1
|
Fekrvand S, Abolhassani H, Esfahani ZH, Fard NNG, Amiri M, Salehi H, Almasi-Hashiani A, Saeedi-Boroujeni A, Fathi N, Mohtashami M, Razavi A, Heidari A, Azizi G, Khanmohammadi S, Ahangarzadeh M, Saleki K, Hassanpour G, Rezaei N, Yazdani R. Cancer Trends in Inborn Errors of Immunity: A Systematic Review and Meta-Analysis. J Clin Immunol 2024; 45:34. [PMID: 39466473 DOI: 10.1007/s10875-024-01810-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Patients with inborn errors of immunity (IEI) are susceptible to developing cancer due to defects in the immune system. The prevalence of cancer is higher in IEI patients compared to the immunocompetent population and cancers are considered as an important and common cause of death in IEI patients. OBJECTIVES To systematically review demographic, genetic and cancer-related data of IEI patients with a history of malignancy. Moreover, we performed a meta-analysis aiming to determine the frequency of cancer in patients with different types of IEI. METHODS We conducted electronic searches on Embase, Web of Science, PubMed, and Scopus (until September 2023) introducing terms related to IEI and cancer. Studies with human subjects with confirmed IEI who had developed at least one malignancy during their lifetime were included. RESULTS A total number of 4607 IEI patients with a cancer history were included in the present study. Common variable immunodeficiency (CVID) had the highest number of reported cases (1284 cases), mainly due to a higher relative proportion of patients with predominantly antibody deficiencies (PAD) and their increased life expectancy contributing to the higher detection and reporting of cancers among these patients. The most common malignancy was hematologic/blood cancers (3026 cases, mainly diffuse large B cell lymphoma). A total number of 1173 cases (55.6%) succumbed to cancer, with the highest rate of bone marrow failure (64.9%). Among the patients with monogenic defects in IEI-associated genes, the majority of cases had ATM deficiency (926 cases), but the highest cancer frequency rate belonged to NBS1 deficiency (50.5%). 1928 cases out of total 4607 eligible cases had detailed data to allow further statistical analysis that revealed BRCA2 deficiency had the earliest cancer development (~ 38 months), lowest cure frequency, and highest fatality rate (85%), while ATM deficiency had the lowest cure frequency and highest fatality rate (72%) among total cases reviewed with exclusion of Fanconi anemia. CONCLUSION The overall reported cancer frequency in the cases reviewed with and without exclusion of Fanconi anemia was 11.1% (95% confidence interval: 9.8-12.5%) and 12.0% (95% confidence interval: 10.6-13.5%), respectively. Our study revealed that the incidence of cancer is significantly dependent on the molecular and pathway defects in IEI patients, and individualized early screening and appropriate treatment, might improve the prognosis of these patients.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Stockholm, Huddinge, Sweden
| | - Zahra Hamidi Esfahani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Najmeh Nameh Goshay Fard
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahboube Amiri
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Helia Salehi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Almasi-Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Ali Saeedi-Boroujeni
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Nazanin Fathi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Mohtashami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Azadehsadat Razavi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Arash Heidari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gholamreza Azizi
- Noncommunicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Milad Ahangarzadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of E-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of MedicalSciences (SBMU), Tehran, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Gholamreza Hassanpour
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
2
|
Lum SH, Eikema DJ, Piepenbroek B, Wynn RF, Samarasinghe S, Dalissier A, Kalwak K, Ayas M, Hamladji RM, Yesilipek A, Dalle JH, Uckan-Cetinkaya D, Bierings M, Kupesiz A, Halahleh K, Skorobogatova E, Öztürk G, Faraci M, Renard C, Evans P, Corbacioglu S, Locatelli F, Dufour C, Risitano A, Peffault de Latour R. Outcomes of hematopoietic stem cell transplantation in 813 pediatric patients with Fanconi anemia. Blood 2024; 144:1329-1342. [PMID: 38968140 DOI: 10.1182/blood.2023022751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 07/07/2024] Open
Abstract
ABSTRACT Allogeneic hematopoietic stem cell transplantation (HSCT) is the only established curative option for Fanconi anemia (FA)-associated bone marrow failure (BMF)/aplastic anemia (AA) and acute myeloid leukemia (AML)/myelodysplastic syndrome (MDS). We performed a retrospective multicenter study on 813 children with FA undergoing first HSCT between 2010 and 2018. Median duration of follow-up was 3.7 years. Median age at transplant was 8.8 years (IQR, 6.5-18.1). Five-year overall survival (OS), event-free survival (EFS), and graft-versus-host disease (GVHD)-free, relapse-free survival (GRFS) were 83% (95% confidence interval [CI], 80-86), 78% (95% CI, 75-81), and 70% (95% CI, 67-74), respectively. OS was comparable between matched family donor (MFD; n = 441, 88%) and matched unrelated donor (MUD; n = 162, 86%) and was superior to that of mismatched family donor (MMFD) or mismatched unrelated donor (MMUD; n = 144, 72%) and haploidentical donor (HID; n = 66, 70%; P < .001). In multivariable analysis, a transplant indication of AML/MDS (vs AA/BMF), use of MMFD/MMUD and HID (vs MFD), and fludarabine-cyclophosphamide (FluCy) plus other conditioning (vs FluCy) independently predicted inferior OS, whereas alemtuzumab vs antithymocyte globulin was associated with better OS. Age ≥10 years was associated with worse EFS and GRFS. Cumulative incidences (CINs) of primary and secondary graft failure were 2% and 3% respectively. CINs of grade 3 to 4 acute GVHD and chronic GVHD were 12% and 8% respectively. The 5-year CIN of secondary malignancy was 2%. These data suggest that HSCT should be offered to patients with FA with AA/BMF at a younger age in the presence of a well-matched donor.
Collapse
Affiliation(s)
- Su Han Lum
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | | | | | - Robert F Wynn
- Royal Manchester Children's Hospital, Manchester, United Kingdom
| | | | | | - Krysztof Kalwak
- Department of Pediatric Hematology, Oncology, and BMT, Wroclaw Medical University, Wroclaw, Poland
| | - Mouhab Ayas
- King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | | | | - Jean-Hugues Dalle
- Hôpital Robert Debre, GHU Assistance Publique-Hôpitaux de Paris Nord, Université Paris Cité, Paris, France
| | | | - Marc Bierings
- Princess Maxima Center/University Hospital for Children, Utrecht, The Netherlands
| | | | | | | | - Gülyüz Öztürk
- Acıbadem Sağlik Hizmetleri ve Ticaret AS, Istanbul, Turkey
| | - Maura Faraci
- Department of Hematology-Oncology, Hematology Unit, G. Gaslini IRCCS Institute, Genoa, Italy
| | - Cecile Renard
- Institut d'Hematologie et d'Oncologie Pediatrique, Hospices Civils de Lyon, Lyon, France
| | - Pamela Evans
- Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Selim Corbacioglu
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Regensburg, Regensburg, Germany
| | - Franco Locatelli
- IRCCS Ospedale Pediatrico Bambino Gesù, Catholic University of the Sacred Heart, Rome, Italy
| | - Carlo Dufour
- Department of Hematology-Oncology, Hematology Unit, G. Gaslini IRCCS Institute, Genoa, Italy
| | | | - Régis Peffault de Latour
- BMT Unit, French Reference Center for Aplastic Anemia and PNH, Hôpital Saint-Louis, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Godefroy E, Chevallier P, Haspot F, Vignes C, Daguin V, Lambot S, Verdon M, De Seilhac M, Letailleur V, Jarry A, Pédron A, Guillaume T, Peterlin P, Garnier A, Vibet MA, Mougon M, Le Bourgeois A, Jullien M, Jotereau F, Altare F. Human gut microbiota-reactive DP8α Tregs prevent acute graft-versus-host disease in a CD73-dependent manner. JCI Insight 2024; 9:e179458. [PMID: 39088302 PMCID: PMC11457850 DOI: 10.1172/jci.insight.179458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024] Open
Abstract
Graft-versus-host disease (GvHD) is a life-threatening complication frequently occurring following allogeneic hematopoietic stem cell transplantation (allo-HSCT). Since gut microbiota and regulatory T cells (Tregs) are believed to play roles in GvHD prevention, we investigated whether DP8α Tregs, which we have previously described to harbor a T cell receptor specificity for the gut commensal Faecalibacterium prausnitzii, could protect against GvHD, thereby linking the microbiota and its effect on GvHD. We observed a decrease in CD73+ DP8α Treg frequency in allo-HSCT patients 1 month after transplantation, which was associated with acute GvHD (aGvHD) development at 1 month after transplantation, as compared with aGvHD-free patients, without being correlated to hematological disease relapse. Importantly, CD73 activity was shown to be critical for DP8α Treg suppressive function. Moreover, the frequency of host-reactive DP8α Tregs was also lower in aGvHD patients, as compared with aGvHD-free patients, which could embody a protective mechanism responsible for the maintenance of this cell subset in GvHD-free patients. We also showed that human DP8α Tregs protected mice against xenogeneic GvHD through limiting deleterious inflammation and preserving gut integrity. Altogether, these results demonstrated that human DP8α Tregs mediate aGvHD prevention in a CD73-dependent manner, likely through host reactivity, advocating for the use of these cells for the development of innovative therapeutic strategies to preclude aGvHD-related inflammation.
Collapse
Affiliation(s)
- Emmanuelle Godefroy
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT,UMR 1302, F-44000 Nantes, France
- LabEx IGO, Nantes University, Nantes, France
| | - Patrice Chevallier
- CHU de Nantes, F-44000 Nantes, France
- INSERM UMR 1307, CRCI2NA IRS-UN, Nantes Université, Nantes, France
| | - Fabienne Haspot
- LabEx IGO, Nantes University, Nantes, France
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
| | - Caroline Vignes
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT,UMR 1302, F-44000 Nantes, France
- LabEx IGO, Nantes University, Nantes, France
| | - Véronique Daguin
- LabEx IGO, Nantes University, Nantes, France
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
| | - Sylvia Lambot
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT,UMR 1302, F-44000 Nantes, France
- LabEx IGO, Nantes University, Nantes, France
| | - Margaux Verdon
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT,UMR 1302, F-44000 Nantes, France
- LabEx IGO, Nantes University, Nantes, France
| | - Margaux De Seilhac
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT,UMR 1302, F-44000 Nantes, France
- LabEx IGO, Nantes University, Nantes, France
- Maat Pharma, Lyon, France
| | | | - Anne Jarry
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT,UMR 1302, F-44000 Nantes, France
- LabEx IGO, Nantes University, Nantes, France
| | - Annabelle Pédron
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT,UMR 1302, F-44000 Nantes, France
- Université Libre de Bruxelles, Institute for Medical Immunology, and ULB Center for Research in Immunology, Gosselies, Belgium
| | - Thierry Guillaume
- CHU de Nantes, F-44000 Nantes, France
- INSERM UMR 1307, CRCI2NA IRS-UN, Nantes Université, Nantes, France
| | - Pierre Peterlin
- CHU de Nantes, F-44000 Nantes, France
- INSERM UMR 1307, CRCI2NA IRS-UN, Nantes Université, Nantes, France
| | - Alice Garnier
- CHU de Nantes, F-44000 Nantes, France
- INSERM UMR 1307, CRCI2NA IRS-UN, Nantes Université, Nantes, France
| | - Marie-Anne Vibet
- Department of Biostatistics, Centre Hospitalier Universitaire (CHU) de Nantes, Nantes, France
| | - Maxence Mougon
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT,UMR 1302, F-44000 Nantes, France
- LabEx IGO, Nantes University, Nantes, France
| | - Amandine Le Bourgeois
- CHU de Nantes, F-44000 Nantes, France
- INSERM UMR 1307, CRCI2NA IRS-UN, Nantes Université, Nantes, France
| | - Maxime Jullien
- CHU de Nantes, F-44000 Nantes, France
- INSERM UMR 1307, CRCI2NA IRS-UN, Nantes Université, Nantes, France
| | - Francine Jotereau
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT,UMR 1302, F-44000 Nantes, France
- LabEx IGO, Nantes University, Nantes, France
| | - Frédéric Altare
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT,UMR 1302, F-44000 Nantes, France
- LabEx IGO, Nantes University, Nantes, France
| |
Collapse
|
4
|
Giardino S, Eikema DJ, Piepenbroek B, Algeri M, Ayas M, Faraci M, Tbakhi A, Zecca M, Essa M, Neven B, Bertrand Y, Kharya G, Bykova T, Lawson S, Petrini M, Mohseny A, Rialland F, James B, Colita A, Fahd M, Cesaro S, Schulz A, Kleinschmidt K, Kałwak K, Corbacioglu S, Dufour C, Risitano A, de Latour RP. HLA-haploidentical stem cell transplantation in children with inherited bone marrow failure syndromes: A retrospective analysis on behalf of EBMT severe aplastic Anemia and pediatric diseases working parties. Am J Hematol 2024; 99:1066-1076. [PMID: 38497679 DOI: 10.1002/ajh.27293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Haploidentical stem cell transplantation (haplo-SCT) represents the main alternative for children with inherited bone marrow failure syndrome (I-BMF) lacking a matched donor. This retrospective study, conducted on behalf of the EBMT SAAWP and PDWP, aims to report the current outcomes of haplo-SCT in I-BMFs, comparing the different in vivo and ex vivo T-cell depletion approaches. One hundred and sixty-two I-BMF patients who underwent haplo-SCT (median age 7.4 years) have been registered. Fanconi Anemia was the most represented diagnosis (70.1%). Based on different T-cell depletion (TCD) approaches, four categories were identified: (1) TCRαβ+/CD19+-depletion (43.8%); (2) T-repleted with post-transplant Cyclophosphamide (PTCy, 34.0%); (3) In-vivo T-depletion with ATG/alemtuzumab (14.8%); (4) CD34+ positive selection (7.4%). The cumulative incidences (CI) of neutrophil and platelet engraftment were 84% and 76% respectively, while that of primary and secondary graft failure was 10% and 8% respectively. The 100-day CI of acute GvHD grade III-IV(95% CI) was 13%, while the 24-month CI of extensive chronic GvHD was 4%. After a median follow-up of 43.4 months, the 2-year overall survival(OS) and GvHD/Rejection-free Survival (GRFS) probabilities are 67% and 53%, respectively. The TCR CD3+αβ+/CD19+ depletion group showed a significantly lower incidence of both acute and chronic GvHD and higher OS (79%; p0.013) and GRFS (71%; p < .001), while no significant differences in outcomes have been observed by different diagnosis and conditioning regimens. This large retrospective study supports the safety and feasibility of haplo-SCT in I-BMF patients. TCRαβ+/CD19+ depletion offers higher chances of patients' survival, with a significantly lower risk of severe a- and c-GvHD in I-BMFs compared to other platforms.
Collapse
Affiliation(s)
- Stefano Giardino
- Hematopoietic Stem Cell Transplantation Unit, Department of Pediatric Hematology and Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Dirk-Jan Eikema
- Statistical Unit and Data Office, European Society for Blood and Marrow Transplantation (EBMT), Leiden, The Netherlands
| | | | - Mattia Algeri
- Department of Pediatric Haematology and Oncology & Stem and Gene Therapy, IRRCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Mouhab Ayas
- King Faisal Specialist Hospital and Research Center, Department of Pediatric Hematology Oncology, Riyadh, Saudi Arabia
| | - Maura Faraci
- Hematopoietic Stem Cell Transplantation Unit, Department of Pediatric Hematology and Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Marco Zecca
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mohammed Essa
- King Abdullah Specialist Children's Hospital, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Bénédicte Neven
- Pediatric Immune-Hematology Unit, Necker Children Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Yves Bertrand
- Institut d'hémato oncologie Pédiatrique, Hospice Civil de Lyon, Paris, France
| | - Gaurav Kharya
- Centre for Bone Marrow Transplant & Cellular Therapy, Indraprastha Apollo Hospital, New Delhi, India
| | - Tatiana Bykova
- RM Gorbacheva Research Institute, Pavlov University, St. Petersburg, Russia
| | - Sarah Lawson
- Department of Haematology, Birmingham Children's Hospital, Birmingham, UK
| | - Mario Petrini
- Unit of Hematology, Santa Chiara University Hospital, University of Pisa, Pisa, Italy
| | - Alexander Mohseny
- Willem-Alexander Children's Hospital, Pediatric SCT program, Leiden University Medical Center, Leiden, The Netherlands
| | - Fanny Rialland
- Hôpital de la mère et l'enfant, Service d'hématologie pédiatrique, Nantes, France
| | - Beki James
- Leeds General Infirmary, Leeds Children's Hospital, Leeds, UK
| | - Anca Colita
- "Carol Davila" University of Medicine and Pharmacy, Fundeni Clinical Institute, Bucharest, Romania
| | - Mony Fahd
- Hematology and Immunology Pediatric Department, GHU APHP Nord-Université Paris Cité, Paris, France
| | - Simone Cesaro
- Pediatric Hematology Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Ansgar Schulz
- Department of Pediatric Medicine, University Hospital Ulm, Eythstraße 24, Ulm, Germany
| | - Katharina Kleinschmidt
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Children's Hospital Regensburg, Regensburg, Germany
| | - Krzysztof Kałwak
- Supraregional Center of Pediatric Oncology "Cape of Hope", Wroclaw Medical University, Wroclaw, Poland
| | - Selim Corbacioglu
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Children's Hospital Regensburg, Regensburg, Germany
| | - Carlo Dufour
- Hematology Unit, Department of Pediatric Hematology and Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Antonio Risitano
- Hematology and Hematopoietic Transplant Unit, Azienda Ospedaliera di Rilievo Nazionale "San Giuseppe Moscati" (A.O.R.N. Giuseppe Moscati), Avellino, Italy
| | - Régis Peffault de Latour
- Bone Marrow Transplant Unit, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
5
|
Yadav SP, Raj R, Uppuluri R, Choudhary D, Doval D, Dua V, Bhat S, Kharya G, Patil R, Bansal S, M D, Mehdi I, Mathews V, Abraham A, George B. Outcome of allogeneic stem cell transplant for Fanconi anemia in India. Pediatr Hematol Oncol 2024; 41:169-171. [PMID: 38013455 DOI: 10.1080/08880018.2023.2286971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/11/2023] [Indexed: 11/29/2023]
Affiliation(s)
| | - Revathi Raj
- Department of Pediatric Hemato-Oncology & BMT, Apollo Hospital, Chennai, India
| | - Ramya Uppuluri
- Department of Pediatric Hemato-Oncology & BMT, Apollo Hospital, Chennai, India
| | - Dharma Choudhary
- Department of Hematology & BMT, BLK Super specialty Hospital, Delhi, India
| | - Divya Doval
- Department of Hematology & BMT, BLK Super specialty Hospital, Delhi, India
| | - Vikas Dua
- Pediatric Hemato-oncology & BMT, Fortis Memorial Research Institute, Gurgaon, India
| | - Sunil Bhat
- Pediatric Hemato-Oncology & BMT, Narayana Hyrudalaya, Bengaluru, India
| | - Gaurav Kharya
- Pediatric Hemato-Oncology & BMT, Indraprastha Apollo Hospital, Delhi, India
| | | | - Shweta Bansal
- Department of Pediatric Hemato-Oncology, LTMGH, Sion Hospital, Mumbai, India
| | - Deendayalan M
- Pediatric Hemato-Oncology & BMT, Rela Institute of Medical Sciences, Chennai, India
| | - Intezar Mehdi
- Pediatric Hemato-Oncology & BMT, HCG Hospital, Bengaluru, India
| | - Vikram Mathews
- Department of Hematology, Christian Medical College, Vellore, India
| | - Aby Abraham
- Department of Hematology, Christian Medical College, Vellore, India
| | - Biju George
- Department of Hematology, Christian Medical College, Vellore, India
| |
Collapse
|
6
|
Cancio M, Troullioud Lucas AG, Bierings M, Klein E, de Witte MA, Smiers FJ, Bresters D, Boelens JJ, Smetsers SE. Predictors of outcomes in hematopoietic cell transplantation for Fanconi anemia. Bone Marrow Transplant 2024; 59:34-40. [PMID: 37848556 PMCID: PMC10781622 DOI: 10.1038/s41409-023-02121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/16/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
Allogeneic hematopoietic cell transplantation (HCT) remains the only cure for the hematologic manifestations of Fanconi anemia (FA). We performed retrospective predictor analyses for HCT outcomes in FA for pediatric and young adult patients transplanted between 2007 and 2020 across three large referral institutions. Eighty-nine patients, 70 with bone marrow failure +/- cytogenetic abnormalities, 19 with MDS/AML, were included. Five-year overall survival (OS) was 83.2% and event-free survival (EFS) was 74%. Age ≥19, HLA mismatch and year of HCT were multivariable predictors (MVPs) for OS, EFS and treatment-related mortality (TRM). In the pediatric group, TCD was a borderline MVP (P = 0.059) with 5-year OS of 73.0% in TCD vs. 100% for T-replete HCT. The cumulative incidence of day 100 grade II-IV aGvHD and 5-year cGvHD were 5.6% and 4.6%, respectively. Relapse in the MDS/AML subgroup occurred in 4 patients (16%). Graft failure was seen in 9 patients (TCD 6/37 [16%]; T-replete 3/52 [5.7%]). Six patients developed malignancy after HCT. Survival chances after HCT for FA are excellent and associated with high engrafted survival and low toxicity. Age ≥19, HLA mismatch, year of transplant and 'TCD in the <19 years group' (although borderline) were found to be negative predictors for survival.
Collapse
Affiliation(s)
- Maria Cancio
- Transplantation and Cellular Therapy, MSK Kids, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Alexandre G Troullioud Lucas
- Transplantation and Cellular Therapy, MSK Kids, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Marc Bierings
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Pediatric Oncology/Hematology, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - Elizabeth Klein
- Transplantation and Cellular Therapy, MSK Kids, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Moniek A de Witte
- Department of Hematology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Frans J Smiers
- Department of Pediatric Hematology and Stem Cell Transplantation, Willem Alexander Children's Hospital/Leiden University Medical Center, Leiden, the Netherlands
| | - Dorine Bresters
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Pediatric Hematology and Stem Cell Transplantation, Willem Alexander Children's Hospital/Leiden University Medical Center, Leiden, the Netherlands
| | - Jaap Jan Boelens
- Transplantation and Cellular Therapy, MSK Kids, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
7
|
Satty AM, Klein E, Mauguen A, Kunvarjee B, Boelens JJ, Cancio M, Curran KJ, Kernan NA, Prockop SE, Scaradavou A, Spitzer B, Tamari R, Ruggiero J, Torok-Castanza J, Mehta PA, O'Reilly RJ, Boulad F. T-cell depleted allogeneic hematopoietic stem cell transplant for the treatment of Fanconi anemia and MDS/AML. Bone Marrow Transplant 2024; 59:23-33. [PMID: 37773270 DOI: 10.1038/s41409-023-02113-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
The only curative approach for myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) arising in patients with Fanconi anemia (FA) is allogeneic hematopoietic stem cell transplantation (HCT); however, HCT approaches are inconsistent and limited data on outcomes exist. We retrospectively evaluated outcomes of thirty patients with FA and MDS/AML who underwent first allogeneic HCT with a T-cell depleted (TCD) graft at our institution. Patients were transplanted on successive protocols with stepwise changes in cytoreduction and GVHD prophylaxis. All but two patients (93%) experienced durable hematopoietic engraftment. With median follow-up of 8.7 years, 5-year OS was 66.8% and DFS 53.8%. No significant differences in survival were found in patients with high-risk prognostic features (age ≥20 years, AML diagnosis, alternative donor graft) or when stratified by conditioning regimen. The 5-year cumulative incidences of relapse and NRM were 24.3% and 21.9%, respectively. NRM was higher in patients ≥20 years at HCT but did not otherwise differ. We herein demonstrate promising outcomes following allogeneic HCT for patients with FA and MDS/AML using TCD grafts, particularly in a cohort of high-risk patients with 50% ≥20 years and a majority receiving mismatched grafts. Future prospective studies are needed to compare this approach with other HCT platforms.
Collapse
Affiliation(s)
- Alexandra M Satty
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Elizabeth Klein
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Audrey Mauguen
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Binni Kunvarjee
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jaap Jan Boelens
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Maria Cancio
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Kevin J Curran
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Nancy A Kernan
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Susan E Prockop
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Andromachi Scaradavou
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Barbara Spitzer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Roni Tamari
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julianne Ruggiero
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Parinda A Mehta
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Richard J O'Reilly
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Farid Boulad
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
8
|
Olson TS. Management of Fanconi anemia beyond childhood. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:556-562. [PMID: 38066849 PMCID: PMC10727099 DOI: 10.1182/hematology.2023000489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Fanconi anemia (FA) has long been considered a severe inherited bone marrow failure (BMF) disorder of early childhood. Thus, management of this multisystem disorder has previously been unfamiliar to many hematologists specializing in the care of adolescents and young adults (AYA). The increased diagnosis of FA in AYA patients, facilitated by widely available germline genomic testing, improved long-term survival of children with FA following matched sibling and alternative donor hematopoietic stem cell transplantation (HSCT) performed for BMF, and expanding need in the near future for long-term monitoring in patients achieving hematologic stabilization following ex vivo gene therapy are all reasons why management of FA in AYA populations deserves specific consideration. In this review, we address the unique challenges and evidence-based practice recommendations for the management of AYA patients with FA. Specific topics addressed include hematologic monitoring in AYA patients yet to undergo HSCT, management of myeloid malignancies occurring in FA, diagnosis and management of nonhematologic malignances and organ dysfunction in AYA patients with FA, and evolving considerations for the long-term monitoring of patients with FA undergoing gene therapy.
Collapse
Affiliation(s)
- Timothy S. Olson
- Divisions of Hematology and Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
9
|
Vissers LTW, van der Burg M, Lankester AC, Smiers FJW, Bartels M, Mohseny AB. Pediatric Bone Marrow Failure: A Broad Landscape in Need of Personalized Management. J Clin Med 2023; 12:7185. [PMID: 38002797 PMCID: PMC10672506 DOI: 10.3390/jcm12227185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Irreversible severe bone marrow failure (BMF) is a life-threatening condition in pediatric patients. Most important causes are inherited bone marrow failure syndromes (IBMFSs) and (pre)malignant diseases, such as myelodysplastic syndrome (MDS) and (idiopathic) aplastic anemia (AA). Timely treatment is essential to prevent infections and bleeding complications and increase overall survival (OS). Allogeneic hematopoietic stem cell transplantation (HSCT) provides a cure for most types of BMF but cannot restore non-hematological defects. When using a matched sibling donor (MSD) or a matched unrelated donor (MUD), the OS after HSCT ranges between 60 and 90%. Due to the introduction of post-transplantation cyclophosphamide (PT-Cy) to prevent graft versus host disease (GVHD), alternative donor HSCT can reach similar survival rates. Although HSCT can restore ineffective hematopoiesis, it is not always used as a first-line therapy due to the severe risks associated with HSCT. Therefore, depending on the underlying cause, other treatment options might be preferred. Finally, for IBMFSs with an identified genetic etiology, gene therapy might provide a novel treatment strategy as it could bypass certain limitations of HSCT. However, gene therapy for most IBMFSs is still in its infancy. This review summarizes current clinical practices for pediatric BMF, including HSCT as well as other disease-specific treatment options.
Collapse
Affiliation(s)
- Lotte T. W. Vissers
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.T.W.V.); (M.v.d.B.)
| | - Mirjam van der Burg
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.T.W.V.); (M.v.d.B.)
| | - Arjan C. Lankester
- Department of Pediatrics, Hematology and Stem Cell Transplantation, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.C.L.); (F.J.W.S.)
| | - Frans J. W. Smiers
- Department of Pediatrics, Hematology and Stem Cell Transplantation, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.C.L.); (F.J.W.S.)
| | - Marije Bartels
- Department of Pediatric Hematology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Alexander B. Mohseny
- Department of Pediatrics, Hematology and Stem Cell Transplantation, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.C.L.); (F.J.W.S.)
| |
Collapse
|
10
|
Alsultan A, Abujoub R, Alsudairy R, Memon S, Jarrar MS, Alafghani S, Aldaama S, Ballourah W, Almanjomi F, Essa MF. Human leucocyte antigen-matched related haematopoietic stem cell transplantation using low-dose cyclophosphamide, fludarabine and thymoglobulin in children with severe aplastic anaemia. Br J Haematol 2023; 203:255-263. [PMID: 37491781 DOI: 10.1111/bjh.19004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/17/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023]
Abstract
When human leucocyte antigen-matched related donors are available, haematopoietic stem cell transplantation (HSCT) in children with severe aplastic anaemia (SAA) represents the standard of care. Cyclophosphamide (Cy) 200 mg/kg and anti-thymocyte globulin (ATG) are frequently administered, but to-date, no standard conditioning regimen exists. In this study, we investigated the efficacy of a unified HSCT conditioning protocol consisting of low-dose Cy 80 mg/kg, fludarabine and ATG. Data were reviewed from children aged ≤14 years with either acquired SAA or non-Fanconi anaemia inherited bone marrow failure syndrome (IBMFS) between 2011 and 2022 at various Saudi institutions. Graft-versus-host disease (GVHD) prophylaxis included mycophenolate mofetil and calcineurin inhibitors. HSCT was performed in 32 children (17 females and 15 males). Nine patients had deleterious mutations (two ERCC6L2, two ANKRD26, two TINF2, one LZTFL1, one RTEL1 and one DNAJC21). Four patients had short telomeres. All 32 patients engrafted successfully. At 3 years post-transplant, the event-free survival was 93% and overall survival was 95%. Two patients experienced secondary graft failure or myelodysplastic syndrome. A low probability of GVHD was observed (one acute GVHD II and one mild chronic GVHD). These data highlight how HSCT using low-dose Cy as part of a fludarabine-based regimen is safe and effective in SAA/non-Fanconi anaemia IBMFS.
Collapse
Affiliation(s)
- Abdulrahman Alsultan
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Oncology Center, King Saud University Medical City, Riyadh, Saudi Arabia
- Department of Pediatric Hematology/Oncology and Stem Cell Transplantation, Comprehensive Cancer Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Rodaina Abujoub
- Department of Nursing, King Abdullah Specialist Children's Hospital, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Pediatric Hematology/Oncology, King Abdullah Specialist Children's Hospital, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Reem Alsudairy
- Department of Pediatric Hematology/Oncology, King Abdullah Specialist Children's Hospital, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Shahbaz Memon
- Department of Pediatric Hematology/Oncology, King Abdullah Specialist Children's Hospital, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Mohammad S Jarrar
- Schulich School of Medicine, University of Western Ontario, London, Ontario, Canada
- Windsor Regional Hospital and Cancer Center, Windsor, Ontario, Canada
| | - Sameera Alafghani
- Department of Pediatric Hematology/Oncology and Stem Cell Transplantation, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Saad Aldaama
- Department of Pediatric Hematology/Oncology and Stem Cell Transplantation, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Walid Ballourah
- Department of Pediatric Hematology/Oncology and Stem Cell Transplantation, Comprehensive Cancer Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fahd Almanjomi
- Department of Pediatric Hematology/Oncology and Stem Cell Transplantation, Comprehensive Cancer Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mohammed F Essa
- Department of Pediatric Hematology/Oncology, King Abdullah Specialist Children's Hospital, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Chattopadhyay S, Lionel S, Selvarajan S, Devasia AJ, Korula A, Kulkarni U, NA F, Sindhuvi E, Lakshmi KM, Srivastava A, Abraham A, Mathews V, George B. Fludarabine-Based Low-Intensity Conditioning for Fanconi Anemia is Associated with Good Outcomes in Aplastic Anemia but not in MDS - a Single-Center Experience. Mediterr J Hematol Infect Dis 2023; 15:e2023039. [PMID: 37435039 PMCID: PMC10332348 DOI: 10.4084/mjhid.2023.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/31/2023] [Indexed: 07/13/2023] Open
Abstract
Background Hematopoietic stem cell transplantation (HSCT) is the only curative option for patients with Fanconi Anemia (FA) with hematological abnormalities. Materials and Methods This is a retrospective analysis of patients with FA who underwent a matched-related donor HSCT. Results Sixty patients underwent 65 transplants between 1999-2021 using a fludarabine-based low-intensity conditioning regimen. The median age at transplant was 11 years (range: 3-37). Aplastic anemia (AA) was the underlying diagnosis in 55 (84.6%), while 8 (12.4%) had myelodysplastic syndrome (MDS) and 2 (3%) had acute myeloid leukemia (AML). The conditioning regimen used was Fludarabine with low-dose Cyclophosphamide for aplastic anemia and Fludarabine with low-dose Busulfan for MDS/AML. Graft versus host disease (GVHD) prophylaxis consisted of Cyclosporine and methotrexate. Peripheral blood was the predominant stem cell graft source (86.2%). Engraftment occurred in all but one patient. The median time to neutrophil and platelet engraftment was 13 days (range: 9-29) & 13 days (range: 5-31), respectively. Day 28 chimerism analysis showed complete chimerism in 75.4 % and mixed chimerism in 18.5%. Secondary graft failure was encountered in 7.7%. Grade II-IV acute GVHD occurred in 29.2%, while Grade III-IV acute GVHD occurred in 9.2%. Chronic GVHD was seen in 58.5% and was limited in most patients. The median follow-up is 55 months (range: 2-144) & the 5-year estimated overall survival (OS) is 80.2 ± 5.1%. Secondary malignancies were noted in 4 patients. The 5-year OS was significantly higher in patients undergoing HSCT for AA (86.6 + 4.7%) as compared to MDS/AML (45.7+16.6%) (p= 0.001). Conclusion SCT using a fully matched donor provides good outcomes with low-intensity conditioning regimens in patients with FA who have aplastic marrow.
Collapse
Affiliation(s)
| | - Sharon Lionel
- Department of Hematology, Christian Medical College, Vellore, India
| | | | - Anup J Devasia
- Department of Hematology, Christian Medical College, Vellore, India
| | - Anu Korula
- Department of Hematology, Christian Medical College, Vellore, India
| | - Uday Kulkarni
- Department of Hematology, Christian Medical College, Vellore, India
| | - Fouzia NA
- Department of Hematology, Christian Medical College, Vellore, India
| | - Eunice Sindhuvi
- Department of Hematology, Christian Medical College, Vellore, India
| | | | - Alok Srivastava
- Department of Hematology, Christian Medical College, Vellore, India
| | - Aby Abraham
- Department of Hematology, Christian Medical College, Vellore, India
| | - Vikram Mathews
- Department of Hematology, Christian Medical College, Vellore, India
| | - Biju George
- Department of Hematology, Christian Medical College, Vellore, India
| |
Collapse
|
12
|
Martínez-Balsalobre E, Guervilly JH, van Asbeck-van der Wijst J, Pérez-Oliva AB, Lachaud C. Beyond current treatment of Fanconi Anemia: What do advances in cell and gene-based approaches offer? Blood Rev 2023; 60:101094. [PMID: 37142543 DOI: 10.1016/j.blre.2023.101094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Fanconi anemia (FA) is a rare inherited disorder that mainly affects the bone marrow. This condition causes decreased production of all types of blood cells. FA is caused by a defective repair of DNA interstrand crosslinks and to date, mutations in over 20 genes have been linked to the disease. Advances in science and molecular biology have provided new insight between FA gene mutations and the severity of clinical manifestations. Here, we will highlight the current and promising therapeutic options for this rare disease. The current standard treatment for FA patients is hematopoietic stem cell transplantation, a treatment associated to exposure to radiation or chemotherapy, immunological complications, plus opportunistic infections from prolonged immune incompetence or increased risk of morbidity. New arising treatments include gene addition therapy, genome editing using CRISPR-Cas9 nuclease, and hematopoietic stem cell generation from induced pluripotent stem cells. Finally, we will also discuss the revolutionary developments in mRNA therapeutics as an opportunity for this disease.
Collapse
Affiliation(s)
- Elena Martínez-Balsalobre
- Cancer Research Center of Marseille, Aix-Marseille Univ., Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France.
| | - Jean-Hugues Guervilly
- Cancer Research Center of Marseille, Aix-Marseille Univ., Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France.
| | | | - Ana Belén Pérez-Oliva
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain.
| | - Christophe Lachaud
- Cancer Research Center of Marseille, Aix-Marseille Univ., Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France.
| |
Collapse
|
13
|
Suh E, Shin S, Ju HY, Yoo KH, Kim HY, Cho D, Kim SH, Kim HJ. The First Case of Acute Myeloid Leukemia With Underlying Fanconi Anemia due to FANCF Variants in Korea. Ann Lab Med 2023; 43:204-207. [PMID: 36281516 PMCID: PMC9618904 DOI: 10.3343/alm.2023.43.2.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/19/2022] [Accepted: 09/11/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Eunsang Suh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Seoul, Korea
| | - Sunghwan Shin
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Seoul, Korea
| | - Hee Young Ju
- Department of Pediatrics, Samsung Medical Center, Seoul, Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Seoul, Korea
| | - Hyun-Young Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Seoul, Korea
| | - Duck Cho
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Seoul, Korea
| | - Sun-Hee Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Seoul, Korea
| | - Hee-Jin Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Seoul, Korea,Corresponding author: Hee-Jin Kim, M.D., Ph.D. Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea Tel: +82-2-3410-2710, Fax: +82-2-3410-2719, E-mail:
| |
Collapse
|
14
|
Fabozzi F, Mastronuzzi A. Genetic Predisposition to Hematologic Malignancies in Childhood and Adolescence. Mediterr J Hematol Infect Dis 2023; 15:e2023032. [PMID: 37180200 PMCID: PMC10171214 DOI: 10.4084/mjhid.2023.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/19/2023] [Indexed: 05/16/2023] Open
Abstract
Advances in molecular biology and genetic testing have greatly improved our understanding of the genetic basis of hematologic malignancies and have enabled the identification of new cancer predisposition syndromes. Recognizing a germline mutation in a patient affected by a hematologic malignancy allows for a tailored treatment approach to minimize toxicities. It informs the donor selection, the timing, and the conditioning strategy for hematopoietic stem cell transplantation, as well as the comorbidities evaluation and surveillance strategies. This review provides an overview of germline mutations that predispose to hematologic malignancies, focusing on those most common during childhood and adolescence, based on the new International Consensus Classification of Myeloid and Lymphoid Neoplasms.
Collapse
Affiliation(s)
- Francesco Fabozzi
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| |
Collapse
|
15
|
Modern management of Fanconi anemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:649-657. [PMID: 36485157 PMCID: PMC9821189 DOI: 10.1182/hematology.2022000393] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this review, we present a clinical case report and discussion to outline the importance of long-term specific Fanconi anemia (FA) monitoring, and we discuss the main aspects of the general management of patients with FA and clinical complications. While several nontransplant treatments are currently under evaluation, hematopoietic stem cell transplantation (HSCT) remains the only therapeutic option for bone marrow failure (BMF). Although HSCT outcomes in patients with FA have remarkably improved over the past 20 years, in addition to the mortality intrinsic to the procedure, HSCT increases the risk and accelerates the appearance of late malignancies. HSCT offers the best outcome when performed in optimal conditions (moderate cytopenia shifting to severe, prior to transfusion dependence and before clonal evolution or myelodysplasia/acute myeloid leukemia); hence, an accurate surveillance program is vital. Haploidentical HSCT offers very good outcomes, although long-term effects on malignancies have not been fully explored. A monitoring plan is also important to identify cancers, particularly head and neck carcinomas, in very early phases. Gene therapy is still experimental and offers the most encouraging results when performed in early phases of BMF by infusing high numbers of corrected cells without genotoxic effects. Patients with FA need comprehensive monitoring and care plans, coordinated by centers with expertise in FA management, that start at diagnosis and continue throughout life. Such long-term follow-up is essential to detect complications related to the disease or treatment in this setting.
Collapse
|
16
|
Cesaro S, Donadieu J, Cipolli M, Dalle JH, Styczynski J, Masetti R, Strahm B, Mauro M, Alseraihy A, Aljurf M, Dufour C, de la Tour RP. Stem Cell Transplantation in Patients Affected by Shwachman-Diamond Syndrome: Expert Consensus and Recommendations From the EBMT Severe Aplastic Anaemia Working Party. Transplant Cell Ther 2022; 28:637-649. [PMID: 35870777 DOI: 10.1016/j.jtct.2022.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/18/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
Shwachman-Diamond syndrome is a rare disorder that can develop malignant and nonmalignant hematological complications. Overall, 10% to 20% of Shwachman-Diamond patients need hematopoietic stem cell transplantation (HSCT), but most centers have a limited experience and different approaches. The European Society for Blood and Marrow Transplantation-Severe Aplastic Anaemia Working Party promoted an expert consensus to propose recommendations regarding key issues in the management of Shwachman-Diamond patients with hematological complications. The main items identified as relevant for improving survival were: the importance of regular and structured hematologic follow-up, the potential reduction of transplant-related mortality by using reduced-intensity conditioning regimens, the limitation of total body irradiation, particularly for non-malignant severe cytopenia/bone marrow failure, the early diagnosis of clonal malignant evolution and early recognition of an indication for HSCT. Finally, the poor results of HSCT in patients with acute myeloid leukemia, irrespective of cytoreductive chemotherapy treatment received prior to transplantation, highlights the need for innovative approaches. © 2023 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Collapse
Affiliation(s)
- Simone Cesaro
- Paediatric Haematology Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata, Verona, Italy.
| | - Jean Donadieu
- Department of Paediatric Haematology and Oncology, Registre National des Neutropénies Chroniques, AP-HP Trousseau Hospital, Paris, France
| | - Marco Cipolli
- Cystic Fibrosis and Shwachman Diamond Regional Centre, Italian Registry of Shwachman Diamond Disease, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Jean Hugues Dalle
- Department of Paediatric Haematology, Robert Debré Hospital, GHU APHP Nord Université de Paris, France
| | - Jan Styczynski
- Department of Paediatric Haematology and Oncology, Collegium Medicum, Nicolaus Copernicus University Torun, Jurasz University Hospital, Bydgoszcz, Poland
| | - Riccardo Masetti
- Paediatric Oncology and Haematology "Lalla Seràgnoli," Paediatric Unit-IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| | - Brigitte Strahm
- Department of Paediatrics and Adolescent Medicine, Division of Paediatric Haematology and Oncology, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Margherita Mauro
- Paediatric Haematology Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Amal Alseraihy
- Department of Oncology, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - Mahmoud Aljurf
- Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Carlo Dufour
- Haematology Unit, IRCCS G. Gaslini Children's Hospital, Genoa, Italy
| | - Regis Peffault de la Tour
- French Reference Centre for Aplastic Anaemia and Paroxysmal Nocturnal Haemoglobinuria, Bone Marrow Transplantation Unit, APHP, Saint-Louis Hospital, Paris University, Paris, France
| |
Collapse
|
17
|
Xu L, Lu Y, Hu S, Li C, Tang Y, Wang H, Yan J, Chen J, Liu S, Sun Y, Wu X, Lin F, Lu P, Huang X. Unmanipulated haploidentical haematopoietic cell transplantation with radiation-free conditioning in Fanconi anaemia: A retrospective analysis from the Chinese Blood and Marrow Transplantation Registry Group. Br J Haematol 2022; 199:401-410. [PMID: 35989315 DOI: 10.1111/bjh.18408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/16/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022]
Abstract
Haematopoietic cell transplantation (HCT) is the only curative treatment for haematological complications in patients with Fanconi anaemia (FA). Haploidentical (haplo-) HCT is a promising alternative for FA. We aimed to analyse the outcomes of unmanipulated haplo-HCT in patients with FA with radiation-free conditioning. A total of 56 patients from 11 centres between 2013 and 2021 in China were retrospectively analysed. The mean (SD) cumulative incidence was 96.4% (0.08%) for 30-day neutrophil engraftment and 85.5% (0.24%) for 100-day platelet engraftment. With a median (range) follow-up of 2.4 (0.2-5.8) years, favourable mean (SD) overall survival of 80.9% (5.5%) and event-free survival of 79.3% (5.6%) were achieved. The mean (SD) incidences of acute graft-versus-host disease (aGvHD) Grade II-IV and Grade III-IV were 55.4% (0.45%) and 42.9 (0.45%) respectively. The mean (SD) cumulative incidence of 3-year chronic graft-versus-host disease (cGvHD) was 34.7% (0.86%) and that of moderate-to-severe cGvHD was 9.0% (0.19%). Our data demonstrate that in unmanipulated haplo-HCT for patients with FA, radiation-free regimens based on fludarabine and low-dose cyclophosphamide ± busulfan achieved favourable engraftment and survival with relatively high incidences of aGvHD and cGvHD. These results prompt the use of low-intensity conditioning without radiation and intensive GvHD prophylaxis when considering unmanipulated haplo-HCT in patients with FA.
Collapse
Affiliation(s)
- Lanping Xu
- Peking University People's Hospital, Peking University Institute of Haematology, National Clinical Research Center for Haematologic Disease, Collaborative Innovation Center of Haematology, Beijing Key Laboratory of Haematopoietic Stem Cell Transplant, Beijing, P.R. China
| | - Yue Lu
- Hebei Yanda Lu Daopei Hospital and Beijing Lu Daopei Hospital, Beijing, Hebei, China
| | - Shaoyan Hu
- Children's Hospital of Soochow University, Soochow, China
| | - Chunfu Li
- Nanfang-Chunfu Children's Institute of Hematology and Oncology, Dongguan, China
| | - Yongmin Tang
- The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hongmei Wang
- The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jinsong Yan
- The Second Hospital of Dalian Medical University, Dalian, China
| | - Jing Chen
- Shanghai Children's Medical Center, Shanghai, China
| | - Sixi Liu
- Shenzhen Children's Hospital, Shenzhen, China
| | - Yuan Sun
- Beijing Jingdu Children's Hospital, Beijing, China
| | - Xuedong Wu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Lin
- Peking University People's Hospital, Peking University Institute of Haematology, National Clinical Research Center for Haematologic Disease, Collaborative Innovation Center of Haematology, Beijing Key Laboratory of Haematopoietic Stem Cell Transplant, Beijing, P.R. China
| | - Peihua Lu
- Hebei Yanda Lu Daopei Hospital and Beijing Lu Daopei Hospital, Beijing, Hebei, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Haematology, National Clinical Research Center for Haematologic Disease, Collaborative Innovation Center of Haematology, Beijing Key Laboratory of Haematopoietic Stem Cell Transplant, Beijing, P.R. China.,Peking-Tsinghua Centre for Life Sciences, Beijing, China
| | | |
Collapse
|
18
|
Fioredda F, Onofrillo D, Farruggia P, Barone A, Veltroni M, Notarangelo LD, Menna G, Russo G, Martire B, Finocchi A, Verzegnassi F, Bonanomi S, Ramenghi U, Pillon M, Dufour C. Diagnosis and management of neutropenia in children: The approach of the Study Group on Neutropenia and Marrow Failure Syndromes of the Pediatric Italian Hemato-Oncology Association (Associazione Italiana Emato-Oncologia Pediatrica - AIEOP). Pediatr Blood Cancer 2022; 69:e29599. [PMID: 35253359 DOI: 10.1002/pbc.29599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/09/2022]
Abstract
Neutropenia refers to a group of diseases characterized by a reduction in neutrophil levels below the recommended age threshold. The present study aimed to review the diagnosis and management of neutropenia, including a diagnostic toolkit and candidate underlying genes. This study also aimed to review the progress toward the definition of autoimmune and idiopathic neutropenia rising in infancy or in late childhood but without remission, and provide suggestions for efficient diagnostics, including indications for the bone marrow and genetic testing. The management and treatment protocols for common and unique presentations are also reviewed, providing evidence tailored to a single patient.
Collapse
Affiliation(s)
| | - Daniela Onofrillo
- Pediatric Hematology and Oncology Unit, Department of Hematology, Spirito Santo Hospital, Pescara, Italy
| | - Piero Farruggia
- Department of Pediatric Onco-Hematology, University Hospital, Parma, Italy
| | - Angelica Barone
- Pediatric Hematology and Oncology Unit, ARNAS (Azienda di Rilievo Nazionale ad Alta Specializzazione) Ospedale Civico, Palermo, Italy
| | - Marinella Veltroni
- Department of Pediatric Onco-Hematology, Meyer Children's Hospital, Florence, Italy
| | - Lucia Dora Notarangelo
- Oncology-Haematology and Bone Marrow Transplantation Unit, Children's Hospital, Brescia, Italy
| | - Giuseppe Menna
- AORN (Azienda Ospedaliera Rilievo Nazionale), Santobono Pausillipon, Naples, Italy
| | - Giovanna Russo
- Pediatric Ematologi and Oncology Unit, Azienda Policlinico-Vittorio Emanuele, University of Catania, Catania, Italy
| | - Baldassarre Martire
- Unit of Pediatrics and Neonatology, "Monsignor Dimiccoli" Hospital, Barletta, Italy
| | - Andrea Finocchi
- Unit of Immune and Infectious Disease, University Department of Pediatrics DPUO, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Federico Verzegnassi
- Institute of Maternal and Child Health, IRCCS Burlo Garofalo, Trieste, Italy.,Department of Pediatric Hematology, San Gerardo Hospital, Monza, Italy
| | - Sonia Bonanomi
- MBBM (Monza e Brianza per Bambino e Mamma) Foundation, Department of Pediatrics, University of Milano - Bicocca, Monza, Italy
| | - Ugo Ramenghi
- Department of Pediatric and Public Health Sciences, University of Torino, Turin, Italy
| | - Marta Pillon
- Pediatric Onco-Hematology Unit, University Hospital of Padua, Padua, Italy
| | - Carlo Dufour
- Unit of Haematology, IRCCS - Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
19
|
Sakaguchi H, Yoshida N. Recent advances in hematopoietic cell transplantation for inherited bone marrow failure syndromes. Int J Hematol 2022; 116:16-27. [PMID: 35633493 DOI: 10.1007/s12185-022-03362-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
Inherited bone marrow failure syndromes (IBMFSs) are a group of rare genetic disorders characterized by bone marrow failure with unique phenotypes and predisposition to cancer. Classical IBMFSs primarily include Fanconi anemia with impaired DNA damage repair, dyskeratosis congenita with telomere maintenance dysfunction, and Diamond-Blackfan anemia with aberrant ribosomal protein biosynthesis. Recently, comprehensive genetic analyses have been implemented for the definitive diagnosis of classic IBMFSs, and advances in molecular genetics have led to the identification of novel disorders such as AMeD and MIRAGE syndromes. Allogeneic hematopoietic cell transplantation (HCT), a promising option to overcome impaired hematopoiesis in patients with IBMFSs, does not correct nonhematological defects and may enhance the risk of secondary malignancies. Disease-specific management is necessary because IBMFSs differ in underlying defects and are associated with varying degrees of risk for clonal evolution and early or late complications after HCT. In addition, long-term follow-up is essential to detect complications related to the IBMFS or HCT. This review provides a summary of current clinical practices along with the latest data on HCT in IBMFSs.
Collapse
Affiliation(s)
- Hirotoshi Sakaguchi
- Department of Transplantation and Cellular Therapy, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Nao Yoshida
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, Nagoya, Japan.
| |
Collapse
|
20
|
Altintas B, Giri N, McReynolds LJ, Best A, Alter BP. Genotype-phenotype and outcome associations in patients with Fanconi anemia: the National Cancer Institute cohort. Haematologica 2022; 108:69-82. [PMID: 35417938 PMCID: PMC9827153 DOI: 10.3324/haematol.2021.279981] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Indexed: 02/04/2023] Open
Abstract
Fanconi anemia (FA) is caused by pathogenic variants in the FA/BRCA DNA repair pathway genes, and is characterized by congenital abnormalities, bone marrow failure (BMF) and increased cancer risk. We conducted a genotype-phenotype and outcomes study of 203 patients with FA in our cohort. We compared across the genes, FA/BRCA DNA repair pathways (upstream, ID complex and downstream), and type of pathogenic variants (hypomorphic or null). We explored differences between the patients evaluated in our clinic (clinic cohort) and those who provided data remotely (field cohort). Patients with variants in upstream complex pathway had less severe phenotype [lacked VACTERL-H (Vertebral, Anal, Cardiac, Trachea-esophageal fistula, Esophageal/duodenal atresia, Renal, Limb, Hydrocephalus) association and/or PHENOS (Pigmentation, small-Head, small-Eyes, Neurologic, Otologic, Short stature) features]. ID complex was associated with VACTERL-H. The clinic cohort had more PHENOS features than the field cohort. PHENOS was associated with increased risk of BMF, and VACTERL-H with hypothyroidism. The cumulative incidence of severe BMF was 70%, solid tumors (ST) 20% and leukemia 6.5% as the first event. Head and neck and gynecological cancers were the most common ST, with further increased risk after hematopoietic cell transplantation. Among patients with FANCA, variants in exons 27-30 were associated with higher frequency of ST. Overall median survival was 37 years; patients with leukemia or FANCD1/BRCA2 variants had poorest survival. Patients with variants in the upstream complex had better survival than ID or downstream complex (p=0.001 and 0.016, respectively). FA is phenotypically and genotypically heterogeneous; detailed characterization provides new insights towards understanding this complex syndrome and guiding clinical management.
Collapse
Affiliation(s)
- Burak Altintas
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute,N. Giri
| | - Lisa J. McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute
| | - Ana Best
- Biostatistics Branch, Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Blanche P. Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute
| |
Collapse
|
21
|
Giardino S, Bagnasco F, Falco M, Miano M, Pierri F, Risso M, Terranova P, Martino DD, Massaccesi E, Ricci M, Chianucci B, Dell'Orso G, Sabatini F, Podestà M, Lanino E, Faraci M. HAPLOIDENTICAL STEM CELL TRANSPLANTATION AFTER TCR αβ +AND CD19 + CELLS DEPLETION IN CHILDREN WITH CONGENITAL NON-MALIGNANT DISEASE. Transplant Cell Ther 2022; 28:394.e1-394.e9. [PMID: 35405368 DOI: 10.1016/j.jtct.2022.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND . Haploidentical hematopoietic stem cell transplantation (haplo-HSCT) represents a valuable alternative for children with non-malignant disease and ex-vivo negative selection of TCR αβ+-cells is an emerging graft manipulation option that carries several potential advantages in terms of reduced risk of Graft versus Host Disease (GvHD) and improved immune reconstitution. METHODS . We reported all consecutive patients with a diagnosis of non-malignant disease who received a TCR-αβ+ and CD19+depleted haplo-HSCT at "IRCCS Istituto Giannina Gaslini" from 2013 to 2019; the conditioning regimen was myeloablative or non-myeloablative, depending on underlying disease; all patients received anti-thymocyte globulin and rituximab. No post-transplant GvHD prophylaxis was given in presence of a TCR-αβ+ cell-dose in the graft lower than the threshold of 1 × 105/kg of the recipient's weight. RESULTS . Among 20 HSCTs, engraftment occurred in 17 (85%) after a median of 14 and 12 days from graft infusion for neutrophils and platelets respectively. Primary graft failure was diagnosed in 3 (15%) patients, two (10%) experienced secondary rejection; all of these underwent a second HSCT. The cumulative incidence of a-GvHD and c-GvHD was 15% (2 grade 1, 1 grade 4) at 90 days and 5% (1 grade 1) at 7 months, respectively. Cytomegalovirus reactivation requiring pre-emptive treatment was observed in 9 patients (45%). One patient developed a JC virus-related progressive multifocal leukoencephalopathy, successfully managed with donor-derived virus-specific T-cell infusions. A complete immunological recovery was reached in most patients within 6 months. After a median follow-up of 4 years, 18 patients are alive, with a cumulative survival probability of 90%. CONCLUSION . Haplo-HSCT after ex-vivo TCR-αβ+/CD19+ negative selection may be considered a good option for children with non-malignant diseases since it ensures a high engraftment rate with an acceptable risk of graft failure, very low incidence of significant GvHD, and good immune reconstitution with low frequency of severe virus-related disease. However, the control of viral infection/reactivation should be kept high in order to promptly provide pre-emptive treatments and approaches of antiviral adoptive immunotherapy.
Collapse
Affiliation(s)
- Stefano Giardino
- Hematopoietic stem cell transplantation Unit, IRCSS Istituto Giannina Gaslini, Genoa, Italy.
| | - Francesca Bagnasco
- Epidemiology and Biostatistics Unit, IRCSS Istituto Giannina Gaslini, Genoa, Italy
| | - Michela Falco
- Laboratory of Clinical and Experimental Immunology, IRCSS Istituto Giannina Gaslini, Genoa, Italy
| | - Maurizio Miano
- Hematology Unit, IRCSS Istituto Giannina Gaslini, Genoa, Italy
| | - Filomena Pierri
- Hematopoietic stem cell transplantation Unit, IRCSS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Risso
- Immunohematology and Transfusional Department, IRCSS Istituto Giannina Gaslini, Genoa, Italy
| | - Paola Terranova
- Laboratory of Hematology, IRCSS Istituto Giannina Gaslini, Genoa, Italy
| | | | | | - Margherita Ricci
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Liguria, Italy
| | - Benedetta Chianucci
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Liguria, Italy
| | - Gianluca Dell'Orso
- Hematopoietic stem cell transplantation Unit, IRCSS Istituto Giannina Gaslini, Genoa, Italy
| | - Federica Sabatini
- Stem Cells and Cell Therapies Laboratory, IRCSS IstitutoGianninaGaslini, Genoa, Italy
| | - Marina Podestà
- Stem Cells and Cell Therapies Laboratory, IRCSS IstitutoGianninaGaslini, Genoa, Italy
| | - Edoardo Lanino
- Hematopoietic stem cell transplantation Unit, IRCSS Istituto Giannina Gaslini, Genoa, Italy
| | - Maura Faraci
- Hematopoietic stem cell transplantation Unit, IRCSS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
22
|
Bonfim C, Nichele S, Loth G, Funke VAM, Nabhan SK, Pillonetto DV, Lima ACM, Pasquini R. Transplantation for Fanconi anaemia: lessons learned from Brazil. THE LANCET HAEMATOLOGY 2022; 9:e228-e236. [DOI: 10.1016/s2352-3026(22)00032-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/11/2022]
|
23
|
Choijilsuren HB, Park Y, Jung M. Mechanisms of somatic transformation in inherited bone marrow failure syndromes. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:390-398. [PMID: 34889377 PMCID: PMC8791168 DOI: 10.1182/hematology.2021000271] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Inherited bone marrow failure syndromes (IBMFS) cause hematopoietic stem progenitor cell (HSPC) failure due to germline mutations. Germline mutations influence the number and fitness of HSPC by various mechanisms, for example, abnormal ribosome biogenesis in Shwachman-Diamond syndrome and Diamond-Blackfan anemia, unresolved DNA cross-links in Fanconi anemia, neutrophil maturation arrest in severe congenital neutropenia, and telomere shortening in short telomere syndrome. To compensate for HSPC attrition, HSPCs are under increased replication stress to meet the need for mature blood cells. Somatic alterations that provide full or partial recovery of functional deficit implicated in IBMFS can confer a growth advantage. This review discusses results of recent genomic studies and illustrates our new understanding of mechanisms of clonal evolution in IBMFS.
Collapse
Affiliation(s)
- Haruna Batzorig Choijilsuren
- Division of Hematology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD
- Department of Molecular and Cellular Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
| | - Yeji Park
- Division of Hematology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Moonjung Jung
- Division of Hematology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
24
|
Pierri F, Faraci M, Giardino S, Dufour C. Hematopoietic stem cell transplantation for classical inherited bone marrow failure syndromes: an update. Expert Rev Hematol 2021; 14:911-925. [PMID: 34488529 DOI: 10.1080/17474086.2021.1977119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Inherited bone marrow failure syndromes (IBMFS) feature complex molecular pathophysiology resulting in ineffective hematopoiesis and increased risk of progression to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Allogenic hematopoietic stem cell transplantation (HSCT) is the only well-established cure for the hematological manifestations of these diseases. AREAS COVERED In recent years, analysis of large series from international databases (mainly from the European Bone Marrow Transplantation [EBMT] database) has improved knowledge about HSCT in IBMFS. This review, following a thorough Medline search of the pertinent published studies, reports the most recent data on HSCT in IBMFS. EXPERT OPINION Despite the common features, IBMFS are very different in their manifestations and in the occurrence and management of HSCT complications. Thus, a 'disease-specific' HSCT using an optimized conditioning regimen based on the characteristics of the disease is essential for achieving long-term survival. The phenotypical heterogeneity associated with extramedullary abnormalities has to be carefully evaluated before HSCT because transplantation may only correct impaired hematopoiesis. HSCT may be associated with the risk of treatment-related mortality and with significant early and late morbidity. For these reasons, the benefits should be carefully weighed against the risks.
Collapse
Affiliation(s)
| | - Maura Faraci
- Hematopoietic Stem Cell Transplantation Unit, Italy
| | | | - Carlo Dufour
- Hematology Unit, Department of Hematology-Oncology, IRCSS-Istituto G. Gaslini, Genova, Italy
| |
Collapse
|
25
|
Miano M, Grossi A, Dell'Orso G, Lanciotti M, Fioredda F, Palmisani E, Lanza T, Guardo D, Beccaria A, Ravera S, Cossu V, Terranova P, Giona F, Santopietro M, Cappelli E, Ceccherini I, Dufour C. Genetic screening of children with marrow failure. The role of primary Immunodeficiencies. Am J Hematol 2021; 96:1077-1086. [PMID: 34000087 DOI: 10.1002/ajh.26242] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022]
Abstract
The differential diagnosis of marrow failure (MF) is crucial in the diagnostic work-up, since genetic forms require specific care. We retrospectively studied all patients with single/multi-lineage MF evaluated in a single-center to identify the type and incidence of underlying molecular defects. The diepoxybutane test was used to screen Fanconi Anemia. Other congenital MFs have been searched using Sanger and/or Next Generation Sequencing analysis, depending on the available tools over the years. Between 2009-2019, 97 patients (aged 0-32 years-median 5) with single-lineage (29%) or multilineage (68%) MF were evaluated. Fifty-three (54%) and 28 (29%) were diagnosed with acquired and congenital MF, respectively. The remaining 16 (17%), with trilinear (n=9) and monolinear (n=7) MF, were found to have an underlying primary immunodeficiency (PID) and showed clinical and biochemical signs of immune-dysregulation in 10/16 (62%) and in 14/16 (87%) of cases, respectively. Clinical signs were also found in 22/53 (41%) and 8/28 (28%) patients with idiopathic and classical cMF, respectively. Eight out of 16 PIDs patients were successfully transplanted, four received immunosuppression, two did not require treatment, and the remaining two died. We show that patients with single/multi-lineage MF may have underlying PIDs in a considerable number of cases and that MF may represent a relevant clinical sign in patients with PIDs, thus widening their clinical phenotype. An accurate immunological work-up should be performed in all patients with MF, and PID-related genes should be considered when screening MF in order to identify disorders that may receive targeted treatments and/or appropriate conditioning regimens before transplant.
Collapse
Affiliation(s)
- Maurizio Miano
- Hematology Unit IRCCS Istituto Giannina Gaslini Genoa Italy
| | - Alice Grossi
- UOSD Genetics and Genomics of Rare Diseases IRCCS Istituto Giannina Gaslini Genoa Italy
| | | | | | | | | | - Tiziana Lanza
- Hematology Unit IRCCS Istituto Giannina Gaslini Genoa Italy
| | - Daniela Guardo
- Hematology Unit IRCCS Istituto Giannina Gaslini Genoa Italy
| | | | - Silvia Ravera
- Department of Experimental Medicine University of Genoa Genoa Italy
| | - Vanessa Cossu
- Department of Health Sciences University of Genoa Genoa Italy
| | | | - Fiorina Giona
- Department of Translational and Precision Medicine Sapienza University Rome Italy
| | - Michelina Santopietro
- Hematology and Hematopoietic Stem Cells Transplant Unit AO San Camillo‐Forlanini Rome Italy
| | | | - Isabella Ceccherini
- UOSD Genetics and Genomics of Rare Diseases IRCCS Istituto Giannina Gaslini Genoa Italy
| | - Carlo Dufour
- Hematology Unit IRCCS Istituto Giannina Gaslini Genoa Italy
| |
Collapse
|
26
|
The Role of Allogeneic Hematopoietic Stem Cell Transplantation in Pediatric Leukemia. J Clin Med 2021; 10:jcm10173790. [PMID: 34501237 PMCID: PMC8432223 DOI: 10.3390/jcm10173790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/08/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) offers potentially curative treatment for many children with high-risk or relapsed acute leukemia (AL), thanks to the combination of intense preparative radio/chemotherapy and the graft-versus-leukemia (GvL) effect. Over the years, progress in high-resolution donor typing, choice of conditioning regimen, graft-versus-host disease (GvHD) prophylaxis and supportive care measures have continuously improved overall transplant outcome, and recent successes using alternative donors have extended the potential application of allotransplantation to most patients. In addition, the importance of minimal residual disease (MRD) before and after transplantation is being increasingly clarified and MRD-directed interventions may be employed to further ameliorate leukemia-free survival after allogeneic HSCT. These advances have occurred in parallel with continuous refinements in chemotherapy protocols and the development of targeted therapies, which may redefine the indications for HSCT in the coming years. This review discusses the role of HSCT in childhood AL by analysing transplant indications in both acute lymphoblastic and acute myeloid leukemia, together with current and most promising strategies to further improve transplant outcome, including optimization of conditioning regimen and MRD-directed interventions.
Collapse
|
27
|
Gorfinkel L, Demsky C, Pashankar F, Kupfer G, Shah NC. Bone marrow transplant using fludarabine-based reduced intensity conditioning regimen with in vivo T cell depletion in patients with Fanconi anemia. Pediatr Transplant 2021; 25:e14009. [PMID: 33755277 DOI: 10.1111/petr.14009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/15/2020] [Accepted: 02/16/2021] [Indexed: 11/28/2022]
Abstract
FA is the most common cause of inherited BMF syndromes. The only cure for BMF in FA remains HSCT. Due to DNA instability in FA, RIC has been used to decrease immediate and late complications of HSCT. Most FA conditioning regimens in mismatched and unrelated donor transplants rely on TBI, which increases the risk of secondary malignancies. Most of the non-TBI conditioning regimens use an ex vivo T-cell depletion approach, but this is not feasible at all pediatric stem cell transplant programs. To evaluate the success of HSCT in patients with FA using non-TBI conditioning regimens with in vivo T-cell depletion approach. HSCT using non-TBI based conditioning was performed on two siblings with FA. The first sibling underwent matched unrelated donor transplant with a BM graft using fludarabine, alemtuzumab, busulfan, and cyclophosphamide conditioning and cyclosporine and mycophenolate as GVHD prophylaxis. The second sibling underwent MSD transplant with UCB and BM grafts using similar approach, but without busulfan and mycophenolate. Both siblings had engraftment without signs of acute or chronic GVHD. Acute post-transplant complications included brief viral reactivations. At last follow-up, both siblings continued to have full immune reconstitution with stable chimerism. Conditioning regimens without radiation and inclusion of alemtuzumab can lead to successful engraftment without development of GVHD and reduce risk of developing secondary neoplasms, even with unrelated donor transplants.
Collapse
Affiliation(s)
- Lev Gorfinkel
- Yale New Haven Children's Hospital, New Haven, Connecticut, USA
| | - Carolyn Demsky
- Yale New Haven Children's Hospital, New Haven, Connecticut, USA
| | - Farzana Pashankar
- Yale New Haven Children's Hospital, New Haven, Connecticut, USA.,Yale School of Medicine, New Haven, Connecticut, USA
| | - Gary Kupfer
- Yale New Haven Children's Hospital, New Haven, Connecticut, USA.,Yale School of Medicine, New Haven, Connecticut, USA
| | - Niketa C Shah
- Yale New Haven Children's Hospital, New Haven, Connecticut, USA.,Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
28
|
Miano M, Eikema DJ, de la Fuente J, Bosman P, Ghavamzadeh A, Smiers F, Sengeløv H, Yesilipek A, Formankova R, Bader P, Díaz Pérez MÁ, Bertrand Y, Niemeyer C, Diallo S, Ansari M, Bykova TA, Faraci M, Bonanomi S, Gozdzik J, Satti TM, Bodova I, Wölfl M, Rocha VG, Mellgren K, Rascon J, Holter W, Lange A, Meisel R, Beguin Y, Mozo Y, Kriván G, Sirvent A, Bruno B, Dalle JH, Onofrillo D, Giardino S, Risitano AM, de Latour RP, Dufour C. Stem Cell Transplantation for Diamond-Blackfan Anemia. A Retrospective Study on Behalf of the Severe Aplastic Anemia Working Party of the European Blood and Marrow Transplantation Group (EBMT). Transplant Cell Ther 2020; 27:274.e1-274.e5. [PMID: 33781541 DOI: 10.1016/j.jtct.2020.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/05/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023]
Abstract
Data on stem cell transplantation (SCT) for Diamond-Blackfan Anemia (DBA) is limited. We studied patients transplanted for DBA and registered in the EBMT database. Between 1985 and 2016, 106 DBA patients (median age, 6.8 years) underwent hematopoietic stem cell transplantation from matched-sibling donors (57%), unrelated donors (36%), or other related donors (7%), using marrow (68%), peripheral blood stem cells (20%), both marrow and peripheral blood stem cells (1%), or cord blood (11%). The cumulative incidence of engraftment was 86% (80% to 93%), and neutrophil recovery and platelet recovery were achieved on day +18 (range, 16 to 20) and +36 (range, 32 to 43), respectively. Three-year overall survival and event-free survival were 84% (77% to 91%) and 81% (74% to 89%), respectively. Older patients were significantly more likely to die (hazard ratio, 1.4; 95% confidence interval, 1.06 to 1.23; P < .001). Outcomes were similar between sibling compared to unrelated-donor transplants. The incidence of acute grades II to IV of graft-versus-host disease (GVHD) was 30% (21% to 39%), and the incidence of extensive chronic GVHD was 15% (7% to 22%). This study shows that SCT may represent an alternative therapeutic option for transfusion-dependent younger patients.
Collapse
Affiliation(s)
- Maurizio Miano
- Haematology Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy.
| | | | - Josu de la Fuente
- Centre for Haematology, Imperial College London, London, United Kingdom
| | - Paul Bosman
- EBMT Statistics, EBMT Data Office, Leiden, Netherlands
| | - Ardeshir Ghavamzadeh
- Hematology-Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran, Iran
| | - Frans Smiers
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | | | | | | | - Peter Bader
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Miguel Ángel Díaz Pérez
- Department of Pediatrics, Hematology/Oncology and Hematopoietic Stem Cell Transplant Unit, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Yves Bertrand
- Institute of Pediatric Hematology and Oncology, Civil Hospital of Lyon, Lyon, France
| | - Charlotte Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Safiatou Diallo
- Department of Hematology, Jules Bordet Institute, Brussels, Belgium
| | - Marc Ansari
- Pediatric Oncology and Hematology, Department of Paediatrics, Gynaecology, and Obstetrics, Geneva University Hospital, Geneva, Switzerland
| | - Tatiana A Bykova
- Raisa Gorbacheva Memorial Scientific Institute of Children Oncology, Hematology and Transplantation, First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia
| | - Maura Faraci
- BMT Unit, Istituto Giannina Gaslini, Genova, Italy
| | - Sonia Bonanomi
- MBBM Foundation, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | | | | | - Ivana Bodova
- National Institute of Children's Diseases, Bratislava, Slovakia
| | - Matthias Wölfl
- Pediatric Blood and Marrow Transplantation Program, Children's Hospital, University Hospital of Würzburg, Würzburg, Germany
| | | | | | - Jelena Rascon
- Center for Pediatric Oncology and Hematology, Vilnius University, Vilnius, Lithuania
| | | | - Andrzej Lange
- Lower Silesian Center for Cellular Transplantation, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Roland Meisel
- Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Yves Beguin
- CHU de Liège, University of Liège, Liège, Belgium
| | | | - Gergely Kriván
- Department of Paediatric Haematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Anne Sirvent
- Onco-Hématologie Pédiatrique, CHU de Montpellier, Montpellier, France
| | | | - Jean Hugues Dalle
- Hematology and Immunology Department, Hopital Robert-Debré, Université de Paris, Paris, France
| | | | | | - Antonio M Risitano
- Department of Clinical Medicine and Surgery, University of Naples, Naples, Italy
| | | | - Carlo Dufour
- Haematology Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
29
|
Survival and toxicity outcomes of hematopoietic stem cell transplantation for pediatric patients with Fanconi anemia: a unified multicentric national study from the Spanish Working Group for Bone Marrow Transplantation in Children. Bone Marrow Transplant 2020; 56:1213-1216. [PMID: 33303901 DOI: 10.1038/s41409-020-01172-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 01/07/2023]
Abstract
Hematopoietic stem cell transplantation (HSCT) is currently the only curative option for hematological manifestations in patients with Fanconi anemia (FA). We report the outcome of 34 patients with FA inside a collaborative multicenter national study based on recommendations of Spanish Working Group for Bone Marrow Transplantation in Children (GETMON) between 2009 and 2016. Fludarabine-based conditioning regimen was carried out in all patients, with low dose total body irradiation in unrelated transplants. Disease status before HSCT was bone marrow failure (BMF) in 30 patients and myelodysplastic syndrome (MDS) in four. Donors were matched siblings donors (MSD) in 18, matched unrelated donors (MUD) in 15, and one haploidentical donor. All except one patient engrafted. Cumulative incidence of grades II-IV acute graft-versus-host disease (GVHD) was 29% and 11% for chronic GVHD. Median follow-up after HSCT was 6.5 years. Seven patients (21%) died due to transplant-related causes, two (6%) because of MDS relapse, and one (3%) after a squamous cell carcinoma. Overall survival (OS) was 73% at 5 years post-transplant, with no differences between MSD and MUD transplants. OS for patients with BMF was 80% while for MDS was 25%. Our data suggest HSCT can cure hematologic manifestations of most FA patients with BMF.
Collapse
|
30
|
Bonfim C. Special pre- and posttransplant considerations in inherited bone marrow failure and hematopoietic malignancy predisposition syndromes. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2020; 2020:107-114. [PMID: 33275667 PMCID: PMC7727534 DOI: 10.1182/hematology.2020000095] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Advances in the diagnosis and treatment of inherited bone marrow failure syndromes (IBMFS) have provided insight into the complexity of these diseases. The diseases are heterogeneous and characterized by developmental abnormalities, progressive marrow failure, and predisposition to cancer. A correct diagnosis allows for appropriate treatment, genetic counseling, and cancer surveillance. The common IBMFSs are Fanconi anemia, dyskeratosis congenita, and Diamond-Blackfan anemia. Hematopoietic cell transplantation (HCT) offers curative treatment of the hematologic complications of IBMFS. Because of the systemic nature of these diseases, transplant strategies are modified to decrease immediate and late toxicities. HCT from HLA-matched related or unrelated donors offers excellent survival for young patients in aplasia. Challenges include the treatment of adults with marrow aplasia, presentation with myeloid malignancy regardless of age, and early detection or treatment of cancer. In this article, I will describe our approach and evaluation of patients transplanted with IBMFS and review most frequent complications before and after transplant.
Collapse
Affiliation(s)
- Carmem Bonfim
- Division of Bone Marrow Transplantation, General Hospital of the Federal University of Parana, Curitiba, Brazil
| |
Collapse
|
31
|
Yabe M, Morio T, Tabuchi K, Tomizawa D, Hasegawa D, Ishida H, Yoshida N, Koike T, Takahashi Y, Koh K, Okamoto Y, Sano H, Kato K, Kanda Y, Goto H, Takita J, Miyamura T, Noguchi M, Kato K, Hashii Y, Astuta Y, Yabe H. Long-term outcome in patients with Fanconi anemia who received hematopoietic stem cell transplantation: a retrospective nationwide analysis. Int J Hematol 2020; 113:134-144. [PMID: 32949371 DOI: 10.1007/s12185-020-02991-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/22/2020] [Accepted: 08/28/2020] [Indexed: 11/27/2022]
Abstract
We retrospectively analyzed nationwide records of 163 Fanconi anemia (FA) patients [aplastic anemia (AA), n = 118; myelodysplastic syndrome (MDS), n = 30; acute leukemia, n = 15] who underwent first allogeneic hematopoietic stem cell transplantation (HSCT) between 1987 and 2015 in Japan. An alternative donor was used in 119 (73%) patients, and 160 (98%) patients received a non-T-cell-depleted graft. With an 8.7-year median follow-up, 5-year overall survival (OS) was 81%. The 5-year OS was significantly higher in AA patients than in MDS and acute leukemia patients (89%, 71%, and 44%, respectively). In the MDS/leukemia group, factors associated with poor outcome in univariate analysis were older age at HSCT (≥ 18 years), conditioning regimen without anti-thymocyte or lymphocyte globulin, and grade II-IV acute graft-versus-host disease. After 1 year, of 137 survivors, 15 developed subsequent malignancies, of whom 12 were diagnosed with head and neck (HN)/esophageal cancer. An irradiation regimen and older age were associated with the risk of HN/esophageal cancer. Five of seven deaths were attributed to subsequent malignancies more than 5 years after HSCT. On the basis of the risk factors for HSCT in MDS/leukemia patients and subsequent malignancies, a more effective HSCT approach is required.
Collapse
Affiliation(s)
- Miharu Yabe
- Department of Innovative Medical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ken Tabuchi
- Department of Pediatrics and Data Center, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Daisuke Tomizawa
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Daiichiro Hasegawa
- Department of Hematology and Oncology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | | | - Nao Yoshida
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Takashi Koike
- Department of Pediatrics, Tokai University School of Medicine, Isehara, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsuyoshi Koh
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - Yasuhiro Okamoto
- Department of Pediatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hideki Sano
- Department of Pediatric Oncology, Fukushima Medical University Hospital, Fukushima, Japan
| | - Keisuke Kato
- Division of Pediatric Hematology and Oncology, Ibaraki Children's Hospital, Mito, Japan
| | - Yoshinobu Kanda
- Division of Cell Therapy/Hematology, Jichi Medical University Hospital, Shimotsuke, Japan
| | - Hiroaki Goto
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Junko Takita
- Department of Pediatrics, Kyoto University Hospital, Kyoto, Japan
| | - Takako Miyamura
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Maiko Noguchi
- Department of Pediatrics, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Koji Kato
- Central Japan Cord Blood Bank, Seto, Japan
| | - Yoshiko Hashii
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiko Astuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagoya, Japan
| | - Hiromasa Yabe
- Department of Innovative Medical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| |
Collapse
|