1
|
Vital EF, Lam WA. Hidden behind thromboinflammation: revealing the roles of von Willebrand factor in sickle cell disease pathophysiology. Curr Opin Hematol 2023; 30:86-92. [PMID: 36853830 PMCID: PMC10065920 DOI: 10.1097/moh.0000000000000755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
PURPOSE OF REVIEW This review provides an update on the pathophysiology of sickle cell disease (SCD) with a particular focus on the dysregulation of the von Willebrand factor (VWF) - ADAMTS13 axis that contributes to its pathogenesis. In discussing recent developments, we hope to encourage new and ongoing discussions surrounding therapeutic targets for SCD. RECENT FINDINGS Within the last 5 years, the role of VWF in the pathophysiology of SCD has been further elucidated and is now a target of study in ongoing clinical trials. SUMMARY The pathophysiology of SCD is multifaceted, as it involves systemwide vascular activation, altered blood rheology, and the activation of immune responses and coagulative pathways. The presence of VWF in excess in SCD, particularly in its largest multimeric form, greatly contributes to its pathogenesis. Understanding the molecular mechanisms that underly the presence of large VWF multimers in SCD will provide further insight into the pathogenesis of SCD and provide specific targets for therapy.
Collapse
Affiliation(s)
- Eudorah F. Vital
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Wilbur A. Lam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
An R, Man Y, Cheng K, Zhang T, Chen C, Wang F, Abdulla F, Kucukal E, Wulftange WJ, Goreke U, Bode A, Nayak LV, Vercellotti GM, Belcher JD, Little JA, Gurkan UA. Sickle red blood cell-derived extracellular vesicles activate endothelial cells and enhance sickle red cell adhesion mediated by von Willebrand factor. Br J Haematol 2023; 201:552-563. [PMID: 36604837 PMCID: PMC10121869 DOI: 10.1111/bjh.18616] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/14/2022] [Accepted: 12/06/2022] [Indexed: 01/07/2023]
Abstract
Endothelial activation and sickle red blood cell (RBC) adhesion are central to the pathogenesis of sickle cell disease (SCD). Quantitatively, RBC-derived extracellular vesicles (REVs) are more abundant from SS RBCs compared with healthy RBCs (AA RBCs). Sickle RBC-derived REVs (SS REVs) are known to promote endothelial cell (EC) activation through cell signalling and transcriptional regulation at longer terms. However, the SS REV-mediated short-term non-transcriptional response of EC is unclear. Here, we examined the impact of SS REVs on acute microvascular EC activation and RBC adhesion at 2 h. Compared with AA REVs, SS REVs promoted human pulmonary microvascular ECs (HPMEC) activation indicated by increased von Willebrand factor (VWF) expression. Under microfluidic conditions, we found abnormal SS RBC adhesion to HPMECs exposed to SS REVs. This enhanced SS RBC adhesion was reduced by haeme binding protein haemopexin or VWF cleaving protease ADAMTS13 to a level similar to HPMECs treated with AA REVs. Consistent with these observations, haemin- or SS REV-induced microvascular stasis in SS mice with implanted dorsal skin-fold chambers that was inhibited by ADAMTS13. The adhesion induced by SS REVs was variable and was higher with SS RBCs from patients with increased markers of haemolysis (lactate dehydrogenase and reticulocyte count) or a concomitant clinical diagnosis of deep vein thrombosis. Our results emphasise the critical contribution made by REVs to the pathophysiology of SCD by triggering acute microvascular EC activation and abnormal RBC adhesion. These findings may help to better understand acute pathophysiological mechanism of SCD and thereby the development of new treatment strategies using VWF as a potential target.
Collapse
Affiliation(s)
- Ran An
- Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
- Department of Biomedical Sciences, University of Houston, Houston, TX, USA
- indicates equal contribution
| | - Yuncheng Man
- Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
- indicates equal contribution
| | - Kevin Cheng
- Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - Tianyi Zhang
- Physiology and Biophysics Department, Case Western Reserve University, Cleveland, OH, USA
| | - Chunsheng Chen
- Division of Hematology, Oncology and Transplantation, Vascular Biology Center, University of Minnesota, Minneapolis, MN, USA
| | - Fang Wang
- Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - Fuad Abdulla
- Division of Hematology, Oncology and Transplantation, Vascular Biology Center, University of Minnesota, Minneapolis, MN, USA
| | - Erdem Kucukal
- Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - William J. Wulftange
- Biomedical Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - Utku Goreke
- Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - Allison Bode
- Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
- Department of Hematology and Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Lalitha V. Nayak
- Department of Hematology and Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Gregory M. Vercellotti
- Division of Hematology, Oncology and Transplantation, Vascular Biology Center, University of Minnesota, Minneapolis, MN, USA
| | - John D. Belcher
- Division of Hematology, Oncology and Transplantation, Vascular Biology Center, University of Minnesota, Minneapolis, MN, USA
| | - Jane A. Little
- Divison of Hematology & UNC Blood Research Center, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Umut A. Gurkan
- Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
- Division of Hematology, Oncology and Transplantation, Vascular Biology Center, University of Minnesota, Minneapolis, MN, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
3
|
Missense Variants of von Willebrand Factor in the Background of COVID-19 Associated Coagulopathy. Genes (Basel) 2023; 14:genes14030617. [PMID: 36980889 PMCID: PMC10048626 DOI: 10.3390/genes14030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
COVID-19 associated coagulopathy (CAC), characterized by endothelial dysfunction and hypercoagulability, evokes pulmonary immunothrombosis in advanced COVID-19 cases. Elevated von Willebrand factor (vWF) levels and reduced activities of the ADAMTS13 protease are common in CAC. Here, we aimed to determine whether common genetic variants of these proteins might be associated with COVID-19 severity and hemostatic parameters. A set of single nucleotide polymorphisms (SNPs) in the vWF (rs216311, rs216321, rs1063856, rs1800378, rs1800383) and ADAMTS13 genes (rs2301612, rs28729234, rs34024143) were genotyped in 72 COVID-19 patients. Cross-sectional cohort analysis revealed no association of any polymorphism with disease severity. On the other hand, analysis of variance (ANOVA) uncovered associations with the following clinical parameters: (1) the rs216311 T allele with enhanced INR (international normalized ratio); (2) the rs1800383 C allele with elevated fibrinogen levels; and (3) the rs1063856 C allele with increased red blood cell count, hemoglobin, and creatinine levels. No association could be observed between the phenotypic data and the polymorphisms in the ADAMTS13 gene. Importantly, in silico protein conformational analysis predicted that these missense variants would display global conformational alterations, which might affect the stability and plasma levels of vWF. Our results imply that missense vWF variants might modulate the thrombotic risk in COVID-19.
Collapse
|
4
|
Ellsworth P, Sparkenbaugh EM. Targeting the von Willebrand Factor-ADAMTS-13 axis in sickle cell disease. J Thromb Haemost 2023; 21:2-6. [PMID: 36695390 PMCID: PMC10413208 DOI: 10.1016/j.jtha.2022.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 01/09/2023]
Affiliation(s)
- Patrick Ellsworth
- Department of Medicine, Division of Hematology and Blood Research Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Erica M Sparkenbaugh
- Department of Medicine, Division of Hematology and Blood Research Center, University of North Carolina, Chapel Hill, North Carolina, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
5
|
Arisz RA, de Vries JJ, Schols SEM, Eikenboom JCJ, de Maat, MPM. Interaction of von Willebrand factor with blood cells in flow models: a systematic review. Blood Adv 2022; 6:3979-3990. [PMID: 35816358 PMCID: PMC9278308 DOI: 10.1182/bloodadvances.2021006405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/02/2022] [Indexed: 11/29/2022] Open
Abstract
The presence of blood flow influences the interaction between von Willebrand factor (VWF) and blood cells, affecting characteristics of forming blood clots. The interactions between coagulation and inflammation have mainly been studied in thrombosis models, but it remains unclear whether these interactions might also play a role in reduced bleeding in patients with bleeding disorders. In this systematic review, we provide an overview of the literature investigating the interactions between VWF and blood cells in flow models. For article selection, a systematic search was performed in Embase, Medline-Ovid, Cochrane Library, Web of Science databases, and Google Scholar. After selection, 24 articles were included. These articles describe direct or platelet-dependent interactions between VWF and neutrophils, monocytes, erythrocytes, or lymphocytes under different flow conditions. Almost all the described interactions required the presence of activated platelets. Only erythrocytes, monocytes, and natural killer cells were capable of directly binding the VWF multimers. Overall, interactions between VWF and blood cells mainly occurred in the presence of platelets. Because of the large variation in study design and used flow rates, further research is necessary to compare the results between studies and draw firm conclusions on when and under what conditions these interactions can occur. After our findings, many questions remained unanswered. This review might provide a starting point for future research. Extended knowledge on the influence of blood flow on VWF and blood cell interactions can contribute to improved understanding of the variation in bleeding in patients with bleeding disorders.
Collapse
Affiliation(s)
- Ryanne A. Arisz
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Judith J. de Vries
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Saskia E. M. Schols
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
- Hemophilia Treatment Center Nijmegen-Eindhoven-Maastricht, Nijmegen, The Netherlands; and
| | - Jeroen C. J. Eikenboom
- Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Moniek P. M. de Maat,
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Assessment of Fibrinogen Macromolecules Interaction with Red Blood Cells Membrane by Means of Laser Aggregometry, Flow Cytometry, and Optical Tweezers Combined with Microfluidics. Biomolecules 2020; 10:biom10101448. [PMID: 33076409 PMCID: PMC7602533 DOI: 10.3390/biom10101448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
An elevated concentration of fibrinogen in blood is a significant risk factor during many pathological diseases, as it leads to an increase in red blood cells (RBC) aggregation, resulting in hemorheological disorders. Despite the biomedical importance, the mechanisms of fibrinogen-induced RBC aggregation are still debatable. One of the discussed models is the non-specific adsorption of fibrinogen macromolecules onto the RBC membrane, leading to the cells bridging in aggregates. However, recent works point to the specific character of the interaction between fibrinogen and the RBC membrane. Fibrinogen is the major physiological ligand of glycoproteins receptors IIbIIIa (GPIIbIIIa or αIIββ3 or CD41/CD61). Inhibitors of GPIIbIIIa are widely used in clinics for the treatment of various cardiovascular diseases as antiplatelets agents preventing the platelets’ aggregation. However, the effects of GPIIbIIIa inhibition on RBC aggregation are not sufficiently well studied. The objective of the present work was the complex multimodal in vitro study of the interaction between fibrinogen and the RBC membrane, revealing the role of GPIIbIIIa in the specificity of binding of fibrinogen by the RBC membrane and its involvement in the cells’ aggregation process. We demonstrate that GPIIbIIIa inhibition leads to a significant decrease in the adsorption of fibrinogen macromolecules onto the membrane, resulting in the reduction of RBC aggregation. We show that the mechanisms underlying these effects are governed by a decrease in the bridging components of RBC aggregation forces.
Collapse
|
7
|
Sins JWR, Schimmel M, Luken BM, Nur E, Zeerleder SS, van Tuijn CFJ, Brandjes DPM, Kopatz WF, Urbanus RT, Meijers JCM, Biemond BJ, Fijnvandraat K. Dynamics of von Willebrand factor reactivity in sickle cell disease during vaso-occlusive crisis and steady state. J Thromb Haemost 2017; 15:1392-1402. [PMID: 28457019 DOI: 10.1111/jth.13728] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Indexed: 02/02/2023]
Abstract
Essentials The role of von Willebrand Factor (VWF) in the pathophysiology of sickle cell disease is unclear. We assessed markers of VWF during admission for vaso-occlusive crisis (VOC) and steady state. VWF reactivity was higher during VOC and was associated with inflammation and neutrophil activation. Hyper-adhesive VWF may promote VOC in sickle cell disease. SUMMARY Background Endothelial activation plays a central role in the pathophysiology of vaso-occlusion in sickle cell disease (SCD), facilitating adhesive interactions with circulating blood cells. Upon activation, various adhesive molecules are expressed, including von Willebrand factor (VWF). Increased VWF levels have been observed in patients with SCD during steady state. However, the role of VWF in the pathogenesis of SCD vaso-occlusion is unclear. Objectives To longitudinally assess the quantity and reactivity of VWF and its regulating protease ADAMTS-13 during vaso-occlusive crisis (VOC). Methods In this observational study, we obtained sequential blood samples in adult SCD patients during VOC. Results VWF reactivity was significantly higher during VOC (active VWF, VWF glycoprotein Ib-binding activity, and high molecular weight multimers), whereas platelet count and levels of ADAMTS-13 antigen and ADAMTS-13 activity were concomitantly lower than during steady state. Levels of VWF antigen, VWF propeptide (VWF:pp) and ADAMTS-13 specific activity did not change during VOC. VWF reactivity correlated strongly with markers of inflammation and neutrophil activation, and was inversely correlated with the platelet count. In patients who developed acute chest syndrome, levels of VWF, VWF:pp and active, hyperadhesive VWF were significantly higher, whereas ADAMTS-13 activity was lower, than in patients without this complication. Conclusions We provide the first evidence that VOC in SCD is associated with increased reactivity of VWF, without a pronounced ADAMTS-13 deficiency. This hyper-reactivity may be explained by resistance of VWF to proteolysis, secondary to processes such as inflammation and oxidative stress. Hyperadhesive VWF, scavenging blood cells in the microcirculation, may thereby amplify and sustain VOC in SCD.
Collapse
Affiliation(s)
- J W R Sins
- Department of Hematology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Pediatric Hematology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - M Schimmel
- Department of Hematology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - B M Luken
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - E Nur
- Department of Hematology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - S S Zeerleder
- Department of Hematology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - C F J van Tuijn
- Department of Hematology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - D P M Brandjes
- Department of Internal Medicine, Slotervaart Hospital, Amsterdam, the Netherlands
| | - W F Kopatz
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - R T Urbanus
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J C M Meijers
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Plasma Proteins, Sanquin Research, Amsterdam, the Netherlands
| | - B J Biemond
- Department of Hematology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - K Fijnvandraat
- Department of Pediatric Hematology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Plasma Proteins, Sanquin Research, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Smeets MWJ, Bierings R, Meems H, Mul FPJ, Geerts D, Vlaar APJ, Voorberg J, Hordijk PL. Platelet-independent adhesion of calcium-loaded erythrocytes to von Willebrand factor. PLoS One 2017; 12:e0173077. [PMID: 28249049 PMCID: PMC5332109 DOI: 10.1371/journal.pone.0173077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/14/2017] [Indexed: 12/22/2022] Open
Abstract
Adhesion of erythrocytes to endothelial cells lining the vascular wall can cause vaso-occlusive events that impair blood flow which in turn may result in ischemia and tissue damage. Adhesion of erythrocytes to vascular endothelial cells has been described in multiple hemolytic disorders, especially in sickle cell disease, but the adhesion of normal erythrocytes to endothelial cells has hardly been described. It was shown that calcium-loaded erythrocytes can adhere to endothelial cells. Because sickle erythrocyte adhesion to ECs can be enhanced by ultra-large von Willebrand factor multimers, we investigated whether calcium loading of erythrocytes could promote binding to endothelial cells via ultra-large von Willebrand factor multimers. We used (immunofluorescent) live-cell imaging of washed erythrocytes perfused over primary endothelial cells at venular flow rate. Using this approach, we show that calcium-loaded erythrocytes strongly adhere to histamine-stimulated primary human endothelial cells. This adhesion is mediated by ultra-large von Willebrand factor multimers. Von Willebrand factor knockdown or ADAMTS13 cleavage abolished the binding of erythrocytes to activated endothelial cells under flow. Platelet depletion did not interfere with erythrocyte binding to von Willebrand factor. Our results reveal platelet-independent adhesion of calcium-loaded erythrocytes to endothelium-derived von Willebrand factor. Erythrocyte adhesion to von Willebrand factor may be particularly relevant for venous thrombosis, which is characterized by the formation of erythrocyte-rich thrombi.
Collapse
Affiliation(s)
- Michel W. J. Smeets
- Department of Molecular Cell Biology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Ruben Bierings
- Department of Plasma Proteins, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Henriet Meems
- Department of Plasma Proteins, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Frederik P. J. Mul
- Department of Molecular Cell Biology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Dirk Geerts
- Department of Pediatric Oncology/Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alexander P. J. Vlaar
- Department of Intensive Care Medicine, Amsterdam Medical Center, Amsterdam, The Netherlands
| | - Jan Voorberg
- Department of Plasma Proteins, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Peter L. Hordijk
- Department of Molecular Cell Biology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, The Netherlands
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
9
|
Alapan Y, Fraiwan A, Kucukal E, Hasan MN, Ung R, Kim M, Odame I, Little JA, Gurkan UA. Emerging point-of-care technologies for sickle cell disease screening and monitoring. Expert Rev Med Devices 2016; 13:1073-1093. [PMID: 27785945 PMCID: PMC5166583 DOI: 10.1080/17434440.2016.1254038] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Sickle Cell Disease (SCD) affects 100,000 Americans and more than 14 million people globally, mostly in economically disadvantaged populations, and requires early diagnosis after birth and constant monitoring throughout the life-span of the patient. Areas covered: Early diagnosis of SCD still remains a challenge in preventing childhood mortality in the developing world due to requirements of skilled personnel and high-cost of currently available modalities. On the other hand, SCD monitoring presents insurmountable challenges due to heterogeneities among patient populations, as well as in the same individual longitudinally. Here, we describe emerging point-of-care micro/nano platform technologies for SCD screening and monitoring, and critically discuss current state of the art, potential challenges associated with these technologies, and future directions. Expert commentary: Recently developed microtechnologies offer simple, rapid, and affordable screening of SCD and have the potential to facilitate universal screening in resource-limited settings and developing countries. On the other hand, monitoring of SCD is more complicated compared to diagnosis and requires comprehensive validation of efficacy. Early use of novel microdevices for patient monitoring might come in especially handy in new clinical trial designs of emerging therapies.
Collapse
Affiliation(s)
- Yunus Alapan
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - Arwa Fraiwan
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - Erdem Kucukal
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - M. Noman Hasan
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - Ryan Ung
- Biomedical Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - Myeongseop Kim
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - Isaac Odame
- Division of Haematology/Oncology, The Hospital for Sick Children; Toronto, Canada
- Department of Pediatrics, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Jane A. Little
- Department of Hematology and Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Seidman Cancer Center at University Hospitals, Case Medical Center, Cleveland, OH, USA
| | - Umut A. Gurkan
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
- Biomedical Engineering Department, Case Western Reserve University, Cleveland, OH, USA
- Department of Orthopedics, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
10
|
Sickle cell disease biochip: a functional red blood cell adhesion assay for monitoring sickle cell disease. Transl Res 2016; 173:74-91.e8. [PMID: 27063958 PMCID: PMC4959913 DOI: 10.1016/j.trsl.2016.03.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 03/08/2016] [Accepted: 03/12/2016] [Indexed: 01/10/2023]
Abstract
Sickle cell disease (SCD) afflicts millions of people worldwide and is associated with considerable morbidity and mortality. Chronic and acute vaso-occlusion are the clinical hallmarks of SCD and can result in pain crisis, widespread organ damage, and early movtality. Even though the molecular underpinnings of SCD were identified more than 60 years ago, there are no molecular or biophysical markers of disease severity that are feasibly measured in the clinic. Abnormal cellular adhesion to vascular endothelium is at the root of vaso-occlusion. However, cellular adhesion is not currently evaluated clinically. Here, we present a clinically applicable microfluidic device (SCD biochip) that allows serial quantitative evaluation of red blood cell (RBC) adhesion to endothelium-associated protein-immobilized microchannels, in a closed and preprocessing-free system. With the SCD biochip, we have analyzed blood samples from more than 100 subjects and have shown associations between the measured RBC adhesion to endothelium-associated proteins (fibronectin and laminin) and individual RBC characteristics, including hemoglobin content, fetal hemoglobin concentration, plasma lactate dehydrogenase level, and reticulocyte count. The SCD biochip is a functional adhesion assay, reflecting quantitative evaluation of RBC adhesion, which could be used at baseline, during crises, relative to various long-term complications, and before and after therapeutic interventions.
Collapse
|
11
|
White J, Krishnamoorthy S, Gupta D, Lancelot M, Moore N, Sarnaik S, Hobbs WE, Light DR, Hines P. VLA-4 blockade by natalizumab inhibits sickle reticulocyte and leucocyte adhesion during simulated blood flow. Br J Haematol 2016; 174:970-82. [PMID: 27291690 DOI: 10.1111/bjh.14158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/14/2016] [Indexed: 11/29/2022]
Abstract
Very Late Antigen-4 (VLA-4, α4β1-integrin, ITGA4) orchestrates cell-cell and cell-endothelium adhesion. Given the proposed role of VLA-4 in sickle cell disease (SCD) pathophysiology, we evaluated the ability of the VLA-4 blocking antibody natalizumab to inhibit SCD blood cell adhesion. Natalizumab recognized surface VLA-4 on leucocytes and reticulocytes in whole blood from SCD subjects. SCD reticulocytes were positive for VLA-4, while VLA-4 staining of non-SCD reticulocytes was undetectable. Titrations with natalizumab revealed the presence of saturable levels of VLA-4 on both SCD reticulocytes and leucocytes similar to healthy subject leucocytes. Under physiological flow conditions, the adhesion of SCD whole blood cells and isolated SCD leucocytes to immobilized vascular cell adhesion molecule 1 (VCAM-1) was blocked by natalizumab in a dose-dependent manner, which correlated with cell surface receptor binding. Natalizumab also inhibited >50% of whole blood cell binding to TNF-α activated human umbilical vein endothelial cell monolayers under physiological flow at clinically relevant concentrations (10 to 100 μg/ml). This indicates that VLA-4 is the dominant receptor that drives SCD reticulocyte and mononuclear cell adhesion to VCAM-1 and that the VLA-4 adhesion to VCAM-1 is a significant contributor to SCD blood cell adhesion to endothelium. Thus, VLA-4 blockade may be beneficial in sickle cell disease.
Collapse
Affiliation(s)
- Jennell White
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | - Moira Lancelot
- Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA
| | | | - Sharada Sarnaik
- Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA
| | | | | | - Patrick Hines
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.,Division of Critical Care Medicine, Children's Hospital of Michigan, Detroit, MI, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
12
|
Wiczling P, Krzyzanski W, Zychlińska N, Lewandowski K, Kaliszan R. The quantification of reticulocyte maturation and neocytolysis in normal and erythropoietin stimulated rats. Biopharm Drug Dispos 2014; 35:330-40. [PMID: 24888906 DOI: 10.1002/bdd.1902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 02/19/2014] [Accepted: 05/20/2014] [Indexed: 11/11/2022]
Abstract
A technique has recently been proposed for obtaining the reticulocyte (RET) age distribution from the flow cytometric reticulocyte count. It allows for a quantitative characterization of reticulocyte dynamics. In this work this technique was applied to characterize the blood, bone marrow and spleen reticulocytes in homeostatic and erythropoietically stimulated rats in order to determine the reticulocyte maturation times in the bone marrow and blood; and to confirm the presence of ineffective erythropoiesis (neocytolysis). The latter was done by comparing the reticulocyte removal rate from blood with bilirubin formation after erythropoiesis stimulation. A single subcutaneous dose (4050 IU/kg) of recombinant human erythropoietin (rHuEPO) was administered to rats, then their reticulocytes were stained with thiazole orange and the distribution of the fluorescent signal measured using flow cytometry. The obtained signal distribution of the reticulocytes was transformed to the age distribution and a set of basic parameters reflecting reticulocyte dynamics was determined. Bilirubin concentrations were measured to directly assess the presence of reticulocyte irreversible removal. The bilirubin formation was found to be considerably modulated by rHuEPO and corresponded well to the determined reticulocyte removal rate. The initial increase and subsequent decrease of the reticulocyte maturation time in blood was quantitated and directly linked with RET mobilization from the bone marrow. A substantial number (60%) of reticulocytes is sequestrated during homeostasis in rats. This number increases and then decreases after rHuEPO administration, as also reflected by bilirubin formation. Flow cytometry seems to be an excellent method for studying RET dynamics and the presence of young RBC neocytolysis.
Collapse
Affiliation(s)
- Paweł Wiczling
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gdańsk, Poland
| | | | | | | | | |
Collapse
|
13
|
Abstract
von Willebrand factor (VWF) is amongst others synthesized by endothelial cells and stored as ultra-large (UL) VWF multimers in Weibel-Palade bodies. Although UL-VWF is proteolysed by ADAMTS13 (a disintegrin-like and metalloprotease domain with thrombospondin type-1 motif, number 13) on secretion from endothelial cells, in vitro experiments in the absence of ADAMTS13 have demonstrated that a proportion of these UL-VWF multimers remain anchored to the activated endothelium. These multimers unravel, bind platelets, and wave in the direction of the flow. These so-called VWF "strings" have also been visualized in vivo, lining the lumen of activated mesenteric veins of Adamts13(-/-) mice. Various studies have demonstrated the extraordinary length of these VWF strings, the availability of their platelet binding and ADAMTS13 cleavage sites, and the possible nature of their endothelial attachment. VWF strings are also capable of tethering leukocytes and parasite-infected red blood cells. However, the majority of studies have been performed in the absence of ADAMTS13, a condition only experienced in thrombotic thrombocytopenic purpura. A normal functional role of VWF strings in healthy persons or in other disease pathologies remains unclear. In this review, we discuss some of the puzzling characteristics of VWF strings, and we debate whether the properties of VWF strings in the absence of ADAMTS13 might be relevant for understanding (patho)physiologic mechanisms.
Collapse
|
14
|
Knight-Perry J, DeBaun MR, Strunk RC, Field JJ. Leukotriene pathway in sickle cell disease: a potential target for directed therapy. Expert Rev Hematol 2011; 2:57-68. [PMID: 21082995 DOI: 10.1586/17474086.2.1.57] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sickle cell disease (SCD) is characterized by recurrent episodes of vaso-occlusion, resulting in tissue ischemia and end-organ damage. Inflammation is critical to the pathogenesis of vaso-occlusion and has been associated with SCD-related morbidity and mortality. Despite the impact of inflammation, no directed anti-inflammatory therapies for the treatment or prevention of vaso-occlusive events currently exist. Among individuals with SCD, asthma is a comorbid inflammatory condition that increases the risk of pain episodes, acute chest syndrome and death. Inflammation associated with asthma could augment the proinflammatory state of SCD, increasing episodes of vaso-occlusion. Leukotrienes are inflammatory mediators that play a prominent role in the pathogenesis of asthma and have been associated with SCD-related morbidity. Targeting inflammatory mediators, such as leukotrienes, is a promising approach for the development of novel therapies for the treatment of SCD. This review will examine the relationship between inflammation and vaso-occlusion, with particular focus on the leukotriene pathway.
Collapse
Affiliation(s)
- Jessica Knight-Perry
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | |
Collapse
|
15
|
Role of extracellular hemoglobin in thrombosis and vascular occlusion in patients with sickle cell anemia. Anemia 2010; 2011:918916. [PMID: 21490767 PMCID: PMC3065893 DOI: 10.1155/2011/918916] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 11/05/2010] [Accepted: 11/22/2010] [Indexed: 01/28/2023] Open
Abstract
Sickle cell anemia (SCA) is a common hemolytic disorder caused by a gene mutation in the β-globin subunit of hemoglobin (Hb) and affects millions of people. The intravascular hemolysis releases excessive amount of extracellular hemoglobin (ECHb) into plasma that causes many cellular dysfunctions in patients with SCA. ECHb scavenges NO which promotes crisis events such as vasoconstriction, thrombosis and hypercoagulation. ECHb and its degradation product, heme, are known to cause oxidative damage to the vessel wall and stimulate the expression of adhesive protein ligands on vascular endothelium. Our study shows that ECHb binds potently to VWF-largest multimeric glycoprotein in circulation-through the A2-domain, and significantly inhibits its cleavage by the metalloprotease ADAMTS13. Furthermore, a subpopulation of VWF multimers bound to ECHb exists in significant amount, accounting for about 14% of total plasma VWF, in SCD patients. The Hb-bound VWF multimers are resistant to ADAMTS13, and are hyperactive in aggregating platelets. Thus, the data suggest that Hb-bound VWF multimers are ultralarge and hyperactive because they are resistant to the protease. The Hb-bound VWF multimers are elevated parallely with the level of ECHb in patients' plasma, and is associated with the pathogenesis of thrombosis and vascular occlusion in SCA.
Collapse
|
16
|
Carvalho FA, Connell S, Miltenberger-Miltenyi G, Pereira SV, Tavares A, Ariëns RAS, Santos NC. Atomic force microscopy-based molecular recognition of a fibrinogen receptor on human erythrocytes. ACS NANO 2010; 4:4609-4620. [PMID: 20731444 DOI: 10.1021/nn1009648] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The established hypothesis for the increase on erythrocyte aggregation associated with a higher incidence of cardiovascular pathologies is based on an increase on plasma adhesion proteins concentration, particularly fibrinogen. Fibrinogen-induced erythrocyte aggregation has been considered to be caused by its nonspecific binding to erythrocyte membranes. In contrast, platelets are known to have a fibrinogen integrin receptor expressed on the membrane surface (the membrane glycoprotein complex alpha(IIb)beta(3)). We demonstrate, by force spectroscopy measurements using an atomic force microscope (AFM), the existence of a single molecule interaction between fibrinogen and an unknown receptor on the erythrocyte membrane, with a lower but comparable affinity relative to platelet binding (average fibrinogen--erythrocyte and --platelet average (un)binding forces were 79 and 97 pN, respectively). This receptor is not as strongly influenced by calcium and eptifibatide (an alpha(IIb)beta(3) specific inhibitor) as the platelet receptor. However, its inhibition by eptifibatide indicates that it is an alpha(IIb)beta(3)-related integrin. Results obtained for a Glanzmann thrombastenia (a rare hereditary bleeding disease caused by alpha(IIb)beta(3) deficiency) patient show (for the first time) an impaired fibrinogen--erythrocyte binding. Correlation with genetic sequencing data demonstrates that one of the units of the fibrinogen receptor on erythrocytes is a product of the expression of the beta(3) gene, found to be mutated in this patient. This work demonstrates and validates the applicability of AFM-based force spectroscopy as a highly sensitive, rapid and low operation cost nanotool for the diagnostic of genetic mutations resulting in hematological diseases, with an unbiased functional evaluation of their severity.
Collapse
Affiliation(s)
- Filomena A Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Zennadi R, De Castro L, Eyler C, Xu K, Ko M, Telen MJ. Role and regulation of sickle red cell interactions with other cells: ICAM-4 and other adhesion receptors. Transfus Clin Biol 2008; 15:23-28. [PMID: 18502676 DOI: 10.1016/j.tracli.2008.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 04/16/2008] [Indexed: 11/21/2022]
Abstract
Erythrocytes containing primarily hemoglobin S (SS RBCs) are abnormally adherent. We now know that SS RBCs express numerous adhesion molecules, and that many of these can undergo activation. SS RBCs exposed briefly to epinephrine show markedly increased adhesion to both laminin and endothelial cells. In vivo, infusion of epinephrine-activated but not unstimulated SS RBCs causes RBC adhesion, vaso-occlusion, organ trapping, and shortened RBC survival in the circulation. Epinephrine treatment of SS RBCs before infusion also induces adhesion of murine leukocytes to vascular walls. Indeed, in vitro, SS RBCs can activate leukocyte adhesion and cytokine production. We now have demonstrated both in vitro and in vivo evidence for the importance of RBC signaling and have also shown that SS RBC adhesion is determined by genetic polymorphisms in the signaling pathway that activates adhesion. These advances will hopefully lead to new therapeutic modalities for sickle cell disease.
Collapse
Affiliation(s)
- R Zennadi
- Department of Medicine and Duke Comprehensive Sickle Cell Center, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
19
|
Krishnan S, Siegel J, Pullen G, Hevelow M, Dampier C, Stuart M. Increased von Willebrand factor antigen and high molecular weight multimers in sickle cell disease associated with nocturnal hypoxemia. Thromb Res 2008; 122:455-8. [PMID: 18230405 DOI: 10.1016/j.thromres.2007.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 11/28/2007] [Accepted: 12/06/2007] [Indexed: 12/27/2022]
Abstract
We evaluated vWF profiles in children and adolescents with SCD and sleep hypoxemia. Mean vWF:Ag levels were significantly elevated in the SCD-hypoxemia group when compared with SCD-normoxia and control groups (p=0.007); and correlated inversely with pulse oximetry (r=-0.54, p=0.01). Densitographic analyses of vWF multimer distribution also showed an inverse correlation between %HMW-multimers and oxygen saturation (r=-0.62, p=0.03). The previously reported association between nocturnal desaturation and SCD vascular complications, including stroke, may be influenced by hypoxemic modulation of vWF as noted in this study.
Collapse
Affiliation(s)
- Suba Krishnan
- Department of Pediatrics, Division of Hematology, Cardeza Foundation for Hematologic Research, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Aslan M, Freeman BA. Redox-dependent impairment of vascular function in sickle cell disease. Free Radic Biol Med 2007; 43:1469-83. [PMID: 17964418 PMCID: PMC2139908 DOI: 10.1016/j.freeradbiomed.2007.08.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 08/23/2007] [Accepted: 08/23/2007] [Indexed: 01/04/2023]
Abstract
The vascular pathophysiology of sickle cell disease (SCD) is influenced by many factors, including adhesiveness of red and white blood cells to endothelium, increased coagulation, and homeostatic perturbation. The vascular endothelium is central to disease pathogenesis because it displays adhesion molecules for blood cells, balances procoagulant and anticoagulant properties of the vessel wall, and regulates vascular homeostasis by synthesizing vasoconstricting and vasodilating substances. The occurrence of intermittent vascular occlusion in SCD leads to reperfusion injury associated with granulocyte accumulation and enhanced production of reactive oxygen species. The participation of nitric oxide (NO) in oxidative reactions causes a reduction in NO bioavailability and contributes to vascular dysfunction in SCD. Therapeutic strategies designed to counteract endothelial, inflammatory, and oxidative abnormalities may reduce the frequency of hospitalization and blood transfusion, the incidence of pain, and the occurrence of acute chest syndrome and pulmonary hypertension in patients with SCD.
Collapse
Affiliation(s)
- Mutay Aslan
- Department of Biochemistry, Akdeniz University School of Medicine, 07070 Antalya, Turkey.
| | | |
Collapse
|
22
|
Abstract
Pain is the clinical hallmark of sickle cell disease (SCD). Vasoocclusive pain events (VOEs) are the primary cause of morbidity and account for most emergency department visits and hospitalizations for patients with SCD in the United States and Europe. The nature of VOE makes its management extremely challenging. There are no large controlled trials of analgesic regimens for VOE, and smaller trials have generally failed to produce an optimal course of therapy. Therefore, treatment recommendations are largely based on expert opinion and anecdotal experience. Although VOEs are not life-threatening, inadequate treatment may result in unnecessary morbidity and life-threatening complications. Health care providers caring for patients with SCD must be well informed about the management of VOE. This continuing medical education article will provide a summary of the management of acute pain events in SCD with particular emphasis on adequate analgesia.
Collapse
|
23
|
Schnog JJB, Kremer Hovinga JA, Krieg S, Akin S, Lämmle B, Brandjes DPM, Mac Gillavry MR, Muskiet FD, Duits AJ. ADAMTS13 activity in sickle cell disease. Am J Hematol 2006; 81:492-8. [PMID: 16755558 DOI: 10.1002/ajh.20653] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Sickle red blood cell (SRBC)-endothelial adhesion plays a central role in sickle cell disease (SCD)-related vaso-occlusion. As unusually large von Willebrand factor (ULVWF) multimers mediate SRBC-endothelial adhesion, we investigated the activity of ADAMTS13, the metalloprotease responsible for cleaving ULVWF multimers, in SCD. ADAMTS13 activity was determined using a quantitative immunoblotting assay. VWF:Ag and VWF:RCo were determined using commercial assays. The high-molecular-weight VWF multimer percentage was determined by employing gel electrophoresis. ADAMTS13 activity was similar among asymptomatic patients (n = 8), patients at presentation with a painful crisis (n = 23), and healthy controls. ADAMTS13/VWF:Ag ratios were lower in patients compared to healthy HbAA controls, with the lowest values at presentation with a painful crisis (P = 0.02). Division of samples in those with VWF:RCo/VWF:Ag ratios < 0.70 and those with ratios >or= 0.70 revealed significantly more samples with ratios >or= 0.70 (P = 0.01) collected during painful crises. ULVWF multimers were detected in 6 patient samples and in 1 control sample. ADAMTS13/VWF:Ag ratios were inversely related to the duration of symptoms at presentation with an acute vaso-occlusive event (r(s)-0.67, P = 0.002). Although SCD is characterized by elevated VWF:Ag levels, no severe ADAMTS13 deficiency was detected in our patients.
Collapse
Affiliation(s)
- John-John B Schnog
- Department of Internal Medicine, Slotervaart Hospital, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Complications of sickle cell anaemia include vascular occlusion triggered by the adherence of sickle erythrocytes to endothelium in the postcapillary venules. Adherence can be promoted by inflammatory mediators that induce endothelial cell adhesion molecule expression and arrest flowing erythrocytes. The present study characterised the effect of histamine stimulation on the kinetics of sickle cell adherence to large vessel and microvascular endothelium under physiological flow. Increased sickle cell adherence was observed within minutes of endothelial activation by histamine and reached a maximum value within 30 min. At steady state, sickle cell adherence to histamine-stimulated endothelium was 47 +/- 4 adherent cells/mm(2), 2.6-fold higher than sickle cell adherence to unstimulated endothelial cells. Histamine-induced sickle cell adherence occurred rapidly and transiently. Studies using histamine receptor agonists and antagonists suggest that histamine-induced sickle cell adhesion depends on simultaneous stimulation of the H(2) and H(4) histamine receptors and endothelial P-selectin expression. These data show that histamine release may promote sickle cell adherence and vaso-occlusion. In vivo histamine release should be studied to determine its role in sickle complications and whether blocking of specific histamine receptors may prevent clinical complications or adverse effects from histamine release stimulated by opiate analgesic treatment.
Collapse
Affiliation(s)
- Matthew C Wagner
- School of Chemical and Biomolecular Engineering and Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | |
Collapse
|
25
|
Abstract
The vaso-occlusion model has evolved impressively over the past several decades from polymerization-based concepts to a complex, wide-ranging schema that involves multistep, heterogeneous, and interdependent interactions among sickle erythrocytes (SSRBCs), adherent leukocytes, endothelial cells, plasma proteins, and other factors. Endothelial activation, induced directly or indirectly by the proinflammatory behavior of SSRBCs, is the most likely initiating step toward vaso-occlusion. Given the complexity and dynamic relationships of the potential mechanisms leading to vaso-occlusion, further in vivo studies in relevant sickle cell animal models will most likely yield the greatest advances and promote the development of novel, more effective therapeutic strategies.
Collapse
Affiliation(s)
- Elaine Y Chiang
- Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
26
|
Abstract
With the global scope of sickle-cell disease, knowledge of the countless clinical presentations and treatment of this disorder need to be familiar to generalists, haematologists, internists, and paediatricians alike. Additionally, an underlying grasp of sickle-cell pathophysiology, which has rapidly accrued new knowledge in areas related to erythrocyte and extra-erythrocyte events, is crucial to an understanding of the complexity of this molecular disease with protean manifestations. We highlight studies from past decades related to such translational research as the use of hydroxyurea in treatment, as well as the therapeutic promise of red-cell ion-channel blockers, and antiadhesion and anti-inflammatory therapy. The novel role of nitric oxide in sickle-cell pathophysiology and the range of its potential use in treatment are also reviewed. Understanding of disease as the result of a continuing interaction between basic scientists and clinical researchers is best exemplified by this entity.
Collapse
Affiliation(s)
- Marie J Stuart
- Department of Pediatrics, Division of Hematology, the Marian Anderson Sickle Cell Anemia Research Hematology Laboratories, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
27
|
Walmet PS, Eckman JR, Wick TM. Inflammatory mediators promote strong sickle cell adherence to endothelium under venular flow conditions. Am J Hematol 2003; 73:215-24. [PMID: 12879422 DOI: 10.1002/ajh.10360] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adherence of sickle erythrocytes to endothelium in venules is thought to initiate or propagate vaso-occlusive episodes. Because of blood shear forces with normal microvascular flow, adherence in post-capillary venules requires binding via high-affinity receptor-mediated pathways. Microvascular flow in sickle patients is episodic, even in asymptomatic patients, so adherence may also occur at low shear not requiring high-affinity binding. Sickle cell binding to endothelium was quantified under flow or static incubation with unusually large vWF, thrombospondin, alpha(4)beta(1)/VCAM-1 or alpha(4)beta(1)/fibronectin (FN). Adherence under flow at 0.5 dyne/cm(2) shear stress leads to the greatest number of adherent sickle cells. Adherence under flow at 1.0 dyne/cm(2) leads to the strongest adherence. Static incubation conditions promote weak adherence of low numbers of sickle cells to endothelium. Following attachment at 1.0 dyne/cm(2), adherence strength was 2.5 +/- 0.1 or 2.6 +/- 0.2 dynes/cm(2) for alpha(4)beta(1)/VCAM-1 or alpha(4)beta(1)/FN pathways, a level 50% greater than adherence strength mediated by thrombospondin or ULvWF (1.7 +/- 0.08 or 1.6 +/- 0.07 dynes/cm(2), respectively). Sickle cell adhesion promoted by simultaneous activation of alpha(4)beta(1)/VCAM-1 and alpha(4)beta(1)/FN pathways is the strongest at 6.2 +/- 0.2 dynes/cm(2) and adherent red cells resist detachment shear stresses up to 10 dynes/cm(2). These data demonstrate that sickle cell adhesion to endothelium is regulated both by receptor/ligand affinity and flow conditions. Thus, both microvascular flow conditions and receptor-ligand interactions may regulate sickle cell adherence in vivo.
Collapse
Affiliation(s)
- Paula S Walmet
- School of Chemical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, USA
| | | | | |
Collapse
|
28
|
Abstract
Sickle hemoglobin (HbS), as a result of its polymer-related and oxidant effects, damages the sickle erythrocyte, provokes inflammation, and causes endothelial injury. All these elements cause the phenotype of sickle cell disease. Novel treatments inhibit HbS polymerization by inducing fetal hemoglobin expression, prevent or repair erythrocyte dehydration by slowing cellular potassium and water loss, and replace HbS-producing erythroid progenitors by stem cell transplantation. Future treatment prospects include gene therapy, interruption of the interaction of sickle cells with the endothelium, inhibition of oxidative damage, and protection of an injured endothelium.
Collapse
Affiliation(s)
- Martin H Steinberg
- Department of Medicine and Pediatrics, Boston University School of Medicine, 88 E Newton Street, Boston, Massachusetts 02118, USA.
| | | |
Collapse
|
29
|
Montes RAO, Eckman JR, Hsu LL, Wick TM. Sickle erythrocyte adherence to endothelium at low shear: role of shear stress in propagation of vaso-occlusion. Am J Hematol 2002; 70:216-27. [PMID: 12111767 DOI: 10.1002/ajh.10145] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Under venular flow conditions, sickle cell adherence to endothelium is mediated by cell adhesion molecules and adhesive proteins associated with inflammation, coagulation, and endothelial perturbation. Periodic and reduced blood flow are observed in sickle microcirculation during hematologic steady state, suggesting that blood flow is compromised in sickle microcirculation. We tested the hypothesis that low blood flow enhances adherence by quantifying sickle cell adhesion to endothelium under venular flow (1.0 dyne/cm(2) shear stress) and low flow (0.1 dyne/cm(2) shear stress), with and without addition of adhesion promoting agonists. Under low flow, sickle cell adherence to endothelium increases with contact time in the absence of endothelial activation or adhesive protein addition. In contrast, at venular shear stress, sickle cell adherence only occurs following endothelial activation with TNF-alpha or addition of thrombospondin. Analysis of these data with a mathematical model reveals that at low flow adherence is "transport-controlled," meaning that contact time between sickle cells and endothelium is a more important determinant of adherence than high-affinity receptor-ligand interactions. Low-affinity interactions are sufficient for adhesion at low flow. In contrast, at venular flow (1 dyne/cm(2) shear stress) adherence is "affinity-controlled," meaning that adherence requires induction of specific high-affinity receptor-ligand interactions. These findings demonstrate that in addition to activating factors and adherence proteins, microvascular shear stress is an important determinant of sickle cell adhesion to endothelium. This suggests that in vivo, erythrostasis is an important determinant of adhesion that can act either independently or concurrently with ongoing acute events to induce adhesive interactions and vaso-occlusion.
Collapse
Affiliation(s)
- Richard A O Montes
- School of Chemical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, USA
| | | | | | | |
Collapse
|
30
|
Abstract
Sickle cell disease pathophysiology results from sickle haemoglobin polymerisation and its effects on the sickle erythrocyte and the vasculature. Many of the abnormalities of sickle cell disease are secondary to the damage caused by the polymer and the injured red cell. Pharmacological treatment of the disease is focused on the inhibition of sickle haemoglobin polymerisation, prevention or repair of red cell dehydration and interruption of the interaction of sickle cells with the endothelium.
Collapse
|
31
|
Abstract
Increased fibrinogen concentration and erythrocyte aggregation are significant risk factors during various cardiovascular diseases and cerebrovascular disorders. Currently, fibrinogen-induced erythrocyte aggregation is thought to be caused by a non-specific binding mechanism. However, the published data on changes in erythrocyte aggregation during hypertension point to the possible existence of other mechanism(s). Therefore, we tested the hypothesis that specific binding of fibrinogen is involved in erythrocyte aggregation. It was found that Oregon Green 488-labeled human fibrinogen specifically binds rat erythrocyte membranes with a Kd of 1.3 microM. Further experiments showed that the peptide Arg-Gly-Asp-Ser blocked both fibrinogen-induced aggregation of intact erythrocytes and specific binding of fibrinogen to the erythrocyte membranes. These results suggest that in addition to non-specific binding, a specific binding mechanism is also involved in fibrinogen-induced erythrocyte aggregation.
Collapse
Affiliation(s)
- David Lominadze
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY 40292, USA.
| | | |
Collapse
|
32
|
Steinberg MH, Rodgers GP. Pathophysiology of sickle cell disease: role of cellular and genetic modifiers. Semin Hematol 2001; 38:299-306. [PMID: 11605164 DOI: 10.1016/s0037-1963(01)90023-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sickle hemoglobin (HbS), caused by a point mutation in the beta-globin gene of hemoglobin, polymerizes when deoxygenated. The pathophysiology of sickle cell disease results from cellular defects caused directly by the hemoglobin mutation interacting with the environment and many other gene products--a few known, but most yet unidentified--a typical example of epistasis. How normal tissue perfusion is interrupted is complex and why the phenotype of sickle cell disease differs from patient to patient is poorly understood. We review the "classic" aspects of the pathophysiology of sickle cell disease and focus on known and potential modulators of the phenotype of this disorder.
Collapse
Affiliation(s)
- M H Steinberg
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
33
|
Affiliation(s)
- M H Steinberg
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.
| | | |
Collapse
|
34
|
Chaudet B, Renard M, Seigneur M, Boisseau MR. [Erythrocyte adhesion to vascular endothelium: clinical applications]. Rev Med Interne 2000; 21:599-607. [PMID: 10942976 DOI: 10.1016/s0248-8663(00)80005-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION The objectives of this paper are to review the environmental factors, the different erythrocyte ligands and the corresponding endothelial receptors involved in adhesion. CURRENT KNOWLEDGE AND KEY POINTS Leukocyte adhesion to vascular endothelium is related to inflammation and has been widely studied. The adhesion of erythrocytes to vascular endothelium has been investigated more recently, mainly in the physiopathology of three diseases: diabetes mellitus, sickle cell disease and malaria. The three diseases are characterized by microvascular complications and are deleterious for the red blood cell membrane. They lead to abnormal erythrocyte adhesion to vascular endothelium. Thus better understanding of the mechanisms involved in red blood cell adhesion to the endothelium is important since it might lead to the development of new therapeutic targets. Progress in this field might contribute to therapeutic improvement in sickle cell disease and to the development of an antimalarial vaccine. FUTURE PROSPECTS AND PROJECTS However, additional studies focusing on in vivo endothelium heterogeneity, the different subpopulations of red blood cells and the diversity of Plasmodium falciparum strains are required. The consequences of such erythrocytes/endothelium interactions on the endothelial functions remain to be established.
Collapse
Affiliation(s)
- B Chaudet
- Laboratoire universitaire d'hématologie, université Victor-Segalen Bordeaux 2, France
| | | | | | | |
Collapse
|
35
|
Yeh CH, Wang WC, Hsieh TT, Huang TF. Agkistin, a snake venom-derived glycoprotein Ib antagonist, disrupts von Willebrand factor-endothelial cell interaction and inhibits angiogenesis. J Biol Chem 2000; 275:18615-8. [PMID: 10779501 DOI: 10.1074/jbc.c000234200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycoprotein (GP) Ib, an adhesion receptor expressed on both platelets and endothelial cells, mediates the binding of von Willebrand factor (vWF). Platelet GPIb plays an important role in platelet adhesion and activation, whereas the interaction of vWF and endothelial GPIb is not fully understood. We report here that agkistin, a snake venom protein, selectively blocks the interaction of vWF with human endothelial GPIb and inhibits angiogenesis in vivo. Agkistin specifically blocked human umbilical vein endothelial cell (HUVEC) adhesion to immobilized vWF in a concentration-dependent manner. Fluorescein isothiocyanate (FITC)-conjugated agkistin bound to HUVECs in a saturable manner. AP1, a monoclonal antibody (mAb) raised against GPIb, specifically inhibited the binding of FITC-conjugated agkistin to HUVECs in a dose-dependent manner, but other anti-integrin mAbs raised against alpha(v)beta(3), alpha(2)beta(1), and alpha(5)beta(1) did not affect this binding reaction. However, neither agkistin (2 microgram/ml) nor AP1 (40 microgram/ml) apparently reduced HUVEC viability. Both agkistin and AP1 exhibited a profound anti-angiogenic effect in vivo when assayed by using the 10-day-old embryo chick chorioallantoic membrane model. These results suggest endothelial GPIb plays a role in spontaneous angiogenesis in vivo, and the anti-angiogenic effect of agkistin may be because of disruption of the interaction of endogenous vWF with endothelial GPIb.
Collapse
Affiliation(s)
- C H Yeh
- Department of Pharmacology, College of Medicine, National Taiwan University, Chang Gung Memorial Hospital, Taipei 100, Taiwan
| | | | | | | |
Collapse
|
36
|
Eichelbrönner O, Sielenkämper A, Cepinskas G, Sibbald WJ, Chin-Yee IH. Endotoxin promotes adhesion of human erythrocytes to human vascular endothelial cells under conditions of flow. Crit Care Med 2000; 28:1865-70. [PMID: 10890634 DOI: 10.1097/00003246-200006000-00030] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To investigate the effects of endotoxin on adhesion of human red blood cells to human vascular endothelial cells under conditions of flow. DESIGN Prospective, randomized, controlled in vitro study. SETTINGS University-affiliated cell biology laboratory. SUBJECTS Human erythrocytes and human vascular endothelial cells. INTERVENTIONS Fresh human erythrocytes and human vascular endothelial cells grown as monolayers were incubated with either saline or endotoxin. After incubation, endothelial monolayers were superfused with erythrocytes, and the number of erythrocytes adhering to the endothelial monolayer was quantified. MEASUREMENTS AND MAIN RESULTS Adhesion of erythrocytes to vascular endothelium was measured under conditions of continuous flow in different settings: a) exposure of both endothelial cells and erythrocytes to saline; b) incubation of both erythrocytes and endothelial cells with endotoxin; c) exposure of erythrocytes only to endotoxin; d) incubation of endothelial cells only to endotoxin; and e) both the endothelial cells and erythrocytes incubated with different concentrations of endotoxin. Erythrocyte adhesion in the saline control group was 71 +/- 8 cells/mm2. Incubation of both components with endotoxin increased the number of adhesive erythrocytes to 172 +/- 9 cells/mm2 (p < .05). When only the endothelial cells were treated with endotoxin, 142 +/- 8 cells/mm2 adhered to the endothelial monolayer, whereas the incubation of the erythrocytes only to endotoxin resulted in adhesion of 102 +/- 3 cells/mm2. Decreasing concentrations of endotoxin reduced adhesion from 172 +/- 9 cells/mm2 (endotoxin, 75 microg/mL) to 165 +/- 9 cells/mm2 (endotoxin, 25 microg/mL), 153 +/- 4 cells/mm2 (endotoxin, 1 microg/mL), and 146 +/- 6.1 cells/mm2 (endotoxin, 5 ng/mL). CONCLUSIONS Exposure of human erythrocytes and human venous vascular endothelial cells to an inflammatory stimulus such as endotoxin promotes a dose-dependent adhesion of erythrocytes to endothelium in a dynamic environment. These adhesive erythrocyte-endothelium interactions can be produced by exposure of either red blood cells or endothelial cells to endotoxin, with a higher degree of adhesion after activation of the endothelial cell component.
Collapse
Affiliation(s)
- O Eichelbrönner
- A.C. Burton Vascular Biology Laboratory, London Health Sciences Centre, Ontario, Canada
| | | | | | | | | |
Collapse
|
37
|
Monoclonal antibodies to αVβ3 (7E3 and LM609) inhibit sickle red blood cell–endothelium interactions induced by platelet-activating factor. Blood 2000. [DOI: 10.1182/blood.v95.2.368] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Abnormal interaction of sickle red blood cells (SS RBC) with the vascular endothelium has been implicated as a factor in the initiation of vasoocclusion in sickle cell anemia. Both von Willebrand factor (vWf) and thrombospondin (TSP) play important roles in mediating SS RBC–endothelium interaction and can bind to the endothelium via Vβ3 receptors. We have used monoclonal antibodies (MoAb) directed against Vβ3 and IIbβ3 (GPIIb/IIIa) integrins to dissect the role of these integrins in SS RBC adhesion. The murine MoAb 7E3 inhibits both Vβ3 and IIbβ3 (GPIIb/IIIa), whereas MoAb LM609 selectively inhibits Vβ3, and MoAb 10E5 binds only to IIbβ3. In this study, we have tested the capacity of these MoAbs to block platelet-activating factor (PAF)–induced SS RBC adhesion in the ex vivo mesocecum vasculature of the rat. Infusion of washed SS RBC in preparations treated with PAF (200 pg/mL), with or without a control antibody, resulted in extensive adhesion of these cells in venules, accompanied by frequent postcapillary blockage and increased peripheral resistance units (PRU). PAF also caused increased endothelial surface and interendothelial expression of endothelial vWf. Importantly, pretreatment ofthe vasculature with either MoAb 7E3 F(ab′)2 or LM609, but not 10E5 F(ab′)2, after PAF almost completely inhibited SS RBC adhesion in postcapillary venules, the sites of maximal adhesion and frequent blockage. The inhibition of adhesion with 7E3 or LM609 was accompanied by smaller increases in PRU and shorter pressure-flow recovery times. Thus, blockade of Vβ3 may constitute a potential therapeutic approach to prevent SS RBC–endothelium interactions under flow conditions.
Collapse
|
38
|
Abstract
Sickle cell disease is the most common inherited disorder in African-Americans. Although the primary defect is hematological, the changes in the erythrocytes lead to a vasculopathy with multiorgan injury. The pulmonary complications, i.e., acute chest syndrome and chronic sickle cell lung disease, are significant causes of morbidity and mortality. The pulmonary manifestations result from a unique constellation of factors which come into play in sickle cell disease. Based on the growing understanding of the molecular and cellular biology of sickle cell disease, new therapies are being developed that are likely to ameliorate the natural history of this disease and its complications.
Collapse
Affiliation(s)
- J Knight
- Division of Pediatric Pulmonary Diseases, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
39
|
Identification and Characterization of Endothelial Glycoprotein Ib Using Viper Venom Proteins Modulating Cell Adhesion. Blood 1999. [DOI: 10.1182/blood.v93.8.2605.408k18_2605_2616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression and function of a glycoprotein Ib (GPIb) complex on human umbilical vein endothelial cells (HUVECs) is still a matter of controversy. We characterized HUVEC GPIb using viper venom proteins: alboaggregins A and B, echicetin, botrocetin, and echistatin. Echicetin is an antagonist, and alboaggregins act as agonists of the platelet GPIb complex. Botrocetin is a venom protein that alters von Willebrand factor (vWF) conformation and increases its binding affinity for the GPIb complex. Echistatin is a disintegrin that blocks vβ3. Echistatin, but not echicetin, inhibited the adhesion to vWF of Chinese hamster ovary (CHO) cells transfected with vβ3. We found the following: (1) Binding of monoclonal antibodies against GPIb to HUVECs was moderately increased after stimulation with cytokines and phorbol ester. Echicetin demonstrated an inhibitory effect. (2) Both echicetin and echistatin, an vβ3 antagonist, inhibited the adhesion of HUVECs to immobilized vWF in a dose-dependent manner. The inhibitory effect was additive when both proteins were used together. (3) Botrocetin potentiated the adhesion of HUVECs to vWF, and this effect was completely abolished by echicetin, but not by echistatin. (4) CHO cells expressing GPIbβ/IX adhered to vWF (in the presence of botrocetin) and to alboaggregins; GPIb was required for this reaction. Echicetin, but not echistatin, inhibited the adhesion of cells transfected with GPIbβ/IX to immobilized vWF. (5) HUVECs adhered strongly to immobilized vWF and alboaggregins with extensive spreading, which was inhibited by LJ1b1, a monoclonal antibody against GPIb. The purified vβ3 receptor did not interact with the alboaggregins, thereby excluding the contribution of vβ3 in inducing HUVEC spreading on alboaggregins. In conclusion, our data confirm the presence of a functional GPIb complex expressed on HUVECs in low density. This complex may mediate HUVEC adhesion and spreading on immobilized vWF and alboaggregins.
Collapse
|
40
|
Identification and Characterization of Endothelial Glycoprotein Ib Using Viper Venom Proteins Modulating Cell Adhesion. Blood 1999. [DOI: 10.1182/blood.v93.8.2605] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe expression and function of a glycoprotein Ib (GPIb) complex on human umbilical vein endothelial cells (HUVECs) is still a matter of controversy. We characterized HUVEC GPIb using viper venom proteins: alboaggregins A and B, echicetin, botrocetin, and echistatin. Echicetin is an antagonist, and alboaggregins act as agonists of the platelet GPIb complex. Botrocetin is a venom protein that alters von Willebrand factor (vWF) conformation and increases its binding affinity for the GPIb complex. Echistatin is a disintegrin that blocks vβ3. Echistatin, but not echicetin, inhibited the adhesion to vWF of Chinese hamster ovary (CHO) cells transfected with vβ3. We found the following: (1) Binding of monoclonal antibodies against GPIb to HUVECs was moderately increased after stimulation with cytokines and phorbol ester. Echicetin demonstrated an inhibitory effect. (2) Both echicetin and echistatin, an vβ3 antagonist, inhibited the adhesion of HUVECs to immobilized vWF in a dose-dependent manner. The inhibitory effect was additive when both proteins were used together. (3) Botrocetin potentiated the adhesion of HUVECs to vWF, and this effect was completely abolished by echicetin, but not by echistatin. (4) CHO cells expressing GPIbβ/IX adhered to vWF (in the presence of botrocetin) and to alboaggregins; GPIb was required for this reaction. Echicetin, but not echistatin, inhibited the adhesion of cells transfected with GPIbβ/IX to immobilized vWF. (5) HUVECs adhered strongly to immobilized vWF and alboaggregins with extensive spreading, which was inhibited by LJ1b1, a monoclonal antibody against GPIb. The purified vβ3 receptor did not interact with the alboaggregins, thereby excluding the contribution of vβ3 in inducing HUVEC spreading on alboaggregins. In conclusion, our data confirm the presence of a functional GPIb complex expressed on HUVECs in low density. This complex may mediate HUVEC adhesion and spreading on immobilized vWF and alboaggregins.
Collapse
|
41
|
Affiliation(s)
- M H Steinberg
- G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
42
|
Anionic Polysaccharides Inhibit Adhesion of Sickle Erythrocytes to the Vascular Endothelium and Result in Improved Hemodynamic Behavior. Blood 1999. [DOI: 10.1182/blood.v93.4.1422.404k24_1422_1429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The abnormal adherence of sickle red blood cells (SS RBC) to vascular endothelium may play an important role in vasoocclusion in sickle cell anemia. Thrombospondin (TSP), unusually large molecular weight forms of von Willebrand factor, and laminin are known to enhance adhesion of SS RBC. Also, these endothelial proteins bind to sulfated glycolipids and this binding is inhibited by anionic polysaccharides. Reversible sickling may expose normally cryptic membrane sulfatides that could mediate this adhesive interaction. In this study, we have investigated the effect of anionic polysaccharides, in the presence or absence of TSP, on SS RBC adhesion to the endothelium, using cultured human umbilical vein endothelial cells (HUVEC) (for the adhesion assay) and the ex vivo mesocecum of the rat (for hemodynamic evaluation). The baseline adhesion (ie, without added TSP) of SS RBC to HUVEC was most effectively inhibited by high molecular weight dextran sulfate (HDS), whereas low molecular weight dextran sulfate (LDS) and the glycosaminoglycan chondroitin sulfate A (CSA) also had significant inhibitory effects. Heparin was mildly effective whereas other glycosaminoglycans (chondroitin sulfates B and C, heparan sulfate, and fucoidan) were ineffective. Similarly, HDS and CSA resulted in an improved hemodynamic behavior of SS RBC. Soluble TSP caused significant increases in SS RBC adhesion and in the peripheral resistance. Both HDS and CSA prevented TSP-enhanced adhesion and hemodynamic abnormalities. Thus, anionic polysaccharides can inhibit SS RBC-endothelium interaction in the presence or absence of soluble TSP. These agents may interact with RBC membrane component(s) and prevent TSP-mediated adhesion of SS RBC to the endothelium.
Collapse
|
43
|
Anionic Polysaccharides Inhibit Adhesion of Sickle Erythrocytes to the Vascular Endothelium and Result in Improved Hemodynamic Behavior. Blood 1999. [DOI: 10.1182/blood.v93.4.1422] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
AbstractThe abnormal adherence of sickle red blood cells (SS RBC) to vascular endothelium may play an important role in vasoocclusion in sickle cell anemia. Thrombospondin (TSP), unusually large molecular weight forms of von Willebrand factor, and laminin are known to enhance adhesion of SS RBC. Also, these endothelial proteins bind to sulfated glycolipids and this binding is inhibited by anionic polysaccharides. Reversible sickling may expose normally cryptic membrane sulfatides that could mediate this adhesive interaction. In this study, we have investigated the effect of anionic polysaccharides, in the presence or absence of TSP, on SS RBC adhesion to the endothelium, using cultured human umbilical vein endothelial cells (HUVEC) (for the adhesion assay) and the ex vivo mesocecum of the rat (for hemodynamic evaluation). The baseline adhesion (ie, without added TSP) of SS RBC to HUVEC was most effectively inhibited by high molecular weight dextran sulfate (HDS), whereas low molecular weight dextran sulfate (LDS) and the glycosaminoglycan chondroitin sulfate A (CSA) also had significant inhibitory effects. Heparin was mildly effective whereas other glycosaminoglycans (chondroitin sulfates B and C, heparan sulfate, and fucoidan) were ineffective. Similarly, HDS and CSA resulted in an improved hemodynamic behavior of SS RBC. Soluble TSP caused significant increases in SS RBC adhesion and in the peripheral resistance. Both HDS and CSA prevented TSP-enhanced adhesion and hemodynamic abnormalities. Thus, anionic polysaccharides can inhibit SS RBC-endothelium interaction in the presence or absence of soluble TSP. These agents may interact with RBC membrane component(s) and prevent TSP-mediated adhesion of SS RBC to the endothelium.
Collapse
|
44
|
Interaction of Sickle Erythrocytes With Endothelial Cells in the Presence of Endothelial Cell Conditioned Medium Induces Oxidant Stress Leading to Transendothelial Migration of Monocytes. Blood 1998. [DOI: 10.1182/blood.v92.10.3924] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
AbstractThe abnormal adherence of sickle red blood cells (SS RBC) to endothelial cells has been thought to contribute to vascular occlusion, a major cause of morbidity in sickle cell disease (SCD). We determined whether the interaction of SS RBC with cultured endothelial cells induced cellular oxidant stress that would culminate in expression of cell adhesion molecules (CAMs) involved in the adhesion and diapedesis of monocytes and the adherence of SS reticulocytes. We showed that the interaction of SS RBC at 2% concentration in the presence of multimers of von Willebrand factor (vWf), derived from endothelial cell-derived conditioned medium (E-CM) with cultured human umbilical vein endothelial cells (HUVEC), resulted in a fivefold increased formation of thiobarbituric acid-reactive substances (TBARS) and activation of the transcription factor NF-kB, both indicators of cellular oxidant stress. Normal RBC show none of these phenomena. The oxidant stress-induced signaling resulted in an increased surface expression of a subset of CAMs, ICAM-1, E-selectin, and VCAM-1 in HUVEC. The addition of oxygen radical scavenger enzymes (catalase, superoxide dismutase) and antioxidant (probucol) inhibited these events. Additionally, preincubation of HUVEC with a synthetic peptide Arg-Gly-Asp (RGD) that prevents vWf-mediated adhesion of SS RBC reduced the surface expression of VCAM-1 and NF-kB activation. Furthermore, SS RBC-induced oxidant stress resulted in a twofold increase in the transendothelial migration of both monocyte-like HL-60 cells and human peripheral blood monocytes, and approximately a sixfold increase in platelet-endothelial cell adhesion molecule-1 (PECAM-1) phosphorylation, each of which was blocked by protein kinase C inhibitor and antioxidants. These results suggest that the adherence/contact of SS RBC to endothelial cells in large vessel can generate enhanced oxidant stress leading to increased adhesion and diapedesis of monocytes, as well as heightened adherence of SS reticulocytes, indicating that injury/activation of endothelium can contribute to vaso-occlusion in SCD.
Collapse
|
45
|
Interaction of Sickle Erythrocytes With Endothelial Cells in the Presence of Endothelial Cell Conditioned Medium Induces Oxidant Stress Leading to Transendothelial Migration of Monocytes. Blood 1998. [DOI: 10.1182/blood.v92.10.3924.422k07_3924_3935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The abnormal adherence of sickle red blood cells (SS RBC) to endothelial cells has been thought to contribute to vascular occlusion, a major cause of morbidity in sickle cell disease (SCD). We determined whether the interaction of SS RBC with cultured endothelial cells induced cellular oxidant stress that would culminate in expression of cell adhesion molecules (CAMs) involved in the adhesion and diapedesis of monocytes and the adherence of SS reticulocytes. We showed that the interaction of SS RBC at 2% concentration in the presence of multimers of von Willebrand factor (vWf), derived from endothelial cell-derived conditioned medium (E-CM) with cultured human umbilical vein endothelial cells (HUVEC), resulted in a fivefold increased formation of thiobarbituric acid-reactive substances (TBARS) and activation of the transcription factor NF-kB, both indicators of cellular oxidant stress. Normal RBC show none of these phenomena. The oxidant stress-induced signaling resulted in an increased surface expression of a subset of CAMs, ICAM-1, E-selectin, and VCAM-1 in HUVEC. The addition of oxygen radical scavenger enzymes (catalase, superoxide dismutase) and antioxidant (probucol) inhibited these events. Additionally, preincubation of HUVEC with a synthetic peptide Arg-Gly-Asp (RGD) that prevents vWf-mediated adhesion of SS RBC reduced the surface expression of VCAM-1 and NF-kB activation. Furthermore, SS RBC-induced oxidant stress resulted in a twofold increase in the transendothelial migration of both monocyte-like HL-60 cells and human peripheral blood monocytes, and approximately a sixfold increase in platelet-endothelial cell adhesion molecule-1 (PECAM-1) phosphorylation, each of which was blocked by protein kinase C inhibitor and antioxidants. These results suggest that the adherence/contact of SS RBC to endothelial cells in large vessel can generate enhanced oxidant stress leading to increased adhesion and diapedesis of monocytes, as well as heightened adherence of SS reticulocytes, indicating that injury/activation of endothelium can contribute to vaso-occlusion in SCD.
Collapse
|
46
|
Abstract
Serial studies of plasma samples from patients during episodes of thrombotic thrombocytopenic purpura (TTP) have often shown either the presence of unusually large (UL) von Willebrand factor (vWf) multimers or, alternatively, absence of the largest plasma vWf forms. The presence of ULvWf multimers in TTP patient plasma may reflect impaired processing of the ULvWf forms released from endothelial cells. The disappearance of ULvWf and large vWf multimers in some TTP patient plasma samples during acute TTP episodes may be predominantly because these ULvWf forms, along with the largest vWf multimers, bind to platelets and cause aggregation. Serial flow cytometry studies of EDTA-whole blood samples from patients with initial episode, intermittent, and chronic relapsing types of TTP confirm that vWf is the likely aggregating agent, perhaps in association with fluid shear stress. The amount of vWf bound to single platelets has been found to be significantly increased during TTP relapses relative to remission periods in patients with all types of TTP. A substance in normal platelet-poor plasma and the cryoprecipitate-depleted fraction of normal plasma (cryosupernatant) is capable in vitro of reversibly reducing the size of ULvWf multimeric forms released by endothelial cells into the somewhat smaller vWf multimers ordinarily in circulation. This activity has characteristics of a limited disulfide bond reductase. The process of ULvWf breakdown may be made irreversible by the tandem proteolysis, catalyzed by a vWf metalloproteinase, of partially reduced vWf multimers. Several patients with chronic relapsing TTP have decreased or absent plasma vWf metalloproteinase activity, apparently on a congenital basis. Adult initial episode and intermittent TTP patients have been found to have vWf metalloproteinase activity inhibited by an autoantibody during, but not after, TTP epidsodes.
Collapse
Affiliation(s)
- J L Moake
- Department of Medicine, Baylor College of Medicine, Rice University, Houston, Texas 77030, USA
| | | |
Collapse
|
47
|
Moake JL, Chow TW. Thrombotic thrombocytopenic Purpura: Understanding a Disease No Longer Rare. Am J Med Sci 1998. [DOI: 10.1016/s0002-9629(15)40385-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Abstract
Sickle cell disease is caused by a mutation in the beta-globin chain of the haemoglobin molecule. Sickle haemoglobin, the result of this mutation, has the singular property of polymerizing when deoxygenated. Exactly how normal tissue perfusion is interrupted by abnormal sickle cells is complex and poorly understood. Despite genetic identity at the site of the sickle haemoglobin mutation, all patients with sickle cell anaemia are not affected equally by this disease. Secondary genetic determinants and acquired erythrocyte and vascular damage are likely to be central components of the pathophysiology of sickle cell anaemia.
Collapse
|
49
|
Bombeli T, Schwartz BR, Harlan JM. Adhesion of activated platelets to endothelial cells: evidence for a GPIIbIIIa-dependent bridging mechanism and novel roles for endothelial intercellular adhesion molecule 1 (ICAM-1), alphavbeta3 integrin, and GPIbalpha. J Exp Med 1998; 187:329-39. [PMID: 9449713 PMCID: PMC2212123 DOI: 10.1084/jem.187.3.329] [Citation(s) in RCA: 281] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/1997] [Revised: 10/22/1997] [Indexed: 02/05/2023] Open
Abstract
Although it has been reported that activated platelets can adhere to intact endothelium, the receptors involved have not been fully characterized. Also, it is not clear whether activated platelets bind primarily to matrix proteins at sites of endothelial cell denudation or directly to endothelial cells. Thus, this study was designed to further clarify the mechanisms of activated platelet adhesion to endothelium. Unstimulated human umbilical vein endothelial cell (HUVEC) monolayers were incubated with washed, stained, and thrombin-activated human platelets. To exclude matrix involvement, HUVEC were harvested mechanically and platelet binding was measured by flow cytometry. Before the adhesion assay, platelets or HUVEC were treated with different receptor antagonists. Whereas blockade of platelet beta1 integrins, GPIbalpha, GPIV, P-selectin, and platelet-endothelial cell adhesion molecule (PECAM)-1 did not reduce platelet adhesion to HUVEC, blockade of platelet GPIIbIIIa by antibodies or Arg-Gly-Asp (RGD) peptides markedly decreased adhesion. Moreover, when platelets were treated with blocking antibodies to GPIIbIIIa-binding adhesive proteins, including fibrinogen and fibronectin, and von Willebrand factor (vWF), platelet binding was also reduced markedly. Addition of fibrinogen, fibronectin, or vWF further increased platelet adhesion, indicating that both endogenous platelet-exposed and exogenous adhesive proteins can participate in the binding process. Evaluation of the HUVEC receptors revealed predominant involvement of intercellular adhesion molecule (ICAM)-1 and alphavbeta3 integrin. Blockade of these two receptors by antibodies decreased platelet binding significantly. Also, there was evidence that a component of platelet adhesion was mediated by endothelial GPIbalpha. Blockade of beta1 integrins, E-selectin, P-selectin, PECAM-1, vascular cell adhesion molecule (VCAM)-1 and different matrix proteins on HUVEC did not affect platelet adhesion. In conclusion, we show that activated platelet binding to HUVEC monolayers is mediated by a GPIIbIIIa-dependent bridging mechanism involving platelet-bound adhesive proteins and the endothelial cell receptors ICAM-1, alphavbeta3 integrin, and, to a lesser extent, GPIbalpha.
Collapse
Affiliation(s)
- T Bombeli
- Division of Hematology, University of Washington, Seattle, Washington 98195-7710, USA
| | | | | |
Collapse
|
50
|
RheothRx (Poloxamer 188) Injection for the Acute Painful Episode of Sickle Cell Disease: A Pilot Study. Blood 1997. [DOI: 10.1182/blood.v90.5.2041] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
RheothRx (Glaxo Wellcome Inc, Research Triangle Park, NC; poloxamer 188) Injection is a nonionic surfactant with hemorrheologic properties that suggest it may be useful in treating acute painful episodes (vasoocclusive crises) of sickle cell disease (SCD). We conducted a randomized, double-blind, placebo-controlled pilot study to evaluate the safety and efficacy of poloxamer, formulated as RheothRx Injection, in 50 patients with SCD. Patients with moderate to severe painful episodes requiring parenteral analgesics were randomized to receive a 48-hour infusion of either RheothRx or placebo. Pain was assessed every 4 hours. Efficacy endpoints included: (1) painful episode duration, (2) days of hospitalization, (3) quantity of analgesics used, and (4) pain intensity scores. Three subgroups of patients were considered for efficacy analyses based on the actual duration of the study drug infusion and the completeness of pain score data collection. Compared with placebo and depending on the subgroup, RheothRx-treated patients showed a 16% to 45% decrease in duration of painful episodes, a 1- to 2-day reduction in hospital stay, a threefold to fivefold reduction in analgesic requirements, and a 1-point reduction (using a 5-point scale) in average pain intensity scores at 72 hours. RheothRx was well tolerated; no clinically significant differences were observed between treatments with respect to adverse experiences or other safety measures. In addition, there were no differences between treatment groups in the incidence of recurrent painful episodes. In this study, RheothRx significantly reduced total analgesic use and pain intensity and showed trends to shorter duration of painful episodes and total days of hospitalization. In patients with moderate to severe vasoocclusive pain, RheothRx was safe and may offer a therapeutic benefit.
Collapse
|