1
|
Eslami A, Chehrassan M, Alimoghadam S, Shakeri M. Congenital lumbosacral junction kyphosis in an adult patient: A case report. Clin Case Rep 2023; 11:e8094. [PMID: 37881197 PMCID: PMC10593970 DOI: 10.1002/ccr3.8094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/30/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023] Open
Abstract
Rare lumbosacral junction kyphosis due to S1-S2 hemivertebra in a 40-year-old woman was managed surgically, improving neurological disturbances, and low back pain. Early intervention is vital for congenital anomalies.
Collapse
Affiliation(s)
- Arvin Eslami
- Bone and Joint Reconstruction Research Center, Shafa Yahyaeian Orthopedic HospitalIran University of Medical SciencesTehranIran
- Department of Orthopedic, School of MedicineIran University of Medical SciencesTehranIran
| | - Mohammadreza Chehrassan
- Bone and Joint Reconstruction Research Center, Shafa Yahyaeian Orthopedic HospitalIran University of Medical SciencesTehranIran
- Department of Orthopedic, School of MedicineIran University of Medical SciencesTehranIran
| | - Shaya Alimoghadam
- School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Mohammadreza Shakeri
- Bone and Joint Reconstruction Research Center, Shafa Yahyaeian Orthopedic HospitalIran University of Medical SciencesTehranIran
- Department of Orthopedic, School of MedicineIran University of Medical SciencesTehranIran
| |
Collapse
|
2
|
Tonni G, Koçak Ç, Grisolia G, Rizzo G, Araujo Júnior E, Werner H, Ruano R, Sepulveda W, Bonasoni MP, Lituania M. Clinical Presentations and Diagnostic Imaging of VACTERL Association. Fetal Pediatr Pathol 2023; 42:651-674. [PMID: 37195727 DOI: 10.1080/15513815.2023.2206905] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/18/2023]
Abstract
Background: VACTERL association consists of Vertebral, Anorectal, Cardiac, Tracheo-Esophageal, Renal, and Limb defects. The diagnosis depends on the presence of at least three of these structural abnormalities. Methods: The clinical presentation and diagnostic prenatal imaging of VACTERL association are comprehensively reviewed. Results: The most common feature is a vertebral anomaly, found in 60-80% of cases. Tracheo-esophageal fistula is seen in 50-80% of cases and renal malformations in 30% of patients. Limb defects including thumb aplasia/hypoplasia, polydactyly, and radial agenesis/hypoplasia are present in 40-50% of cases. Anorectal defects, like imperforate anus/anal atresia, are challenging to detect prenatally. Conclusion: The diagnosis of VACTERL association mostly relies on imaging techniques such as ultrasound, computed tomography, and magnetic resonance. Differential diagnosis should exclude similar diseases such as CHARGE and Townes-Brocks syndromes and Fanconi anemia. New insights into genetic etiology have led to recommendations of chromosomal breakage investigation for optimal diagnosis and counseling.
Collapse
Affiliation(s)
- Gabriele Tonni
- Department of Obstetrics and Neonatology and Researcher, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Çağla Koçak
- Faculty of Medicine, Düzce Medical School, Duzce, Turkey
| | - Gianpaolo Grisolia
- Prenatal Diagnostic Centre, Department of Obstetrics and Neonatology, Carlo Poma Hospital, Mantua, Italy
| | - Giuseppe Rizzo
- Department of Obstetrics and Gynecology, Policlinic Hospital, University of Tor Vergata, Rome, Italy
| | - Edward Araujo Júnior
- Department of Obstetrics and Gynecology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Heron Werner
- Laboratorio de Biodesign (Dasa/PUC-Rio), Alta Excelência Diagnostica, Rio de Janeiro, RJ, Brazil
| | - Rodrigo Ruano
- Fetal Surgery, Department of Maternal and Fetal Medicine, Obstetrics and Gynecology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Waldo Sepulveda
- FETALMED, Maternal-Fetal Diagnostic Center, Fetal Imaging Unit, Santiago, Chile
| | - Maria Paola Bonasoni
- Pathology Unit, Santa Maria Nuova Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), AUSL Reggio Emilia, Reggio Emilia, Italy
| | - Mario Lituania
- Preconceptional and Prenatal Physiopathology, Department of Maternal & Neonatology, E.O. Ospedali Galliera, Genoa, Italy
| |
Collapse
|
3
|
Chang L, Zhang L, An W, Wan Y, Cai Y, Lan Y, Zhang A, Liu L, Ruan M, Liu X, Guo Y, Yang W, Chen X, Chen Y, Wang S, Zou Y, Yuan W, Zhu X. Phenotypic and genotypic correlation evaluation of 148 pediatric patients with Fanconi anemia in a Chinese rare disease cohort. Clin Chim Acta 2023; 539:41-49. [PMID: 36463940 DOI: 10.1016/j.cca.2022.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Fanconi anemia (FA) is a rare autosomal recessive, X-linked or autosomal dominant disease. Few large-scale FA investigations of rare disease cohorts have been conducted in China. METHODS We enrolled 148 patients diagnosed with FA according to evidence from the clinical phenotype, family history, and a set of laboratory tests. Next, the clinical manifestations and correlation between the genotype and phenotype of FA pediatric cases were investigated. RESULTS The most common FA subtype in our cohort was FA-A (51.4 %), followed by FA-D2 and FA-P. Finger (26 %) and skin (25 %) deformities were the most common malformations. Based on family history, blood system diseases (51 %) had the highest incidence rate, followed by digestive system tumours. A set of new or prognosis-related mutation sites was identified. For example, c.2941 T > G was a new most common missense mutation site for FANCA. FANCP gene mutation sites were mainly concentrated in exons 12/14/15. The mutations of FANCI/FANCD2 were mainly located at the α helix and β corners of the protein complex. FA-A/D1 patients with splicing or deletion mutations showed more severe disease than those with missense mutations. Chromosome 1/3/7/8 abnormalities were closely linked to the progression of FA to leukemia. CONCLUSION Our study investigated the clinical features and genotype/phenotype correlation of 148 Chinese pediatric FA patients, providing new insight into FA.
Collapse
Affiliation(s)
- Lixian Chang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Li Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wenbin An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yang Wan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yuli Cai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yang Lan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Aoli Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lipeng Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Min Ruan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaoming Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ye Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wenyu Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaojuan Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yumei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Shuchun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yao Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| |
Collapse
|
4
|
Sy MR, Chauhan J, Prescott K, Imam A, Kraus A, Beleza A, Salkeld L, Hosdurga S, Parker M, Vasudevan P, Islam L, Goel H, Bain N, Park SM, Mohammed S, Dieterich K, Coutton C, Satre V, Vieville G, Donaldson A, Beneteau C, Ghoumid J, Bogaert KVD, Boogaerts A, Boudry E, Vanlerberghe C, Petit F, Bernardini L, Torres B, Mattina T, Carli D, Mandrile G, Pinelli M, Brunetti-Pierri N, Neas K, Beddow R, Tørring PM, Faletra F, Spedicati B, Gasparini P, Mussa A, Ferrero GB, Lampe A, Lam W, Bi W, Bacino CA, Kuwahara A, Bush JO, Zhao X, Luna PN, Shaw CA, Rosenfeld JA, Scott DA. Exome sequencing efficacy and phenotypic expansions involving esophageal atresia/tracheoesophageal fistula plus. Am J Med Genet A 2022; 188:3492-3504. [PMID: 36135330 PMCID: PMC9669235 DOI: 10.1002/ajmg.a.62976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 01/31/2023]
Abstract
Esophageal atresia/tracheoesophageal fistula (EA/TEF) is a life-threatening birth defect that often occurs with other major birth defects (EA/TEF+). Despite advances in genetic testing, a molecular diagnosis can only be made in a minority of EA/TEF+ cases. Here, we analyzed clinical exome sequencing data and data from the DECIPHER database to determine the efficacy of exome sequencing in cases of EA/TEF+ and to identify phenotypic expansions involving EA/TEF. Among 67 individuals with EA/TEF+ referred for clinical exome sequencing, a definitive or probable diagnosis was made in 11 cases for an efficacy rate of 16% (11/67). This efficacy rate is significantly lower than that reported for other major birth defects, suggesting that polygenic, multifactorial, epigenetic, and/or environmental factors may play a particularly important role in EA/TEF pathogenesis. Our cohort included individuals with pathogenic or likely pathogenic variants that affect TCF4 and its downstream target NRXN1, and FANCA, FANCB, and FANCC, which are associated with Fanconi anemia. These cases, previously published case reports, and comparisons to other EA/TEF genes made using a machine learning algorithm, provide evidence in support of a potential pathogenic role for these genes in the development of EA/TEF.
Collapse
Affiliation(s)
- Mary R. Sy
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, TX, USA
| | - Jaynee Chauhan
- Yorkshire Regional Genetics Service, Leeds Teaching
Hospitals NHS Trust, Chapel Allerton Hospital, Leeds, UK
| | - Katrina Prescott
- Yorkshire Regional Genetics Service, Leeds Teaching
Hospitals NHS Trust, Chapel Allerton Hospital, Leeds, UK
| | - Aliza Imam
- Yorkshire Regional Genetics Service, Leeds Teaching
Hospitals NHS Trust, Chapel Allerton Hospital, Leeds, UK
| | - Alison Kraus
- Yorkshire Regional Genetics Service, Leeds Teaching
Hospitals NHS Trust, Chapel Allerton Hospital, Leeds, UK
| | - Ana Beleza
- Clinical Genetics Department, University Hospitals Bristol
and Weston, Bristol NHS Foundation, Bristol, UK
| | - Lee Salkeld
- Whiteladies Medical Group, Whatley Road, Clifton, Bristol,
UK
| | - Saraswati Hosdurga
- Community Children’s Health Partnership, Sirona
Health and Care, Bristol, UK
| | - Michael Parker
- Sheffield Children’s NHS Foundation Trust,
Sheffield, UK
| | | | - Lily Islam
- Birmingham Women’s and Children’s Hospital
NHS Foundation Trust, Birmingham, UK
| | - Himanshu Goel
- Hunter New England Local Health District, Hunter Genetics,
Waratah, NSW, Australia
- University of Newcastle, Callaghan, NSW, Australia
| | - Nicole Bain
- Department of Molecular Medicine, New South Wales Health
Pathology, Newcastle, Australia
| | - Soo-Mi Park
- East Anglian Medical Genetics Service, Cambridge
University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Klaus Dieterich
- Département de Génétique et
Procréation, Hôpital Couple Enfant, CHU Grenoble, Grenoble Cedex,
France
- INSERM U1216 Grenoble Institut des Neurosciences,
Cellular Myology and Pathology, Grenoble, France
| | - Charles Coutton
- Département de Génétique et
Procréation, Hôpital Couple Enfant, CHU Grenoble, Grenoble Cedex,
France
- Genetic Epigenetic and Therapies of Infertility team,
Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université
Grenoble Alpes, Grenoble, France
| | - Véronique Satre
- Département de Génétique et
Procréation, Hôpital Couple Enfant, CHU Grenoble, Grenoble Cedex,
France
- Genetic Epigenetic and Therapies of Infertility team,
Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université
Grenoble Alpes, Grenoble, France
| | - Gaëlle Vieville
- Département de Génétique et
Procréation, Hôpital Couple Enfant, CHU Grenoble, Grenoble Cedex,
France
| | - Alan Donaldson
- Clinical Genetics Department, St Michaels Hospital,
Bristol, UK
| | - Claire Beneteau
- Nantes Université, CHU de Nantes, UF 9321 de
Fœtopathologie et Génétique, Nantes, France
| | - Jamal Ghoumid
- Université de Lille, ULR7364 RADEME, CHU Lille,
Clinique de Génétique Guy Fontaine, Lille, France
| | - Kris Van Den Bogaert
- Center for Human Genetics, University Hospitals
Leuven–KU Leuven, Leuven, Belgium
| | - Anneleen Boogaerts
- Center for Human Genetics, University Hospitals
Leuven–KU Leuven, Leuven, Belgium
| | - Elise Boudry
- CHU Lille, Institut de Génétique
Médicale, Lille, France
| | - Clémence Vanlerberghe
- Université de Lille, ULR7364 RADEME, CHU Lille,
Clinique de Génétique Guy Fontaine, Lille, France
| | - Florence Petit
- Université de Lille, ULR7364 RADEME, CHU Lille,
Clinique de Génétique Guy Fontaine, Lille, France
| | - Laura Bernardini
- Medical Genetics Unit, Fondazione IRCCS Casa Sollievo
della Sofferenza, San Giovanni Rotondo, Italy
| | - Barbara Torres
- Medical Genetics Unit, Fondazione IRCCS Casa Sollievo
della Sofferenza, San Giovanni Rotondo, Italy
| | - Teresa Mattina
- Department of Biomedical and Biotechnological Sciences,
Medical Genetics, University of Catania, Catania, Italy
- Scientific Foundation and Clinic G. B. Morgagni,
Catania, Italy
| | - Diana Carli
- Department of Public Health and Pediatrics, University
of Torino, Torino, Italy
| | - Giorgia Mandrile
- Medical Genetics Unit, San Luigi University Hospital,
University of Torino, Orbassano, Italy
| | - Michele Pinelli
- Department of Molecular Medicine and Medical
Biotechnology, University of Naples Federico II, Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM),
Pozzuoli, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine (TIGEM),
Pozzuoli, Italy
- Department of Translational Medicine, University of
Naples Federico II, Naples, Italy
| | | | - Rachel Beddow
- Wellington Regional Genetics laboratory, Wellington, New
Zealand
| | - Pernille M. Tørring
- Department of Clinical Genetics, Odense University
Hospital, Odense C, Denmark
| | - Flavio Faletra
- Institute for Maternal and Child Health - IRCCS Burlo
Garofolo, Trieste, Italy
| | - Beatrice Spedicati
- Department of Medicine, Surgery and Health Sciences,
University of Trieste, Trieste, Italy
| | - Paolo Gasparini
- Institute for Maternal and Child Health - IRCCS Burlo
Garofolo, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences,
University of Trieste, Trieste, Italy
| | - Alessandro Mussa
- Department of Public Health and Pediatrics, University
of Torino, Torino, Italy
- Pediatric Clinical Genetics Unit, Regina Margherita
Childrens Hospital, Torino, Italy
| | | | - Anne Lampe
- South East Scotland Clinical Genetics Service, Western
General Hospital, Edinburgh, UK
| | - Wayne Lam
- Department of Clinical Genetics, Western General
Hospital, Edinburgh, UK
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, 77021, USA
| | - Carlos A. Bacino
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, TX, USA
| | - Akela Kuwahara
- Department of Cell and Tissue Biology, University of
California San Francisco, San Francisco, USA
- Institute for Human Genetics, University of California
San Francisco, San Francisco, USA
- Eli and Edythe Broad Center of Regeneration Medicine and
Stem Cell Research, University of California San Francisco, San Francisco, USA
| | - Jeffrey O. Bush
- Department of Cell and Tissue Biology, University of
California San Francisco, San Francisco, USA
- Institute for Human Genetics, University of California
San Francisco, San Francisco, USA
- Eli and Edythe Broad Center of Regeneration Medicine and
Stem Cell Research, University of California San Francisco, San Francisco, USA
| | - Xiaonan Zhao
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, 77021, USA
| | - Pamela N. Luna
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, TX, USA
| | - Chad A. Shaw
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, TX, USA
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, TX, USA
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, TX, USA
- Department of Molecular Physiology and Biophysics,
Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
5
|
Fiesco-Roa MÓ, García-de Teresa B, Leal-Anaya P, van ‘t Hek R, Wegman-Ostrosky T, Frías S, Rodríguez A. Fanconi anemia and dyskeratosis congenita/telomere biology disorders: Two inherited bone marrow failure syndromes with genomic instability. Front Oncol 2022; 12:949435. [PMID: 36091172 PMCID: PMC9453478 DOI: 10.3389/fonc.2022.949435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFS) are a complex and heterogeneous group of genetic diseases. To date, at least 13 IBMFS have been characterized. Their pathophysiology is associated with germline pathogenic variants in genes that affect hematopoiesis. A couple of these diseases also have genomic instability, Fanconi anemia due to DNA damage repair deficiency and dyskeratosis congenita/telomere biology disorders as a result of an alteration in telomere maintenance. Patients can have extramedullary manifestations, including cancer and functional or structural physical abnormalities. Furthermore, the phenotypic spectrum varies from cryptic features to patients with significantly evident manifestations. These diseases require a high index of suspicion and should be considered in any patient with abnormal hematopoiesis, even if extramedullary manifestations are not evident. This review describes the disrupted cellular processes that lead to the affected maintenance of the genome structure, contrasting the dysmorphological and oncological phenotypes of Fanconi anemia and dyskeratosis congenita/telomere biology disorders. Through a dysmorphological analysis, we describe the phenotypic features that allow to make the differential diagnosis and the early identification of patients, even before the onset of hematological or oncological manifestations. From the oncological perspective, we analyzed the spectrum and risks of cancers in patients and carriers.
Collapse
Affiliation(s)
- Moisés Ó. Fiesco-Roa
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- Maestría y Doctorado en Ciencias Médicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, Mexico
| | | | - Paula Leal-Anaya
- Departamento de Genética Humana, Instituto Nacional de Pediatría, Ciudad de México, Mexico
| | - Renée van ‘t Hek
- Facultad de Medicina, Universidad Nacional Autoínoma de Meíxico (UNAM), Ciudad Universitaria, Ciudad de México, Mexico
| | - Talia Wegman-Ostrosky
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Sara Frías
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- *Correspondence: Alfredo Rodríguez, ; Sara Frías,
| | - Alfredo Rodríguez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Unidad de Genética de la Nutrición, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- *Correspondence: Alfredo Rodríguez, ; Sara Frías,
| |
Collapse
|
6
|
McReynolds LJ, Biswas K, Giri N, Sharan SK, Alter BP. Genotype-cancer association in patients with Fanconi anemia due to pathogenic variants in FANCD1 (BRCA2) or FANCN (PALB2). Cancer Genet 2021; 258-259:101-109. [PMID: 34687993 DOI: 10.1016/j.cancergen.2021.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/28/2021] [Accepted: 10/02/2021] [Indexed: 02/07/2023]
Abstract
Fanconi anemia (FA) is the most common inherited bone marrow failure syndrome and a cancer predisposition disorder. Cancers in FA include acute leukemia and solid tumors; the most frequent solid tumor is head and neck squamous cell carcinoma. FA is a primarily autosomal recessive disorder. Several of the genes in which biallelic pathogenic variants cause FA are also autosomal monoallelic cancer predisposition genes e.g. FANCD1 (BRCA2) and FANCN (PALB2). We observed that patients with FA due to biallelic or homozygous pathogenic variants in FANCD1 and FANCN have a unique cancer association. We curated published cases plus our NCI cohort cases, including 71 patients in the FANCD1 group (94 cancers and 69 variants) and 16 patients in the FANCN group (23 cancers and 20 variants). Only patients in FANCD1 and FANCN groups had one or more of these tumors: brain tumors (primarily medulloblastoma), Wilms tumor and neuroblastoma; this is a genotype-specific cancer combination of tumors of embryonal origin. Acute leukemias, seen in all FA genotypes, also occurred in FANCD1 and FANCN group patients at young ages. In silico predictions of pathogenicity for FANCD1 variants were compared with results from a mouse embryonic stem cell-based functional assay. Patients with two null FANCD1 variants did not have an increased frequency of cancer nor earlier onset of cancer compared with those with hypomorphic variants. Patients with FA and these specific cancers should consider genetic testing focused on FANCD1 and FANCN, and patients with these genotypes may consider ongoing surveillance for these specific cancers.
Collapse
Affiliation(s)
- Lisa J McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| | - Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
7
|
George M, Solanki A, Chavan N, Rajendran A, Raj R, Mohan S, Nemani S, Kanvinde S, Munirathnam D, Rao S, Radhakrishnan N, Lashkari HP, Ghildhiyal RG, Manglani M, Shanmukhaiah C, Bhat S, Ramesh S, Cherian A, Junagade P, Vundinti BR. A comprehensive molecular study identified 12 complementation groups with 56 novel FANC gene variants in Indian Fanconi anemia subjects. Hum Mutat 2021; 42:1648-1665. [PMID: 34585473 DOI: 10.1002/humu.24286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/09/2021] [Accepted: 09/25/2021] [Indexed: 12/18/2022]
Abstract
Fanconi anemia (FA) is a rare autosomal or X-linked genetic disorder characterized by chromosomal breakages, congenital abnormalities, bone marrow failure (BMF), and cancer. There has been a discovery of 22 FANC genes known to be involved in the FA pathway. This wide number of pathway components makes molecular diagnosis challenging for FA. We present here the most comprehensive molecular diagnosis of FA subjects from India. We observed a high frequency (4.42 ± 1.5 breaks/metaphase) of chromosomal breakages in 181 FA subjects. The major clinical abnormalities observed were skin pigmentation (70.2%), short stature (46.4%), and skeletal abnormalities (43.1%), along with a few minor clinical abnormalities. The combination of Sanger sequencing and Next Generation Sequencing could molecularly characterize 164 (90.6%) FA patients and identified 12 different complementation groups [FANCA (56.10%), FANCG (16.46%), FANCL (12.80%), FANCD2 (4.88%), FANCJ (2.44%), FANCE (1.22%), FANCF (1.22%), FANCI (1.22%), FANCN (1.22%), FANCC (1.22%), FANCD1 (0.61%) and FANCB (0.61%)]. A total of 56 novel variants were identified in our cohort, including a hotspot variant: a deletion of exon 27 in the FANCA gene and a nonsense variant at c.787 C>T in the FANCG gene. Our comprehensive molecular findings can aid in the stratification of molecular investigation in the diagnosis and management of FA patients.
Collapse
Affiliation(s)
- Merin George
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, India
| | - Avani Solanki
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, India
| | - Niranjan Chavan
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, India
| | - Aruna Rajendran
- Department of Pediatric Hematology, Institute of Child Health and Hospital for Children, Chennai, Tamilnadu, India
| | - Revathi Raj
- Department of Pediatric Hematology, Oncology, Apollo Speciality Hospital, Chennai, Tamilnadu, India
| | - Sheila Mohan
- Department of Pediatric Hematology, Oncology, Apollo Speciality Hospital, Chennai, Tamilnadu, India
| | - Sandeep Nemani
- Department of Hematology, Usha Hematology Center, Sangli, Maharashtra, India
| | - Shailesh Kanvinde
- Department of Paediatric Hematology Oncology, Deenanath Mangeshkar Hospital and Research Center, Pune, Maharashtra, India
| | - Deendayalan Munirathnam
- Department of Pediatric Oncology, Kanchi Kamakoti Childs Trust Hospital, Chennai, Tamil Nadu, India
| | - Sudha Rao
- Department of Paediatric Haemato-Oncology and Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
| | - Nita Radhakrishnan
- Department of Paediatric Haematology Oncology, Super Specialty Pediatric Hospital & Post Graduate Teaching Institute, Noida, Uttar Pradesh, India
| | - Harsha Prasada Lashkari
- Department of Pediatrics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Mangalore, India
| | - Radha Gulati Ghildhiyal
- Department of Pediatrics, Lokmanya Tilak Municipal General Hospital, Mumbai, Maharashtra, India
| | - Mamta Manglani
- Department of Hematology, Comprehensive Thalassemia Care Center and Bone Marrow Transplantation Center, Mumbai, Maharashtra, India
| | | | - Sunil Bhat
- Department of Paediatric Haematology, Oncology and Blood & Bone Marrow Transplantation, Narayana Health Network Hospitals, Bangalore, India
| | - Sowmyashree Ramesh
- Department of Pediatrics, Vanivilas Hospital, Bangalore, Karnataka, India
| | - Anchu Cherian
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Pritesh Junagade
- Department of stem cell transplantation, Lotus Hospital, Pune, Maharashtra, India
| | - Babu Rao Vundinti
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, India
| |
Collapse
|
8
|
Tan Tanny SP, Fearon E, Hawley A, Brooks JA, Comella A, Hutson JM, Teague WJ, Pellicano A, King SK. Predictors of Mortality after Primary Discharge from Hospital in Patients with Esophageal Atresia. J Pediatr 2020; 219:70-75. [PMID: 31952847 DOI: 10.1016/j.jpeds.2019.12.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/02/2019] [Accepted: 12/13/2019] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To describe esophageal atresia mortality rates and their associations in our cohort. STUDY DESIGN Patients with esophageal atresia, managed at The Royal Children's Hospital, Melbourne (1980-2018), who subsequently died, were retrospectively identified from the prospective Nate Myers Oesophageal Atresia database. Data collected included patient and maternal demographics, vertebral anomalies, anorectal malformations, cardiovascular anomalies, tracheoesophageal fistula, renal anomalies, and limb defects (VACTERL) associations, mortality risk factors, and preoperative, operative, and postoperative findings. Mortality before discharge was defined as death during the initial admission. RESULTS A total of 88 of the 650 patients (13.5%) died during the study period; mortality before discharge occurred in 66 of the 88 (75.0%); mortality after discharge occurred in 22 of the 88 (25.0%). Common causes of mortality before discharge were palliation for respiratory anomalies (15/66 [22.7%]), associated syndromes (11/66 [16.7%]), and neurologic anomalies (10/66 [15.2%]). The most common syndrome leading to palliation was trisomy 18 (7/66 [10.6%]). Causes of mortality after discharge had available documentation for 17 of 22 patients (77.3%). Common causes were respiratory compromise (6/17 [35.3%]), sudden unexplained deaths (6/17 [35.3%]), and Fanconi anemia (2/17 [11.8%]). Of the patients discharged from hospital, 22 of 584 (3.8%) subsequently died. There was no statistical difference in VACTERL association between mortality before discharge (31/61 [50.8%]) and mortality after discharge (11/20 [55.0%]), nor in incidence of twins between mortality before discharge (8/56 [14.3%]) and mortality after discharge (2/18 [11.1%]). CONCLUSIONS We identified predictors of mortality in patients with esophageal atresia in a large prospective cohort. Parents of children with esophageal atresia must be counselled appropriately as to the likelihood of death after discharge from hospital.
Collapse
Affiliation(s)
- Sharman P Tan Tanny
- Department of Pediatric Surgery, The Royal Children's Hospital, Melbourne, Victoria, Australia; F. Douglas Stephens Surgical Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Pediatrics, University of Melbourne, Melbourne, Victoria, Australia.
| | - Edward Fearon
- F. Douglas Stephens Surgical Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Pediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Alisa Hawley
- Department of Pediatric Surgery, The Royal Children's Hospital, Melbourne, Victoria, Australia; F. Douglas Stephens Surgical Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Neonatal Medicine, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Jo-Anne Brooks
- Department of Pediatric Surgery, The Royal Children's Hospital, Melbourne, Victoria, Australia; F. Douglas Stephens Surgical Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Neonatal Medicine, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Assia Comella
- Department of Pediatric Surgery, The Royal Children's Hospital, Melbourne, Victoria, Australia; F. Douglas Stephens Surgical Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; School of Medicine, Monash University, Clayton, Victoria, Australia
| | - John M Hutson
- Department of Pediatric Surgery, The Royal Children's Hospital, Melbourne, Victoria, Australia; F. Douglas Stephens Surgical Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Pediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Warwick J Teague
- Department of Pediatric Surgery, The Royal Children's Hospital, Melbourne, Victoria, Australia; F. Douglas Stephens Surgical Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Pediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Anastasia Pellicano
- Department of Neonatal Medicine, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Sebastian K King
- Department of Pediatric Surgery, The Royal Children's Hospital, Melbourne, Victoria, Australia; F. Douglas Stephens Surgical Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Pediatrics, University of Melbourne, Melbourne, Victoria, Australia; Department of Gastroenterology and Clinical Nutrition, The Royal Children's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Fiesco-Roa MO, Giri N, McReynolds LJ, Best AF, Alter BP. Genotype-phenotype associations in Fanconi anemia: A literature review. Blood Rev 2019; 37:100589. [PMID: 31351673 DOI: 10.1016/j.blre.2019.100589] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/21/2019] [Accepted: 07/15/2019] [Indexed: 11/17/2022]
Abstract
Fanconi anemia (FA) is a genomic instability syndrome with predisposition to congenital abnormalities, bone marrow failure, and cancer. Classical and most frequent congenital abnormalities include all those seen in VACTERL-H association and those described under the PHENOS acronym. Pathogenic variants in at least 22 genes are associated with FA, which code for proteins that comprise the FA/BRCA DNA repair pathway. We reviewed 187 publications and 1101 cases of FA in which the gene or complementation group was identified and analyzed those in whom physical findings were sought. We conducted genotype-phenotype analyses considering the specific gene, the location in the FA/BRCA DNA repair pathway, and the type of variant (null or hypomorphic) as exposures. The outcomes were the presence of any physical abnormality or specific categories of abnormalities. Seventy-nine percent of the patients had at least one physical abnormality. Pathogenic variants in FANCB, FANCD2, the ID complex and downstream genes were associated with several specific anomalies. Patients with biallelic or hemizygous null variants had a higher proportion of at least one abnormality, renal malformations, microcephaly, short stature and the combination of VACTERL-H compared with those with hypomorphic genotypes. VACTERL-H alone or in combination with PHENOS is highly associated with FA, but the absence of those features does not rule out the diagnosis of FA.
Collapse
Affiliation(s)
- Moisés O Fiesco-Roa
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, USA; Laboratorio de Citogenética, Instituto Nacional de Pediatría, Mexico City, Mexico; Programa de Maestría y Doctorado en Ciencias Médicas, UNAM, Posgrados, Zona Cultural Ciudad Universitaria, Del. Coyoacan, Mexico City 14510, Mexico.
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, USA.
| | - Lisa J McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, USA.
| | - Ana F Best
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, USA.
| | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, USA.
| |
Collapse
|
10
|
Identification of rare heterozygous missense mutations in FANCA in esophageal atresia patients using next-generation sequencing. Gene 2018; 661:182-188. [PMID: 29621589 DOI: 10.1016/j.gene.2018.03.097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/12/2018] [Accepted: 03/29/2018] [Indexed: 11/23/2022]
Abstract
Esophageal atresia and tracheoesophageal fistula (EA/TEF) are relatively common malformations in newborns, but the etiology of EA/TEF remains unknown. Fanconi anemia (FA) complementation group A (FANCA) is a key component of the FA core complex and is essential for the activation of the DNA repair pathway. The middle region (amino acids 674-1208) of FANCA is required for its interaction with FAAP20. We performed targeted sequencing of this binding region of FANCA (exons 23-36) in 40 EA/TEF patients. We also investigated the effect of the p.A958V mutation on the protein-protein interaction between FANCA and FAAP20 using an in vitro binding assay and co-immunoprecipitation. Immunolocalization analysis was performed to investigate the subcellular localization of FANCA, and tissue sections and immunohistochemistry were used to explore the expression of FANCA. We identified four rare missense variants in the FANCA binding region. FANCA mutations were significantly overrepresented in EA/TEF patients compared with 4300 control subjects from the NHLBI-ESP project (Fisher's exact p = 2.17 × 10-5, odds ratio = 31.75). p.A958V, a novel de novo mutation in the FANCA gene, was identified in one patient with EA/TEF. We provide further evidence that the p.A958V mutation reduces the binding affinity of FANCA for FAAP20. Interestingly, the p.A958V mutation impaired the nuclear localization of the FANCA protein expressed in HeLa cells. We found that FANCA was more highly expressed in stratified squamous epithelium than in smooth muscle. In conclusion, mutations in the FANCA gene are associated with EA/TEF in humans.
Collapse
|
11
|
DNA Damage as a Driver for Growth Delay: Chromosome Instability Syndromes with Intrauterine Growth Retardation. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8193892. [PMID: 29238724 PMCID: PMC5702399 DOI: 10.1155/2017/8193892] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/16/2017] [Accepted: 07/17/2017] [Indexed: 12/20/2022]
Abstract
DNA is constantly exposed to endogenous and exogenous mutagenic stimuli that are capable of producing diverse lesions. In order to protect the integrity of the genetic material, a wide array of DNA repair systems that can target each specific lesion has evolved. Despite the availability of several repair pathways, a common general program known as the DNA damage response (DDR) is stimulated to promote lesion detection, signaling, and repair in order to maintain genetic integrity. The genes that participate in these pathways are subject to mutation; a loss in their function would result in impaired DNA repair and genomic instability. When the DDR is constitutionally altered, every cell of the organism, starting from development, will show DNA damage and subsequent genomic instability. The cellular response to this is either uncontrolled proliferation and cell cycle deregulation that ensues overgrowth, or apoptosis and senescence that result in tissue hypoplasia. These diverging growth abnormalities can clinically translate as cancer or growth retardation; both features can be found in chromosome instability syndromes (CIS). The analysis of the clinical, cellular, and molecular phenotypes of CIS with intrauterine growth retardation allows inferring that replication alteration is their unifying feature.
Collapse
|
12
|
Beauregard-Lacroix E, Tardif J, Lemyre E, Kibar Z, Faure C, Campeau PM. Genetic Testing in a Cohort of Complex Esophageal Atresia. Mol Syndromol 2017; 8:236-243. [PMID: 28878607 DOI: 10.1159/000477429] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2017] [Indexed: 12/12/2022] Open
Abstract
The objective of the present study is to describe a cohort of complex esophageal atresia and the yield of genetic tests performed for such patients. We selected 45 patients with complex esophageal atresia (EA), namely those having at least one associated anomaly. We reviewed their medical records to assess clinical features, other diagnoses, and genetic investigations. Most of the patients had a diagnosis of VACTERL association (56%) with no genetic variant identified. Interestingly, 5 patients in the cohort (11%) had a right pulmonary hypoplasia or agenesis. A majority of our cohort (73%) had genetic testing; 60% were karyotyped (abnormal in 4 of the 27 patients tested), 31% had aCGH (abnormal in 1 of the 14 patients tested), and 31% had diepoxybutane (DEB) testing for Fanconi anemia (abnormal in 2 of the 14 patients tested). One patient had exome sequencing studies, but no candidate gene was identified. Various anomalies were associated with EA, and overall a genetic variant could be identified in 7 of the 33 patients tested. Chromosomal studies such as aCGH and chromosomal breakage studies should be considered, and their yield varied between 7 and 14%. Other genetic investigations such as exome sequencing could possibly have even higher yields but will need to be assessed in a large cohort. Improved genetic diagnoses in EA may improve the management of these patients by directing specific surveillance and management schemes.
Collapse
Affiliation(s)
- Eliane Beauregard-Lacroix
- CHU Sainte-Justine Research Center, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec, Canada.,Medical Genetics Service, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Jessica Tardif
- CHU Sainte-Justine Research Center, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec, Canada.,Medical Genetics Service, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Emmanuelle Lemyre
- CHU Sainte-Justine Research Center, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec, Canada.,Medical Genetics Service, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Zoha Kibar
- CHU Sainte-Justine Research Center, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec, Canada.,Department of Neurosciences, University of Montreal, Montreal, Quebec, Canada
| | - Christophe Faure
- Gastroenterology Service, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Philippe M Campeau
- CHU Sainte-Justine Research Center, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec, Canada.,Medical Genetics Service, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec, Canada
| |
Collapse
|
13
|
A defined role for multiple Fanconi anemia gene products in DNA-damage-associated ubiquitination. Exp Hematol 2017; 50:27-32. [PMID: 28315701 DOI: 10.1016/j.exphem.2017.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 12/13/2022]
Abstract
Fanconi anemia (FA) is an inherited blood disorder that causes bone marrow failure and high predisposition to cancers. The FA pathway guards the cell's genome stability by orchestrating the repair of interstrand cross-linking during the S phase of the cell cycle, preventing the chromosomal instability that is a key event in bone marrow failure syndrome. Central to the FA pathway is loss of monoubiquitinated forms of the Fanconi proteins FANCI and FANCD2, a process that is normally mediated by a "core complex" of seven other Fanconi proteins. Each protein, when mutated, can cause FA. The FA core-complex-catalyzed reaction is critical for signaling DNA cross-link damage such as that induced by chemotherapies. Here, we present a perspective on the current understanding of FANCI and FANCD2 monoubiquitination-mediated DNA repair. Our recent biochemical reconstitution of the monoubiquitination (and deubiquitination) reactions creates a paradigm for understanding FA. Further biochemical analysis will create new opportunities to address the leukemic phenotype of FA patients.
Collapse
|
14
|
Reutter H, Hilger AC, Hildebrandt F, Ludwig M. Underlying genetic factors of the VATER/VACTERL association with special emphasis on the "Renal" phenotype. Pediatr Nephrol 2016; 31:2025-33. [PMID: 26857713 PMCID: PMC5207487 DOI: 10.1007/s00467-016-3335-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 12/18/2022]
Abstract
The acronym VATER/VACTERL association (OMIM #192350) refers to the rare non-random co-occurrence of the following component features (CFs): vertebral defects (V), anorectal malformations (A), cardiac defects (C), tracheoesophageal fistula with or without esophageal atresia (TE), renal malformations (R), and limb defects (L). According to epidemiological studies, the majority of patients with VATER/VACTERL association present with a "Renal" phenotype comprising a large spectrum of congenital renal anomalies. This finding is supported by evidence linking all of the human disease genes for the VATER/VACTERL association identified to date, namely, FGF8, FOXF1, HOXD13, LPP, TRAP1, and ZIC3, with renal malformations. Here we review these genotype-phenotype correlations and suggest that the elucidation of the genetic causes of the VATER/VACTERL association will ultimately provide insights into the genetic causes of the complete spectrum of congenital renal anomalies per se.
Collapse
Affiliation(s)
- Heiko Reutter
- Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany. .,Department of Neonatology and Pediatric Intensive Care, Children's Hospital-University of Bonn, Bonn, Germany.
| | - Alina C Hilger
- Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital-Harvard Medical School, Boston, MA, USA
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| |
Collapse
|
15
|
Chen Y, Liu Z, Chen J, Zuo Y, Liu S, Chen W, Liu G, Qiu G, Giampietro PF, Wu N, Wu Z. The genetic landscape and clinical implications of vertebral anomalies in VACTERL association. J Med Genet 2016; 53:431-7. [PMID: 27084730 PMCID: PMC4941148 DOI: 10.1136/jmedgenet-2015-103554] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/17/2016] [Indexed: 01/22/2023]
Abstract
VACTERL association is a condition comprising multisystem congenital malformations, causing severe physical disability in affected individuals. It is typically defined by the concurrence of at least three of the following component features: vertebral anomalies (V), anal atresia (A), cardiac malformations (C), tracheo-oesophageal fistula (TE), renal dysplasia (R) and limb abnormalities (L). Vertebral anomaly is one of the most important and common defects that has been reported in approximately 60–95% of all VACTERL patients. Recent breakthroughs have suggested that genetic factors play an important role in VACTERL association, especially in those with vertebral phenotypes. In this review, we summarised the genetic studies of the VACTERL association, especially focusing on the genetic aetiology of patients with vertebral anomalies. Furthermore, genetic reports of other syndromes with vertebral phenotypes overlapping with VACTERL association are also included. We aim to provide a further understanding of the genetic aetiology and a better evidence for genetic diagnosis of the association and vertebral anomalies.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhenlei Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuzhi Zuo
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Sen Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Weisheng Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Philip F Giampietro
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Alter BP, Giri N. Thinking of VACTERL-H? Rule out Fanconi Anemia according to PHENOS. Am J Med Genet A 2016; 170:1520-4. [PMID: 27028275 DOI: 10.1002/ajmg.a.37637] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/10/2016] [Indexed: 01/09/2023]
Abstract
VACTERL-H association includes three of eight features: vertebral anomalies, anal atresia, congenital heart disease, tracheo-esophageal fistula, esophageal atresia, renal, limb anomalies, and hydrocephalus. The VACTERL-H phenotype among cases with FA is considered to be about 5%; the frequency of FA among patients with VACTERL-H is unknown. We examined 54 patients with FA in the National Cancer Institute Inherited Bone Marrow Failure Syndrome Cohort for features of VACTERL-H, including imaging studies (radiology and ultrasound). Eighteen of the fifty-four patients had three or more VACTERL-H features. The presence of VACTERL-H association in 33% of those with FA is much higher than the previous estimate of 5% (P < 0.0001). We created the acronym PHENOS (Pigmentation, small Head, small Eyes, central Nervous system (not hydrocephalus), Otology, and Short stature) which includes all major phenotypic features of FA that are not in VACTERL-H; these findings were more frequent in the patients with FA who had VACTERL-H. Identification of any components of the VACTERL-H association should lead to imaging studies, and to consideration of the diagnosis of FA, particularly if the patient has radial ray and renal anomalies, as well as many features of PHENOS. There was no association of the presence or absence of VACTERL-H with development of cancer, stem cell transplant, or survival. Early diagnosis will lead to genetic counseling and early surveillance and management of complications of FA. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| |
Collapse
|
17
|
Loizidou MA, Hadjisavvas A, Tanteles GA, Spanou-Aristidou E, Kyriacou K, Christophidou-Anastasiadou V. Fanconi anemia-D1 due to homozygosity for the BRCA2 gene Cypriot founder mutation: A case report. Oncol Lett 2016; 11:471-473. [PMID: 26834852 DOI: 10.3892/ol.2015.3852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 09/04/2015] [Indexed: 11/05/2022] Open
Abstract
Fanconi anemia (FA) is a rare disorder characterized by multiple congenital malformations, progressive bone marrow failure and susceptibility to malignancies. Biallelic mutations in the breast cancer 2, early onset (BRCA2) gene are responsible for the FA-D1 subgroup, which accounts for ~3% of all the FA cases. Patients with biallelic BRCA2 mutations generally display a more severe phenotype, with earlier onset and increased incidence of leukaemia and other solid tumors, than other patients with FA. In the present report, the first Cypriot patient with FA-D1 is described, which is the fifth case of a homozygote for the same null allele reported thus far, and the third known case of neuroblastoma in association with FA-D1.
Collapse
Affiliation(s)
- Maria A Loizidou
- Department of Electron Microscopy/Molecular Pathology, Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus
| | - Andreas Hadjisavvas
- Department of Electron Microscopy/Molecular Pathology, Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus; Cyprus School of Molecular Medicine, Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus
| | - George A Tanteles
- Department of Clinical Genetics, Makarios Medical Centre and Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus
| | - Elena Spanou-Aristidou
- Department of Clinical Genetics, Makarios Medical Centre and Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus
| | - Kyriacos Kyriacou
- Department of Electron Microscopy/Molecular Pathology, Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus; Cyprus School of Molecular Medicine, Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus
| | - Violetta Christophidou-Anastasiadou
- Cyprus School of Molecular Medicine, Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus; Department of Clinical Genetics, Makarios Medical Centre and Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus
| |
Collapse
|
18
|
Savage SA, Ballew BJ, Giri N, Chandrasekharappa SC, Ameziane N, de Winter J, Alter BP. Novel FANCI mutations in Fanconi anemia with VACTERL association. Am J Med Genet A 2015; 170A:386-391. [PMID: 26590883 DOI: 10.1002/ajmg.a.37461] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 10/21/2015] [Indexed: 01/23/2023]
Abstract
Fanconi anemia (FA) is an inherited bone marrow failure syndrome caused by mutations in DNA repair genes; some of these patients may have features of the VACTERL association. Autosomal recessive mutations in FANCI are a rare cause of FA. We identified FANCI mutations by next generation sequencing in three patients in our FA cohort among several whose mutated gene was unknown. Four of the six mutations are novel and all mutations are likely deleterious to protein function. There are now 16 reported cases of FA due to FANCI of whom 7 have at least 3 features of the VACTERL association (44%). This suggests that the VACTERL association in patients with FA may be seen in patients with FANCI mutations more often than previously recognized.
Collapse
Affiliation(s)
- Sharon A Savage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Bari J Ballew
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Neelam Giri
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | -
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, NCI-Frederick, Rockville, Maryland
| | - Settara C Chandrasekharappa
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, Maryland
| | - Najim Ameziane
- Department of Clinical Genetics, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Johan de Winter
- Department of Clinical Genetics, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Blanche P Alter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | -
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| |
Collapse
|
19
|
Hilger AC, Halbritter J, Pennimpede T, van der Ven A, Sarma G, Braun DA, Porath JD, Kohl S, Hwang DY, Dworschak GC, Hermann BG, Pavlova A, El-Maarri O, Nöthen MM, Ludwig M, Reutter H, Hildebrandt F. Targeted Resequencing of 29 Candidate Genes and Mouse Expression Studies Implicate ZIC3 and FOXF1 in Human VATER/VACTERL Association. Hum Mutat 2015; 36:1150-4. [PMID: 26294094 DOI: 10.1002/humu.22859] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/06/2015] [Indexed: 01/14/2023]
Abstract
The VATER/VACTERL association describes the combination of congenital anomalies including vertebral defects, anorectal malformations, cardiac defects, tracheoesophageal fistula with or without esophageal atresia, renal malformations, and limb defects. As mutations in ciliary genes were observed in diseases related to VATER/VACTERL, we performed targeted resequencing of 25 ciliary candidate genes as well as disease-associated genes (FOXF1, HOXD13, PTEN, ZIC3) in 123 patients with VATER/VACTERL or VATER/VACTERL-like phenotype. We detected no biallelic mutation in any of the 25 ciliary candidate genes; however, identified an identical, probably disease-causing ZIC3 missense mutation (p.Gly17Cys) in four patients and a FOXF1 de novo mutation (p.Gly220Cys) in a further patient. In situ hybridization analyses in mouse embryos between E9.5 and E14.5 revealed Zic3 expression in limb and prevertebral structures, and Foxf1 expression in esophageal, tracheal, vertebral, anal, and genital tubercle tissues, hence VATER/VACTERL organ systems. These data provide strong evidence that mutations in ZIC3 or FOXF1 contribute to VATER/VACTERL.
Collapse
Affiliation(s)
- Alina C Hilger
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Jan Halbritter
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Internal Medicine, Division of Nephrology, University Clinic Leipzig, Leipzig, Germany
| | - Tracie Pennimpede
- Department of Developmental Genetics, Max-Planck-Institute for Molecular Genetics, Berlin, Germany.,Division of Cancer Biology and Genetics, Queen's University, Kingston, Ontario, Canada
| | - Amelie van der Ven
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Georgia Sarma
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Daniela A Braun
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jonathan D Porath
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stefan Kohl
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daw-Yang Hwang
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gabriel C Dworschak
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bernhard G Hermann
- Department of Developmental Genetics, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Anna Pavlova
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| | - Osman El-Maarri
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany.,Department of Natural Sciences, Lebanese American University, Byblos/Beirut, Lebanon
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Heiko Reutter
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.,Howard Hughes Medical Institute, Chevy Chase, Maryland
| |
Collapse
|
20
|
Characterization of medulloblastoma in Fanconi Anemia: a novel mutation in the BRCA2 gene and SHH molecular subgroup. Biomark Res 2015; 3:13. [PMID: 26064523 PMCID: PMC4462002 DOI: 10.1186/s40364-015-0038-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/26/2015] [Indexed: 11/10/2022] Open
Abstract
Fanconi Anemia (FA) is an inherited disorder characterized by the variable presence of multiple congenital somatic abnormalities, bone marrow failure and cancer susceptibility. Medulloblastoma (MB) has been described only in few cases of FA with biallelic inactivation in the tumor suppressor gene BRCA2/FANCD1 or its associated gene PALB2/FANCN. We report the case of a patient affected by Fanconi Anemia with Wilms tumor and unusual presentation of two medulloblastomas (MB1 and MB2). We identified a new pathogenetic germline BRCA2 mutation: c.2944_2944delA. Molecular analysis of MBs allowed us to define new features of MB in FA. MBs were found to belong to the Sonic Hedgehog (SHH) molecular subgroup with some differences between MB1 and MB2. We highlighted that MB in FA could share molecular aspects and hemispheric localization with sporadic adult SHH-MB. Our report provides new findings that shed new light on the genetic and molecular pathogenesis of MB in FA patients with implications in the disease management.
Collapse
|
21
|
Nicchia E, Benedicenti F, De Rocco D, Greco C, Bottega R, Inzana F, Faleschini M, Bonin S, Cappelli E, Mogni M, Stanzial F, Svahn J, Dufour C, Savoia A. Clinical aspects of Fanconi anemia individuals with the same mutation of FANCF identified by next generation sequencing. ACTA ACUST UNITED AC 2015; 103:1003-10. [PMID: 26033879 DOI: 10.1002/bdra.23388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Fanconi anemia (FA) is a rare genetic disease characterized by congenital malformations, aplastic anemia and increased risk of developing malignancies. FA is genetically heterogeneous as it is caused by at least 17 different genes. Among these, FANCA, FANCC, and FANCG account for approximately 85% of the patients whereas the remaining genes are mutated in only a small percentage of cases. For this reason, the molecular diagnostic process is complex and not always extended to all the FA genes, preventing the characterization of individuals belonging to rare groups. METHODS The FA genes were analyzed using a next generation sequencing approach in two unrelated families. RESULTS The analysis identified the same, c.484_485del, homozygous mutation of FANCF in both families. A careful examination of three electively aborted fetuses in one family and one affected girl in the other indicated an association of the FANCF loss-of-function mutation with a severe phenotype characterized by multiple malformations. CONCLUSION The systematic use of next generation sequencing will allow the recognition of individuals from rare complementation groups, a better definition of their clinical phenotypes, and consequently, an appropriate genetic counseling.
Collapse
Affiliation(s)
- Elena Nicchia
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Francesco Benedicenti
- Genetic Counseling Service, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - Daniela De Rocco
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | - Chiara Greco
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | - Roberta Bottega
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | - Francesca Inzana
- Genetic Counseling Service, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | | | - Serena Bonin
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Enrico Cappelli
- Clinical and Experimental Hematology Unit, G. Gaslini Children's Hospital, Genoa, Italy
| | - Massimo Mogni
- Human Genetics Laboratory "E.O. Ospedali Galliera", Genoa, Italy
| | - Franco Stanzial
- Genetic Counseling Service, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - Johanna Svahn
- Clinical and Experimental Hematology Unit, G. Gaslini Children's Hospital, Genoa, Italy
| | - Carlo Dufour
- Clinical and Experimental Hematology Unit, G. Gaslini Children's Hospital, Genoa, Italy
| | - Anna Savoia
- Department of Medical Sciences, University of Trieste, Trieste, Italy.,Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
22
|
da Silva AP, Rosa RFM, Trevisan P, Dorneles JC, Mesquita CS, de Mattos VF, Paskulin GA, Zen PRG. Clinical and cytogenetic features of a Brazilian sample of patients with phenotype of oculo-auriculo-vertebral spectrum: a cross-sectional study. SAO PAULO MED J 2015; 133:191-8. [PMID: 25337663 PMCID: PMC10876367 DOI: 10.1590/1516-3180.2013.7762204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 10/02/2013] [Accepted: 06/11/2014] [Indexed: 11/21/2022] Open
Abstract
CONTEXT AND OBJECTIVE Oculo-auriculo-vertebral spectrum (OAVS) is considered to be a defect of embryogenesis involving structures originating from the first branchial arches. Our objective was to describe the clinical and cytogenetic findings from a sample of patients with the phenotype of OAVS. DESIGN AND SETTING Cross-sectional study in a referral hospital in southern Brazil. METHODS The sample consisted of 23 patients who presented clinical findings in at least two of these four areas: orocraniofacial, ocular, auricular and vertebral. The patients underwent a clinical protocol and cytogenetic evaluation through high-resolution karyotyping, fluorescence in situ hybridization for 5p and 22q11 microdeletions and investigation of chromosomal instability for Fanconi anemia. RESULTS Cytogenetic abnormalities were observed in three cases (13%) and consisted of: 47,XX,+mar; mos 47,XX,+mar/46,XX; and 46,XX,t(6;10)(q13; q24). We observed cases of OAVS with histories of gestational exposition to fluoxetine, retinoic acid and crack. One of our patients was a discordant monozygotic twin who had shown asymmetrical growth restriction during pregnancy. Our patients with OAVS were characterized by a broad clinical spectrum and some presented atypical findings such as lower-limb reduction defect and a tumor in the right arm, suggestive of hemangioma/lymphangioma. CONCLUSIONS We found a wide range of clinical characteristics among the patients with OAVS. Different chromosomal abnormalities and gestational expositions were also observed. Thus, our findings highlight the heterogeneity of the etiology of OAVS and the importance of these factors in the clinical and cytogenetic evaluation of these patients.
Collapse
Affiliation(s)
- Alessandra Pawelec da Silva
- MD. Postgraduate Student, Postgraduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), and Clinical Geneticist, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) and Complexo Hospitalar Santa Casa de Porto Alegre (CHSCPA), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Rafael Fabiano Machado Rosa
- PhD. Clinical Geneticist, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Complexo Hospitalar Santa Casa de Porto Alegre (CHSCPA) and Hospital Materno Infantil Presidente Vargas (HMIPV), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Patrícia Trevisan
- MD. Postgraduate Student, Postgraduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), and Pharmacist, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Juliana Cavalheiro Dorneles
- Undergraduate Student of Pharmacy, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Camila Saporiti Mesquita
- Undergraduate Student of Pharmacy, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Vinicius Freitas de Mattos
- MD. Clinical Geneticist, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) and Complexo Hospitalar Santa Casa de Porto Alegre (CHSCPA), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Giorgio Adriano Paskulin
- PhD. Professor of Clinical Genetics and of the Postgraduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), and Clinical Geneticist, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) and Complexo Hospitalar Santa Casa de Porto Alegre (CHSCPA), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Paulo Ricardo Gazzola Zen
- PhD. Professor of Clinical Genetics and of the Postgraduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), and Clinical Geneticist, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) and Complexo Hospitalar Santa Casa de Porto Alegre (CHSCPA), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
23
|
Vetro A, Iascone M, Limongelli I, Ameziane N, Gana S, Della Mina E, Giussani U, Ciccone R, Forlino A, Pezzoli L, Rooimans MA, van Essen AJ, Messa J, Rizzuti T, Bianchi P, Dorsman J, de Winter JP, Lalatta F, Zuffardi O. Loss-of-Function FANCL Mutations Associate with Severe Fanconi Anemia Overlapping the VACTERL Association. Hum Mutat 2015; 36:562-8. [PMID: 25754594 DOI: 10.1002/humu.22784] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/26/2015] [Indexed: 11/08/2022]
Abstract
The diagnosis of VACTERL syndrome can be elusive, especially in the prenatal life, due to the presence of malformations that overlap those present in other genetic conditions, including the Fanconi anemia (FA). We report on three VACTERL cases within two families, where the two who arrived to be born died shortly after birth due to severe organs' malformations. The suspicion of VACTERL association was based on prenatal ultrasound assessment and postnatal features. Subsequent chromosome breakage analysis suggested the diagnosis of FA. Finally, by next-generation sequencing based on the analysis of the exome in one family and of a panel of Fanconi genes in the second one, we identified novel FANCL truncating mutations in both families. We used ectopic expression of wild-type FANCL to functionally correct the cellular FA phenotype for both mutations. Our study emphasizes that the diagnosis of FA should be considered when VACTERL association is suspected. Furthermore, we show that loss-of-function mutations in FANCL result in a severe clinical phenotype characterized by early postnatal death.
Collapse
Affiliation(s)
- Annalisa Vetro
- Biotechnology Research Laboratories, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Malric A, Defachelles AS, Leblanc T, Lescoeur B, Lacour B, Peuchmaur M, Maurage CA, Pierron G, Guillemot D, d'Enghien CD, Soulier J, Stoppa-Lyonnet D, Bourdeaut F. Fanconi anemia and solid malignancies in childhood: a national retrospective study. Pediatr Blood Cancer 2015; 62:463-70. [PMID: 25381700 DOI: 10.1002/pbc.25303] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 09/12/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Fanconi anemia (FA) predisposes to hematologic disorders and myeloid neoplasia in childhood and to solid cancers, mainly oral carcinomas, in early adulthood. Few cases of solid cancers have been reported in childhood. PROCEDURES We conducted a national retrospective study of solid tumors occurring in patients registered with or determined to have FA during childhood in France. Phenotypic features, tumor type, cancer treatment, and outcome were analyzed. Whenever available, fresh-frozen tumors were analyzed by microarray-based comparative genomics hybridization. RESULTS We identified eight patients with FA with solid tumor from 1986 to 2012. For two patients, the diagnosis of FA was unknown at the time of cancer diagnosis. Moreover, we identified one fetus with a brain tumor. All patients showed failure to thrive and had dysmorphic features and abnormal skin pigmentation. Seven patients had BRCA2/FANCD1 mutations; five of these featured more than one malignancy and the median age at the time of cancer diagnosis was 11 months (range 0.4-3 years). Solid tumor types included five nephroblastomas, two rhabdomyosarcomas, two neuroblastomas, and three brain tumors. Two children died from the toxic effects of chemotherapy, two patients from the cancer, and one patient from secondary leukemia. Only one BRCA2 patient was alive more than 3 years after diagnosis, after tailored chemotherapy. CONCLUSION Solid tumors are rare in FA during childhood, except in patients with BRCA2/FANCD1 mutations. The proper genetic diagnosis is mandatory to tailor the treatment.
Collapse
Affiliation(s)
- Aurore Malric
- Department of Pediatrics, Curie Institute, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bhagat M. VACTERL association-type anomalies in a male neonate with a Y-chromosome abnormality. Oxf Med Case Reports 2015; 2015:164-6. [PMID: 25988067 PMCID: PMC4369973 DOI: 10.1093/omcr/omu062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/12/2014] [Accepted: 12/17/2014] [Indexed: 11/15/2022] Open
Abstract
The acronym VACTERL describes the non-random co-occurrence of three of the following anomalies: vertebral (V), anal (A), cardiac (C), tracheoesophageal fistula with or without oesophageal atresia (TE), renal (R) and limb defects (L). Here, we report a newborn baby with VACTERL-type anomalies along with a single umbilical artery. The additional interesting findings include development dysplasia of the right hip, dislocation of the left knee and the left club foot. The karyotype revealed 46, X,i (Yp), i.e. deletion in the long arm, while duplication in the short arm of the Y chromosome (isochromosome Yp), which has never been previously reported in VACTERL association.
Collapse
Affiliation(s)
- Manish Bhagat
- Department of Paediatrics , K. J. Somaiya Medical College, Hospital and Research Centre , Mumbai , India
| |
Collapse
|
26
|
Schneider M, Chandler K, Tischkowitz M, Meyer S. Fanconi anaemia: genetics, molecular biology, and cancer - implications for clinical management in children and adults. Clin Genet 2014; 88:13-24. [DOI: 10.1111/cge.12517] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/06/2014] [Accepted: 10/06/2014] [Indexed: 01/30/2023]
Affiliation(s)
- M. Schneider
- Stem Cell and Leukaemia Proteomics Laboratory; University of Manchester; Manchester UK
- Manchester Academic Health Science Centre; Manchester UK
| | - K. Chandler
- Manchester Academic Health Science Centre; Manchester UK
- Department of Genetic Medicine; University of Manchester, St Mary's Hospital; Manchester UK
| | - M. Tischkowitz
- Department of Medical Genetics; University of Cambridge, Addenbrooke's Hospital; Cambridge UK
| | - S. Meyer
- Stem Cell and Leukaemia Proteomics Laboratory; University of Manchester; Manchester UK
- Manchester Academic Health Science Centre; Manchester UK
- Department of Paediatric Haematology and Oncology; Royal Manchester Children's Hospital; Manchester UK
- Department of Paediatric and Adolescent Oncology; Young Oncology Unit, The Christie NHS Foundation Trust; Manchester UK
| |
Collapse
|
27
|
Degrolard-Courcet E, Sokolowska J, Padeano MM, Guiu S, Bronner M, Chery C, Coron F, Lepage C, Chapusot C, Loustalot C, Jouve JL, Hatem C, Ferrant E, Martin L, Coutant C, Baurand A, Couillault G, Delignette A, El Chehadeh S, Lizard S, Arnould L, Fumoleau P, Callier P, Mugneret F, Philippe C, Frebourg T, Jonveaux P, Faivre L. Development of primary early-onset colorectal cancers due to biallelic mutations of the FANCD1/BRCA2 gene. Eur J Hum Genet 2013; 22:979-87. [PMID: 24301060 DOI: 10.1038/ejhg.2013.278] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 10/02/2013] [Accepted: 10/10/2013] [Indexed: 12/30/2022] Open
Abstract
Fanconi anaemia (FA) is characterized by progressive bone marrow failure, congenital anomalies, and predisposition to malignancy. In a minority of cases, FA results from biallelic FANCD1/BRCA2 mutations that are associated with early-onset leukaemia and solid tumours. Here, we describe the clinical and molecular features of a remarkable family presenting with multiple primary colorectal cancers (CRCs) without detectable mutations in genes involved in the Mendelian predisposition to CRCs. We unexpectedly identified, despite the absence of clinical cardinal features of FA, a biallelic mutation of the FANCD1/BRCA2 corresponding to a frameshift alteration (c.1845_1846delCT, p.Asn615Lysfs*6) and a missense mutation (c.7802A>G, p.Tyr2601Cys). The diagnosis of FA was confirmed by the chromosomal analysis of lymphocytes. Reverse transcriptase (RT)-PCR analysis revealed that the c.7802A>G BRCA2 variation was in fact a splicing mutation that creates an aberrant splicing donor site and results partly into an aberrant transcript encoding a truncated protein (p.Tyr2601Trpfs*46). The atypical FA phenotype observed within this family was probably explained by the residual amount of BRCA2 with the point mutation c.7802A>G in the patients harbouring the biallelic FANCD1/BRCA2 mutations. Although this report is based in a single family, it suggests that CRCs may be part of the tumour spectrum associated with FANCD1/BRCA2 biallelic mutations and that the presence of such mutations should be considered in families with CRCs, even in the absence of cardinal features of FA.
Collapse
Affiliation(s)
- Emilie Degrolard-Courcet
- Service d'Anatomie et Cytologie Pathologiques, Pole Technique et biologie CHU Dijon, Dijon, France
| | - Joanna Sokolowska
- Laboratoire de Génétique et INSERM U-954, CHU Nancy, Université de Lorraine, Nancy, France
| | - Marie-Martine Padeano
- Département de Chirurgie, Centre de lutte anti-cancereux Georges François Leclerc, Dijon, France
| | - Séverine Guiu
- Département d'oncologie médicale, Centre de lutte anti-cancereux Georges François Leclerc, Dijon, France
| | - Myriam Bronner
- Laboratoire de Génétique et INSERM U-954, CHU Nancy, Université de Lorraine, Nancy, France
| | - Carole Chery
- Laboratoire de Génétique et INSERM U-954, CHU Nancy, Université de Lorraine, Nancy, France
| | - Fanny Coron
- Centre de Génétique, Hôpital d'Enfants, CHU Dijon et Université de bourgogne, Dijon, France
| | - Côme Lepage
- Service d' Hepato-gastro-enterologie, CHU "Bocage Central", Dijon, France
| | - Caroline Chapusot
- Service d'Anatomie et Cytologie Pathologiques, Pole Technique et biologie CHU Dijon, Dijon, France
| | - Catherine Loustalot
- Département de Chirurgie, Centre de lutte anti-cancereux Georges François Leclerc, Dijon, France
| | - Jean-Louis Jouve
- Service d' Hepato-gastro-enterologie, CHU "Bocage Central", Dijon, France
| | - Cyril Hatem
- Hepato-gastro-entérologie, Clinique Drevon, Dijon, France
| | - Emmanuelle Ferrant
- Service d'Hématologie Clinique, Hôpital d'Enfants, CHU Dijon, Dijon, France
| | - Laurent Martin
- Service d'Anatomie et Cytologie Pathologiques, Pole Technique et biologie CHU Dijon, Dijon, France
| | - Charles Coutant
- Département de Chirurgie, Centre de lutte anti-cancereux Georges François Leclerc, Dijon, France
| | - Amandine Baurand
- Centre de Génétique, Hôpital d'Enfants, CHU Dijon et Université de bourgogne, Dijon, France
| | | | - Alexandra Delignette
- Service de Radiologie, Centre de lutte anti-cancereux Georges François Leclerc, Dijon, France
| | - Salima El Chehadeh
- Centre de Génétique, Hôpital d'Enfants, CHU Dijon et Université de bourgogne, Dijon, France
| | - Sarab Lizard
- Biologie Moléculaire, Centre de lutte anti-cancereux Georges François Leclerc, Dijon, France
| | - Laurent Arnould
- Anatomopathologie, Centre de lutte anti-cancereux Georges François Leclerc, Dijon, France
| | - Pierre Fumoleau
- Département d'oncologie médicale, Centre de lutte anti-cancereux Georges François Leclerc, Dijon, France
| | - Patrick Callier
- Service de Cytogénétique, Pole Technique et biologie, CHU Dijon, Dijon, France
| | - Francine Mugneret
- Service de Cytogénétique, Pole Technique et biologie, CHU Dijon, Dijon, France
| | - Christophe Philippe
- Laboratoire de Génétique et INSERM U-954, CHU Nancy, Université de Lorraine, Nancy, France
| | | | - Philippe Jonveaux
- Laboratoire de Génétique et INSERM U-954, CHU Nancy, Université de Lorraine, Nancy, France
| | - Laurence Faivre
- Centre de Génétique, Hôpital d'Enfants, CHU Dijon et Université de bourgogne, Dijon, France
| |
Collapse
|
28
|
Meyer S, Tischkowitz M, Chandler K, Gillespie A, Birch JM, Evans DG. Fanconi anaemia, BRCA2 mutations and childhood cancer: a developmental perspective from clinical and epidemiological observations with implications for genetic counselling. J Med Genet 2013; 51:71-5. [PMID: 24259538 DOI: 10.1136/jmedgenet-2013-101642] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fanconi anaemia (FA) is an inherited condition characterised by congenital and developmental abnormalities and a strong cancer predisposition. In around 3-5% of cases FA is caused by biallelic mutations in the BRCA2 gene. Individuals heterozygous for BRCA2 mutations have an increased risk of inherited breast and ovarian cancer. We reviewed the mutation spectrum in BRCA2-associated FA, and the spectrum and frequency of BRCA2 mutations in distinct populations. The rarity of FA due to biallelic BRCA2 mutations supports a fundamental role of BRCA2 for prevention of malignant transformation during development. The spectrum of malignancies seen associated with FA support the concept of a tissue selectivity of BRCA2 mutations for development of FA-associated cancers. This specificity is illustrated by the distinct FA-associated BRCA2 mutations that appear to predispose to specific brain or haematological malignancies. For some populations, the number of FA-patients with biallelic BRCA2 disruption is smaller than that expected from the carrier frequency, and this implies that some pregnancies with biallelic BRCA2 mutations do not go to term. The apparent discrepancy between expected and observed incidence of BRCA2 mutation-associated FA in high-frequency carrier populations has important implications for the genetic counselling of couples with recurrent miscarriages from high-risk populations.
Collapse
Affiliation(s)
- Stefan Meyer
- Department of Paediatric and Adolescent Oncology, University of Manchester, Manchester, UK
| | | | | | | | | | | |
Collapse
|
29
|
Phenotypic consequences in black South African Fanconi anemia patients homozygous for a founder mutation. Genet Med 2013; 16:400-6. [PMID: 24136620 DOI: 10.1038/gim.2013.159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 09/04/2013] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Fanconi anemia is a genotypically and phenotypically heterogeneous condition, characterized microscopically by chromosomal instability and breakage. Affected individuals manifest growth restriction and congenital physical abnormalities; most progress to hematological disease including bone marrow aplasia. Black South African Fanconi anemia patients share a common causative founder mutation in the Fanconi G gene in 80% of cases (637_643delTACCGCC). The aim of this study was to investigate the genotype-physical phenotype correlation in a cohort of individuals homozygous for this mutation. METHODS Thirty-five black patients were recruited from tertiary level hematology/oncology clinics in South Africa. Participants were subjected to a comprehensive clinical examination, documenting growth, congenital anomalies, and phenotypic variability. RESULTS Descriptive statistical analysis showed significant growth abnormalities in many patients and a high frequency (97%) of skin pigmentary anomalies. Subtle anomalies of the eyes, ears, and hands occurred frequently (≥70%). Apart from malformations of the kidney (in 37%) and gastrointestinal tract (in 8.5%), congenital anomalies of other systems including the cardiovascular and central nervous systems, genitalia, and vertebrae were infrequent (<5%). CONCLUSION The diagnosis of Fanconi anemia in black South African patients before the onset of hematological symptoms remains a clinical challenge, with the physical phenotype unlikely to be recognized by those without dysmorphology expertise.
Collapse
|
30
|
Abstract
Patients with Fanconi anemia (FA) often have birth defects that suggest the diagnosis of VATER association. A review of 2,245 cases of FA reported in the literature from 1927 to 2012 identified 108 cases with at least 3 of the defining features of VATER association; only 29 had been so noted by the authors. The FA VATER signature was the significantly higher frequency of renal and limb (radial and/or thumb) anomalies (93% of cases had both) compared with less than 30% of VATER patients; the presence of one or both of these birth defects should lead to testing for FA. The relative frequencies of the genotypes of the patients with FA VATER were strikingly different from those expected from the general FA population; only 19% were FANCA, while 21% were FANCB, 14% FANCD1/BRCA2, and 12% FANCD2. Consistent with their genotypes, those with the FA VATER phenotype had a worse prognosis than FA patients with milder phenotypes, with shorter median survival and earlier onset of malignancies. The early identification of FA patients among infants with VATER association should lead to earlier more proactive management, such as cancer surveillance and genetic counseling.
Collapse
Affiliation(s)
- B P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Md., USA
| | | |
Collapse
|
31
|
Reutter H, Ludwig M. VATER/VACTERL Association: Evidence for the Role of Genetic Factors. Mol Syndromol 2013; 4:16-9. [PMID: 23653572 DOI: 10.1159/000345300] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The VATER/VACTERL association is typically defined by the presence of at least 3 of the following congenital malformations: Vertebral anomalies, Anal atresia, Cardiac malformations, Tracheo-Esophageal fistula, Renal anomalies, and Limb abnormalities. The involvement of genetic factors in the development of this rare association is suggested by reports of familial occurrence, the increased prevalence of component features among first-degree relatives of affected individuals, high concordance rates among monozygotic twins, chromosomal (micro-)aberrations or single gene mutations in individuals with the VATER/VACTERL phenotype, as well as murine knock-out models. Despite substantial efforts over the past decade, the genetic etiology of the VATER/VACTERL association in most instances remains elusive. The application of new genomic technologies such as high-resolution copy number variation studies or next-generation exome sequencing might lead to the identification of some of these causes.
Collapse
Affiliation(s)
- H Reutter
- Institute of Human Genetics, Children's Hospital, University of Bonn, Bonn, Germany ; Department of Neonatology, Children's Hospital, University of Bonn, Bonn, Germany
| | | |
Collapse
|
32
|
Solomon BD, Bear KA, Kimonis V, de Klein A, Scott DA, Shaw-Smith C, Tibboel D, Reutter H, Giampietro PF. Clinical geneticists' views of VACTERL/VATER association. Am J Med Genet A 2012; 158A:3087-100. [PMID: 23165726 PMCID: PMC3507421 DOI: 10.1002/ajmg.a.35638] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 08/02/2012] [Indexed: 01/07/2023]
Abstract
VACTERL association (sometimes termed "VATER association" depending on which component features are included) is typically defined by the presence of at least three of the following congenital malformations, which tend to statistically co-occur in affected individuals: Vertebral anomalies, Anal atresia, Cardiac malformations, Tracheo-Esophageal fistula, Renal anomalies, and Limb abnormalities. Although the clinical criteria for VACTERL association may appear to be straightforward, there is wide variability in the way clinical geneticists define the disorder and the genetic testing strategy they use when confronted with an affected patient. In order to describe this variability and determine the most commonly used definitions and testing modalities, we present the results of survey responses by 121 clinical geneticists. We discuss the results of the survey responses, provide a literature review and commentary from a group of physicians who are currently involved in clinical and laboratory-based research on VACTERL association, and offer an algorithm for genetic testing in patients with this association.
Collapse
Affiliation(s)
- Benjamin D Solomon
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lin HY, Lin SP, Lin HY, Hsu CH, Chang JH, Kao HA, Hung HY, Peng CC, Lee HC, Chen MR, Tsai JD. Functional independence of Taiwanese children with VACTERL association. Am J Med Genet A 2012; 158A:3101-5. [DOI: 10.1002/ajmg.a.33643] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 07/07/2010] [Indexed: 11/06/2022]
|
34
|
Serra A, Eirich K, Winkler A, Mrasek K, Göhring G, Barbi G, Cario H, Schlegelberger B, Pokora B, Liehr T, Leriche C, Henne-Bruns D, Barth T, Schindler D. Shared Copy Number Variation in Simultaneous Nephroblastoma and Neuroblastoma due to Fanconi Anemia. Mol Syndromol 2012; 3:120-130. [PMID: 23112754 PMCID: PMC3473353 DOI: 10.1159/000341935] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2012] [Indexed: 11/19/2022] Open
Abstract
Concurrent emergence of nephroblastoma (Wilms Tumor; WT) and neuroblastoma (NB) is rare and mostly observed in patients with severe subtypes of Fanconi anemia (FA) with or without VACTER-L association (VL). We investigated the hypothesis that early consequences of genomic instability result in shared regions with copy number variation in different precursor cells that originate distinct embryonal tumors. We observed a newborn girl with FA and VL (aplasia of the thumbs, cloacal atresia (urogenital sinus), tethered cord at L3/L4, muscular ventricular septum defect, and horseshoe-kidney with a single ureter) who simultaneously acquired an epithelial-type WT in the left portion of the kidney and a poorly differentiated adrenal NB in infancy. A novel homozygous germline frameshift mutation in PALB2 (c.1676_c1677delAAinsG) leading to protein truncation (pGln526ArgfsX1) inherited from consanguineous parents formed the genetic basis of FA-N. Spontaneous and induced chromosomal instability was detected in the majority of cells analyzed from peripheral lymphocytes, bone marrow, and cultured fibroblasts. Bone marrow cells also showed complex chromosome rearrangements consistent with the myelodysplastic syndrome at 11 months of age. Array-comparative genomic hybridization analyses of both WT and NB showed shared gains or amplifications within the chromosomal regions 11p15.5 and 17q21.31-q25.3, including genes that are reportedly implicated in tumor development such as IGF2, H19, WT2, BIRC5, and HRAS.
Collapse
Affiliation(s)
- A. Serra
- Department of Pediatric Surgery, Ulm University, Ulm, Jena, Germany
| | - K. Eirich
- Department of Human Genetics, Julius-Maximilian University, Würzburg, Jena, Germany
| | - A.K. Winkler
- Department of Pediatric Surgery, Ulm University, Ulm, Jena, Germany
| | - K. Mrasek
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - G. Göhring
- Institute of Cell and Molecular Pathology, Hannover Medical School, Hannover, Germany
| | - G. Barbi
- Institute of Human Genetics, Ulm University, Ulm, Jena, Germany
| | - H. Cario
- Department of Pediatric Oncology, Ulm University, Ulm, Jena, Germany
| | - B. Schlegelberger
- Institute of Cell and Molecular Pathology, Hannover Medical School, Hannover, Germany
| | - B. Pokora
- Institute of Human Genetics and Anthropology, Heinrich Heine University Medical Faculty, Düsseldorf, Germany
| | - T. Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - C. Leriche
- Department of Pediatric Surgery, Ulm University, Ulm, Jena, Germany
| | - D. Henne-Bruns
- Department of General Surgery, Ulm University, Ulm, Jena, Germany
| | - T.F. Barth
- Department of Pathology, Ulm University, Ulm, Jena, Germany
| | - D. Schindler
- Department of Human Genetics, Julius-Maximilian University, Würzburg, Jena, Germany
| |
Collapse
|
35
|
Umaña LA, Magoulas P, Bi W, Bacino CA. A male newborn with VACTERL association and Fanconi anemia with a FANCB deletion detected by array comparative genomic hybridization (aCGH). Am J Med Genet A 2011; 155A:3071-4. [PMID: 22052692 DOI: 10.1002/ajmg.a.34296] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 08/15/2011] [Indexed: 11/05/2022]
Abstract
We report on a male newborn with multiple congenital abnormalities consistent with the diagnosis of VACTERL association (vertebral, anal, cardiac, tracheo-esophageal fistula, renal, and limb anomalies), who had Fanconi anemia (complementation group B) recognized by the detection of a deletion in chromosome Xp22.2 using an oligonucleotide array. The diagnosis of Fanconi anemia was confirmed by increased chromosomal breakage abnormalities observed in cultured cells that were treated with cross-linking agents. This is the first report in the literature of Fanconi anemia complementation group B detected by oligonucleotide array testing postnatally.
Collapse
Affiliation(s)
- Luis A Umaña
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | |
Collapse
|
36
|
Congenital hydrocephalus in clinical practice: A genetic diagnostic approach. Eur J Med Genet 2011; 54:e542-7. [DOI: 10.1016/j.ejmg.2011.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 06/29/2011] [Indexed: 11/21/2022]
|
37
|
Spanier G, Pohl F, Giese T, Meier JK, Koelbl O, Reichert TE. Fatal course of tonsillar squamous cell carcinoma associated with Fanconi anaemia: a mini review. J Craniomaxillofac Surg 2011; 40:510-5. [PMID: 21925890 DOI: 10.1016/j.jcms.2011.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 08/30/2011] [Accepted: 08/31/2011] [Indexed: 10/17/2022] Open
Abstract
Fanconi anaemia (FA) is a rare genetic syndrome characterized by progressive pancytopenia, variably expressed congenital abnormalities and susceptibility, amongst others, to solid tumours. Early detection by oral health professionals of a pathological process can have a critical impact on the clinical course of that condition. In this paper we report the case of a 27-year-old male patient with tonsillar squamous cell carcinoma (cT4 cN2b cM0 G3) associated with FA. Due to the locally advanced growth of the tumour and the poor systemic condition we ruled out primary surgery and settled for primary radio- and chemotherapy. Given the poor clinical course a focus on the aspect of secondary prevention is reasonable, given that it is known that patients with FA are at higher risk of developing malignancy than the general population. A multi-disciplinary approach is necessary in which the prevention of, surveillance for and the treatment of malignancies are important aspects of management and may improve disease-free survival.
Collapse
Affiliation(s)
- Gerrit Spanier
- Department of Cranio-Maxillo-Facial Surgery, University Medical School Regensburg, Franz-Josef-Strauss Allee 11, D-93053 Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
McCauley J, Masand N, McGowan R, Rajagopalan S, Hunter A, Michaud JL, Gibson K, Robertson J, Vaz F, Abbs S, Holden ST. X-linked VACTERL with hydrocephalus syndrome: further delineation of the phenotype caused by FANCB mutations. Am J Med Genet A 2011; 155A:2370-80. [PMID: 21910217 DOI: 10.1002/ajmg.a.33913] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 01/05/2011] [Indexed: 11/11/2022]
Abstract
X-linked VACTERL-hydrocephalus syndrome (X-linked VACTERL-H) is a rare disorder caused by mutations in the gene FANCB which underlies Fanconi Anemia (FA) complementation group B. Cells from affected males have increased chromosome breakage on exposure to DNA cross-linking agents. Only five FANCB mutations found in six affected males, including an affected uncle and nephew, have been reported. We have identified FANCB mutations in a further four affected families. The VACTERL-H phenotype segregates as an X-linked recessive trait in three of these. Each mutation is predicted to truncate the FANCB open reading frame and results in highly skewed X-inactivation in unaffected carrier females. Phenotypic data were available on six affected males. Comparison of the clinical findings in our patients with published clinical data (total 12 patients) shows that ventriculomegaly, bilateral absent thumbs and radii, vertebral defects, renal agenesis, and growth retardation are the major phenotypic signs in affected males. Less frequent are brain, pituitary, ear and eye malformations, gastrointestinal atresias (esophageal, duodenal and anal), tracheoesophageal fistula, lung segmentation defects, and small genitalia. Three of six of our patients survived the perinatal period. One boy lived up to 2 years 10 months but developed aplastic anemia and died of renal failure. These data show that loss-of-function FANCB mutations result in a recognizable, multiple malformation phenotype in hemizygous males for which we propose clinical criteria to aid diagnosis.
Collapse
Affiliation(s)
- Joanna McCauley
- Molecular Genetics Laboratory, GSTS Pathology, Guy's Hospital, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
VACTERL/VATER association is typically defined by the presence of at least three of the following congenital malformations: vertebral defects, anal atresia, cardiac defects, tracheo-esophageal fistula, renal anomalies, and limb abnormalities. In addition to these core component features, patients may also have other congenital anomalies. Although diagnostic criteria vary, the incidence is estimated at approximately 1 in 10,000 to 1 in 40,000 live-born infants. The condition is ascertained clinically by the presence of the above-mentioned malformations; importantly, there should be no clinical or laboratory-based evidence for the presence of one of the many similar conditions, as the differential diagnosis is relatively large. This differential diagnosis includes (but is not limited to) Baller-Gerold syndrome, CHARGE syndrome, Currarino syndrome, deletion 22q11.2 syndrome, Fanconi anemia, Feingold syndrome, Fryns syndrome, MURCS association, oculo-auriculo-vertebral syndrome, Opitz G/BBB syndrome, Pallister-Hall syndrome, Townes-Brocks syndrome, and VACTERL with hydrocephalus. Though there are hints regarding causation, the aetiology has been identified only in a small fraction of patients to date, likely due to factors such as a high degree of clinical and causal heterogeneity, the largely sporadic nature of the disorder, and the presence of many similar conditions. New genetic research methods offer promise that the causes of VACTERL association will be better defined in the relatively near future. Antenatal diagnosis can be challenging, as certain component features can be difficult to ascertain prior to birth. The management of patients with VACTERL/VATER association typically centers around surgical correction of the specific congenital anomalies (typically anal atresia, certain types of cardiac malformations, and/or tracheo-esophageal fistula) in the immediate postnatal period, followed by long-term medical management of sequelae of the congenital malformations. If optimal surgical correction is achievable, the prognosis can be relatively positive, though some patients will continue to be affected by their congenital malformations throughout life. Importantly, patients with VACTERL association do not tend to have neurocognitive impairment.
Collapse
MESH Headings
- Abnormalities, Multiple/diagnosis
- Abnormalities, Multiple/epidemiology
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/pathology
- Anal Canal/abnormalities
- Anal Canal/pathology
- Anus, Imperforate/complications
- Anus, Imperforate/diagnosis
- Anus, Imperforate/epidemiology
- Anus, Imperforate/genetics
- Anus, Imperforate/pathology
- Esophagus/abnormalities
- Esophagus/pathology
- Female
- Heart Defects, Congenital/complications
- Heart Defects, Congenital/diagnosis
- Heart Defects, Congenital/epidemiology
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/pathology
- Humans
- Infant, Newborn
- Kidney/abnormalities
- Kidney/pathology
- Limb Deformities, Congenital/complications
- Limb Deformities, Congenital/diagnosis
- Limb Deformities, Congenital/epidemiology
- Limb Deformities, Congenital/genetics
- Limb Deformities, Congenital/pathology
- Male
- Radius/abnormalities
- Radius/pathology
- Spine/abnormalities
- Spine/pathology
- Trachea/abnormalities
- Trachea/pathology
- Tracheoesophageal Fistula/complications
- Tracheoesophageal Fistula/epidemiology
- Tracheoesophageal Fistula/genetics
Collapse
Affiliation(s)
- Benjamin D Solomon
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Building 35/Room 1B-207, Bethesda, MD 20892, USA.
| |
Collapse
|
40
|
Kopic S, Eirich K, Schuster B, Hanenberg H, Varon-Mateeva R, Rittinger O, Schimpl G, Schindler D, Jones N. Hepatoblastoma in a 4-year-old girl with Fanconi anaemia. Acta Paediatr 2011; 100:780-3. [PMID: 21138478 DOI: 10.1111/j.1651-2227.2010.02116.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CASE REPORT Hepatoblastoma was diagnosed in a 4-year-old girl receiving growth hormone substitution therapy for short stature. Owing to multiple congenital malformations, VACTERL-H (vertebral, anal, cardiac, tracheal, renal and limb anomalies with hydrocephalus) association had been suggested. Elevated chromosomal breakage rates and G2 phase arrest induced by DNA-crosslinking agents in cellular assays confirmed the diagnosis of Fanconi anaemia (FA), a tumour susceptibility syndrome known to be associated with hepatocellular carcinoma following androgen therapy. Subsequent genotyping revealed biallelic mutations in the FANCD1/BRCA2 gene. CONCLUSION We describe the first case of hepatoblastoma in a patient with FA to raise awareness of this tumour type in the close clinical observation of early cancer-prone forms of this condition, particularly in the presence of FANCD1/BRCA2 mutations. The present case also underscores the importance of FA testing in patients with VACTERL(-H).
Collapse
Affiliation(s)
- Sascha Kopic
- Department of Pediatrics, University Hospital Salzburg, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Abstract
Esophageal atresia and tracheoesophageal fistula (EA/TEF) are major congenital malformations affecting 1:3500 live births. Current research efforts are focused on understanding the etiology of these defects. We describe well-known animal models, human syndromes, and associations involving EA/TEF, indicating its etiologically heterogeneous nature. Recent advances in genotyping technology and in knowledge of human genetic variation will improve clinical counseling on etiologic factors. This review provides a clinical summary of environmental and genetic factors involved in EA/TEF.
Collapse
|
43
|
Gulbis B, Eleftheriou A, Angastiniotis M, Ball S, Surrallés J, Castella M, Heimpel H, Hill A, Corrons JLV. Epidemiology of rare anaemias in Europe. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 686:375-96. [PMID: 20824457 DOI: 10.1007/978-90-481-9485-8_22] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Registry and epidemiological data of Rare Anaemias (RA) in Europe is in general still incomplete and/or partially documented. One important issue is the increasing prevalence of haemoglobin disorders (HD) due to migrations from high prevalence areas. The size of the problem, particularly for sickle cell disease (SCD), is already having an impact on health services in many European countries. The best known cause of rare anaemias associated with congenital haemolytic anaemia (CHA) in Europe is Hereditary Spherocytosis (HS) a red blood cell (RBC) membrane defect with a prevalence of 1 to 5 cases per 10.000 individuals. Some other causes of CHA are extremely rare and only few individual cases have been described worldwide (i.e. some RBC enzymopathies). Congenital defects of erythropoiesis are less frequent Diamond-Blackfan Anaemia (DBA) and Fanconi Anaemia (FA) exhibit a very low prevalence ranging from 4 to 7 per million live births. Congenital Dyserythropoietic Anaemia (CDA), a genetically heterogenous group, is still less frequent and exhibits a large variability of frequency depending on the European region: 0.1-3.0 cases per million births In addition many cases are known from a large autosomal dominant family in Sweden. Although incidence of Paroxysmal Nocturnal Haemoglobinuria (PNH) in Europe is still unknown, data collection from different sources has given quotes of 1 case per 100,000 individuals to 5 cases per million births.
Collapse
|
44
|
Abstract
We describe a female domestic cat with apparent VATER/VACTERL association, including vertebral abnormalities, anal atresia, radial agenesis, and cardiovascular and renal defects. If we consider the acronym VATER, this cat had a triad (VAR); however, if we consider the extended acronym VACTERL, she had a pentad (VACRL).
Collapse
Affiliation(s)
- Enio Moura
- Service of Medical Genetics, Faculty of Veterinary Medicine, Campus São José, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil.
| | | | | |
Collapse
|
45
|
Kanemoto N, Fukushima T, Imoto N, Koike K, Kanemoto K, Matsuura S. Sporadic neonatal Fanconi's anemia with VACTERL association. Pediatr Int 2010; 52:141-2. [PMID: 20158659 DOI: 10.1111/j.1442-200x.2009.02945.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Nobuko Kanemoto
- Department of Pediatrics, Institute of Clinical Medical Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|
46
|
A new familial cancer syndrome including predisposition to Wilms tumor and neuroblastoma. Fam Cancer 2010; 9:425-30. [DOI: 10.1007/s10689-009-9319-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
DeWire MD, Ellison DW, Patay Z, McKinnon P, Sanders RP, Gajjar A. Fanconi anemia and biallelic BRCA2 mutation diagnosed in a young child with an embryonal CNS tumor. Pediatr Blood Cancer 2009; 53:1140-2. [PMID: 19530235 PMCID: PMC3782106 DOI: 10.1002/pbc.22139] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Medulloblastoma, the most common pediatric malignant brain tumor often arises sporadically; however, in a subgroup of patients, there exist familial conditions such as Fanconi anemia with biallelic BRCA2 mutation that predispose patients to developing medulloblastoma. Biallelic inactivation of BRCA2 in Fanconi anemia has been previously described in only 11 patients with medulloblastoma in the literature to date. Here we report two siblings diagnosed with central nervous system embryonal tumors at an early age in association with biallelic BRCA2 inactivation, including the first reported case of a spinal cord primitive neuroectodermal tumor (PNET) in a BRCA2/FANCD1 kindred.
Collapse
Affiliation(s)
- Mariko D. DeWire
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
,Corresponding author: Department of Oncology, St. Jude Children’s Research Hospital 262 Danny Thomas Place, Memphis, TN 38105-2794 Tel.: (901) 595-3026 Fax: (901) 521-9005
| | - David W. Ellison
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Zoltan Patay
- Department of Radiology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | | | - Robert P. Sanders
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Amar Gajjar
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| |
Collapse
|
48
|
Felix JF, de Jong EM, Torfs CP, de Klein A, Rottier RJ, Tibboel D. Genetic and environmental factors in the etiology of esophageal atresia and/or tracheoesophageal fistula: an overview of the current concepts. ACTA ACUST UNITED AC 2009; 85:747-54. [PMID: 19452513 DOI: 10.1002/bdra.20592] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Esophageal atresia and/or tracheoesophageal fistula (EA/TEF) are severe congenital anomalies. Although recent years have brought significant improvement in clinical treatment, our understanding of the etiology of these defects is lagging. Many genes and genetic pathways have been implicated in the development of EA/TEF, but only a few genes have been shown to be involved in humans, in animals, or in both. Extrapolating data from animal models to humans is not always straightforward. Environmental factors may also carry a risk, but the mechanisms are yet to be elucidated. This review gives an overview of the current state of knowledge about both genetic and environmental risk factors in the etiology of EA/TEF.
Collapse
Affiliation(s)
- Janine F Felix
- Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, 3000 CB Rotterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
49
|
Neveling K, Endt D, Hoehn H, Schindler D. Genotype-phenotype correlations in Fanconi anemia. Mutat Res 2009; 668:73-91. [PMID: 19464302 DOI: 10.1016/j.mrfmmm.2009.05.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 03/30/2009] [Accepted: 05/12/2009] [Indexed: 11/30/2022]
Abstract
Although still incomplete, we now have a remarkably detailed and nuanced picture of both phenotypic and genotypic components of the FA spectrum. Initially described as a combination of pancytopenia with a limited number of physical anomalies, it was later recognized that additional features were compatible with the FA phenotype, including a form without detectable malformations (Estren-Dameshek variant). The discovery of somatic mosaicism extended the boundaries of the FA phenotype to cases even without any overt hematological manifestations. This clinical heterogeneity was augmented by new conceptualizations. There was the realization of a constant risk for the development of myelodysplasia and certain malignancies, including acute myelogenous leukemia and squamous cell carcinoma, and there was the emergence of a distinctive cellular phenotype. A striking degree of genetic heterogeneity became apparent with the delineation of at least 12 complementation groups and the identification of their underlying genes. Although functional genetic insights have fostered the interpretation of many phenotypic features, surprisingly few stringent genotype-phenotype connections have emerged. In addition to myriad genetic alterations, less predictable influences are likely to modulate the FA phenotype, including modifier genes, environmental factors and chance effects. In reviewing the current status of genotype-phenotype correlations, we arrive at a unifying hypothesis to explain the remarkably wide range of FA phenotypes. Given the large body of evidence that genomic instability is a major underlying mechanism of accelerated ageing phenotypes, we propose that the numerous FA variants can be viewed as differential modulations and compression in time of intrinsic biological ageing.
Collapse
Affiliation(s)
- Kornelia Neveling
- Department of Human and Medical Genetics, University of Wurzburg, Biozentrum, Am Hubland, Wurzburg D-97074, Germany
| | | | | | | |
Collapse
|
50
|
Phenotypic expansion of the supernumerary derivative (22) chromosome syndrome: VACTERL and Hirschsprung's disease. J Pediatr Surg 2007; 42:1928-32. [PMID: 18022449 DOI: 10.1016/j.jpedsurg.2007.07.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phenotypically healthy carriers of the balanced 11;22 translocation, the most frequent non-Robertsonian constitutional translocation known in human beings, are at risk of having a progeny with supernumerary derivative (22)t(11;22) syndrome [der(22) syndrome]. We present the cases of 2 male patients with supernumerary der(22) syndrome [47,XY,+der(22)t(11;22)(q23;q11.2)mat], yielding partial trisomy for 22pter-q11 and 11q23-qter. These cases expand the phenotype of the der(22) syndrome, with the first case highlighting the phenotypic overlap of VACTERL and the second adding Hirschsprung's disease and intestinal malrotation to the list of associated anorectal anomalies. Because der(22) syndrome and cat eye syndrome (partial tetrasomy of 22q11) share a similar region of extra dosage on 22q11 and both typically manifest an anorectal phenotype, a dosage-sensitive gene for anorectal anomalies may be present in this locus.
Collapse
|