1
|
Stamou MI, Brand H, Wang M, Wong I, Lippincott MF, Plummer L, Crowley WF, Talkowski M, Seminara S, Balasubramanian R. Prevalence and Phenotypic Effects of Copy Number Variants in Isolated Hypogonadotropic Hypogonadism. J Clin Endocrinol Metab 2022; 107:2228-2242. [PMID: 35574646 PMCID: PMC9282252 DOI: 10.1210/clinem/dgac300] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 12/24/2022]
Abstract
CONTEXT The genetic architecture of isolated hypogonadotropic hypogonadism (IHH) has not been completely defined. OBJECTIVE To determine the role of copy number variants (CNVs) in IHH pathogenicity and define their phenotypic spectrum. METHODS Exome sequencing (ES) data in IHH probands (n = 1394) (Kallmann syndrome [IHH with anosmia; KS], n = 706; normosmic IHH [nIHH], n = 688) and family members (n = 1092) at the Reproductive Endocrine Unit and the Center for Genomic Medicine of Massachusetts General Hospital were analyzed for CNVs and single nucleotide variants (SNVs)/indels in 62 known IHH genes. IHH subjects without SNVs/indels in known genes were considered "unsolved." Phenotypes associated with CNVs were evaluated through review of patient medical records. A total of 29 CNVs in 13 genes were detected (overall IHH cohort prevalence: ~2%). Almost all (28/29) CNVs occurred in unsolved IHH cases. While some genes (eg, ANOS1 and FGFR1) frequently harbor both CNVs and SNVs/indels, the mutational spectrum of others (eg, CHD7) was restricted to SNVs/indels. Syndromic phenotypes were seen in 83% and 63% of IHH subjects with multigenic and single gene CNVs, respectively. CONCLUSION CNVs in known genes contribute to ~2% of IHH pathogenesis. Predictably, multigenic contiguous CNVs resulted in syndromic phenotypes. Syndromic phenotypes resulting from single gene CNVs validate pleiotropy of some IHH genes. Genome sequencing approaches are now needed to identify novel genes and/or other elusive variants (eg, noncoding/complex structural variants) that may explain the remaining missing etiology of IHH.
Collapse
Affiliation(s)
- Maria I Stamou
- Reproductive Endocrine Unit, Massachusetts General Hospital and the Center for Reproductive Medicine, Boston, MA 02141, USA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02141, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02141, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02141, USA
| | - Mei Wang
- Reproductive Endocrine Unit, Massachusetts General Hospital and the Center for Reproductive Medicine, Boston, MA 02141, USA
| | - Isaac Wong
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02141, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02141, USA
| | - Margaret F Lippincott
- Reproductive Endocrine Unit, Massachusetts General Hospital and the Center for Reproductive Medicine, Boston, MA 02141, USA
| | - Lacey Plummer
- Reproductive Endocrine Unit, Massachusetts General Hospital and the Center for Reproductive Medicine, Boston, MA 02141, USA
| | - William F Crowley
- Endocrine Division, Massachusetts General Hospital, Boston, MA 02141, USA
| | - Michael Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02141, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02141, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Stephanie Seminara
- Reproductive Endocrine Unit, Massachusetts General Hospital and the Center for Reproductive Medicine, Boston, MA 02141, USA
| | - Ravikumar Balasubramanian
- Reproductive Endocrine Unit, Massachusetts General Hospital and the Center for Reproductive Medicine, Boston, MA 02141, USA
| |
Collapse
|
2
|
Dai J, Zeng J, Tan H, Cai X, Wu B. Novel 12 Mb interstitial deletion of chromosome 8p11.22-p21.2: a case report. BMC Med Genomics 2022; 15:126. [PMID: 35668409 PMCID: PMC9169259 DOI: 10.1186/s12920-022-01274-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 05/23/2022] [Indexed: 11/25/2022] Open
Abstract
Background The deletion of a short arm fragment on chromosome 8 is a rare cause of Kallmann syndrome and spherocytosis due to deletion of the FGFR1 and ANK1 genes. Case presentation This case study describes a 4-month-old child with growth and psychomotor retardation, auricle deformity, microcephaly, polydactyly, a heart abnormality, and feeding difficulties. An approximately 12.00 MB deletion was detected in the 8p11.22-p21.2 region of chromosome 8. After sequencing, we found that 65 protein genes had been deleted, including FGFR1, which resulted in Kallmann syndrome. There was no deletion of the ANK1 gene associated with spherocytosis, consistent with the phenotype. Conclusion This patient is a new case of short arm deletion of chromosome 8, resulting in novel and previously unreported clinical features.
Collapse
|
3
|
Wang D, Lai P. Global retardation and hereditary spherocytosis associated with a novel deletion of chromosome 8p11.21 encompassing KAT6A and ANK1. Eur J Med Genet 2020; 63:104082. [PMID: 33059074 DOI: 10.1016/j.ejmg.2020.104082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/29/2020] [Accepted: 10/04/2020] [Indexed: 10/23/2022]
Abstract
The loss of heterozygosity localized at chromosome segment 8p11.2 causes a contiguous gene syndrome, which mostly combined phenotype of Kallmann syndrome and hereditary spherocytosis. It has been documented that this combined phenotype is in association with both the deletion of the fibroblast growth factor receptor 1 (FGFR1) and ankyrin 1 (ANK1) genes. Here, we described a 6-year-old girl with microcephaly, global developmental delay, mental retardation, and hereditary spherocytosis, associated with a heterozygous pathogenic microdeletion of 1.9 Mb size at 8p11.21. Molecular analysis confirmed that the identified microdeletion contained two OMIM (Online Mendelian Inheritance in Man)genes, including ANK1 and lysine acetyltransferase 6 A (KAT6A), but not FGFR1. Therefore, the simultaneous occurrence of mild developmental delay and distinctive facial in this patient was associated with the pathogenic variation of the KAT6A.
Collapse
Affiliation(s)
- Dayan Wang
- Department of Pediatrics, Jinhua Central Hospital, #351 Mingyue Street, Jinhua, 321000, Zhejiang Province, China.
| | - Panjian Lai
- Department of Pediatrics, Jinhua Central Hospital, #351 Mingyue Street, Jinhua, 321000, Zhejiang Province, China
| |
Collapse
|
4
|
Miya K, Shimojima K, Sugawara M, Shimada S, Tsuri H, Harai-Tanaka T, Nakaoka S, Kanegane H, Miyawaki T, Yamamoto T. A de novo interstitial deletion of 8p11.2 including ANK1 identified in a patient with spherocytosis, psychomotor developmental delay, and distinctive facial features. Gene 2012; 506:146-9. [PMID: 22771917 DOI: 10.1016/j.gene.2012.06.086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 06/20/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
Abstract
The contiguous gene syndrome involving 8p11.2 is recognized as a combined phenotype of both Kallmann syndrome and hereditary spherocytosis, because the genes responsible for these 2 clinical entities, the fibroblast growth factor receptor 1 (FGFR1) and ankyrin 1 (ANK1) genes, respectively, are located in this region within a distance of 3.2Mb. We identified a 3.7Mb deletion of 8p11.2 in a 19-month-old female patient with hereditary spherocytosis. The identified deletion included ANK1, but not FGFR1, which is consistent with the absence of any phenotype or laboratory findings of Kallmann syndrome. Compared with the previous studies, the deletion identified in this study was located on the proximal end of 8p, indicating a pure interstitial deletion of 8p11.21. This patient exhibited mild developmental delay and distinctive facial findings in addition to hereditary spherocytosis. Thus, some of the genes included in the deleted region would be related to these symptoms.
Collapse
Affiliation(s)
- Kazushi Miya
- Department of Pediatrics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Klopocki E, Fiebig B, Robinson P, Tönnies H, Erdogan F, Ropers HH, Mundlos S, Ullmann R. A novel 8 Mb interstitial deletion of chromosome 8p12-p21.2. Am J Med Genet A 2009; 140:873-7. [PMID: 16528753 DOI: 10.1002/ajmg.a.31163] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We report on a girl with delayed mental and motor development, ophthalmological abnormalities, and peripheral neuropathy. Chromosome analysis suggested a deletion within chromosome 8p. Further investigation by array-based comparative genomic hybridization (array-CGH) delineated an 8 Mb interstitial deletion on the short arm of chromosome 8. The breakpoints are located at chromosome bands 8p12 and 8p21.2. Forty-two known genes including gonadotropin-releasing hormone 1 (GNRH1), transcription factor EBF2, exostosin-like 3 (EXTL3), glutathione reductase (GSR), and neuregulin 1 (NRG1), are located within the deleted region on chromosome 8p. A comparison of our patient with the cases described in the literature is presented, and we discuss the genotype-phenotype correlation in our patient. This is the first report of array-CGH analysis of an interstitial deletion at chromosome 8p.
Collapse
Affiliation(s)
- Eva Klopocki
- Institute of Medical Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Willemsen MH, de Leeuw N, Pfundt R, de Vries BBA, Kleefstra T. Clinical and molecular characterization of two patients with a 6.75 Mb overlapping deletion in 8p12p21 with two candidate loci for congenital heart defects. Eur J Med Genet 2009; 52:134-9. [PMID: 19303465 DOI: 10.1016/j.ejmg.2009.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 03/08/2009] [Indexed: 01/30/2023]
Abstract
Clinical and molecular characteristics of two patients with a 6.75Mb overlapping interstitial deletion in the 8p12p21 region are described and compared with previously reported cases with an overlapping deletion. The most common characteristics of interstitial deletions of proximal 8p are developmental delay, postnatal microcephaly and growth retardation. Other frequently reported findings are hypogonadism associated with haploinsufficiency of GNRH1 and ocular problems. Congenital heart anomalies are also common and might at least to some extent be due to haploinsufficiency of NKX2-6 or NRG1. The aforementioned clinical characteristics should be considered in the care of patients with a proximal interstitial 8p12p21 deletion.
Collapse
Affiliation(s)
- Marjolein H Willemsen
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
7
|
Abstract
This case details a patient with primary amenorrhea with an unusual cause. She presented at age 16 with short stature, minimal sexual development and no prior menses. Her history was significant for poorly controlled type 1 diabetes. She had been evaluated previously for growth hormone deficiency, and had received a short course of growth hormone therapy. Of greatest significance was the fact that she had also had a decreased sense of smell since her youth. Although a previous computerized tomography scan had been reported as normal, follow-up magnetic resonance imaging demonstrated the absence of olfactory bulbs. Smell testing confirmed the absence of smell and testing of gonadotropin releasing hormone demonstrated an inadequate response. All of these features suggested Kallmann syndrome. This syndrome commonly presents with delayed onset of puberty and decreased or absent sense of smell. There are also many associated features, and the disease is remarkable for its great genotypic and phenotypic variability. Current understanding of its pathogenesis, the commonly associated features of Kallmann syndrome and the impact of diabetes on growth and sexual development are reviewed.
Collapse
Affiliation(s)
- A Jenkin
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha 68198-3020, USA
| | | | | | | |
Collapse
|