1
|
Verma SK, Kuyumcu-Martinez MN. RNA binding proteins in cardiovascular development and disease. Curr Top Dev Biol 2024; 156:51-119. [PMID: 38556427 DOI: 10.1016/bs.ctdb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Congenital heart disease (CHD) is the most common birth defect affecting>1.35 million newborn babies worldwide. CHD can lead to prenatal, neonatal, postnatal lethality or life-long cardiac complications. RNA binding protein (RBP) mutations or variants are emerging as contributors to CHDs. RBPs are wizards of gene regulation and are major contributors to mRNA and protein landscape. However, not much is known about RBPs in the developing heart and their contributions to CHD. In this chapter, we will discuss our current knowledge about specific RBPs implicated in CHDs. We are in an exciting era to study RBPs using the currently available and highly successful RNA-based therapies and methodologies. Understanding how RBPs shape the developing heart will unveil their contributions to CHD. Identifying their target RNAs in the embryonic heart will ultimately lead to RNA-based treatments for congenital heart disease.
Collapse
Affiliation(s)
- Sunil K Verma
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States.
| | - Muge N Kuyumcu-Martinez
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States; Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States; University of Virginia Cancer Center, Charlottesville, VA, United States.
| |
Collapse
|
2
|
McSweeney C, Chen M, Dong F, Sebastian A, Reynolds DJ, Mott J, Pei Z, Zou J, Shi Y, Mao Y. Transcriptomic Analyses of Brains of RBM8A Conditional Knockout Mice at Different Developmental Stages Reveal Conserved Signaling Pathways Contributing to Neurodevelopmental Diseases. Int J Mol Sci 2023; 24:4600. [PMID: 36902031 PMCID: PMC10003467 DOI: 10.3390/ijms24054600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
RNA-binding motif 8A (RBM8A) is a core component of the exon junction complex (EJC) that binds pre-mRNAs and regulates their splicing, transport, translation, and nonsense-mediated decay (NMD). Dysfunction in the core proteins has been linked to several detriments in brain development and neuropsychiatric diseases. To understand the functional role of Rbm8a in brain development, we have generated brain-specific Rbm8a knockout mice and used next-generation RNA-sequencing to identify differentially expressed genes (DEGs) in mice with heterozygous, conditional knockout (cKO) of Rbm8a in the brain at postnatal day 17 (P17) and at embryonic day 12. Additionally, we analyzed enriched gene clusters and signaling pathways within the DEGs. At the P17 time point, between the control and cKO mice, about 251 significant DEGs were identified. At E12, only 25 DEGs were identified in the hindbrain samples. Bioinformatics analyses have revealed many signaling pathways related to the central nervous system (CNS). When E12 and P17 results were compared, three DEGs, Spp1, Gpnmb, and Top2a, appeared to peak at different developmental time points in the Rbm8a cKO mice. Enrichment analyses suggested altered activity in pathways affecting cellular proliferation, differentiation, and survival. The results support the hypothesis that loss of Rbm8a causes decreased cellular proliferation, increased apoptosis, and early differentiation of neuronal subtypes, which may lead ultimately to an altered neuronal subtype composition in the brain.
Collapse
Affiliation(s)
- Colleen McSweeney
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Miranda Chen
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Fengping Dong
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aswathy Sebastian
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Derrick James Reynolds
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Jennifer Mott
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Zifei Pei
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jizhong Zou
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Rockville, MD 20892, USA
| | - Yongsheng Shi
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
3
|
Petracchi F, Sisterna S, Igarzabal L, Wilkins-Haug L. Fetal cardiac abnormalities: Genetic etiologies to be considered. Prenat Diagn 2019; 39:758-780. [PMID: 31087396 DOI: 10.1002/pd.5480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/16/2019] [Accepted: 04/27/2019] [Indexed: 12/21/2022]
Abstract
Congenital heart diseases are a common prenatal finding. The prenatal identification of an associated genetic syndrome or a major extracardiac anomaly helps to understand the etiopathogenic diagnosis. Besides, it also assesses the prognosis, management, and familial recurrence risk while strongly influences parental decision to choose termination of pregnancy or postnatal care. This review article describes the most common genetic diagnoses associated with a prenatal finding of a congenital heart disease and a suggested diagnostic process.
Collapse
Affiliation(s)
- Florencia Petracchi
- Sección Genética Departamento de Ginecología y Obstetricia, CEMIC Instituto Universitario, Buenos Aires, Argentina
| | - Silvina Sisterna
- Sección Genética Departamento de Ginecología y Obstetricia, CEMIC Instituto Universitario, Buenos Aires, Argentina
| | - Laura Igarzabal
- Sección Genética Departamento de Ginecología y Obstetricia, CEMIC Instituto Universitario, Buenos Aires, Argentina
| | - Louise Wilkins-Haug
- Harvard Medical School Department of Obstetrics, Gynecology and Reproductive Medicine Division Chief Maternal Fetal Medicine and Reproductive Genetics, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
4
|
Sun G, Tan Z, Fan L, Wang J, Yang Y, Zhang W. 1q21.1 microduplication in a patient with mental impairment and congenital heart defect. Mol Med Rep 2015; 12:5655-8. [PMID: 26238956 PMCID: PMC4581767 DOI: 10.3892/mmr.2015.4166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 06/11/2015] [Indexed: 02/04/2023] Open
Abstract
1q21.1 duplication is a rare copy number variant with multiple congenital malformations, including developmental delay, autism spectrum disorder, dysmorphic features and congenital heart anomalies. The present study described a Chinese female patient (age, four years and eight months) with multiple malformations, including congenital heart defect, mental impairment and developmental delay. The parents and the monozygotic twin sister of the patient, however, were physically and psychologically normal. High-resolution genome-wide single nucleotide polymorphism array revealed a 1.6-Mb duplication in chromosome region 1q21.1. This chromosome region contained HFE2, a critical gene involved in hereditary hemochromatosis. However, the parents and monozygotic twin sister of the patient did not carry this genomic lesion. To the best of our knowledge, the present study was the first to report on a 1q21.1 duplication patient in mainland China.
Collapse
Affiliation(s)
- Guowen Sun
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhiping Tan
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Liangliang Fan
- Clinical Center for Gene Diagnosis and Therapy of State Key Laboratory of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jian Wang
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yifeng Yang
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Weizhi Zhang
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
5
|
Kumar C, Sharma D, Pandita A, Bhalerao S. Thrombocytopenia absent radius syndrome with Tetralogy of Fallot: a rare association. Int Med Case Rep J 2015; 8:81-5. [PMID: 25908903 PMCID: PMC4381885 DOI: 10.2147/imcrj.s81770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Thrombocytopenia absent radius (TAR) syndrome is a very rare and infrequently seen congenital disorder with an approximate frequency of 0.42/100,000 live births. It is associated with bilateral absence of radii, hypo-megakaryocytic thrombocytopenia, and presence of both thumbs. The other systems which are affected by TAR syndrome include skeletal, hematologic, and cardiac systems. Intracranial hemorrhages due to thrombocytopenia and cardiac disorders are a common association usually seen with this syndrome and are usual cause of death. We describe a 3-month-old infant who was diagnosed with TAR syndrome on the basis of clinical features (thrombocytopenia and bilateral absent radius bone and confirmed by genetic analysis). The patient was diagnosed to have Tetralogy of Fallot, for which the infant was managed with definitive repair and thrombocytopenia was managed with platelet transfusion. Infants with TAR syndrome should be assessed for other associated malformations of various systems and followed up regularly and parents should be counseled for associated expected complications in these patients. We report an infant with TAR syndrome with Tetralogy of Fallot, which has not been reported in medical literature until now and this is the first case of its type.
Collapse
Affiliation(s)
- Chetan Kumar
- Department of Pediatrics, Madras Institute of Orthopedic and Trauma, Manapakkam, Chennai, India
| | - Deepak Sharma
- Department of Neonatology, Fernandez Hospital, Hyderabad, India
| | - Aakash Pandita
- Department of Neonatology, Fernandez Hospital, Hyderabad, India
| | - Sanjay Bhalerao
- Department of Pediatrics, Madras Institute of Orthopedic and Trauma, Manapakkam, Chennai, India
| |
Collapse
|
6
|
Verhagen J, Schrander-Stumpel C, Blezer M, Weber J, Schrander J, Rubio-Gozalbo M, Bakker J, Stegmann A, Vos Y, Frints S. Adducted thumbs: A clinical clue to genetic diagnosis. Eur J Med Genet 2013; 56:153-8. [DOI: 10.1016/j.ejmg.2012.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 11/28/2012] [Indexed: 10/27/2022]
|
7
|
Ivanova A, Wuerfel J, Zhang J, Hoffmann O, Ballmaier M, Dame C. Expression pattern of the thrombopoietin receptor (Mpl) in the murine central nervous system. BMC DEVELOPMENTAL BIOLOGY 2010; 10:77. [PMID: 20667107 PMCID: PMC2921376 DOI: 10.1186/1471-213x-10-77] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 07/28/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Thrombopoietin (Thpo) and its receptor (Mpl), which regulate megakaryopoiesis, are expressed in the central nervous system (CNS), where Thpo is thought to exert pro-apoptotic effects on newly generated neurons. Mpl expression has been analysed in brain tissue on transcript level and in cultured primary rat neurons and astrocytes on protein level. Herein, we analysed Mpl expression in the developing and adult murine CNS by immunohistochemistry and investigated the brain of mice with homozygous Mpl deficiency (Mpl-/-) by MRI. RESULTS Mpl was not detectable at developmental stages E12 to E15 in any resident cells of the CNS. From E18 onwards, robust Mpl expression was found in various brain areas, including cerebral cortex, olfactory bulb, thalamus, hypothalamus, medulla, pons, and the grey matter of spinal cord. However, major developmental changes became obvious: In the subventricular zone of the cerebral cortex Mpl expression occurred only during late gestation, while in the hippocampus Mpl expression was detectable for first time at stage P4. In the white matter of the cerebellum Mpl expression was restricted to the perinatal period. In the adult cerebellum, Mpl expression switched to Purkinje cell. The majority of other Mpl-positive cells were NeuN-positive neurons. None of the cells could be double-labelled with astrocyte marker GFAP. Mpl-/- mice showed no gross abnormalities of the brain. CONCLUSIONS Our data locate Mpl expression to neurons at different subdivisions of the spinal cord, rhombencephalon, midbrain and prosencephalon. Besides neuronal cells Mpl protein is also expressed in Purkinje cells of the adult cerebellum.
Collapse
Affiliation(s)
- Anna Ivanova
- Department of Neonatology, Charité - Universitätsmedizin, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Witters I, Claerhout P, Fryns JP. Increased nuchal translucency thickness in thrombocytopenia-absent-radius syndrome. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2005; 26:581-2. [PMID: 16184503 DOI: 10.1002/uog.1998] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
|
9
|
Behera M, Couchman G, Walmer D, Price TM. Mullerian Agenesis and Thrombocytopenia Absent Radius Syndrome: A Case Report and Review of Syndromes Associated With Mullerian Agenesis. Obstet Gynecol Surv 2005; 60:453-61. [PMID: 15995562 DOI: 10.1097/01.ogx.0000165265.01778.55] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
UNLABELLED Mullerian agenesis, commonly referred to as Mayer-Rokitansky-Kuster-Hauser syndrome (MRKHS), is a congenital defect that is most commonly associated with renal and spinal malformations. It is very rare for Mullerian agenesis to be accompanied by malformations of the extremities. In this report, we describe a 22-year-old woman with Mullerian agenesis and thrombocytopenia absent radius syndrome (TARS). We also review rare syndromes associated with Mullerian anomalies, including Mullerian hypoplasia/aplasia-renal agenesis-cervicothoracic somite dysplasia (MURCS), Roberts syndrome, Bardet-Biedl syndrome (BBS), McKusick-Kaufman syndrome (MKS), Wolf-Hirschhorn syndrome, and others. The pathogenesis of these complex malformation syndromes is not well understood as a result of their sporadic occurrence. However, some of these syndromes do follow a pattern of inheritance, suggesting that they could provide insights into our understanding of their origins. TARGET AUDIENCE Obstetricians & Gynecologists, Family Physicians LEARNING OBJECTIVES After completion of this article, the reader should be able to review the rare congenital defects associated with Mullerian agenesis, to determine the genetic etiologies of the associated syndromes with Mullerian agenesis, and to discuss information for parental counseling related to inheritance patterns and growth and development of the affected child.
Collapse
Affiliation(s)
- Millie Behera
- Division of Reproductive Endocrinology, Duke University, Durham, North Carolina, USA
| | | | | | | |
Collapse
|