1
|
A novel partial duplication in OPHN1, associated with vermis cerebellar hypoplasia, seizures and developmental delay. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
2
|
Kim S, Kim J, Park S, Park JJ, Lee S. Drosophila Graf regulates mushroom body β-axon extension and olfactory long-term memory. Mol Brain 2021; 14:73. [PMID: 33892766 PMCID: PMC8067379 DOI: 10.1186/s13041-021-00782-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/15/2021] [Indexed: 11/10/2022] Open
Abstract
Loss-of-function mutations in the human oligophrenin-1 (OPHN1) gene cause intellectual disability, a prevailing neurodevelopmental condition. However, the role OPHN1 plays during neuronal development is not well understood. We investigated the role of the Drosophila OPHN1 ortholog Graf in the development of the mushroom body (MB), a key brain structure for learning and memory in insects. We show that loss of Graf causes abnormal crossing of the MB β lobe over the brain midline during metamorphosis. This defect in Graf mutants is rescued by MB-specific expression of Graf and OPHN1. Furthermore, MB α/β neuron-specific RNA interference experiments and mosaic analyses indicate that Graf acts via a cell-autonomous mechanism. Consistent with the negative regulation of epidermal growth factor receptor (EGFR)-mitogen-activated protein kinase (MAPK) signaling by Graf, activation of this pathway is required for the β-lobe midline-crossing phenotype of Graf mutants. Finally, Graf mutants have impaired olfactory long-term memory. Our findings reveal a role for Graf in MB axon development and suggest potential neurodevelopmental functions of human OPHN1.
Collapse
Affiliation(s)
- Sungdae Kim
- Department of Cell and Developmental Biology and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joohyung Kim
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sunyoung Park
- Department of Cell and Developmental Biology and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joong-Jean Park
- Department of Physiology, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Seungbok Lee
- Department of Cell and Developmental Biology and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
3
|
Oligophrenin-1 moderates behavioral responses to stress by regulating parvalbumin interneuron activity in the medial prefrontal cortex. Neuron 2021; 109:1636-1656.e8. [PMID: 33831348 DOI: 10.1016/j.neuron.2021.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 02/09/2021] [Accepted: 03/10/2021] [Indexed: 12/28/2022]
Abstract
Ample evidence indicates that individuals with intellectual disability (ID) are at increased risk of developing stress-related behavioral problems and mood disorders, yet a mechanistic explanation for such a link remains largely elusive. Here, we focused on characterizing the syndromic ID gene oligophrenin-1 (OPHN1). We find that Ophn1 deficiency in mice markedly enhances helpless/depressive-like behavior in the face of repeated/uncontrollable stress. Strikingly, Ophn1 deletion exclusively in parvalbumin (PV) interneurons in the prelimbic medial prefrontal cortex (PL-mPFC) is sufficient to induce helplessness. This behavioral phenotype is mediated by a diminished excitatory drive onto Ophn1-deficient PL-mPFC PV interneurons, leading to hyperactivity in this region. Importantly, suppressing neuronal activity or RhoA/Rho-kinase signaling in the PL-mPFC reverses helpless behavior. Our results identify OPHN1 as a critical regulator of adaptive behavioral responses to stress and shed light onto the mechanistic links among OPHN1 genetic deficits, mPFC circuit dysfunction, and abnormalities in stress-related behaviors.
Collapse
|
4
|
Bogliş A, Cosma AS, Tripon F, Bãnescu C. Exon 21 deletion in the OPHN1 gene in a family with syndromic X-linked intellectual disability: Case report. Medicine (Baltimore) 2020; 99:e21632. [PMID: 32872024 PMCID: PMC7437857 DOI: 10.1097/md.0000000000021632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
INTRODUCTION The oligophrenin-1 (OPHN1) gene, localized on the X chromosome, is a Rho-GTPase activating protein that is related to syndromic X-linked intellectual disability (XLID). XLID, characterized by brain anomalies, namely cerebellar hypoplasia, specific facial features, and intellectual disability, is produced by different mutations in the OPHN1 gene. PATIENT CONCERNS In this report, we present the clinical and molecular findings of a family affected by a mild XLID due to a deletion in the OPHN1 gene, exon 21, Xq12 region using Multiplex Ligation-dependent Probe Amplification (MLPA) analysis. The clinical features present in the family are a mild developmental delay, behavioral disturbances, facial dysmorphism, pes planus, nystagmus, strabismus, epilepsy, and occipital arachnoid cyst. INTERVENTIONS The MLPA analysis was performed for investigation of the copy number variations within the X chromosome for the family. DIAGNOSIS AND OUTCOME The MLPA analysis detected a deletion in the OPHN1 gene, exon 21 for the proband, and a heterozygous deletion for the probands mother. The deletion of the Xq12 region of maternal origin, including the exon 21 of the OPHN1 gene, confirmed for the probands nephew. LESSONS Our findings emphasize the utility of the MLPA analysis to identify deletions in the OPHN1 gene responsible for syndromic XLID. Therefore, we suggest that MLPA analysis should be performed as an alternative diagnostic test for all patients with a mild intellectual disability associated or not with behavioral disturbances, facial dysmorphism, and brain anomalies.
Collapse
Affiliation(s)
- Alina Bogliş
- Laboratory of Medical Genetics, Emergency Clinical County Hospital Târgu Mureş, Târgu Mureş¸ Romania
- Department of Genetics, George Emil Palade University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureş, Târgu Mureş, Romania
- Laboratory of Molecular Biology/Genetics, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - Adriana S. Cosma
- Laboratory of Medical Genetics, Emergency Clinical County Hospital Târgu Mureş, Târgu Mureş¸ Romania
| | - Florin Tripon
- Laboratory of Medical Genetics, Emergency Clinical County Hospital Târgu Mureş, Târgu Mureş¸ Romania
- Department of Genetics, George Emil Palade University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureş, Târgu Mureş, Romania
- Laboratory of Molecular Biology/Genetics, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - Claudia Bãnescu
- Laboratory of Medical Genetics, Emergency Clinical County Hospital Târgu Mureş, Târgu Mureş¸ Romania
- Department of Genetics, George Emil Palade University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureş, Târgu Mureş, Romania
- Laboratory of Molecular Biology/Genetics, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureş, Târgu Mureş, Romania
| |
Collapse
|
5
|
ROCK/PKA Inhibition Rescues Hippocampal Hyperexcitability and GABAergic Neuron Alterations in a Oligophrenin-1 Knock-Out Mouse Model of X-Linked Intellectual Disability. J Neurosci 2020; 40:2776-2788. [PMID: 32098904 DOI: 10.1523/jneurosci.0462-19.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 01/19/2023] Open
Abstract
Oligophrenin-1 (Ophn1) encodes a Rho GTPase activating protein whose mutations cause X-linked intellectual disability (XLID) in humans. Loss of function of Ophn1 leads to impairments in the maturation and function of excitatory and inhibitory synapses, causing deficits in synaptic structure, function and plasticity. Epilepsy is a frequent comorbidity in patients with Ophn1-dependent XLID, but the cellular bases of hyperexcitability are poorly understood. Here we report that male mice knock-out (KO) for Ophn1 display hippocampal epileptiform alterations, which are associated with changes in parvalbumin-, somatostatin- and neuropeptide Y-positive interneurons. Because loss of function of Ophn1 is related to enhanced activity of Rho-associated protein kinase (ROCK) and protein kinase A (PKA), we attempted to rescue Ophn1-dependent pathological phenotypes by treatment with the ROCK/PKA inhibitor fasudil. While acute administration of fasudil had no impact on seizure activity, seven weeks of treatment in adulthood were able to correct electrographic, neuroanatomical and synaptic alterations of Ophn1 deficient mice. These data demonstrate that hyperexcitability and the associated changes in GABAergic markers can be rescued at the adult stage in Ophn1-dependent XLID through ROCK/PKA inhibition.SIGNIFICANCE STATEMENT In this study we demonstrate enhanced seizure propensity and impairments in hippocampal GABAergic circuitry in Ophn1 mouse model of X-linked intellectual disability (XLID). Importantly, the enhanced susceptibility to seizures, accompanied by an alteration of GABAergic markers were rescued by Rho-associated protein kinase (ROCK)/protein kinase A (PKA) inhibitor fasudil, a drug already tested on humans. Because seizures can significantly impact the quality of life of XLID patients, the present data suggest a potential therapeutic pathway to correct alterations in GABAergic networks and dampen pathological hyperexcitability in adults with XLID.
Collapse
|
6
|
Niftullayev S, Lamarche-Vane N. Regulators of Rho GTPases in the Nervous System: Molecular Implication in Axon Guidance and Neurological Disorders. Int J Mol Sci 2019; 20:E1497. [PMID: 30934641 PMCID: PMC6471118 DOI: 10.3390/ijms20061497] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022] Open
Abstract
One of the fundamental steps during development of the nervous system is the formation of proper connections between neurons and their target cells-a process called neural wiring, failure of which causes neurological disorders ranging from autism to Down's syndrome. Axons navigate through the complex environment of a developing embryo toward their targets, which can be far away from their cell bodies. Successful implementation of neuronal wiring, which is crucial for fulfillment of all behavioral functions, is achieved through an intimate interplay between axon guidance and neural activity. In this review, our focus will be on axon pathfinding and the implication of some of its downstream molecular components in neurological disorders. More precisely, we will talk about axon guidance and the molecules implicated in this process. After, we will briefly review the Rho family of small GTPases, their regulators, and their involvement in downstream signaling pathways of the axon guidance cues/receptor complexes. We will then proceed to the final and main part of this review, where we will thoroughly comment on the implication of the regulators for Rho GTPases-GEFs (Guanine nucleotide Exchange Factors) and GAPs (GTPase-activating Proteins)-in neurological diseases and disorders.
Collapse
Affiliation(s)
- Sadig Niftullayev
- Cancer Research Program, Research Institute of the MUHC, Montreal, QC H4A 3J1, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada.
| | - Nathalie Lamarche-Vane
- Cancer Research Program, Research Institute of the MUHC, Montreal, QC H4A 3J1, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada.
| |
Collapse
|
7
|
Schwartz TS, Wojcik MH, Pelletier RC, Edward HL, Picker JD, Holm IA, Towne MC, Beggs AH, Agrawal PB. Expanding the phenotypic spectrum associated with OPHN1 variants. Eur J Med Genet 2018; 62:137-143. [PMID: 29960046 DOI: 10.1016/j.ejmg.2018.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/02/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022]
Abstract
Genomic sequencing has allowed for the characterization of new gene-to-disease relationships, as well as the identification of variants in established disease genes in patients who do not fit the classically-described phenotype. This is especially true in rare syndromes where the clinical spectrum is not fully known. After a lengthy and costly diagnostic odyssey, patients with atypical presentations may be left with many questions even after a genetic diagnosis is identified. We present a 22-year old male with hypotonia, developmental delay, seizure disorder, and dysmorphic facial features who enrolled in our rare disease research center at 18 years of age, where exome sequencing revealed a novel, likely pathogenic variant in the OPHN1 gene. Through efforts by the study team and collaborations with the larger genetics community, contacts with other families with OPHN1 variants were eventually made, and outreach by these families expanded the patient network. This partnership between families and researchers facilitated the gathering of phenotypic information, allowing for comparison of clinical presentations among three new patients and those previously reported in the literature. These comparisons found previously unreported commonalities between the newly identified patients, such as the presence of otitis media and the lack of genitourinary abnormalities (i.e. hypoplastic scrotum, microphallus, cryptorchidism), which had been noted to be classic features of patients with OPHN1 variants. As genomic sequencing becomes more common, connecting patients with novel variants in the same gene will facilitate phenotypic analysis and continue to refine the clinical spectrum associated with that gene.
Collapse
Affiliation(s)
- Talia S Schwartz
- Division of Genetics & Genomics, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; The Manton Center for Orphan Disease Research, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA
| | - Monica H Wojcik
- Division of Genetics & Genomics, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; The Manton Center for Orphan Disease Research, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA
| | - Renee C Pelletier
- Division of Genetics & Genomics, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; The Manton Center for Orphan Disease Research, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; Center for Cancer Risk Assessment, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Heather L Edward
- Division of Genetics & Genomics, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; The Manton Center for Orphan Disease Research, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA
| | - Jonathan D Picker
- Division of Genetics & Genomics, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA
| | - Ingrid A Holm
- Division of Genetics & Genomics, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; The Manton Center for Orphan Disease Research, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA
| | - Meghan C Towne
- Division of Genetics & Genomics, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; The Manton Center for Orphan Disease Research, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; Ambry Genetics, Aliso Viejo, CA, USA
| | - Alan H Beggs
- Division of Genetics & Genomics, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; The Manton Center for Orphan Disease Research, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA
| | - Pankaj B Agrawal
- Division of Genetics & Genomics, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; The Manton Center for Orphan Disease Research, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Moortgat S, Lederer D, Deprez M, Buzatu M, Clapuyt P, Boulanger S, Benoit V, Mary S, Guichet A, Ziegler A, Colin E, Bonneau D, Maystadt I. Expanding the phenotypic spectrum associated with OPHN1 mutations: Report of 17 individuals with intellectual disability but no cerebellar hypoplasia. Eur J Med Genet 2018; 61:442-450. [PMID: 29510240 DOI: 10.1016/j.ejmg.2018.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/02/2018] [Accepted: 03/02/2018] [Indexed: 01/20/2023]
Abstract
Mutations in the oligophrenin 1 gene (OPHN1) have been identified in patients with X-linked intellectual disability (XLID) associated with cerebellar hypoplasia and ventriculomegaly, suggesting it could be a recognizable syndromic intellectual disability (ID). Affected individuals share additional clinical features including speech delay, seizures, strabismus, behavioral difficulties, and slight facial dysmorphism. OPHN1 is located in Xq12 and encodes a Rho-GTPase-activating protein involved in the regulation of the G-protein cycle. Rho protein members play an important role in dendritic growth and in plasticity of excitatory synapses. Here we report on 17 individuals from four unrelated families affected by mild to severe intellectual disability due to OPHN1 mutations without cerebellar anomaly on brain MRI. We describe clinical, genetic and neuroimaging data of affected patients. Among the identified OPHN1 mutations, we report for the first time a missense mutation occurring in a mosaic state. We discuss the intrafamilial clinical variability of the disease and compare our patients with those previously reported. We emphasize the power of next generation techniques (X-exome sequencing, whole-exome sequencing and targeted multi-gene panel) to expand the phenotypic and mutational spectrum of OPHN1-related ID.
Collapse
Affiliation(s)
- Stéphanie Moortgat
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Charleroi, Gosselies, Belgium.
| | - Damien Lederer
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Charleroi, Gosselies, Belgium
| | - Marie Deprez
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Charleroi, Gosselies, Belgium; Département de Neuro-pédiatrie, Clinique Sainte-Elisabeth, Namur, Belgium
| | - Marga Buzatu
- Département de Neuro-pédiatrie, Hôpital Civil Marie Curie, Charleroi, Belgium
| | - Philippe Clapuyt
- Department of Radiology, Pediatric Imaging Unit, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Sébastien Boulanger
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Charleroi, Gosselies, Belgium
| | - Valérie Benoit
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Charleroi, Gosselies, Belgium
| | - Sandrine Mary
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Charleroi, Gosselies, Belgium
| | - Agnès Guichet
- Department of Biochemistry and Genetics, Angers University Hospital, and UMR INSERM 1083, CNRS 6015, Angers, France
| | - Alban Ziegler
- Department of Biochemistry and Genetics, Angers University Hospital, and UMR INSERM 1083, CNRS 6015, Angers, France
| | - Estelle Colin
- Department of Biochemistry and Genetics, Angers University Hospital, and UMR INSERM 1083, CNRS 6015, Angers, France
| | - Dominique Bonneau
- Department of Biochemistry and Genetics, Angers University Hospital, and UMR INSERM 1083, CNRS 6015, Angers, France
| | - Isabelle Maystadt
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Charleroi, Gosselies, Belgium
| |
Collapse
|
9
|
Abstract
X-linked cerebellar ataxias (XLCA) are an expanding group of genetically heterogeneous and clinically variable conditions characterized by cerebellar dysgenesis (hypoplasia, atrophy, or dysplasia) caused by gene mutations or genomic imbalances on the X chromosome. The neurologic features of XLCA include hypotonia, developmental delay, intellectual disability, ataxia, and other cerebellar signs. Normal cognitive development has also been reported. Cerebellar defects may be isolated or associated with other brain malformations or extraneurologic involvement. More than 20 genes on the X chromosome, mainly encoding for proteins involved in brain development and synaptic function that have been constantly or occasionally associated with a pathologic cerebellar phenotype, and several families with X-linked inheritance have been reported. Given the excess of males with ataxia, this group of conditions is probably underestimated and families of patients with neuroradiologic and clinical evidence of a cerebellar disorder should be counseled for high risk of X-linked inheritance.
Collapse
Affiliation(s)
- Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, Rome, Italy.
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, Rome, Italy
| |
Collapse
|
10
|
Large in-frame intragenic deletion of OPHN1 in a male patient with a normal intelligence quotient score. Clin Dysmorphol 2017; 26:47-49. [PMID: 27390894 DOI: 10.1097/mcd.0000000000000139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Andrews T, Meader S, Vulto-van Silfhout A, Taylor A, Steinberg J, Hehir-Kwa J, Pfundt R, de Leeuw N, de Vries BBA, Webber C. Gene networks underlying convergent and pleiotropic phenotypes in a large and systematically-phenotyped cohort with heterogeneous developmental disorders. PLoS Genet 2015; 11:e1005012. [PMID: 25781962 PMCID: PMC4362763 DOI: 10.1371/journal.pgen.1005012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/17/2015] [Indexed: 12/05/2022] Open
Abstract
Readily-accessible and standardised capture of genotypic variation has revolutionised our understanding of the genetic contribution to disease. Unfortunately, the corresponding systematic capture of patient phenotypic variation needed to fully interpret the impact of genetic variation has lagged far behind. Exploiting deep and systematic phenotyping of a cohort of 197 patients presenting with heterogeneous developmental disorders and whose genomes harbour de novo CNVs, we systematically applied a range of commonly-used functional genomics approaches to identify the underlying molecular perturbations and their phenotypic impact. Grouping patients into 408 non-exclusive patient-phenotype groups, we identified a functional association amongst the genes disrupted in 209 (51%) groups. We find evidence for a significant number of molecular interactions amongst the association-contributing genes, including a single highly-interconnected network disrupted in 20% of patients with intellectual disability, and show using microcephaly how these molecular networks can be used as baits to identify additional members whose genes are variant in other patients with the same phenotype. Exploiting the systematic phenotyping of this cohort, we observe phenotypic concordance amongst patients whose variant genes contribute to the same functional association but note that (i) this relationship shows significant variation across the different approaches used to infer a commonly perturbed molecular pathway, and (ii) that the phenotypic similarities detected amongst patients who share the same inferred pathway perturbation result from these patients sharing many distinct phenotypes, rather than sharing a more specific phenotype, inferring that these pathways are best characterized by their pleiotropic effects. Developmental disorders occur in ∼3% of live births, and exhibit a broad range of abnormalities including: intellectual disability, autism, heart defects, and other neurological and morphological problems. Often, patients are grouped into genetic syndromes which are defined by a specific set of mutations and a common set of abnormalities. However, many mutations are unique to a single patient and many patients present a range of abnormalities which do not fit one of the recognized genetic syndromes, making diagnosis difficult. Using a dataset of 197 patients with systematically described abnormalities, we identified molecular pathways whose disruption was associated with specific abnormalities among many patients. Importantly, patients with mutations in the same pathway often exhibited similar co-morbid symptoms and thus the commonly disrupted pathway appeared responsible for the broad range of shared abnormalities amongst these patients. These findings support the general concept that patients with mutations in distinct genes could be etiologically grouped together through the common pathway that these mutated genes participate in, with a view to improving diagnoses, prognoses and therapeutic outcomes.
Collapse
Affiliation(s)
- Tallulah Andrews
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Stephen Meader
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Avigail Taylor
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Julia Steinberg
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jayne Hehir-Kwa
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nicole de Leeuw
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bert B. A. de Vries
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- * E-mail: (BBAdV); (CW)
| | - Caleb Webber
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail: (BBAdV); (CW)
| |
Collapse
|
12
|
Ba W, van der Raadt J, Nadif Kasri N. Rho GTPase signaling at the synapse: implications for intellectual disability. Exp Cell Res 2013; 319:2368-74. [PMID: 23769912 DOI: 10.1016/j.yexcr.2013.05.033] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 05/29/2013] [Indexed: 12/18/2022]
Abstract
Intellectual disability (ID) imposes a major medical and social-economical problem in our society. It is defined as a global reduction in cognitive and intellectual abilities, associated with impaired social adaptation. The causes of ID are extremely heterogeneous and include non-genetic and genetic changes. Great progress has been made over recent years towards the identification of ID-related genes, resulting in a list of approximately 450 genes. A prominent neuropathological feature of patients with ID is altered dendritic spine morphogenesis. These structural abnormalities, in part, reflect impaired cytoskeleton remodeling and are associated with synaptic dysfunction. The dynamic, actin-rich nature of dendritic spines points to the Rho GTPase family as a central contributor, since they are key regulators of actin dynamics and organization. It is therefore not surprising that mutations in genes encoding regulators and effectors of the Rho GTPases have been associated with ID. This review will focus on the role of Rho GTPase signaling in synaptic structure/function and ID.
Collapse
Affiliation(s)
- Wei Ba
- Donders Institute for Brain Cognition and Behavior, Radboud University Nijmegen Medical Center, Department Cognitive Neuroscience, the Netherlands
| | | | | |
Collapse
|
13
|
Neuropathological features in a female fetus with OPHN1 deletion and cerebellar hypoplasia. Eur J Med Genet 2013; 56:270-3. [DOI: 10.1016/j.ejmg.2013.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/27/2013] [Indexed: 11/19/2022]
|
14
|
Abstract
Ten percent of cases of intellectual deficiency in boys are caused by genes located on the X chromosome. X-linked mental retardation (XLMR) includes more than 200 syndromes and 80 genes identified to date. The fragile X syndrome is the most frequent syndrome, due to a dynamic mutation with a CGG triplet amplification. Mental retardation is virtually always present. Phonological and syntactic impairments are often combined with pragmatic language impairment and visuospatial reasoning difficulties. A minority fulfill the criteria for autism. In girls, the clinical expression of the complete mutation varies according to the X chromosome inactivation profile. Several XLMR occur as severe early onset encephalopathies: Lowe oculocerebrorenal syndrome, ATR-X syndrome (alpha thalassemia/mental retardation X-linked), Allan-Herdon-Dudley syndrome (MCT8 gene). Two genes, ARX (X-LAG; Partington syndrome) and MECP2 (Rett syndrome in females; mild MR with spastic diplegia/psychotic problems in males) are associated with various phenotypes, according to the mutation involved. Oligophrenine 1 (OPHN-1) gene mutations lead to vermal dysplasia. PQBP1 gene mutations (Renpenning syndrome) are responsible for moderate to severe mental deficiency, microcephaly, and small stature. Although some forms of XLMR are not very specific and the phenotype for each given gene is somewhat heterogeneous, a clinical diagnostic strategy is emerging.
Collapse
Affiliation(s)
- Vincent des Portes
- Reference Center for Fragile X and other X-linked Intellectual Disabilities and Department of Pediatric Neurology, Hôpital Femme Mère Enfant, CHU de Lyon, Lyon, France.
| |
Collapse
|
15
|
Vauthier V, Jaillard S, Journel H, Dubourg C, Jockers R, Dam J. Homozygous deletion of an 80 kb region comprising part of DNAJC6 and LEPR genes on chromosome 1P31.3 is associated with early onset obesity, mental retardation and epilepsy. Mol Genet Metab 2012; 106:345-50. [PMID: 22647716 DOI: 10.1016/j.ymgme.2012.04.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/30/2012] [Accepted: 04/30/2012] [Indexed: 11/29/2022]
Abstract
CONTEXT The genomic organization of the LEPR gene is complex and generates three independent transcripts whose respective functions are still poorly understood. METHODS/RESULTS We describe here a 7-year old patient with a homozygous 80 kb deletion in the chromosomal 1p31.3 region with early onset obesity, mental retardation and epilepsy. The deleted region comprises the proximal promoter and exons 1 and 2 of the LEPR gene and exons 5 to 19 of the DNAJC6 gene. The deletion leads to the deficiency of all canonical OB-R isoforms but maintains the B219 OB-R short isoforms controlled by the preserved second LEPR promoter. The DNAJC6 gene encodes auxilin-1, a protein required for clathrin-dependent recycling of synaptic vesicles in neurons that is possibly at the origin of the mental retardation and epilepsy phenotype. The obese phenotype and the absence of signaling-competent OB-R are consistent with previously reported individuals with OB-R deficiency. The deletion eliminates an additional transcript of the LEPR gene that encodes endospanin-1, a protein that has been genetically and biochemically linked to OB-R function. CONCLUSIONS Our study confirms the phenotype of individuals with OB-R deficiency and postulates the effects of auxilin-1 deficiency (mental retardation/epilepsy) and endospanin-1 deficiency (OB-R specific functions) in humans.
Collapse
|
16
|
Nadif Kasri N, Nakano-Kobayashi A, Van Aelst L. Rapid synthesis of the X-linked mental retardation protein OPHN1 mediates mGluR-dependent LTD through interaction with the endocytic machinery. Neuron 2011; 72:300-15. [PMID: 22017989 DOI: 10.1016/j.neuron.2011.09.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2011] [Indexed: 01/12/2023]
Abstract
VIDEO ABSTRACT Activation of group I metabotropic glutamate receptors leads to long-term depression (mGluR-LTD). Alterations in this form of plasticity have been linked to drug addiction and cognitive disorders. A key characteristic of mGluR-LTD is its dependence on rapid protein synthesis; however, the identities of the proteins mediating LTD remain elusive. Here, we identify the X-linked mental retardation protein OPHN1 as a molecule essential for mGluR-LTD in the hippocampus. mGluR-LTD induction elicits rapid dendritic OPHN1 synthesis, which is dependent on mGluR1 activation and independent of fragile X mental retardation protein (FMRP). This response is essential for mGluR-LTD, as acute blockade of OPHN1 synthesis impedes LTD. mGluR-induced OPHN1 mediates LTD and associated persistent decreases in surface AMPARs via interactions with endophilin A2/3. Importantly, this role of OPHN1 is separable from its effects on basal synaptic strength, which require OPHN1's Rho-GAP activity and interaction with Homer1b/c. Thus, our data establish a role for rapid OPHN1 synthesis in mGluR-LTD.
Collapse
Affiliation(s)
- Nael Nadif Kasri
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
17
|
Pirozzi F, Di Raimo FR, Zanni G, Bertini E, Billuart P, Tartaglione T, Tabolacci E, Brancaccio A, Neri G, Chiurazzi P. Insertion of 16 amino acids in the BAR domain of the oligophrenin 1 protein causes mental retardation and cerebellar hypoplasia in an Italian family. Hum Mutat 2011; 32:E2294-307. [PMID: 21796728 DOI: 10.1002/humu.21567] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 07/07/2011] [Indexed: 11/10/2022]
Abstract
We observed a three-generation family with two maternal cousins and an uncle affected by mental retardation (MR) with cerebellar hypoplasia. X-linked inheritance and the presence of cerebellar malformation suggested a mutation in the OPHN1 gene. In fact, mutational screening revealed a 2-bp deletion that abolishes a donor splicing site, resulting in the inclusion of the initial 48 nucleotides of intron 7 in the mRNA. This mutation determines the production of a mutant oligophrenin 1 protein with 16 extra amino acids inserted in-frame in the N-terminal BAR (Bin1/amphiphysin/Rvs167) domain. This is the first case of a mutation in OPHN1 that does not result in the production of a truncated protein or in its complete loss. OPHN1 (ARHGAP41) encodes a GTPase-activating (GAP) protein belonging to the GRAF subfamily characterized by an N-terminal BAR domain, followed by a pleckstrin-homology (PH) domain and the GAP domain. GRAF proteins play a role in endocytosis and are supposed to dimerize via their BAR domain, that induces membrane curvature. The extra 16 amino acids cause the insertion of 4.4 turns in the third alpha-helix of the BAR domain and apparently impair the protein function. In fact, the clinical phenotype of these patients is identical to that of patients with loss-of-function mutations.
Collapse
|
18
|
Abstract
Mutations in more than 450 different genes have been associated with intellectual disability (ID) and related cognitive disorders (CDs), such as autism. It is to be expected that this number will increase three to fourfold in the next years due to the rapid implementation of innovative high-throughput sequencing technology in genetics labs. Numerous functional relationships have been identified between the products of individual ID genes, and common molecular and cellular pathways onto which these networks converge are beginning to emerge. Prominent examples are genes involved in synaptic plasticity, Ras and Rho GTPase signaling, and epigenetic genes that encode modifiers of the chromatin structure. It thus seems that there might be common pathological patterns in ID, despite its bewildering genetic heterogeneity. These common pathways provide attractive opportunities for knowledge-based therapeutic interventions.
Collapse
Affiliation(s)
- Hans van Bokhoven
- Molecular Neurogenetics Unit, Department of Human Genetics, Nijmegen Center for Molecular Life Sciences, Radboud University, Nijmegen Medical Center, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
19
|
Zanni G, Bertini ES. X-linked disorders with cerebellar dysgenesis. Orphanet J Rare Dis 2011; 6:24. [PMID: 21569638 PMCID: PMC3115841 DOI: 10.1186/1750-1172-6-24] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 05/15/2011] [Indexed: 12/15/2022] Open
Abstract
X-linked disorders with cerebellar dysgenesis (XLCD) are a genetically heterogeneous and clinically variable group of disorders in which the hallmark is a cerebellar defect (hypoplasia, atrophy or dysplasia) visible on brain imaging, caused by gene mutations or genomic imbalances on the X-chromosome. The neurological features of XLCD include hypotonia, developmental delay, intellectual disability, ataxia and/or other cerebellar signs. Normal cognitive development has also been reported. Cerebellar dysgenesis may be isolated or associated with other brain malformations or multiorgan involvement. There are at least 15 genes on the X-chromosome that have been constantly or occasionally associated with a pathological cerebellar phenotype. 8 XLCD loci have been mapped and several families with X-linked inheritance have been reported. Recently, two recurrent duplication syndromes in Xq28 have been associated with cerebellar hypoplasia. Given the report of several forms of XLCD and the excess of males with ataxia, this group of conditions is probably underestimated and families of patients with neuroradiological and clinical evidence of a cerebellar disorder should be counseled for high risk of X-linked inheritance.
Collapse
Affiliation(s)
- Ginevra Zanni
- Unit of Molecular Medicine, Departement of Neurosciences, Bambino Gesù ediatric Research Hospital, 4 Piazza S. Onofrio, 00165 Rome, Italy.
| | | |
Collapse
|
20
|
Al-Owain M, Kaya N, Al-Zaidan H, Al-Hashmi N, Al-Bakheet A, Al-Muhaizea M, Chedrawi A, Basran RK, Milunsky A. Novel intragenic deletion in OPHN1 in a family causing XLMR with cerebellar hypoplasia and distinctive facial appearance. Clin Genet 2011; 79:363-70. [DOI: 10.1111/j.1399-0004.2010.01462.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Regulation of the postsynaptic cytoskeleton: roles in development, plasticity, and disorders. J Neurosci 2010; 30:14937-42. [PMID: 21068295 DOI: 10.1523/jneurosci.4276-10.2010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The small size of dendritic spines belies the elaborate role they play in excitatory synaptic transmission and ultimately complex behaviors. The cytoskeletal architecture of the spine is predominately composed of actin filaments. These filaments, which at first glance might appear simple, are also surprisingly complex. They dynamically assemble into different structures and serve as a platform for orchestrating the elaborate responses of the spine during experience-dependent plasticity. This mini-symposium review will feature ongoing research into how spines are regulated by actin-signaling pathways during development and plasticity. It will also highlight evolving studies into how disruptions to these pathways might be functionally coupled to congenital disorders such as mental retardation.
Collapse
|
22
|
Abstract
Intellectual disability (ID) is the leading socio-economic problem of health care, but compared to autism and schizophrenia, it has received very little public attention. Important risk factors for ID are malnutrition, cultural deprivation, poor health care, and parental consanguinity. In the Western world, fetal alcohol exposure is the most common preventable cause. Most severe forms of ID have genetic causes. Cytogenetically detectable and submicroscopic chromosomal rearrangements account for approximately 25% of all cases. X-linked gene defects are responsible in 10-12% of males with ID; to date, 91 of these defects have been identified. In contrast, autosomal gene defects have been largely disregarded, but due to coordinated efforts and the advent of next-generation DNA sequencing, this is about to change. As shown for Fra(X) syndrome, this renewed focus on autosomal gene defects will pave the way for molecular diagnosis and prevention, shed more light on the pathogenesis of ID, and reveal new opportunities for therapy.
Collapse
|
23
|
Boddaert N, Desguerre I, Bahi-Buisson N, Romano S, Valayannopoulos V, Saillour Y, Seidenwurm D, Grevent D, Berteloot L, Lebre AS, Zilbovicius M, Puget S, Salomon R, Attie-Bitach T, Munnich A, Brunelle F, de Lonlay P. Posterior fossa imaging in 158 children with ataxia. J Neuroradiol 2010; 37:220-30. [PMID: 20378176 DOI: 10.1016/j.neurad.2009.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 12/24/2009] [Accepted: 12/29/2009] [Indexed: 12/22/2022]
Abstract
OBJECTIFS To propose a MRI cerebellar algorithm that may be applied to guide genetic/malformative or biochemical investigations for patients with cerebellar ataxia. PATIENTS AND METHODS Cerebral MRI of 158 patients with cerebellar ataxia and no supratentorial abnormality were examined according to a new categorization system based on posterior fossa imaging. The clinical and radiological findings were confronted to biochemical and/or genetic results using the MR cerebellar algorithm. Seven groups of cerebellar MRI pattern were described: vermian dysgenesis (n=27), cerebellar hypoplasia (n=15), hemispheric cerebellar dysgenesis (n=6), unilateral hemispheric atrophy (n=5), global cerebellar atrophy (n=84), signal abnormalities (n=11) and normal MRI (n=10). Cerebellar hypoplasia, vermian dysgenesis and hemispheric cerebellar dysgenesis groups were classified as malformative disorders. Global atrophy and signal abnormality groups were classified as metabolic disorders. RESULTS In the vermian dysgenesis group, a specific genetic diagnosis was obtained in eight children (8/27) and all of the mutated genes (AHI1 (JBS3), CEP290 (JBS5), TMEM67 (JBS6), and RPGRIP1L (JBS7)) are involved in primary cilia function. In the group of pontocerebellar hypoplasia specific genetic diagnosis was obtained in one patient (PCH2) (1/15). Thus, nine of 42 children classified as malformative disorder had a molecular diagnosis. Global atrophy and signal abnormality groups were classified as metabolic disorders, specific biochemical was obtained in 46/95 children. In global atrophy group, respiratory chain deficiency was diagnosed in 18 children (18/84). In 21 children a congenital disorders of glycosylation type 1a (CDG Ia) was diagnosed (21/84) and infantile neuroaxonale dystrophy (INAD) was diagnosed in one child. In signal abnormalities group, specific biochemical diagnosis was obtained in six out of 11 children, five children with respiratory chain deficiency and one child with sulphite oxidase deficiency. In hemispheric cerebellar dysgenesis and normal MRI groups, no biological diagnosis was found for any of the patients. In the group of unilateral hemispheric atrophy, we hypothesized a clastic prenatal injury. CONCLUSION The proposed MR cerebellar algorithm was useful to guide genetic/malformative or biochemical investigations, allowing an etiological diagnosis in 55 children.
Collapse
Affiliation(s)
- N Boddaert
- Service de radiologie pédiatrique, hôpital Necker-Enfants-Malades, AP-HP, Paris-V, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Nadif Kasri N, Nakano-Kobayashi A, Malinow R, Li B, Van Aelst L. The Rho-linked mental retardation protein oligophrenin-1 controls synapse maturation and plasticity by stabilizing AMPA receptors. Genes Dev 2009; 23:1289-302. [PMID: 19487570 DOI: 10.1101/gad.1783809] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Oligophrenin-1 (OPHN1) encodes a Rho-GTPase-activating protein (Rho-GAP) whose loss of function has been associated with X-linked mental retardation (MR). The pathophysiological role of OPHN1, however, remains poorly understood. Here we show that OPHN1 through its Rho-GAP activity plays a critical role in the activity-dependent maturation and plasticity of excitatory synapses by controlling their structural and functional stability. Synaptic activity through NMDA receptor activation drives OPHN1 into dendritic spines, where it forms a complex with AMPA receptors, and selectively enhances AMPA-receptor-mediated synaptic transmission and spine size by stabilizing synaptic AMPA receptors. Consequently, decreased or defective OPHN1 signaling prevents glutamatergic synapse maturation and causes loss of synaptic structure, function, and plasticity. These results imply that normal activity-driven glutamatergic synapse development is impaired by perturbation of OPHN1 function. Thus, our findings link genetic deficits in OPHN1 to glutamatergic dysfunction and suggest that defects in early circuitry development are an important contributory factor to this form of MR.
Collapse
Affiliation(s)
- Nael Nadif Kasri
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | |
Collapse
|
25
|
Khelfaoui M, Pavlowsky A, Powell AD, Valnegri P, Cheong KW, Blandin Y, Passafaro M, Jefferys JGR, Chelly J, Billuart P. Inhibition of RhoA pathway rescues the endocytosis defects in Oligophrenin1 mouse model of mental retardation. Hum Mol Genet 2009; 18:2575-83. [PMID: 19401298 PMCID: PMC2701329 DOI: 10.1093/hmg/ddp189] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The patho-physiological hypothesis of mental retardation caused by the deficiency of the RhoGAP Oligophrenin1 (OPHN1), relies on the well-known functions of Rho GTPases on neuronal morphology, i.e. dendritic spine structure. Here, we describe a new function of this Bin/Amphiphysin/Rvs domain containing protein in the control of clathrin-mediated endocytosis (CME). Through interactions with Src homology 3 domain containing proteins involved in CME, OPHN1 is concentrated to endocytic sites where it down-regulates the RhoA/ROCK signaling pathway and represses the inhibitory function of ROCK on endocytosis. Indeed disruption of Ophn1 in mice reduces the endocytosis of synaptic vesicles and the post-synaptic alpha-amino-3-hydroxy-5-methylisoazol-4-propionate (AMPA) receptor internalization, resulting in almost a complete loss of long-term depression in the hippocampus. Finally, pharmacological inhibition of this pathway by ROCK inhibitors fully rescued not only the CME deficit in OPHN1 null cells but also synaptic plasticity in the hippocampus from Ophn1 null model. Altogether, we uncovered a new patho-physiological mechanism for intellectual disabilities associated to mutations in RhoGTPases linked genes and also opened new directions for therapeutic approaches of congenital mental retardation.
Collapse
Affiliation(s)
- Malik Khelfaoui
- Institut Cochin, Université Paris Descartes, CNRS UMR8104, 24 rue du Faubourg Saint Jacques 75014, Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Curie A, Sacco S, Bussy G, de Saint Martin A, Boddaert N, Chanraud S, Meresse I, Chelly J, Zilbovicius M, des Portes V. Impairment of cerebello-thalamo-frontal pathway in Rab-GDI mutated patients with pure mental deficiency. Eur J Med Genet 2008; 52:6-13. [PMID: 18992375 DOI: 10.1016/j.ejmg.2008.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 09/01/2008] [Indexed: 11/28/2022]
Abstract
BACKGROUND Rab-GDI mutations are responsible for "pure" mental deficiency, without any specific clinical features or brain malformation. Therefore, screening for mutations in mentally retarded patients is not available on a routine basis. Moreover, neuronal networks involved in mental deficiency still remain largely unknown. METHODS We performed a fine neuropsychological and imaging study in five patients from two unrelated families, affected with mental deficiency due to a mutation in the Rab-GDI gene. High resolution 3D brain MRI of the five mentally retarded adult males (mean age 33 years) were compared to MRI of 14 healthy males (mean age 35 years) using a Voxel-Based Morphometric analysis (VBM). RESULTS All patients had isolated moderate mental retardation (WAIS-III IQ range, 41-50; mean 45) without specific morphological or behavioural features. No obvious brain abnormality was observed on visual inspection of individual scans. Using VBM analysis, Rab-GDI mutated patients' MRIs exhibited significant brain changes compared to normal subjects (p<0.05, corrected for multiple comparisons): increased grey matter density in left cerebellum and in left angular gyrus, decreased grey matter volume in thalami, decreased white matter density in prefrontal lobes, right fusiform occipito-temporal gyrus, and decreased white matter volume in cerebellar peduncles. CONCLUSIONS These morphological changes observed in Rab-GDI mutated patients, mainly localized in the cerebello-thalamo-prefrontal pathway, are consistent with the hypothesis that the cerebellum is one of the critical components of a global learning network. Our results open new avenues in the diagnosis of non-specific mental deficiency using gene-specific "brain maps" as endophenotypes.
Collapse
Affiliation(s)
- Aurore Curie
- Institut des Sciences Cognitives, CNRS UMR5230, Université Claude Bernard Lyon 1 and Hospices Civils de Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Madrigal I, Rodríguez-Revenga L, Badenas C, Sánchez A, Milà M. Deletion of the OPHN1 gene detected by aCGH. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2008; 52:190-194. [PMID: 18261018 DOI: 10.1111/j.1365-2788.2007.00997.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
BACKGROUND The oligophrenin 1 gene (OPHN1) is an Rho-GTPase-activating protein involved in the regulation of the G-protein cycle required for dendritic spine morphogenesis. Mutations in this gene are implicated in X-linked mental retardation (XLMR). METHODS We report a deletion spanning exons 21 and 22 of the OPHN1 gene identified by a tiling path X-chromosome array comparative genomic hybridization (CGH) and multiplex ligation-dependent probe amplification, confirmed by polymerase chain reaction (PCR), in a family with four males with intellectual disabilities. RESULTS Patients harbouring mutations in this gene share the same clinical manifestations reinforcing the idea of a syndromic XLMR. The most important neurological findings are cerebellar hypoplasia and ventriculomegaly. CONCLUSIONS We recommend screening of the OPHN1 gene in male patients with XLMR and cerebellar anomalies. This case highlights the value of high-resolution techniques as Multiplex Ligation Probe Amplification (MLPA) and CGH array for a better characterization of copy number changes and suggests that MLPA technology may be very useful for an initial screening of small deletions and duplications in XLMR patients.
Collapse
Affiliation(s)
- I Madrigal
- Biochemistry and Molecular Genetics Department Hospital Clínic and IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | | | | | | | | |
Collapse
|
28
|
Kasri NN, Govek EE, Van Aelst L. Characterization of oligophrenin-1, a RhoGAP lost in patients affected with mental retardation: lentiviral injection in organotypic brain slice cultures. Methods Enzymol 2008; 439:255-66. [PMID: 18374170 DOI: 10.1016/s0076-6879(07)00419-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mutations in regulators and effectors of the Rho GTPases underlie various forms of mental retardation (MR). Among them, oligophrenin-1 (OPHN1), which encodes a Rho-GTPase activating protein, was one of the first Rho-linked MR genes identified. Upon characterization of OPHN1 in hippocampal brain slices, we obtained evidence for the requirement of OPHN1 in dendritic spine morphogenesis and neuronal function of CA1 pyramidal neurons. Organotypic hippocampal brain slice cultures are commonly used as a model system to investigate the morphology and synaptic function of neurons, mainly because they allow for the long-term examination of neurons in a preparation where the gross cellular architecture of the hippocampus is retained. In addition, maintenance of the trisynaptic circuitry in hippocampal slices enables the study of synaptic connections. Today, a multitude of gene transfer methods for postmitotic neurons in brain slices are available to easily manipulate and scrutinize the involvement of signaling molecules, such as Rho GTPases, in specific cellular processes in this system. This chapter covers techniques detailing the preparation and culturing of organotypic hippocampal brain slices, as well as the production and injection of lentivirus into brain slices.
Collapse
Affiliation(s)
- Nael Nadif Kasri
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | | | |
Collapse
|
29
|
Khelfaoui M, Denis C, van Galen E, de Bock F, Schmitt A, Houbron C, Morice E, Giros B, Ramakers G, Fagni L, Chelly J, Nosten-Bertrand M, Billuart P. Loss of X-linked mental retardation gene oligophrenin1 in mice impairs spatial memory and leads to ventricular enlargement and dendritic spine immaturity. J Neurosci 2007; 27:9439-50. [PMID: 17728457 PMCID: PMC6673114 DOI: 10.1523/jneurosci.2029-07.2007] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Loss of oligophrenin1 (OPHN1) function in human causes X-linked mental retardation associated with cerebellar hypoplasia and, in some cases, with lateral ventricle enlargement. In vitro studies showed that ophn1 regulates dendritic spine through the control of Rho GTPases, but its in vivo function remains unknown. We generated a mouse model of ophn1 deficiency and showed that it mimics the ventricles enlargement without affecting the cerebellum morphoanatomy. The ophn1 knock-out mice exhibit behavioral defects in spatial memory together with impairment in social behavior, lateralization, and hyperactivity. Long-term potentiation and mGluR-dependent long-term depression are normal in the CA1 hippocampal area of ophn1 mutant, whereas paired-pulse facilitation is reduced. This altered short-term plasticity that reflects changes in the release of neurotransmitters from the presynaptic processes is associated with normal synaptic density together with a reduction in mature dendritic spines. In culture, inactivation of ophn1 function increases the density and proportion of immature spines. Using a conditional model of loss of ophn1 function, we confirmed this immaturity defect and showed that ophn1 is required at all the stages of the development. These studies show that, depending of the context, ophn1 controls the maturation of dendritic spines either by maintaining the density of mature spines or by limiting the extension of new filopodia. Altogether, these observations indicate that cognitive impairment related to OPHN1 loss of function is associated with both presynaptic and postsynaptic alterations.
Collapse
Affiliation(s)
- Malik Khelfaoui
- Department of Genetic and Development, Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS) [Unité Mixte de Recherche (UMR) 8104], F-75014 Paris, France
- Inserm, U567, F-75014 Paris, France
| | - Cécile Denis
- Inserm, U513, Neurobiology and Psychiatry, F-94010 Créteil, France
| | - Elly van Galen
- Netherlands Institute for Neurosciences, Neurons, and Networks, 1105 AZ Amsterdam, The Netherlands
| | - Frédéric de Bock
- Department of Neurobiology, Institut de Genomique Fonctionnelle, Université Montpellier 1 et 2, CNRS (UMR 5203), F-34094 Montpellier, France, and
- Inserm, U661, F-34094 Montpellier, France
| | - Alain Schmitt
- Department of Genetic and Development, Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS) [Unité Mixte de Recherche (UMR) 8104], F-75014 Paris, France
- Inserm, U567, F-75014 Paris, France
| | - Christophe Houbron
- Department of Genetic and Development, Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS) [Unité Mixte de Recherche (UMR) 8104], F-75014 Paris, France
- Inserm, U567, F-75014 Paris, France
| | - Elise Morice
- Inserm, U513, Neurobiology and Psychiatry, F-94010 Créteil, France
| | - Bruno Giros
- Inserm, U513, Neurobiology and Psychiatry, F-94010 Créteil, France
| | - Ger Ramakers
- Netherlands Institute for Neurosciences, Neurons, and Networks, 1105 AZ Amsterdam, The Netherlands
| | - Laurent Fagni
- Department of Neurobiology, Institut de Genomique Fonctionnelle, Université Montpellier 1 et 2, CNRS (UMR 5203), F-34094 Montpellier, France, and
- Inserm, U661, F-34094 Montpellier, France
| | - Jamel Chelly
- Department of Genetic and Development, Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS) [Unité Mixte de Recherche (UMR) 8104], F-75014 Paris, France
- Inserm, U567, F-75014 Paris, France
| | | | - Pierre Billuart
- Department of Genetic and Development, Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS) [Unité Mixte de Recherche (UMR) 8104], F-75014 Paris, France
- Inserm, U567, F-75014 Paris, France
| |
Collapse
|
30
|
Menten B, Buysse K, Vermeulen S, Meersschaut V, Vandesompele J, Ng BL, Carter NP, Mortier GR, Speleman F. Report of a female patient with mental retardation and tall stature due to a chromosomal rearrangement disrupting the OPHN1 gene on Xq12. Eur J Med Genet 2007; 50:446-54. [PMID: 17845870 PMCID: PMC2688819 DOI: 10.1016/j.ejmg.2007.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 07/21/2007] [Indexed: 10/23/2022]
Abstract
We report on a patient with mental retardation, seizures and tall stature with advanced bone age in whom a de novo apparently balanced chromosomal rearrangement 46,XX,t(X;9)(q12;p13.3) was identified. Using array CGH on flow-sorted derivative chromosomes (array painting) and subsequent FISH and qPCR analysis, we mapped and sequenced both breakpoints. The Xq12 breakpoint was located within the gene coding for oligophrenin 1 (OPHN1) whereas the 9p13.3 breakpoint was assigned to a non-coding segment within a gene dense region. Disruption of OPHN1 by the Xq12 breakpoint was considered the major cause of the abnormal phenotype observed in the proband.
Collapse
Affiliation(s)
- Björn Menten
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Madrigal I, Rodríguez-Revenga L, Badenas C, Sánchez A, Martinez F, Fernandez I, Fernández-Burriel M, Fernández-Buriel M, Milà M. MLPA as first screening method for the detection of microduplications and microdeletions in patients with X-linked mental retardation. Genet Med 2007; 9:117-22. [PMID: 17304053 DOI: 10.1097/gim.0b013e318031206e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Routine protocols for the study of mental retardation include karyotype, analysis for fragile X syndrome, and subtelomeric rearrangements. Nevertheless, detection of cryptic rearrangements requires more sensitive techniques. Mutation screening in all known genes responsible for X-linked mental retardation is not feasible, and linkage analysis is sometimes limited. Multiplex ligation probe amplification is a recently developed technique based on the amplification of specific probes that allows relative quantification of 40 to 46 different target DNA sequences in a single reaction. METHODS In the present study, we assessed multiplex ligation probe amplification for the detection of microduplications/microdeletions in 80 male patients with suspicion of X-linked mental retardation. RESULTS We detected four copy number aberrations (5%): three duplications (GDI1, RPS6KA3, and ARHGEF6) and one deletion (OPHN1). All these changes were confirmed by other molecular techniques, and patients were clinically re-evaluated. CONCLUSIONS We strongly recommend the use of multiplex ligation probe amplification as a first screening method for the detection of copy number aberrations in patients with mental retardation because of its cost-effectiveness.
Collapse
Affiliation(s)
- Irene Madrigal
- Biochemistry and Molecular Genetics Department, Hospital Clínic, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Eugen Boltshauser
- Division of Pediatric Neurology, University Children's Hospital, Steinwiesstrasse 75, Zurich, Switzerland.
| |
Collapse
|
33
|
Bahi-Buisson N, Chelly J, des Portes V. [Update on the genetics of X-linked mental retardation]. Rev Neurol (Paris) 2006; 162:952-63. [PMID: 17028563 DOI: 10.1016/s0035-3787(06)75105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Mutations in X-linked genes are likely to account for the observation that more males than females are affected with mental retardation. Causative mutations have been identified in both syndromic XLMR and in the genetically heterogeneous non-syndromic forms of XLMR, without a clear clinical phenotype other than cognitive deficit. Progress in genome analysis and the establishment of large collaborations between clinical and molecular research teams, especially the European XLMR consortium, have led to the identification of 20 non-syndromic XLMR genes and 25 syndromic XLMR genes. Given the extensive heterogeneity of non syndromic XLMR, different strategies are used for the identification of new genes: linkage analysis, studies of balanced chromosomal rearrangements (X-autosome translocations, microdeletions) and candidate genes strategies by mutation screening in regions of the X chromosome known to be involved in neuronal development and function. Delineating the monogenic causes of XLMR and their molecular and cellular consequences will provide insight into the mechanisms that are required for normal development of cognitive function in humans. Non syndromic XLMR proteins include 5 distinct classes: transmembrane receptors, small GTPases effectors or regulators, enzymes and translational regulators.
Collapse
Affiliation(s)
- N Bahi-Buisson
- Département de Pédiatrie, Service de Neuropédiatrie et Maladies Métaboliques, Hôpital Necker, and Université René Descartes, Paris, France.
| | | | | |
Collapse
|
34
|
Ropers HH. X-linked mental retardation: many genes for a complex disorder. Curr Opin Genet Dev 2006; 16:260-9. [PMID: 16647850 DOI: 10.1016/j.gde.2006.04.017] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 04/18/2006] [Indexed: 11/26/2022]
Abstract
X-linked mental retardation (XLMR) is a common cause of moderate to severe intellectual disability in males. XLMR is very heterogeneous, and about two-thirds of patients have clinically indistinguishable non-syndromic (NS-XLMR) forms, which has greatly hampered their molecular elucidation. A few years ago, international consortia overcame this impasse by collecting DNA and cell lines from large cohorts of XLMR families, thereby paving the way for the systematic study of the molecular causes of XLMR. Mutations in known genes might already account for 50% of the families with NS-XLMR, and various genes have been pinpointed that seem to be of particular diagnostic importance. Eventually, even therapy of XLMR might become possible, as suggested by the unexpected plasticity of the neuronal wiring in the brain, and the recent successful drug treatment of a fly model for fragile X syndrome.
Collapse
Affiliation(s)
- Hans-Hilger Ropers
- Max-Planck-Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin, Germany.
| |
Collapse
|
35
|
MESH Headings
- Brain/pathology
- Brain/physiopathology
- Brain Mapping
- Child
- Child, Preschool
- Dominance, Cerebral/physiology
- Follow-Up Studies
- Humans
- Image Processing, Computer-Assisted
- Imaging, Three-Dimensional
- Infant
- Infant, Newborn
- Infant, Premature, Diseases/diagnosis
- Infant, Premature, Diseases/genetics
- Infant, Premature, Diseases/physiopathology
- Intellectual Disability/diagnosis
- Intellectual Disability/genetics
- Intellectual Disability/physiopathology
- Magnetic Resonance Imaging
- Mathematical Computing
- Reference Values
- Sensitivity and Specificity
Collapse
Affiliation(s)
- A Curie
- Institut des sciences cognitives, CNRS UMR 5015, 67, boulevard Pinel, 69675 Bron, France.
| | | | | |
Collapse
|
36
|
Abstract
X-linked mental retardation (XLMR) affects 1.8 per thousand male births and is usually categorized as "syndromic" (MRXS) or "non-specific" (MRX) forms according to the presence or absence of specific signs in addition to the MR. Up to 60 genes have been implicated in XLMR and certain mutations can alternatively lead to MRXS or MRX. Indeed the extreme phenotypic and allelic heterogeneity of XLMR makes the classification of most genes difficult. Therefore, following identification of new genes, accurate retrospective clinical evaluation of patients and their families is necessary to aid the molecular diagnosis and the classification of this heterogeneous group of disorders. Analyses of the protein products corresponding to XLMR genes show a great diversity of cellular pathways involved in MR. Common mechanisms are beginning to emerge : a first group of proteins belongs to the Rho and Rab GTPase signaling pathways involved in neuronal differentiation and synaptic plasticity and a second group is related to the regulation of gene expression. In this review, we illustrate the complexity of XLMR conditions and present recent data about the FMR1, ARX and Oligophrenin 1 genes.
Collapse
Affiliation(s)
- Pierre Billuart
- Institut Cochin, GDPM, 24, rue du Faubourg-St-Jacques, 75014 Paris, France.
| | | | | |
Collapse
|
37
|
Newey SE, Velamoor V, Govek EE, Van Aelst L. Rho GTPases, dendritic structure, and mental retardation. ACTA ACUST UNITED AC 2005; 64:58-74. [PMID: 15884002 DOI: 10.1002/neu.20153] [Citation(s) in RCA: 277] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A consistent feature of neurons in patients with mental retardation is abnormal dendritic structure and/or alterations in dendritic spine morphology. Deficits in the regulation of the dendritic cytoskeleton affect both the structure and function of dendrites and synapses and are believed to underlie mental retardation in some instances. In support of this, there is good evidence that alterations in signaling pathways involving the Rho family of small GTPases, key regulators of the actin and microtubule cytoskeletons, contribute to both syndromic and nonsyndromic mental retardation disorders. Because the Rho GTPases have been shown to play increasingly well-defined roles in determining dendrite and dendritic spine development and morphology, Rho signaling has been suggested to be important for normal cognition. The purpose of this review is to summarize recent data on the Rho GTPases pertaining to dendrite and dendritic spine morphogenesis, as well as to highlight their involvement in mental retardation resulting from a variety of genetic mutations within regulators and effectors of these molecules.
Collapse
|
38
|
Abstract
X-linked mental retardation (XLMR) is a very heterogeneous condition, subdivided in two categories mainly based on clinical features: syndromic XLMR (MRXS) and non-syndromic XLMR (MRX). Although it was thought that 20-25% of mental retardation (MR) in males was caused by monogenetic X-linked factors, recent estimations are lower: in the range of 10-12%. The number of identified genes involved in XLMR has been rapidly growing in the past years. Subsequently, an increasing number of patients and families have been reported in which mutations in XLMR genes have been identified. It was observed previously, that mutations in several of XLMR genes can result in syndromic and in non-syndromic phenotypes. This observation has been confirmed for the more recently identified genes. Therefore, in this review, focus has been given on the clinical data and on phenotype-genotype correlations for those genes implicated in both non-syndromic and syndromic XLMR.
Collapse
Affiliation(s)
- T Kleefstra
- Department of Human Genetics, Radboud University Medical Center Nijmegen, the Netherlands
| | | |
Collapse
|
39
|
Mandel JL, Chelly J. Monogenic X-linked mental retardation: is it as frequent as currently estimated? The paradox of the ARX (Aristaless X) mutations. Eur J Hum Genet 2005; 12:689-93. [PMID: 15319782 DOI: 10.1038/sj.ejhg.5201247] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mental retardation affects 30 to 50% more males than females, and X-linked mental retardation (XLMR) is thought to account for the major part of this sex bias. Nonsyndromic XLMR is very heterogeneous, with more than 15 genes identified to date, each of them accounting for a very small proportion of nonsyndromic families. The Aristaless X (ARX) gene is an exception since it was found mutated in 11 of 136 such families, with a highly recurrent mutation (dup24) leading to an expansion of a polyalanine tract in the protein. The rather high frequency of dup24 reported in families with clear X-linked MR (6.6%) contrasts with the very low prevalence of this mutation observed in sporadic male MR (0.13%). We conclude that monogenic XLMR has much lower prevalence in male MR (< 10%) than the 23% that would be required to account for a 30% male excess of mental retardation.
Collapse
Affiliation(s)
- Jean-Louis Mandel
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC) (CNRS/INSERM/Université Louis Pasteur, Collège de France), 67404 Illkirch/CU Strasbourg, France.
| | | |
Collapse
|
40
|
Abstract
Our brain serves as a center for cognitive function and neurons within the brain relay and store information about our surroundings and experiences. Modulation of this complex neuronal circuitry allows us to process that information and respond appropriately. Proper development of neurons is therefore vital to the mental health of an individual, and perturbations in their signaling or morphology are likely to result in cognitive impairment. The development of a neuron requires a series of steps that begins with migration from its birth place and initiation of process outgrowth, and ultimately leads to differentiation and the formation of connections that allow it to communicate with appropriate targets. Over the past several years, it has become clear that the Rho family of GTPases and related molecules play an important role in various aspects of neuronal development, including neurite outgrowth and differentiation, axon pathfinding, and dendritic spine formation and maintenance. Given the importance of these molecules in these processes, it is therefore not surprising that mutations in genes encoding a number of regulators and effectors of the Rho GTPases have been associated with human neurological diseases. This review will focus on the role of the Rho GTPases and their associated signaling molecules throughout neuronal development and discuss how perturbations in Rho GTPase signaling may lead to cognitive disorders.
Collapse
Affiliation(s)
- Eve-Ellen Govek
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
41
|
Kleefstra T, Franken CE, Arens YHJM, Ramakers GJA, Yntema HG, Sistermans EA, Hulsmans CFCH, Nillesen WN, van Bokhoven H, de Vries BBA, Hamel BCJ. Genotype-phenotype studies in three families with mutations in the polyglutamine-binding protein 1 gene (PQBP1). Clin Genet 2005; 66:318-26. [PMID: 15355434 DOI: 10.1111/j.1399-0004.2004.00308.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently, the polyglutamine-binding protein 1 (PQBP1) gene was found to be mutated in five of 29 families studied with X-linked mental retardation (XLMR) linked to Xp. The reported mutations include duplications or deletions of AG dinucleotides in the fourth coding exon that resulted in shifts of the open reading frame. Three of the five families with mutations in this newly identified XLMR gene have been reported previously. We characterized the phenotypic and neuropsychological features in the two unpublished families with aberrations in PQBP1 and in a family reported 10 years ago. In total, seven patients diagnosed with aberrations in this gene were examined, including a newly identified patient at 18 months of age. Additionally, the features were compared to those reported in the literature of three other families, comprising MRXS3 (Sutherland-Haan syndrome) MRX55 and MRXS8 (Renpenning syndrome). Characteristics seen in these patients are microcephaly, lean body habitus, short stature, striking facial appearance with long narrow faces, upward slant of the eyes, malar hypoplasia, prognathism, high-arched palate and nasal speech. In addition, small testes and midline defects as anal atresia or imperforate anus, clefting of palate and/or uvula, iris coloboma and Tetralogy of Fallot are seen in several patients. These observations contribute to the phenotypic knowledge of patients with PQBP1 mutations and make this XLMR syndrome well recognizable to clinicians.
Collapse
Affiliation(s)
- T Kleefstra
- Department of Human Genetics, University Medical Center, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chabrol B, Girard N, N'Guyen K, Gérard A, Carlier M, Villard L, Philip N. Delineation of the clinical phenotype associated withOPHN1 mutations based on the clinical and neuropsychological evaluation of three families. Am J Med Genet A 2005; 138:314-7. [PMID: 16158428 DOI: 10.1002/ajmg.a.30882] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recent reports have demonstrated that mutations in the OPHN1 gene were responsible for a syndromic rather than non-specific mental retardation. Abnormalities of the posterior fossa with cerebellar hypoplasia have been demonstrated in all male patients reported to date. We report here a new family with X-linked mental retardation due to mutation in OPHN1 and present unpublished data about two families previously reported, concerning the facial and psychological phenotype of affected males and carrier females. Our study confirms that cerebellar hypoplasia is a hallmark of this syndrome. In addition, affected males display facial similarities that can help the diagnosis. Most carrier females have mild mental retardation and subtle facial changes.
Collapse
Affiliation(s)
- B Chabrol
- Department of Paediatric Neurology, Hôpital d'Enfants de la Timone, Marseille, France
| | | | | | | | | | | | | |
Collapse
|