1
|
Ge X, He J, Zheng Y, Wang Q, Cheng H, Bao Y, Lin S, Yang X. Association of Blood Metals and Metal Mixtures with the Myocardial Enzyme Profile: An Occupational Population-Based Study in China. Biol Trace Elem Res 2024:10.1007/s12011-024-04316-z. [PMID: 39069562 DOI: 10.1007/s12011-024-04316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
To investigate a cross-sectional association between blood metal mixture and myocardial enzyme profile, we quantified creatine kinase (CK), creatine kinase-MB (CK-MB), lactate dehydrogenase (LD), α-hydroxybutyrate dehydrogenase (α-HBD), and aspartate transaminase (AST) levels among participants from the manganese-exposed workers healthy cohort (MEWHC) (n = 544). The levels of 22 metals in blood cells were determined using inductively coupled plasma mass spectrometry. The least absolute shrinkage and selection operator (LASSO) penalized regression model was utilized for screening metals. The exposure-response relationship between specific metal and myocardial enzyme profile was identified by general linear regression and restricted cubic spline analyses. The overall effect and interactions were evaluated using Bayesian kernel machine regression (BKMR). Manganese was linearly and positively associated with CK (Poverall = 0.019, Pnon-linearity = 0.307), dominating the positive overall effect of mixture exposure (manganese, arsenic, and rubidium) on CK level. Calcium and zinc were linearly and negatively associated with LD levels (Poverall < 0.05, Pnon-linearity > 0.05), and asserted dominance in the negative overall effect of metal mixtures (rubidium, molybdenum, zinc, nickel, cobalt, calcium, and magnesium) on LD level. Interestingly, we observed a U-shaped dose-response relationship of molybdenum with LD level (Poverall < 0.001, Pnon-linearity = 0.015), an interaction between age and calcium on LD level (Pinteration = 0.041), and an interaction between smoking and molybdenum on LD level (Pinteration = 0.035). Our study provides evidence that metal mixture exposure affects the myocardial enzyme profile. Additional investigation is required to confirm these associations, and to reveal the fundamental mechanisms involved.
Collapse
Affiliation(s)
- Xiaoting Ge
- School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Junxiu He
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yuan Zheng
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Qiuyue Wang
- School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Hong Cheng
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yu Bao
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Sencai Lin
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xiaobo Yang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
2
|
Ao C, Tang S, Yang Y, Liu Y, Zhao H, Ban J, Li J. Identification of histone acetylation modification sites in the striatum of subchronically manganese-exposed rats. Epigenomics 2024; 16:5-21. [PMID: 38174439 DOI: 10.2217/epi-2023-0364] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Aim: To explore the specific histone acetylation sites and oxidative stress-related genes that are associated with the pathogenesis of manganese toxicity. Methods: We employed liquid chromatography-tandem mass spectrometry and bioinformatics analysis to identify acetylated proteins in the striatum of subchronic manganese-intoxicated rats. Results: We identified a total of 12 differentially modified histone acetylation sites: H3K9ac, H3K14ac, H3K18ac, H3K56ac and H3K79ac were upregulated and H3K27ac, H3K36ac, H4K91ac, H4K79ac, H4K31ac, H2BK16ac and H2BK20ac were downregulated. Additionally, we found that CAT, SOD1 and SOD2 might be epigenetically regulated and involved in the pathogenesis of manganism. Conclusion: This study identified histone acetylation sites and oxidative stress-related genes associated with the pathogenesis of manganese toxicity, and these findings are useful in the search for potential epigenetic targets for manganese toxicity.
Collapse
Affiliation(s)
- Chunyan Ao
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Shunfang Tang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Yue Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Ying Liu
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Hua Zhao
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Jiaqi Ban
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Jun Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| |
Collapse
|
3
|
Xiao S, Zhou Y, Liu T, Hu Y, Wu Q, Pan Q, Wang X, Liu A, Liu J, Zhu H, Yin T, Pan D. The association between manganese exposure with cardiovascular disease in older adults: NHANES 2011-2018. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:1221-1227. [PMID: 34474652 DOI: 10.1080/10934529.2021.1973823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The aim of the current study was to explore possible connections between manganese exposure and the prevalence of cardiovascular disease (CVD) in older US adults. The relationship between serum manganese levels and CVD was explored in 2427 people aged 60 years and over using data from the National Health and Nutrition Examination Survey (NHANES) (2011-2018). Multivariate linear regression analysis was performed to investigate associations between CVD risk factors and serum manganese concentration. The relationship between manganese levels and the prevalence of CVD was probed using generalized linear models and restricted cubic spline curves. Stratified subgroup analysis was subsequently constructed to rule out spurious interactions between variables and manganese. Compared with the lowest quartile, the modified odds ratios (ORs) with 95% confidence intervals (CIs) for CVD prevalence across the manganese quartiles were 0.71 (OR: 0.51; CI: 1.00), 0.70 (0.50, 0.99), and 0.49 (0.34, 0.72). In the full adjusted model, a prominent negative relationship was observed between serum manganese concentration and CVD. A restricted cubic spline curve was used to show a nonlinear negative relationship between manganese concentration and CVD. In summary, manganese levels are negatively correlated with the risk of CVD in a nation-wide study of older US adults.
Collapse
Affiliation(s)
- Shengjue Xiao
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yufei Zhou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tao Liu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yue Hu
- Department of General Practice, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qi Wu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qinyuan Pan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaotong Wang
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ailin Liu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jie Liu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hong Zhu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ting Yin
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Defeng Pan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
4
|
Luo X, Liu Z, Ge X, Huang S, Zhou Y, Li D, Li L, Chen X, Huang L, Hou Q, Cheng H, Xiao L, Liu C, Zou Y, Yang X. High manganese exposure decreased the risk of high triglycerides in workers: a cross-sectional study. BMC Public Health 2020; 20:874. [PMID: 32503499 PMCID: PMC7275562 DOI: 10.1186/s12889-020-09011-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 05/29/2020] [Indexed: 01/04/2023] Open
Abstract
Background Manganese (Mn) participates in lipid metabolism. However, the associations between Mn exposure and dyslipidaemia is unclear. Methods This was a cross-sectional study. Data were collected from the 2017 the Mn-exposed workers healthy cohort (MEWHC). Finally, 803 occupationally Mn-exposed workers included in the study. The workers were divided into two groups. The grouping of this study was based on Mn-Time Weighted Averages (Mn-TWA). The high-exposure group included participants with Mn-TWA greater than 0.15 mg/m3. The low-exposure group included participants with Mn-TWA less than or equal to 0.15 mg/m3. Mn-TWA levels and dyslipidaemia were assessed. Results After adjustment for seniority, sex, cigarette consumption, alcohol consumption, high-fat diet frequency, medicine intake in the past two weeks, egg intake frequency, drinking tea, WHR, and hypertension, Mn-TWA levels was negatively correlated with high triglycerides (TG) risk in workers overall (OR = 0.51; 95% CI: 0.36, 0.73; p < 0.01). The results of males and females were consistent (OR = 0.53; 95% CI: 0.34, 0.81; p < 0.01) and (OR = 0.47; 95% CI: 0.24, 0.94; p < 0.01), respectively. By performing interactions analyses of workers overall, we observed no significant interactions among confounders. Mn-TWA levels and pack-years on high TG risk (relative excess risk for the interactions (RERI = 2.29, 95% CI: − 2.07, 6.66), (RERI) = 2.98, 95% CI: − 2.30, 8.26). Similarly, smoking status, drinking status, high-fat diet frequency, and Waist-to-Hip Ratio (WHR) showed non-significant interactions with Mn-TWA levels on high TG risk. Conclusions This research indicates that high Mn exposure was negatively related to high TG risk in workers.
Collapse
Affiliation(s)
- Xiaoyu Luo
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhenfang Liu
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoting Ge
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Sifang Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yanting Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Defu Li
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Longman Li
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiang Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Lulu Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Qingzhi Hou
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Lili Xiao
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Chaoqun Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China. .,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi, China. .,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|