1
|
Guo J, Xu B, Li L, He G, Zhang H, Cheng HZ, Ba J, Yang X, Wei L, Hu R, Wang CC. Paternal Y chromosomal genotyping reveals multiple large-scale admixtures in the formation of Lolo-Burmese-speaking populations in southwest China. Ann Hum Biol 2019; 46:581-588. [PMID: 31825250 DOI: 10.1080/03014460.2019.1698655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background: Bai and Yi people are two Tibeto-Burman speaking ethnic groups in Yunnan, southwest China. The genetic structure and history of these two groups are largely unknown due to a lack of available genetic data.Aim: To investigate the paternal genetic structure and population relationship of the Yi and Bai people.Subjects and methods: We collected samples from 278 Bai individuals and 283 Yi individuals from Yunnan and subsequently genotyped 43 phylogenetically relevant Y-SNPs in those samples. We estimated haplogroup frequencies and merged our data with a reference database including 46 representative worldwide populations to infer genetic relationships.Results: Y chromosomal haplogroup O-M175 is the dominant lineage in both Bai and Yi people. The Bai and Yi show a close genetic relationship with other Tibeto-Burman-speaking populations with high frequencies of haplogroup O2a2b1a1-Page23, which is also confirmed by PCA. The frequencies of the Tai-Kadai specific lineage O1a-M119, the southern China widespread lineage O1b-P31 and the eastern China enriched lineage O2a1b-002611, are also relatively high in our studied populations.Conclusions: The paternal Y chromosomal affinity of the Bai and Yi with Tibeto-Burman groups is consistent with the language classification. During the formation of the Bai and Yi populations, there were multiple large-scale admixtures, including the expansion of Neolithic farming populations from northern China, the assimilation of Tai-Kadai-speaking populations in southwest China, the demographic expansion driven by Neolithic agricultural revolution from southern China, and the admixture with populations of military immigration from northern and eastern China.
Collapse
Affiliation(s)
- Jianxin Guo
- Department of History, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Bingying Xu
- Research Center of Biomedical Engineering, Kunming Medical University, Kunming, China
| | - Lanjiang Li
- Research Center of Biomedical Engineering, Kunming Medical University, Kunming, China
| | - Guanglin He
- Department of History, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Han Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Hui-Zhen Cheng
- Department of History, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Jinxing Ba
- Department of History, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Xiaomin Yang
- Department of History, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Lanhai Wei
- Department of History, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Rong Hu
- Department of History, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Chuan-Chao Wang
- Department of History, Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Pankratov V, Litvinov S, Kassian A, Shulhin D, Tchebotarev L, Yunusbayev B, Möls M, Sahakyan H, Yepiskoposyan L, Rootsi S, Metspalu E, Golubenko M, Ekomasova N, Akhatova F, Khusnutdinova E, Heyer E, Endicott P, Derenko M, Malyarchuk B, Metspalu M, Davydenko O, Villems R, Kushniarevich A. East Eurasian ancestry in the middle of Europe: genetic footprints of Steppe nomads in the genomes of Belarusian Lipka Tatars. Sci Rep 2016; 6:30197. [PMID: 27453128 PMCID: PMC4958967 DOI: 10.1038/srep30197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/29/2016] [Indexed: 12/04/2022] Open
Abstract
Medieval era encounters of nomadic groups of the Eurasian Steppe and largely sedentary East Europeans had a variety of demographic and cultural consequences. Amongst these outcomes was the emergence of the Lipka Tatars—a Slavic-speaking Sunni-Muslim minority residing in modern Belarus, Lithuania and Poland, whose ancestors arrived in these territories via several migration waves, mainly from the Golden Horde. Our results show that Belarusian Lipka Tatars share a substantial part of their gene pool with Europeans as indicated by their Y-chromosomal, mitochondrial and autosomal DNA variation. Nevertheless, Belarusian Lipkas still retain a strong genetic signal of their nomadic ancestry, witnessed by the presence of common Y-chromosomal and mitochondrial DNA variants as well as autosomal segments identical by descent between Lipkas and East Eurasians from temperate and northern regions. Hence, we document Lipka Tatars as a unique example of former Medieval migrants into Central Europe, who became sedentary, changed language to Slavic, yet preserved their faith and retained, both uni- and bi-parentally, a clear genetic echo of a complex population interplay throughout the Eurasian Steppe Belt, extending from Central Europe to northern China.
Collapse
Affiliation(s)
- Vasili Pankratov
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Sergei Litvinov
- Institute of Biochemistry and Genetics, Ufa Research Centre, RAS, Ufa, Bashkortostan, Russia.,Estonian Biocentre, Tartu, Estonia
| | - Alexei Kassian
- Institute of Linguistics, Russian Academy of Sciences, Moscow, Russia.,School for Advanced Studies in the Humanities, Russian Presidential Academy of National Economy and Public Administration, Moscow, Russia
| | - Dzmitry Shulhin
- Belarusian State University, Faculty of Applied Mathematics and Computer Science Department of Probability Theory and Mathematical Statistics, Minsk, Belarus
| | - Lieve Tchebotarev
- Center of analytical and genetic engineering studies, Institute of Microbiology, National Academy of Sciences of Belarus, Minsk, Belarus
| | | | - Märt Möls
- Institute of Mathematical Statistics, University of Tartu, Tartu, Estonia
| | - Hovhannes Sahakyan
- Estonian Biocentre, Tartu, Estonia.,Laboratory of Ethnogenomics, Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan, 0014, Armenia
| | - Levon Yepiskoposyan
- Laboratory of Ethnogenomics, Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan, 0014, Armenia
| | | | - Ene Metspalu
- Estonian Biocentre, Tartu, Estonia.,Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Maria Golubenko
- The Research Institute for Medical Genetics, 634050, Tomsk, Russia
| | - Natalia Ekomasova
- Department of Genetics and Fundamental Medicine of Bashkir State University, Ufa, Bashkortostan, Russia
| | - Farida Akhatova
- Department of Genetics and Fundamental Medicine of Bashkir State University, Ufa, Bashkortostan, Russia.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Research Centre, RAS, Ufa, Bashkortostan, Russia.,Department of Genetics and Fundamental Medicine of Bashkir State University, Ufa, Bashkortostan, Russia
| | - Evelyne Heyer
- Eco-Anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Université Paris Diderot, Sorbonne Universités, Muséum national d'Histoire naturelle, Musée de l'Homme, Paris, France
| | - Phillip Endicott
- Eco-Anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Université Paris Diderot, Sorbonne Universités, Muséum national d'Histoire naturelle, Musée de l'Homme, Paris, France
| | - Miroslava Derenko
- Institute of Biological Problems of the North, Russian Academy of Sciences, Magadan, Russia
| | - Boris Malyarchuk
- Institute of Biological Problems of the North, Russian Academy of Sciences, Magadan, Russia
| | | | - Oleg Davydenko
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Richard Villems
- Estonian Biocentre, Tartu, Estonia.,Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Alena Kushniarevich
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus.,Estonian Biocentre, Tartu, Estonia
| |
Collapse
|
3
|
Yunusbayev B, Metspalu M, Metspalu E, Valeev A, Litvinov S, Valiev R, Akhmetova V, Balanovska E, Balanovsky O, Turdikulova S, Dalimova D, Nymadawa P, Bahmanimehr A, Sahakyan H, Tambets K, Fedorova S, Barashkov N, Khidiyatova I, Mihailov E, Khusainova R, Damba L, Derenko M, Malyarchuk B, Osipova L, Voevoda M, Yepiskoposyan L, Kivisild T, Khusnutdinova E, Villems R. The genetic legacy of the expansion of Turkic-speaking nomads across Eurasia. PLoS Genet 2015; 11:e1005068. [PMID: 25898006 PMCID: PMC4405460 DOI: 10.1371/journal.pgen.1005068] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 02/11/2015] [Indexed: 12/28/2022] Open
Abstract
The Turkic peoples represent a diverse collection of ethnic groups defined by the Turkic languages. These groups have dispersed across a vast area, including Siberia, Northwest China, Central Asia, East Europe, the Caucasus, Anatolia, the Middle East, and Afghanistan. The origin and early dispersal history of the Turkic peoples is disputed, with candidates for their ancient homeland ranging from the Transcaspian steppe to Manchuria in Northeast Asia. Previous genetic studies have not identified a clear-cut unifying genetic signal for the Turkic peoples, which lends support for language replacement rather than demic diffusion as the model for the Turkic language’s expansion. We addressed the genetic origin of 373 individuals from 22 Turkic-speaking populations, representing their current geographic range, by analyzing genome-wide high-density genotype data. In agreement with the elite dominance model of language expansion most of the Turkic peoples studied genetically resemble their geographic neighbors. However, western Turkic peoples sampled across West Eurasia shared an excess of long chromosomal tracts that are identical by descent (IBD) with populations from present-day South Siberia and Mongolia (SSM), an area where historians center a series of early Turkic and non-Turkic steppe polities. While SSM matching IBD tracts (> 1cM) are also observed in non-Turkic populations, Turkic peoples demonstrate a higher percentage of such tracts (p-values ≤ 0.01) compared to their non-Turkic neighbors. Finally, we used the ALDER method and inferred admixture dates (~9th–17th centuries) that overlap with the Turkic migrations of the 5th–16th centuries. Thus, our results indicate historical admixture among Turkic peoples, and the recent shared ancestry with modern populations in SSM supports one of the hypothesized homelands for their nomadic Turkic and related Mongolic ancestors. Centuries of nomadic migrations have ultimately resulted in the distribution of Turkic languages over a large area ranging from Siberia, across Central Asia to Eastern Europe and the Middle East. Despite the profound cultural impact left by these nomadic peoples, little is known about their prehistoric origins. Moreover, because contemporary Turkic speakers tend to genetically resemble their geographic neighbors, it is not clear whether their nomadic ancestors left an identifiable genetic trace. In this study, we show that Turkic-speaking peoples sampled across the Middle East, Caucasus, East Europe, and Central Asia share varying proportions of Asian ancestry that originate in a single area, southern Siberia and Mongolia. Mongolic- and Turkic-speaking populations from this area bear an unusually high number of long chromosomal tracts that are identical by descent with Turkic peoples from across west Eurasia. Admixture induced linkage disequilibrium decay across chromosomes in these populations indicates that admixture occurred during the 9th–17th centuries, in agreement with the historically recorded Turkic nomadic migrations and later Mongol expansion. Thus, our findings reveal genetic traces of recent large-scale nomadic migrations and map their source to a previously hypothesized area of Mongolia and southern Siberia.
Collapse
Affiliation(s)
- Bayazit Yunusbayev
- Evolutionary Biology group, Estonian Biocentre, Tartu, Estonia
- Institute of Biochemistry and Genetics, Ufa Research Centre, RAS, Ufa, Bashkortostan, Russia
- * E-mail: ,
| | - Mait Metspalu
- Evolutionary Biology group, Estonian Biocentre, Tartu, Estonia
- Department of Evolutionary Biology, University of Tartu, Tartu, Estonia
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Ene Metspalu
- Department of Evolutionary Biology, University of Tartu, Tartu, Estonia
| | - Albert Valeev
- Institute of Biochemistry and Genetics, Ufa Research Centre, RAS, Ufa, Bashkortostan, Russia
| | - Sergei Litvinov
- Evolutionary Biology group, Estonian Biocentre, Tartu, Estonia
- Institute of Biochemistry and Genetics, Ufa Research Centre, RAS, Ufa, Bashkortostan, Russia
| | - Ruslan Valiev
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Bashkortostan, Russia
| | - Vita Akhmetova
- Institute of Biochemistry and Genetics, Ufa Research Centre, RAS, Ufa, Bashkortostan, Russia
| | | | - Oleg Balanovsky
- Research Centre for Medical Genetics, RAMS, Moscow, Russia
- Vavilov Institute for General Genetics, RAS, Moscow, Russia
| | - Shahlo Turdikulova
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Academy of Sciences Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Dilbar Dalimova
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Academy of Sciences Republic of Uzbekistan, Tashkent, Uzbekistan
| | | | - Ardeshir Bahmanimehr
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hovhannes Sahakyan
- Evolutionary Biology group, Estonian Biocentre, Tartu, Estonia
- Laboratory of Ethnogenomics, Institute of Molecular Biology, Academy of Sciences of Armenia, Yerevan, Armenia
| | | | - Sardana Fedorova
- Laboratory of Molecular Genetics, Yakut Research Center of Complex Medical Problems, Yakutsk, Sakha Republic, Russia
- Laboratory of Molecular Biology, North-Eastern Federal University, Yakutsk, Sakha Republic, Russia
| | - Nikolay Barashkov
- Laboratory of Molecular Genetics, Yakut Research Center of Complex Medical Problems, Yakutsk, Sakha Republic, Russia
- Laboratory of Molecular Biology, North-Eastern Federal University, Yakutsk, Sakha Republic, Russia
| | - Irina Khidiyatova
- Institute of Biochemistry and Genetics, Ufa Research Centre, RAS, Ufa, Bashkortostan, Russia
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Bashkortostan, Russia
| | - Evelin Mihailov
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Gene Technology Workgroup, Estonian Biocentre, Tartu, Estonia
| | - Rita Khusainova
- Institute of Biochemistry and Genetics, Ufa Research Centre, RAS, Ufa, Bashkortostan, Russia
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Bashkortostan, Russia
| | - Larisa Damba
- Institute of Internal Medicine, SB RAMS, Novosibirsk, Russia
| | | | | | - Ludmila Osipova
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia
| | - Mikhail Voevoda
- Institute of Internal Medicine, SB RAMS, Novosibirsk, Russia
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia
| | - Levon Yepiskoposyan
- Laboratory of Ethnogenomics, Institute of Molecular Biology, Academy of Sciences of Armenia, Yerevan, Armenia
| | - Toomas Kivisild
- Division of Biological Anthropology, University of Cambridge, Cambridge, United Kingdom
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Research Centre, RAS, Ufa, Bashkortostan, Russia
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Bashkortostan, Russia
| | - Richard Villems
- Evolutionary Biology group, Estonian Biocentre, Tartu, Estonia
- Department of Evolutionary Biology, University of Tartu, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| |
Collapse
|
4
|
Kovacevic L, Tambets K, Ilumäe AM, Kushniarevich A, Yunusbayev B, Solnik A, Bego T, Primorac D, Skaro V, Leskovac A, Jakovski Z, Drobnic K, Tolk HV, Kovacevic S, Rudan P, Metspalu E, Marjanovic D. Standing at the gateway to Europe--the genetic structure of Western balkan populations based on autosomal and haploid markers. PLoS One 2014; 9:e105090. [PMID: 25148043 PMCID: PMC4141785 DOI: 10.1371/journal.pone.0105090] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 07/20/2014] [Indexed: 01/26/2023] Open
Abstract
Contemporary inhabitants of the Balkan Peninsula belong to several ethnic groups of diverse cultural background. In this study, three ethnic groups from Bosnia and Herzegovina - Bosniacs, Bosnian Croats and Bosnian Serbs - as well as the populations of Serbians, Croatians, Macedonians from the former Yugoslav Republic of Macedonia, Montenegrins and Kosovars have been characterized for the genetic variation of 660 000 genome-wide autosomal single nucleotide polymorphisms and for haploid markers. New autosomal data of the 70 individuals together with previously published data of 20 individuals from the populations of the Western Balkan region in a context of 695 samples of global range have been analysed. Comparison of the variation data of autosomal and haploid lineages of the studied Western Balkan populations reveals a concordance of the data in both sets and the genetic uniformity of the studied populations, especially of Western South-Slavic speakers. The genetic variation of Western Balkan populations reveals the continuity between the Middle East and Europe via the Balkan region and supports the scenario that one of the major routes of ancient gene flows and admixture went through the Balkan Peninsula.
Collapse
Affiliation(s)
- Lejla Kovacevic
- Estonian Biocentre and Department of Evolutionary Biology, University of Tartu, Estonia
- Institute for Genetic Engineering and Biotechnology, Sarajevo, Bosnia and Herzegovina
- Institute of Biochemistry and Genetics, Ufa Research Centre, RAS, Ufa, Bashkortostan, Russia
| | - Kristiina Tambets
- Estonian Biocentre and Department of Evolutionary Biology, University of Tartu, Estonia
| | - Anne-Mai Ilumäe
- Estonian Biocentre and Department of Evolutionary Biology, University of Tartu, Estonia
| | - Alena Kushniarevich
- Estonian Biocentre and Department of Evolutionary Biology, University of Tartu, Estonia
| | - Bayazit Yunusbayev
- Estonian Biocentre and Department of Evolutionary Biology, University of Tartu, Estonia
- Institute of Biochemistry and Genetics, Ufa Research Centre, RAS, Ufa, Bashkortostan, Russia
| | - Anu Solnik
- Estonian Biocentre and Department of Evolutionary Biology, University of Tartu, Estonia
| | - Tamer Bego
- Faculty of Pharmacy, University of Sarajevo; Bosnia and Herzegovina
| | | | | | - Andreja Leskovac
- Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Zlatko Jakovski
- Institute for forensic medicine, criminology and and medical deontology, Medical Faculty, University of St. Cyril and Methodius, Skopje, F.Y.R of Macedonia
| | - Katja Drobnic
- National forensic laboratory, Ministry of the Interior, Slovenia
| | - Helle-Viivi Tolk
- Estonian Biocentre and Department of Evolutionary Biology, University of Tartu, Estonia
| | | | - Pavao Rudan
- Croatian Academy of Science and Art, Zagreb, Croatia
| | - Ene Metspalu
- Estonian Biocentre and Department of Evolutionary Biology, University of Tartu, Estonia
| | - Damir Marjanovic
- Institute for Genetic Engineering and Biotechnology, Sarajevo, Bosnia and Herzegovina
- University Center of Forensic Science, Split, Croatia
| |
Collapse
|
5
|
Paleo-Balkan and Slavic contributions to the genetic pool of Moldavians: insights from the Y chromosome. PLoS One 2013; 8:e53731. [PMID: 23341985 PMCID: PMC3547065 DOI: 10.1371/journal.pone.0053731] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 12/04/2012] [Indexed: 11/25/2022] Open
Abstract
Moldova has a rich historical and cultural heritage, which may be reflected in the current genetic makeup of its population. To date, no comprehensive studies exist about the population genetic structure of modern Moldavians. To bridge this gap with respect to paternal lineages, we analyzed 37 binary and 17 multiallelic (STRs) polymorphisms on the non-recombining portion of the Y chromosome in 125 Moldavian males. In addition, 53 Ukrainians from eastern Moldova and 54 Romanians from the neighboring eastern Romania were typed using the same set of markers. In Moldavians, 19 Y chromosome haplogroups were identified, the most common being I-M423 (20.8%), R-M17* (17.6%), R-M458 (12.8%), E-v13 (8.8%), R-M269* and R-M412* (both 7.2%). In Romanians, 14 haplogroups were found including I-M423 (40.7%), R-M17* (16.7%), R-M405 (7.4%), E-v13 and R-M412* (both 5.6%). In Ukrainians, 13 haplogroups were identified including R-M17 (34.0%), I-M423 (20.8%), R-M269* (9.4%), N-M178, R-M458 and R-M73 (each 5.7%). Our results show that a significant majority of the Moldavian paternal gene pool belongs to eastern/central European and Balkan/eastern Mediterranean Y lineages. Phylogenetic and AMOVA analyses based on Y-STR loci also revealed that Moldavians are close to both eastern/central European and Balkan-Carpathian populations. The data correlate well with historical accounts and geographical location of the region and thus allow to hypothesize that extant Moldavian paternal genetic lineages arose from extensive recent admixture between genetically autochthonous populations of the Balkan-Carpathian zone and neighboring Slavic groups.
Collapse
|
6
|
Khar’kov VN, Khamina KV, Medvedeva OF, Shtygasheva OV, Stepanov VA. Genetic diversity of the Khakass gene pool: Subethnic differentiation and the structure of Y-chromosome haplogroups. Mol Biol 2011. [DOI: 10.1134/s0026893311020117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|