1
|
Sokei J, Kanefsky J, Sykes SM. Reprogramming of Fatty Acid Metabolism in Acute Leukemia. J Cell Physiol 2025; 240:e70000. [PMID: 39835485 DOI: 10.1002/jcp.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Fatty acids are essential biomolecules that support several cellular processes, such as membrane structures, energy storage and production, as well as signal transduction. Accordingly, changes in fatty acid metabolism can have a significant impact on cell behavior, such as growth, survival, proliferation, differentiation, and motility. Therefore, it is not surprising that many aspects of fatty acid metabolism are frequently dysregulated in human cancer, including in highly aggressive blood cancers such as acute leukemia. The aims of this review are to summarize the aspects of fatty acid metabolism that are specifically coopted in acute leukemia as well as current preclinical strategies for targeting fatty acid metabolism in these cancers.
Collapse
Affiliation(s)
- Judith Sokei
- Division of Hematology & Oncology, Department of Pediatrics, School of Medicine, Washington University in Saint Louis, St. Louis, Missouri, USA
| | - Joice Kanefsky
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University Health System, Philadelphia, Pennsylvania, USA
| | - Stephen M Sykes
- Division of Hematology & Oncology, Department of Pediatrics, School of Medicine, Washington University in Saint Louis, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Filaferro L, Zaccarelli F, Niccolini GF, Colizza A, Zoccali F, Grasso M, Fusconi M. Are statins onco- suppressive agents for every type of tumor? A systematic review of literature. Expert Rev Anticancer Ther 2024; 24:435-445. [PMID: 38609343 DOI: 10.1080/14737140.2024.2343338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 04/11/2024] [Indexed: 04/14/2024]
Abstract
INTRODUCTION Statins, in the role of anti-cancer agents, have been used in many types of cancers with results in some cases promising while, in others, disappointing. AREAS COVERED The purpose of this review is to identify and highlight data from literature on the successes or failure of using statins as anti-cancer agents. We asked ourselves the following two questions:1. Could statins, which are taken mostly to reduce cardiovascular risk, guarantee a lower incidence or a better cancer disease prognosis, concerning local recurrence, metastasis or mortality?2. Does statins intake (before and/or after cancer diagnosis) improve the prognosis or increase the chemotherapeutic action when combined with other anticancer therapies? For the first question twenty-seven manuscripts have been selected, for the second one, twenty-eight. EXPERT OPINION There are data which correlate statins with a possible tumor suppressive action among the following cancers: breast, lung, prostate and head and neck. Lastly, for gastric cancer and colorectal there is no evidence of a correlation. The onco-suppressive efficacy of statins is mainly related to the histopathological and/or molecular characteristics of the tumor cells, which have different characteristics.
Collapse
Affiliation(s)
- Luca Filaferro
- Department of Sense Organs, Sapienza University, Rome, Italy
| | | | | | - Andrea Colizza
- Department of Sense Organs, Sapienza University, Rome, Italy
| | | | | | - Massimo Fusconi
- Department of Sense Organs, Sapienza University, Rome, Italy
| |
Collapse
|
3
|
Zhang L, Deeb G, Deeb KK, Vale C, Peker Barclift D, Papadantonakis N. Measurable (Minimal) Residual Disease in Myelodysplastic Neoplasms (MDS): Current State and Perspectives. Cancers (Basel) 2024; 16:1503. [PMID: 38672585 PMCID: PMC11048433 DOI: 10.3390/cancers16081503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Myelodysplastic Neoplasms (MDS) have been traditionally studied through the assessment of blood counts, cytogenetics, and morphology. In recent years, the introduction of molecular assays has improved our ability to diagnose MDS. The role of Measurable (minimal) Residual Disease (MRD) in MDS is evolving, and molecular and flow cytometry techniques have been used in several studies. In this review, we will highlight the evolving concept of MRD in MDS, outline the various techniques utilized, and provide an overview of the studies reporting MRD and the correlation with outcomes.
Collapse
Affiliation(s)
- Linsheng Zhang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - George Deeb
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kristin K. Deeb
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Colin Vale
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Deniz Peker Barclift
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nikolaos Papadantonakis
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Al Barashdi MAS, Ali A, McMullin MF, Mills K. CD45 inhibition in myeloid leukaemia cells sensitizes cellular responsiveness to chemotherapy. Ann Hematol 2024; 103:73-88. [PMID: 37917373 PMCID: PMC10761371 DOI: 10.1007/s00277-023-05520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
Myeloid malignancies are a group of blood disorders characterized by the proliferation of one or more haematopoietic myeloid cell lineages, predominantly in the bone marrow, and are often caused by aberrant protein tyrosine kinase activity. The protein tyrosine phosphatase CD45 is a trans-membrane molecule expressed on all haemopoietic blood cells except that of platelets and red cells. CD45 regulates various cellular physiological processes including proliferation, apoptosis, and lymphocyte activation. However, its role in chemotherapy response is still unknown; therefore, the aim of this study was to investigate the role of CD45 in myeloid malignancies in terms of cellular growth, apoptosis, and response to chemotherapy. The expression of CD45 on myeloid leukaemia primary cells and cell lines was heterogeneous with HEL and OCI-AML3 cells showing the highest level. Inhibition of CD45 resulted in increased cellular sensitivity to cytarabine and ruxolitinib, the two main therapies for AML and MPN. Bioinformatics analysis identified genes whose expression was correlated with CD45 expression such as JAK2, ACTR2, THAP3 Serglycin, and PBX-1 genes, as well as licensed drugs (alendronate, allopurinol, and balsalazide), which could be repurposed as CD45 inhibitors which effectively increases sensitivity to cytarabine and ruxolitinib at low doses. Therefore, CD45 inhibition could be explored as a potential therapeutic partner for treatment of myeloid malignancies in combination with chemotherapy such as cytarabine especially for elderly patients and those showing chemotherapy resistance.
Collapse
Affiliation(s)
- Maryam Ahmed S Al Barashdi
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Ahlam Ali
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Mary Frances McMullin
- Haematology Department, C-Floor Tower Block, Belfast City Hospital, Belfast, Northern Ireland, UK
| | - Ken Mills
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK.
| |
Collapse
|
5
|
Xia W, Wang H, Zhou X, Wang Y, Xue L, Cao B, Song J. The role of cholesterol metabolism in tumor therapy, from bench to bed. Front Pharmacol 2023; 14:928821. [PMID: 37089950 PMCID: PMC10117684 DOI: 10.3389/fphar.2023.928821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Cholesterol and its metabolites have important biological functions. Cholesterol is able to maintain the physical properties of cell membrane, play an important role in cellular signaling, and cellular cholesterol levels reflect the dynamic balance between biosynthesis, uptake, efflux and esterification. Cholesterol metabolism participates in bile acid production and steroid hormone biosynthesis. Increasing evidence suggests a strict link between cholesterol homeostasis and tumors. Cholesterol metabolism in tumor cells is reprogrammed to differ significantly from normal cells, and disturbances of cholesterol balance also induce tumorigenesis and progression. Preclinical and clinical studies have shown that controlling cholesterol metabolism suppresses tumor growth, suggesting that targeting cholesterol metabolism may provide new possibilities for tumor therapy. In this review, we summarized the metabolic pathways of cholesterol in normal and tumor cells and reviewed the pre-clinical and clinical progression of novel tumor therapeutic strategy with the drugs targeting different stages of cholesterol metabolism from bench to bedside.
Collapse
Affiliation(s)
- Wenhao Xia
- Cancer Center of Peking University Third Hospital, Beijing, China
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hao Wang
- Cancer Center of Peking University Third Hospital, Beijing, China
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Xiaozhu Zhou
- Department of Clinical Pharmacy, School of Pharmacy, Capital Medical University, Beijing, China
| | - Yan Wang
- Cancer Center of Peking University Third Hospital, Beijing, China
- Third Hospital Institute of Medical Innovation and Research, Beijing, China
| | - Lixiang Xue
- Cancer Center of Peking University Third Hospital, Beijing, China
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
- Third Hospital Institute of Medical Innovation and Research, Beijing, China
- *Correspondence: Lixiang Xue, ; Baoshan Cao, ; Jiagui Song,
| | - Baoshan Cao
- Cancer Center of Peking University Third Hospital, Beijing, China
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, China
- *Correspondence: Lixiang Xue, ; Baoshan Cao, ; Jiagui Song,
| | - Jiagui Song
- Cancer Center of Peking University Third Hospital, Beijing, China
- Third Hospital Institute of Medical Innovation and Research, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University as the Third Responsibility Unit of Song Jiagui, Beijing, China
- *Correspondence: Lixiang Xue, ; Baoshan Cao, ; Jiagui Song,
| |
Collapse
|
6
|
Kenmogne VL, Nweke EE, Takundwa MM, Fru PN, Thimiri Govinda Raj DB. Application of Drug Repurposing-Based Precision Medicine Platform for Leukaemia Patient Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:115-126. [PMID: 36289161 DOI: 10.1007/5584_2022_744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Drug resistance in leukaemia is a major problem that needs to be addressed. Precision medicine provides an avenue to reduce drug resistance through a personalised treatment plan. It has helped to better stratify patients based on their molecular profile and therefore improved the sensitivity of patients to a given therapeutic regimen. However, therapeutic options are still limited for patients who have already been subjected to many lines of chemotherapy. The process of designing and developing new drugs requires significant resources, including money and time. Drug repurposing has been explored as an alternative to identify effective drug(s) that could be used to target leukaemia and lessen the burden of drug resistance. The drug repurposing process usually includes preclinical studies with drug screening and clinical trials before approval. Although most of the repurposed drugs that have been identified are generally safe for leukaemia treatment, they seem not to be good candidates for monotherapy but could have value in combination with other drugs, especially for patients who have exhausted therapeutic options. In this review, we highlight precision medicine in leukaemia and the role of drug repurposing. Specifically, we discuss the several screening methods via chemoinformatic, in vitro, and ex vivo that have facilitated and accelerated the drug repurposing process.
Collapse
Affiliation(s)
- Vanelle Larissa Kenmogne
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, NextGeneration Health Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Ekene Emmanuel Nweke
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mutsa M Takundwa
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, NextGeneration Health Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Pascaline N Fru
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Deepak B Thimiri Govinda Raj
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, NextGeneration Health Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa.
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa.
- Faculty of Medicine, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
7
|
Karakitsou E, Foguet C, Contreras Mostazo MG, Kurrle N, Schnütgen F, Michaelis M, Cinatl J, Marin S, Cascante M. Genome-scale integration of transcriptome and metabolome unveils squalene synthase and dihydrofolate reductase as targets against AML cells resistant to chemotherapy. Comput Struct Biotechnol J 2021; 19:4059-4066. [PMID: 34377370 PMCID: PMC8326745 DOI: 10.1016/j.csbj.2021.06.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 01/06/2023] Open
Abstract
The development of resistance to chemotherapeutic agents, such as Doxorubicin (DOX) and cytarabine (AraC), is one of the greatest challenges to the successful treatment of Acute Myeloid Leukemia (AML). Such acquisition is often underlined by a metabolic reprogramming that can provide a therapeutic opportunity, as it can lead to the emergence of vulnerabilities and dependencies to be exploited as targets against the resistant cells. In this regard, genome-scale metabolic models (GSMMs) have emerged as powerful tools to integrate multiple layers of data to build cancer-specific models and identify putative metabolic vulnerabilities. Here, we use genome-scale metabolic modelling to reconstruct a GSMM of the THP1 AML cell line and two derivative cell lines, one with acquired resistance to AraC and the second with acquired resistance to DOX. We also explore how, adding to the transcriptomic layer, the metabolomic layer enhances the selectivity of the resulting condition specific reconstructions. The resulting models enabled us to identify and experimentally validate that drug-resistant THP1 cells are sensitive to the FDA-approved antifolate methotrexate. Moreover, we discovered and validated that the resistant cell lines could be selectively targeted by inhibiting squalene synthase, providing a new and promising strategy to directly inhibit cholesterol synthesis in AML drug resistant cells.
Collapse
Affiliation(s)
- Effrosyni Karakitsou
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine of University of Barcelona, 08028 Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Carles Foguet
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine of University of Barcelona, 08028 Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Metabolomics Node at Spanish National Bioinformatics Institute (INB-ISCIII-ES-ELIXIR), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Miriam G. Contreras Mostazo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine of University of Barcelona, 08028 Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Nina Kurrle
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, 60590 Frankfurt am Main, Germany
| | - Frank Schnütgen
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, 60590 Frankfurt am Main, Germany
| | - Martin Michaelis
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Jindrich Cinatl
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Frankfurt am Main, Germany
| | - Silvia Marin
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine of University of Barcelona, 08028 Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Metabolomics Node at Spanish National Bioinformatics Institute (INB-ISCIII-ES-ELIXIR), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine of University of Barcelona, 08028 Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Metabolomics Node at Spanish National Bioinformatics Institute (INB-ISCIII-ES-ELIXIR), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
8
|
Allegra A, Imbesi C, Bitto A, Ettari R. Drug Repositioning for the Treatment of Hematologic Disease: Limits, Challenges and Future Perspectives. Curr Med Chem 2021; 28:2195-2217. [PMID: 33138750 DOI: 10.2174/0929867327999200817102154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022]
Abstract
Drug repositioning is a strategy to identify new uses for approved or investigational drugs that are used off-label outside the scope of the original medical indication. In this review, we report the most relevant studies about drug repositioning in hematology, reporting the signalling pathways and molecular targets of these drugs, and describing the biological mechanisms which are responsible for their anticancer effects. Although the majority of studies on drug repositioning in hematology concern acute myeloid leukemia and multiple myeloma, numerous studies are present in the literature on the possibility of using these drugs also in other hematological diseases, such as acute lymphoblastic leukemia, chronic myeloid leukemia, and lymphomas. Numerous anti-infectious drugs and chemical entities used for the therapy of neurological or endocrine diseases, oral antidiabetics, statins and medications used to treat high blood pressure and heart failure, bisphosphonate and natural substance such as artemisin and curcumin, have found a place in the treatment of hematological diseases. Moreover, several molecules drastically reversed the resistance of the tumor cells to the chemotherapeutic drugs both in vitro and in vivo.
Collapse
Affiliation(s)
- Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood, University of Messina, Messina, Italy
| | - Chiara Imbesi
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, Messina, Italy
| |
Collapse
|
9
|
Valli D, Gruszka AM, Alcalay M. Has Drug Repurposing Fulfilled its Promise in Acute Myeloid Leukaemia? J Clin Med 2020; 9:E1892. [PMID: 32560371 PMCID: PMC7356362 DOI: 10.3390/jcm9061892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
Drug repurposing is a method of drug discovery that consists of finding a new therapeutic context for an old drug. Compound identification arises from screening of large libraries of active compounds, through interrogating databases of cell line gene expression response upon treatment or by merging several types of information concerning disease-drug relationships. Although, there is a general consensus on the potential and advantages of this drug discovery modality, at the practical level to-date no non-anti-cancer repurposed compounds have been introduced into standard acute myeloid leukaemia (AML) management, albeit that preclinical validation yielded several candidates. The review presents the state-of-the-art drug repurposing approach in AML and poses the question of what has to be done in order to take a full advantage of it, both at the stage of screening design and later when progressing from the preclinical to the clinical phases of drug development. We argue that improvements are needed to model and read-out systems as well as to screening technologies, but also to more funding and trust in drug repurposing strategies.
Collapse
Affiliation(s)
- Debora Valli
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Via Adamello 16, 20 139 Milan, Italy; (D.V.); (M.A.)
| | - Alicja M. Gruszka
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Via Adamello 16, 20 139 Milan, Italy; (D.V.); (M.A.)
| | - Myriam Alcalay
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Via Adamello 16, 20 139 Milan, Italy; (D.V.); (M.A.)
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20 122 Milan, Italy
| |
Collapse
|
10
|
Chen F, Wu X, Niculite C, Gilca M, Petrusca D, Rogozea A, Rice S, Guo B, Griffin S, Calin GA, Boswell HS, Konig H. Classic and targeted anti-leukaemic agents interfere with the cholesterol biogenesis metagene in acute myeloid leukaemia: Therapeutic implications. J Cell Mol Med 2020; 24:7378-7392. [PMID: 32450611 PMCID: PMC7339218 DOI: 10.1111/jcmm.15339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 01/01/2023] Open
Abstract
Despite significant advances in deciphering the molecular landscape of acute myeloid leukaemia (AML), therapeutic outcomes of this haematological malignancy have only modestly improved over the past decades. Drug resistance and disease recurrence almost invariably occur, highlighting the need for a deeper understanding of these processes. While low O2 compartments, such as bone marrow (BM) niches, are well‐recognized hosts of drug‐resistant leukaemic cells, standard in vitro studies are routinely performed under supra‐physiologic (21% O2, ambient air) conditions, which limits clinical translatability. We hereby identify molecular pathways enriched in AML cells that survive acute challenges with classic or targeted therapeutic agents. Experiments took into account variations in O2 tension encountered by leukaemic cells in clinical settings. Integrated RNA and protein profiles revealed that lipid biosynthesis, and particularly the cholesterol biogenesis branch, is a particularly therapy‐induced vulnerability in AML cells under low O2 states. We also demonstrate that the impact of the cytotoxic agent cytarabine is selectively enhanced by a high‐potency statin. The cholesterol biosynthesis programme is amenable to additional translational opportunities within the expanding AML therapeutic landscape. Our findings support the further investigation of higher‐potency statin (eg rosuvastatin)–based combination therapies to enhance targeting residual AML cells that reside in low O2 environments.
Collapse
Affiliation(s)
- Fangli Chen
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Xue Wu
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Cristina Niculite
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA.,University of Medicine and Pharmacy 'Carol Davila', Bucharest, Romania
| | - Marilena Gilca
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA.,University of Medicine and Pharmacy 'Carol Davila', Bucharest, Romania
| | - Daniela Petrusca
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Adriana Rogozea
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Susan Rice
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Bin Guo
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Shawn Griffin
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - George A Calin
- Division of Cancer Medicine, Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - H Scott Boswell
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Heiko Konig
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
11
|
Wojcicki AV, Kadapakkam M, Frymoyer A, Lacayo N, Chae HD, Sakamoto KM. Repurposing Drugs for Acute Myeloid Leukemia: A Worthy Cause or a Futile Pursuit? Cancers (Basel) 2020; 12:cancers12020441. [PMID: 32069925 PMCID: PMC7072462 DOI: 10.3390/cancers12020441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a clinically and genetically heterogenous malignancy of myeloid progenitor cells that affects patients of all ages. Despite decades of research and improvement in overall outcomes, standard therapy remains ineffective for certain subtypes of AML. Current treatment is intensive and leads to a number of secondary effects with varying results by patient population. Due to the high cost of discovery and an unmet need for new targeted therapies that are well tolerated, alternative drug development strategies have become increasingly attractive. Repurposing existing drugs is one approach to identify new therapies with fewer financial and regulatory hurdles. In this review, we provide an overview of previously U.S. Food and Drug Administration (FDA) approved non-chemotherapy drugs under investigation for the treatment of AML.
Collapse
Affiliation(s)
- Anna V. Wojcicki
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.V.W.); (M.K.); (N.L.); (H.-D.C.)
| | - Meena Kadapakkam
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.V.W.); (M.K.); (N.L.); (H.-D.C.)
| | - Adam Frymoyer
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Norman Lacayo
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.V.W.); (M.K.); (N.L.); (H.-D.C.)
| | - Hee-Don Chae
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.V.W.); (M.K.); (N.L.); (H.-D.C.)
| | - Kathleen M. Sakamoto
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.V.W.); (M.K.); (N.L.); (H.-D.C.)
- Correspondence: ; Tel.: +650-725-7126
| |
Collapse
|
12
|
Olgen S, Kotra LP. Drug Repurposing in the Development of Anticancer Agents. Curr Med Chem 2019; 26:5410-5427. [PMID: 30009698 DOI: 10.2174/0929867325666180713155702] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/14/2018] [Accepted: 06/28/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Research into repositioning known drugs to treat cancer other than the originally intended disease continues to grow and develop, encouraged in part, by several recent success stories. Many of the studies in this article are geared towards repurposing generic drugs because additional clinical trials are relatively easy to perform and the drug safety profiles have previously been established. OBJECTIVE This review provides an overview of anticancer drug development strategies which is one of the important areas of drug restructuring. METHODS Repurposed drugs for cancer treatments are classified by their pharmacological effects. The successes and failures of important repurposed drugs as anticancer agents are evaluated in this review. RESULTS AND CONCLUSION Drugs could have many off-target effects, and can be intelligently repurposed if the off-target effects can be employed for therapeutic purposes. In cancer, due to the heterogeneity of the disease, often targets are quite diverse, hence a number of already known drugs that interfere with these targets could be deployed or repurposed with appropriate research and development.
Collapse
Affiliation(s)
- Sureyya Olgen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul, Turkey
| | - Lakshmi P Kotra
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada.,Center for Molecular Design and Preformulations, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, M5G 1L7 Canada.,Multi-Organ Transplant Program, Toronto General Hospital, Toronto, Ontario, M5G 1L7 Canada
| |
Collapse
|
13
|
Libby CJ, McConathy J, Darley-Usmar V, Hjelmeland AB. The Role of Metabolic Plasticity in Blood and Brain Stem Cell Pathophysiology. Cancer Res 2019; 80:5-16. [PMID: 31575548 DOI: 10.1158/0008-5472.can-19-1169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/04/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023]
Abstract
Our understanding of intratumoral heterogeneity in cancer continues to evolve, with current models incorporating single-cell signatures to explore cell-cell interactions and differentiation state. The transition between stem and differentiation states in nonneoplastic cells requires metabolic plasticity, and this plasticity is increasingly recognized to play a central role in cancer biology. The insights from hematopoietic and neural stem cell differentiation pathways were used to identify cancer stem cells in leukemia and gliomas. Similarly, defining metabolic heterogeneity and fuel-switching signals in nonneoplastic stem cells may also give important insights into the corresponding molecular mechanisms controlling metabolic plasticity in cancer. These advances are important, because metabolic adaptation to anticancer therapeutics is rooted in this inherent metabolic plasticity and is a therapeutic challenge to be overcome.
Collapse
Affiliation(s)
- Catherine J Libby
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jonathan McConathy
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Victor Darley-Usmar
- Mitochondrial Medicine Laboratory, Center for Free Radical Biology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anita B Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
14
|
Brattås MK, Reikvam H, Tvedt THA, Bruserud Ø. Precision medicine for TP53-mutated acute myeloid leukemia. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1644164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | - Håkon Reikvam
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Øystein Bruserud
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
15
|
Stuani L, Sabatier M, Sarry JE. Exploiting metabolic vulnerabilities for personalized therapy in acute myeloid leukemia. BMC Biol 2019; 17:57. [PMID: 31319822 PMCID: PMC6637566 DOI: 10.1186/s12915-019-0670-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Changes in cell metabolism and metabolic adaptation are hallmark features of many cancers, including leukemia, that support biological processes involved into tumor initiation, growth, and response to therapeutics. The discovery of mutations in key metabolic enzymes has highlighted the importance of metabolism in cancer biology and how these changes might constitute an Achilles heel for cancer treatment. In this Review, we discuss the role of metabolic and mitochondrial pathways dysregulated in acute myeloid leukemia, and the potential of therapeutic intervention targeting these metabolic dependencies on the proliferation, differentiation, stem cell function and cell survival to improve patient stratification and outcomes.
Collapse
Affiliation(s)
- Lucille Stuani
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Université de Toulouse 3 Paul Sabatier, Equipe Labellisée LIGUE 2018, F-31037, Toulouse, France.
| | - Marie Sabatier
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Université de Toulouse 3 Paul Sabatier, Equipe Labellisée LIGUE 2018, F-31037, Toulouse, France
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Université de Toulouse 3 Paul Sabatier, Equipe Labellisée LIGUE 2018, F-31037, Toulouse, France.
| |
Collapse
|
16
|
|
17
|
Buckley SA, Percival ME, Othus M, Halpern AB, Huebner EM, Becker PS, Shaw C, Shadman M, Walter RB, Estey EH. A comparison of patients with acute myeloid leukemia and high-risk myelodysplastic syndrome treated on versus off study. Leuk Lymphoma 2018; 60:1023-1029. [PMID: 30277112 DOI: 10.1080/10428194.2018.1516036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Patients with newly diagnosed (ND) and relapsed/refractory (RR) acute myeloid leukemia (AML) and high-risk myelodysplastic syndrome (MDS, ≥10% blasts) often receive intensive chemotherapy at diagnosis and relapse. We retrospectively identified 365 patients and categorized the reasons for receiving treatment off study (medical, logistical, or unclear). The pretreatment characteristics of the on and off study groups were similar. Rates of the complete remission (CR) without measurable residual disease were significantly higher for ND patients treated on versus off study (61% versus 35%), but CR rates and survival were low for all RR patients regardless of study assignment. The subset of ND patients treated off study for medical reasons had significantly decreased overall survival and relapse-free survival. Standard, stringent study eligibility criteria may delineate a population of ND, but not RR, patients with improved outcomes with intensive induction chemotherapy.
Collapse
Affiliation(s)
- Sarah A Buckley
- a Hematology/Oncology Fellowship Program , University of Washington , Seattle , WA , USA
| | - Mary-Elizabeth Percival
- b Department of Medicine , University of Washington , Seattle , WA , USA.,c Clinical Research Division , Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - Megan Othus
- d Public Health Sciences Division , Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - Anna B Halpern
- b Department of Medicine , University of Washington , Seattle , WA , USA.,c Clinical Research Division , Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - Emily M Huebner
- c Clinical Research Division , Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - Pamela S Becker
- b Department of Medicine , University of Washington , Seattle , WA , USA.,c Clinical Research Division , Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - Carole Shaw
- c Clinical Research Division , Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - Mazyar Shadman
- b Department of Medicine , University of Washington , Seattle , WA , USA.,c Clinical Research Division , Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - Roland B Walter
- b Department of Medicine , University of Washington , Seattle , WA , USA.,c Clinical Research Division , Fred Hutchinson Cancer Research Center , Seattle , WA , USA.,e Department of Epidemiology , University of Washington , Seattle , WA , USA
| | - Elihu H Estey
- b Department of Medicine , University of Washington , Seattle , WA , USA.,c Clinical Research Division , Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| |
Collapse
|
18
|
Abdullah MI, de Wolf E, Jawad MJ, Richardson A. The poor design of clinical trials of statins in oncology may explain their failure - Lessons for drug repurposing. Cancer Treat Rev 2018; 69:84-89. [PMID: 29936313 DOI: 10.1016/j.ctrv.2018.06.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 01/27/2023]
Abstract
Statins are widely used to treat hypercholesterolaemia. However, by inhibiting the production of mevalonate, they also reduce the production of several isoprenoids that are necessary for the function of small GTPase oncogenes such as Ras. As such, statins offer an attractive way to inhibit an "undruggable" target, suggesting that they may be usefully repurposed to treat cancer. However, despite numerous studies, there is still no consensus whether statins are useful in the oncology arena. Numerous preclinical studies have provided evidence justifying the evaluation of statins in cancer patients. Some retrospective studies of patients taking statins to control cholesterol have identified a reduced risk of cancer mortality. However, prospective clinical studies have mostly not been successful. We believe that this has occurred because many of the prospective clinical trials have been poorly designed. Many of these trials have failed to take into account some or all of the factors identified in preclinical studies that are likely to be necessary for statins to be efficacious. We suggest an improved trial design which takes these factors into account. Importantly, we suggest that the design of clinical trials of drugs which are being considered for repurposing should not assume it is appropriate to use them in the same way as they are used in their original indication. Rather, such trials deserve to be informed by preclinical studies that are comparable to those for any novel drug.
Collapse
Affiliation(s)
- Marwan I Abdullah
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom
| | - Elizabeth de Wolf
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom
| | - Mohammed J Jawad
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom
| | - Alan Richardson
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom; School of Pharmacy, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom.
| |
Collapse
|
19
|
Chang Y, Park H, Yang HJ, Lee S, Lee KY, Kim TS, Jung J, Shin JM. Cancer Drug Response Profile scan (CDRscan): A Deep Learning Model That Predicts Drug Effectiveness from Cancer Genomic Signature. Sci Rep 2018; 8:8857. [PMID: 29891981 PMCID: PMC5996063 DOI: 10.1038/s41598-018-27214-6] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/29/2018] [Indexed: 12/18/2022] Open
Abstract
In the era of precision medicine, cancer therapy can be tailored to an individual patient based on the genomic profile of a tumour. Despite the ever-increasing abundance of cancer genomic data, linking mutation profiles to drug efficacy remains a challenge. Herein, we report Cancer Drug Response profile scan (CDRscan) a novel deep learning model that predicts anticancer drug responsiveness based on a large-scale drug screening assay data encompassing genomic profiles of 787 human cancer cell lines and structural profiles of 244 drugs. CDRscan employs a two-step convolution architecture, where the genomic mutational fingerprints of cell lines and the molecular fingerprints of drugs are processed individually, then merged by 'virtual docking', an in silico modelling of drug treatment. Analysis of the goodness-of-fit between observed and predicted drug response revealed a high prediction accuracy of CDRscan (R2 > 0.84; AUROC > 0.98). We applied CDRscan to 1,487 approved drugs and identified 14 oncology and 23 non-oncology drugs having new potential cancer indications. This, to our knowledge, is the first-time application of a deep learning model in predicting the feasibility of drug repurposing. By further clinical validation, CDRscan is expected to allow selection of the most effective anticancer drugs for the genomic profile of the individual patient.
Collapse
Affiliation(s)
- Yoosup Chang
- Yongin in silico Medical Research Centre, Syntekabio Inc., 283 Dongbaekjungang-ro, C508, Giheung-gu, Yongin, Gyeonggi-do, 17006, South Korea
| | - Hyejin Park
- Yongin in silico Medical Research Centre, Syntekabio Inc., 283 Dongbaekjungang-ro, C508, Giheung-gu, Yongin, Gyeonggi-do, 17006, South Korea
| | - Hyun-Jin Yang
- Gwanghwamun Medical Study Centre, Syntekabio Inc., 92 Saemunan-ro, #1708, Jongno-gu, Seoul, 03186, South Korea
| | - Seungju Lee
- Yongin in silico Medical Research Centre, Syntekabio Inc., 283 Dongbaekjungang-ro, C508, Giheung-gu, Yongin, Gyeonggi-do, 17006, South Korea
| | - Kwee-Yum Lee
- Gwanghwamun Medical Study Centre, Syntekabio Inc., 92 Saemunan-ro, #1708, Jongno-gu, Seoul, 03186, South Korea
- Faculty of Medicine, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Tae Soon Kim
- Gwanghwamun Medical Study Centre, Syntekabio Inc., 92 Saemunan-ro, #1708, Jongno-gu, Seoul, 03186, South Korea
- Department of Clinical Medical Sciences, Seoul National University College of Medicine, 71 Ihwajang-gil, Jongno-gu, 03087, Seoul, South Korea
| | - Jongsun Jung
- Genome Data Integration Centre, Syntekabio Inc., 187 Techno 2-ro, B512, Yuseong-gu, Daejeon, 34025, South Korea.
| | - Jae-Min Shin
- Yongin in silico Medical Research Centre, Syntekabio Inc., 283 Dongbaekjungang-ro, C508, Giheung-gu, Yongin, Gyeonggi-do, 17006, South Korea.
| |
Collapse
|
20
|
Andresen V, Gjertsen BT. Drug Repurposing for the Treatment of Acute Myeloid Leukemia. Front Med (Lausanne) 2017; 4:211. [PMID: 29238707 PMCID: PMC5712546 DOI: 10.3389/fmed.2017.00211] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/09/2017] [Indexed: 01/07/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by the accumulation of immature myeloid progenitor cells in the bone marrow, compromising of normal blood cell production and ultimately resulting in bone marrow failure. With a 20% overall survival rate at 5 years and 50% in the 18- to 65-year-old age group, new medicines are needed. It is proposed that development of repurposed drugs may be a part of the new therapy needed. AML is subdivided into recurrent molecular entities based on molecular genetics increasingly accessible for precision medicine. Novel therapy developments form a basis for novel multimodality therapy and include liposomal daunorubicin/cytarabine, broad or FLT3-specific tyrosine kinase inhibitors, Bcl-2 family inhibitors, selective inhibitors of nuclear export, metabolic inhibitors, and demethylating agents. The use of non-transplant immunotherapy is in early development in AML with the exceptional re-approval of a toxin-conjugated anti-CD33. However, the full potential of small molecule inhibitors and modalities like immunological checkpoint inhibitors, immunostimulatory small molecules, and CAR-T cell therapy is unknown. Some novel therapeutics will certainly benefit AML patient subgroups; however, due to high cost, more affordable alternatives are needed globally. Also the heterogeneity of AML will likely demand a broader repertoire of therapeutic molecules. Drug repurposing or repositioning represent a source for potential therapeutics with well-known toxicity profiles and reasonable prices. This implies that biomarkers of response need to accompany the development of antileukemic therapies for sharply defined patient subgroups. We will illustrate repurposing in AML with selected examples and discuss some experimental and regulatory limitations that may obstruct this development.
Collapse
Affiliation(s)
- Vibeke Andresen
- Center for Cancer Biomarkers (CCBIO), Department of Clinical Science, Precision Oncology Research Group, University of Bergen, Bergen, Norway
| | - Bjørn T. Gjertsen
- Center for Cancer Biomarkers (CCBIO), Department of Clinical Science, Precision Oncology Research Group, University of Bergen, Bergen, Norway
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
21
|
Ramos NR, Mo CC, Karp JE, Hourigan CS. Current Approaches in the Treatment of Relapsed and Refractory Acute Myeloid Leukemia. J Clin Med 2015; 4:665-95. [PMID: 25932335 PMCID: PMC4412468 DOI: 10.3390/jcm4040665] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/20/2015] [Indexed: 01/07/2023] Open
Abstract
The limited sensitivity of the historical treatment response criteria for acute myeloid leukemia (AML) has resulted in a different paradigm for treatment compared with most other cancers presenting with widely disseminated disease. Initial cytotoxic induction chemotherapy is often able to reduce tumor burden to a level sufficient to meet the current criteria for "complete" remission. Nevertheless, most AML patients ultimately die from their disease, most commonly as clinically evident relapsed AML. Despite a variety of available salvage therapy options, prognosis in patients with relapsed or refractory AML is generally poor. In this review, we outline the commonly utilized salvage cytotoxic therapy interventions and then highlight novel investigational efforts currently in clinical trials using both pathway-targeted agents and immunotherapy based approaches. We conclude that there is no current standard of care for adult relapsed or refractory AML other than offering referral to an appropriate clinical trial.
Collapse
Affiliation(s)
- Nestor R. Ramos
- Myeloid Malignancies Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1583, USA; E-Mail:
- Department of Hematology-Oncology, John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA; E-Mail:
| | - Clifton C. Mo
- Department of Hematology-Oncology, John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA; E-Mail:
| | - Judith E. Karp
- Division of Hematologic Malignancies, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; E-Mail:
| | - Christopher S. Hourigan
- Myeloid Malignancies Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1583, USA; E-Mail:
| |
Collapse
|