (Dr Zhou); Research Resources Center, University of Illinois at Chicago, Chicago (Dr Green); Department of Pathology, University of Michigan, Ann Arbor (Dr Betz). Dr Zhou is currently at the Department of Ophthalmology, Bascom-Palmer Eye Institute, Miami, Florida. Dr Raparia is currently at the Department of Pathology, Kaiser Permanente, Santa Clara, California
| | - Juehua Gao
- From the Departments of Pathology (Drs Behdad, Gao, and Raparia; Mr Dittman; Drs Qi, Q Chen, and Y-H Chen) and Ophthalmology (Dr Bryar), Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Wayne State University School of Medicine, Detroit, Michigan (Dr Zhou); Research Resources Center, University of Illinois at Chicago, Chicago (Dr Green); Department of Pathology, University of Michigan, Ann Arbor (Dr Betz). Dr Zhou is currently at the Department of Ophthalmology, Bascom-Palmer Eye Institute, Miami, Florida. Dr Raparia is currently at the Department of Pathology, Kaiser Permanente, Santa Clara, California
| | - Kirtee Raparia
- From the Departments of Pathology (Drs Behdad, Gao, and Raparia; Mr Dittman; Drs Qi, Q Chen, and Y-H Chen) and Ophthalmology (Dr Bryar), Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Wayne State University School of Medicine, Detroit, Michigan (Dr Zhou); Research Resources Center, University of Illinois at Chicago, Chicago (Dr Green); Department of Pathology, University of Michigan, Ann Arbor (Dr Betz). Dr Zhou is currently at the Department of Ophthalmology, Bascom-Palmer Eye Institute, Miami, Florida. Dr Raparia is currently at the Department of Pathology, Kaiser Permanente, Santa Clara, California
| | - David Dittman
- From the Departments of Pathology (Drs Behdad, Gao, and Raparia; Mr Dittman; Drs Qi, Q Chen, and Y-H Chen) and Ophthalmology (Dr Bryar), Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Wayne State University School of Medicine, Detroit, Michigan (Dr Zhou); Research Resources Center, University of Illinois at Chicago, Chicago (Dr Green); Department of Pathology, University of Michigan, Ann Arbor (Dr Betz). Dr Zhou is currently at the Department of Ophthalmology, Bascom-Palmer Eye Institute, Miami, Florida. Dr Raparia is currently at the Department of Pathology, Kaiser Permanente, Santa Clara, California
| | - Stefan J Green
- From the Departments of Pathology (Drs Behdad, Gao, and Raparia; Mr Dittman; Drs Qi, Q Chen, and Y-H Chen) and Ophthalmology (Dr Bryar), Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Wayne State University School of Medicine, Detroit, Michigan (Dr Zhou); Research Resources Center, University of Illinois at Chicago, Chicago (Dr Green); Department of Pathology, University of Michigan, Ann Arbor (Dr Betz). Dr Zhou is currently at the Department of Ophthalmology, Bascom-Palmer Eye Institute, Miami, Florida. Dr Raparia is currently at the Department of Pathology, Kaiser Permanente, Santa Clara, California
| | - Chao Qi
- From the Departments of Pathology (Drs Behdad, Gao, and Raparia; Mr Dittman; Drs Qi, Q Chen, and Y-H Chen) and Ophthalmology (Dr Bryar), Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Wayne State University School of Medicine, Detroit, Michigan (Dr Zhou); Research Resources Center, University of Illinois at Chicago, Chicago (Dr Green); Department of Pathology, University of Michigan, Ann Arbor (Dr Betz). Dr Zhou is currently at the Department of Ophthalmology, Bascom-Palmer Eye Institute, Miami, Florida. Dr Raparia is currently at the Department of Pathology, Kaiser Permanente, Santa Clara, California
| | - Bryan Betz
- From the Departments of Pathology (Drs Behdad, Gao, and Raparia; Mr Dittman; Drs Qi, Q Chen, and Y-H Chen) and Ophthalmology (Dr Bryar), Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Wayne State University School of Medicine, Detroit, Michigan (Dr Zhou); Research Resources Center, University of Illinois at Chicago, Chicago (Dr Green); Department of Pathology, University of Michigan, Ann Arbor (Dr Betz). Dr Zhou is currently at the Department of Ophthalmology, Bascom-Palmer Eye Institute, Miami, Florida. Dr Raparia is currently at the Department of Pathology, Kaiser Permanente, Santa Clara, California
| | - Paul Bryar
- From the Departments of Pathology (Drs Behdad, Gao, and Raparia; Mr Dittman; Drs Qi, Q Chen, and Y-H Chen) and Ophthalmology (Dr Bryar), Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Wayne State University School of Medicine, Detroit, Michigan (Dr Zhou); Research Resources Center, University of Illinois at Chicago, Chicago (Dr Green); Department of Pathology, University of Michigan, Ann Arbor (Dr Betz). Dr Zhou is currently at the Department of Ophthalmology, Bascom-Palmer Eye Institute, Miami, Florida. Dr Raparia is currently at the Department of Pathology, Kaiser Permanente, Santa Clara, California
| | - Qing Chen
- From the Departments of Pathology (Drs Behdad, Gao, and Raparia; Mr Dittman; Drs Qi, Q Chen, and Y-H Chen) and Ophthalmology (Dr Bryar), Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Wayne State University School of Medicine, Detroit, Michigan (Dr Zhou); Research Resources Center, University of Illinois at Chicago, Chicago (Dr Green); Department of Pathology, University of Michigan, Ann Arbor (Dr Betz). Dr Zhou is currently at the Department of Ophthalmology, Bascom-Palmer Eye Institute, Miami, Florida. Dr Raparia is currently at the Department of Pathology, Kaiser Permanente, Santa Clara, California
| | - Yi-Hua Chen
- From the Departments of Pathology (Drs Behdad, Gao, and Raparia; Mr Dittman; Drs Qi, Q Chen, and Y-H Chen) and Ophthalmology (Dr Bryar), Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Wayne State University School of Medicine, Detroit, Michigan (Dr Zhou); Research Resources Center, University of Illinois at Chicago, Chicago (Dr Green); Department of Pathology, University of Michigan, Ann Arbor (Dr Betz). Dr Zhou is currently at the Department of Ophthalmology, Bascom-Palmer Eye Institute, Miami, Florida. Dr Raparia is currently at the Department of Pathology, Kaiser Permanente, Santa Clara, California
| |
Collapse
|
13
|
Recurrent mutations in NF-κB pathway components, KMT2D, and NOTCH1/2 in ocular adnexal MALT-type marginal zone lymphomas. Oncotarget 2018; 7:62627-62639. [PMID: 27566587 PMCID: PMC5308752 DOI: 10.18632/oncotarget.11548] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/10/2016] [Indexed: 11/25/2022] Open
Abstract
The pathogenesis of ocular adnexal marginal zone lymphomas of mucosa-associated lymphatic tissue-type (OAML) is still poorly understood. We analyzed 63 cases of such lymphomas for non-synonymous mutations in 24 candidate genes by amplicon sequencing. We validated frequent mutations in the NF-κB regulators MYD88, TNFAIP3 and TNIP1 in OAML, but also identified recurrent mutations in several additional components of the NF-κB pathway, including BCL10 and NFKBIA. Overall, 60% of cases had mutations in at least one component of NF-κB signaling, pointing to a central role of its genetic deregulation in OAML pathogenesis. Mutations in NOTCH1 and NOTCH2 were each found in 8% of cases, indicating a pathogenetic function of these factors in OAML. KMT2D was identified as the first epigenetic regulator with mutations in OAML, being mutated in 22% of cases. Mutations in MYD88 were associated with an inferior disease-free survival. Overall, we identified here highly recurrent genetic lesions in components of the NF-κB pathway, of NOTCH1 and NOTCH2 as well as KMT2D in OAML and thereby provide major novel insights into the pathogenesis of this B cell malignancy.
Collapse
|
14
|
Abstract
Conjunctival biopsies constitute a fairly large number of cases in a typical busy ophthalmic pathology practice. They range from a single biopsy through multiple mapping biopsies to assess the extent of a particular pathological process. Like most anatomical sites, the conjunctiva is subject to a very wide range of pathological processes. This article will cover key, commonly encountered nonneoplastic and neoplastic entities. Where relevant, sections will include recommendations on how best to submit specimens to the ophthalmic pathology laboratory and the relevance of up-to-date molecular techniques.
Collapse
|
15
|
Guo X, Koff JL, Moffitt AB, Cinar M, Ramachandiran S, Chen Z, Switchenko JM, Mosunjac M, Neill SG, Mann KP, Bagirov M, Du Y, Natkunam Y, Khoury HJ, Rossi MR, Harris W, Flowers CR, Lossos IS, Boise LH, Dave SS, Kowalski J, Bernal-Mizrachi L. Molecular impact of selective NFKB1 and NFKB2 signaling on DLBCL phenotype. Oncogene 2017; 36:4224-4232. [PMID: 28368397 DOI: 10.1038/onc.2017.90] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 02/15/2017] [Accepted: 02/26/2017] [Indexed: 12/15/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) has been categorized into two molecular subtypes that have prognostic significance, namely germinal center B-cell like (GCB) and activated B-cell like (ABC). Although ABC-DLBCL has been associated with NF-κB activation, the relationships between activation of specific NF-κB signals and DLBCL phenotype remain unclear. Application of novel gene expression classifiers identified two new DLBCL categories characterized by selective p100 (NF-κB2) and p105 (NF-κB1) signaling. Interestingly, our molecular studies showed that p105 signaling is predominantly associated with GCB subtype and histone mutations. Conversely, most tumors with p100 signaling displayed ABC phenotype and harbored ABC-associated mutations in genes such as MYD88 and PIM1. In vitro, MYD88 L265P mutation promoted p100 signaling through TAK1/IKKα and GSK3/Fbxw7a pathways, suggesting a novel role for this protein as an upstream regulator of p100. p100 signaling was engaged during activation of normal B cells, suggesting p100's role in ABC phenotype development. Additionally, silencing p100 in ABC-DLBCL cells resulted in a GCB-like phenotype, with suppression of Blimp, IRF4 and XBP1 and upregulation of BCL6, whereas introduction of p52 or p100 into GC cells resulted in differentiation toward an ABC-like phenotype. Together, these findings identify specific roles for p100 and p105 signaling in defining DLBCL molecular subtypes and posit MYD88/p100 signaling as a regulator for B-cell activation.
Collapse
Affiliation(s)
- X Guo
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - J L Koff
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - A B Moffitt
- Duke Institute for Genome Sciences and Policy, Department of Medicine, Duke University, Durham, NC, USA
| | - M Cinar
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - S Ramachandiran
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Z Chen
- Department of Biostatistics and Bioinformatics, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - J M Switchenko
- Department of Biostatistics and Bioinformatics, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - M Mosunjac
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - S G Neill
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - K P Mann
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - M Bagirov
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Y Du
- Department of Pharmacology, Emory University, Atlanta, GA, USA
| | - Y Natkunam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - H J Khoury
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - M R Rossi
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - W Harris
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - C R Flowers
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - I S Lossos
- Division of Hematology Oncology and Molecular and Cellular Pharmacology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - L H Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - S S Dave
- Duke Institute for Genome Sciences and Policy, Department of Medicine, Duke University, Durham, NC, USA
| | - J Kowalski
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA.,Department of Biostatistics and Bioinformatics, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - L Bernal-Mizrachi
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| |
Collapse
|
16
|
Du MQ. MALT lymphoma: Genetic abnormalities, immunological stimulation and molecular mechanism. Best Pract Res Clin Haematol 2017; 30:13-23. [DOI: 10.1016/j.beha.2016.09.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/17/2016] [Indexed: 02/06/2023]
|
17
|
Verdijk RM. Lymphoproliferative Tumors of the Ocular Adnexa. Asia Pac J Ophthalmol (Phila) 2017; 6:132-142. [PMID: 28399341 DOI: 10.22608/apo.2016209] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/17/2017] [Indexed: 11/08/2022] Open
Abstract
The ocular adnexa include the eyelids, conjunctiva, lacrimal apparatus, and orbital soft tissue. One percent of all lymphomas and approximately 8% of all extranodal lymphomas arise in the ocular adnexa and their incidence is increasing. Reactive lymphoid hyperplasia comprises 16% of all lymphoproliferative tumors of the ocular adnexa. The relative frequencies of ocular adnexal lymphoma presentation are in the orbit, 37%; conjunctiva, 29%; lacrimal apparatus, 20%; and eyelid, 14%. The most frequent primary lymphoma types of the ocular adnexa are extranodal marginal zone lymphoma, 62%; follicular lymphoma, 17%; and diffuse large B-cell lymphoma, 10%. The eyelids show the highest proportion of secondary lymphoma involvement, 49% of all eyelid lymphoproliferative lesions, compared with 24% in all ocular adnexa. The specific aspects of the site, histologic, immunohistochemical, cytogenetic, and molecular findings of the most relevant lymphoma types occurring in the various parts of the ocular adnexa will be discussed in relation to clinical parameters and relevance for therapy choice. Furthermore, the implications of the updated version of the World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues in relation to ocular adnexal lymphoma are reviewed.
Collapse
Affiliation(s)
- Robert M Verdijk
- Department of Pathology, section Ophthalmic Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam; and Rotterdam Eye Hospital, Rotterdam, Netherlands
| |
Collapse
|
18
|
Richards H, Ramsden C, Naidoo R, Yvon C, Jacob E, Mohamedbhai S. Ocular adnexal lymphomas: a review. EXPERT REVIEW OF OPHTHALMOLOGY 2017. [DOI: 10.1080/17469899.2017.1280394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Huw Richards
- North Middlesex University Hospital NHS Trust, London, UK
| | - Conor Ramsden
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | | | - Camille Yvon
- Institute of Ophthalmology, University College London, London, UK
- Frimley Park Hospital, Portsmouth Road, Frimley, Surrey, UK
| | | | - Sajir Mohamedbhai
- North Middlesex University Hospital NHS Trust, London, UK
- University College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
19
|
Long-term course of patients with primary ocular adnexal MALT lymphoma: a large single-institution cohort study. Blood 2017; 129:324-332. [DOI: 10.1182/blood-2016-05-714584] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/20/2016] [Indexed: 12/19/2022] Open
Abstract
Key Points
POAML (specifically Ann Arbor stage I disease) has an excellent clinical outcome, with only a few patients succumbing to lymphoma. POAML patients face a continuous risk of distant relapse, including in the central nervous system, and transformation to aggressive lymphoma.
Collapse
|
20
|
Quézada Bautista A, Lara Bejarano J, García García J, Gaxiola Sosa J, López Azcarraga A, Bautista Hernández M. Results of radiotherapy in extranodal MALT lymphoma. A case report and literature review. REVISTA MÉDICA DEL HOSPITAL GENERAL DE MÉXICO 2016. [DOI: 10.1016/j.hgmx.2016.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
21
|
Du MQ. MALT lymphoma: A paradigm of NF-κB dysregulation. Semin Cancer Biol 2016; 39:49-60. [PMID: 27452667 DOI: 10.1016/j.semcancer.2016.07.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/12/2016] [Accepted: 07/20/2016] [Indexed: 01/29/2023]
Abstract
Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma) invariably arises from a background of chronic microbial infection and/or autoimmune disorder at diverse mucosal sites. The prolonged chronic infection and/or autoimmunity generate active immune and inflammatory responses that provide a setting for evolution and development of autoreactive B-cells, their expansion and eventual malignant transformation following acquisition of genetic changes. The immune responses also play a critical role in sustaining the growth and survival of the transformed cells as shown by complete regression of a high proportion of MALT lymphoma of the stomach, ocular adnexa and skin following anti-microbial treatment. B-cell receptor engagement by auto-antigen as well as T-cell help including both cognate interaction and bystander help via soluble ligands such as CD40L and BAFF are thought to underpin the immunological drive in the lymphoma development through activation of the canonical and non-canonical NF-κB pathway respectively. Similarly, the three MALT lymphoma associated chromosome translocations, namely t(1;14)(p22;q32)/BCL10-IGH, t(14;18)(q32;q21)/IGH-MALT1,and t(11;18)(q21;q21)/BIRC3 (API2)-MALT1, are also capable of activating both canonical and non-canonical NF-κB pathways. Furthermore, TNFAIP3 (A20) inactivation by deletion and/or mutation abolishes the auto-negative feedback to several signalling including BCR and TLR, which connect to the canonical NF-κB activation pathway. Thus, there is a considerable overlap in the molecular pathways dysregulated by immunological drive and somatic genetic changes, strongly arguing for their oncogenic cooperation in the development of MALT lymphoma.
Collapse
Affiliation(s)
- Ming-Qing Du
- Division of Molecular Histopathology, Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
22
|
Comprehensive genomic profiling of orbital and ocular adnexal lymphomas identifies frequent alterations in MYD88 and chromatin modifiers: new routes to targeted therapies. Mod Pathol 2016; 29:685-97. [PMID: 27102345 PMCID: PMC4925176 DOI: 10.1038/modpathol.2016.79] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/21/2016] [Accepted: 03/24/2016] [Indexed: 12/11/2022]
Abstract
Non-Hodgkin lymphoma of the orbit and ocular adnexa is the most common primary orbital malignancy. Treatments for low- (extra-nodal marginal zone and follicular lymphomas) and high-grade (diffuse large B-cell lymphoma) are associated with local and vision-threatening toxicities. High-grade lymphomas relapse frequently and exhibit poor survival rates. Despite advances in genomic profiling and precision medicine, orbital and ocular adnexal lymphomas remain poorly characterized molecularly. We performed targeted next-generation sequencing (NGS) profiling of 38 formalin-fixed, paraffin-embedded orbital and ocular adnexal lymphomas obtained from a single-center using a panel targeting near-term, clinically relevant genes. Potentially actionable mutations and copy number alterations were prioritized based on gain- and loss-of-function analyses, and catalogued, approved, and investigational therapies. Of 36 informative samples, including marginal zone lymphomas (n=20), follicular lymphomas (n=9), and diffuse large B-cell lymphomas (n=7), 53% harbored a prioritized alteration (median=1, range 0-5/sample). MYD88 was the most frequently altered gene in our cohort, with potentially clinically relevant hotspot gain-of-function mutations identified in 71% of diffuse large B-cell lymphomas and 25% of marginal zone lymphomas. Prioritized alterations in epigenetic modulators were common and included gain-of-function EZH2 and loss-of-function ARID1A mutations (14% of diffuse large B-cell lymphomas and 22% of follicular lymphomas contained alterations in each of these two genes). Single prioritized alterations were also identified in the histone methyltransferases KMT2B (follicular lymphoma) and KMT3B (diffuse large B-cell lymphoma). Loss-of-function mutations and copy number alterations in the tumor suppressors TP53 (diffuse large B-cell and follicular lymphoma), CDKN2A (diffuse large B-cell and marginal zone lymphoma), PTEN (diffuse large B-cell lymphoma), ATM (diffuse large B-cell lymphoma), and NF1 (diffuse large B-cell lymphoma), and gain-of-function mutations in the oncogenes HRAS (follicular lymphoma) and NRAS (diffuse large B-cell lymphoma) were also observed. Together, our study demonstrates that NGS can be used to profile routine formalin-fixed, paraffin-embedded orbital and ocular adnexal lymphomas for identification of somatic-driving alterations and nomination of potential therapeutic strategies.
Collapse
|
23
|
Feng Y, Feng YM, Zhang ZH, Wu SX, Zhong DB, Liu CJ. Prevalence and genotype of Chlamydia psittaci in faecal samples of birds from zoos and pet markets in Kunming, Yunnan, China. J Zhejiang Univ Sci B 2016. [DOI: 10.1631/jzus.b1500091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Tahmasebi FC, Roy S, Kolitz JE, Sen F, Laser J, Zhang X. Primary extranodal marginal zone lymphoma of the endometrium: report of four cases and review of literature. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:3036-3044. [PMID: 26045815 PMCID: PMC4440124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/22/2015] [Indexed: 06/04/2023]
Abstract
Primary extranodal marginal zone lymphoma of the endometrium (PEMZL-EM) is exceedingly rare and has not been well characterized. Herein, we study the clinicopathological, cytogenetic and molecular features of four cases, the largest case series reported to date. The median age of the four patients was 59 years. Clinical presentations included abnormal vaginal bleeding (three cases) and incidental finding (one case). There were no constitutional symptoms in any of the cases. None of the patients had evidence of lymphoma in any other anatomic sites including bone marrow. Histologically, the lymphoma was characterized by a nodular proliferation of small lymphocytes admixed with occasional immunoblasts and variable number of plasma cells, which was restricted to the endometrium in most cases. Lymphoepithelial lesions were not identified in any of the cases. All cases displayed the immunophenotype of marginal zone B-cell lymphoma. Cytogenetics and FISH studies revealed absence of characteristic chromosomal translocations. Molecular analysis demonstrated immunoglobulin heavy chain gene rearrangement in all cases, two of which were found to use IgVH3-30 gene by DNA sequencing. Three of the four patients were still alive after a median follow-up of three years. PEMZL-EM predominantly affects postmenopausal women and is characterized by distinct histological patterns, lack of specific genomic alterations, and indolent clinical course.
Collapse
Affiliation(s)
- Farnaz C Tahmasebi
- Department of Pathology and Laboratory Medicine, North Shore-Long Island Jewish Health System, Hofstra North Shore-LIJ School of MedicineLake Success, NY, USA
| | - Samar Roy
- Department of Pathology and Laboratory Medicine, North Shore-Long Island Jewish Health System, Hofstra North Shore-LIJ School of MedicineLake Success, NY, USA
| | - Jonathan E Kolitz
- Department of Medicine, North Shore-Long Island Jewish Health System, Hofstra North Shore-LIJ School of MedicineLake Success, NY, USA
| | - Filiz Sen
- Department of Pathology and Laboratory Medicine, North Shore-Long Island Jewish Health System, Hofstra North Shore-LIJ School of MedicineLake Success, NY, USA
| | - Jordan Laser
- Department of Pathology and Laboratory Medicine, North Shore-Long Island Jewish Health System, Hofstra North Shore-LIJ School of MedicineLake Success, NY, USA
| | - Xinmin Zhang
- Department of Pathology and Laboratory Medicine, North Shore-Long Island Jewish Health System, Hofstra North Shore-LIJ School of MedicineLake Success, NY, USA
| |
Collapse
|
25
|
Chlamydophila psittaci-negative ocular adnexal marginal zone lymphomas express self polyreactive B-cell receptors. Leukemia 2015; 29:1587-99. [DOI: 10.1038/leu.2015.39] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/30/2015] [Accepted: 02/04/2015] [Indexed: 12/27/2022]
|
26
|
|
27
|
New developments in the pathology of malignant lymphoma. A review of the literature published from August 2013 to December 2013. J Hematop 2014. [DOI: 10.1007/s12308-014-0199-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|