1
|
Fehrmann MLA, Lanting CP, Haer-Wigman L, Mylanus EAM, Huinck WJ, Pennings RJE. Good cochlear implantation outcomes in subjects with mono-allelic WFS1-associated sensorineural hearing loss - a case series. Int J Audiol 2024:1-9. [PMID: 39422244 DOI: 10.1080/14992027.2024.2411579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE This study aimed to evaluate long-term cochlear implant (CI) outcomes in individuals with mono-allelic pathogenic variants in WFS1, which is associated with both Wolfram-like syndrome and DFNA6/14/38. DESIGN Retrospective case series. STUDY SAMPLE Seven CI recipients, ranging from eight months to 58 years of age, were included in the study, including four with Wolfram-like syndrome and three with DFNA6/14/38. A total of ten cochlear implantations were performed among these subjects. RESULTS At one-year post-implantation, a mean phoneme score of 90 ± 9% at 65 dB SPL in quiet was found, which remained stable up to ten years post-implantation with a mean phoneme score of 94 ± 6%. Despite these excellent outcomes, one subject achieved no speech recognition with CI and eventually became a non-user. This individual had a prolonged absence of auditory stimulation prior to implantation and encountered multiple challenges during rehabilitation. CONCLUSION Individuals with Wolfram-like syndrome or DFNA6/14/38 demonstrate consistently good outcomes following implantation, which remain stable over time. These findings affirm cochlear implantation as an effective rehabilitation option for these individuals. Furthermore, the stable and good CI outcomes contradict the suggested link between WFS1-associated sensorineural hearing loss and auditory neuropathy.
Collapse
Affiliation(s)
- M L A Fehrmann
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - C P Lanting
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - L Haer-Wigman
- Department of Clinical Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - E A M Mylanus
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - W J Huinck
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - R J E Pennings
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Jung J, Jang SH, Won D, Gee HY, Choi JY, Jung J. Clinical Characteristics and Audiological Profiles of Patients with Pathogenic Variants of WFS1. J Clin Med 2024; 13:4851. [PMID: 39200993 PMCID: PMC11355604 DOI: 10.3390/jcm13164851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Background: Mutations in Wolfram syndrome 1 (WFS1) cause Wolfram syndrome and autosomal dominant non-syndromic hearing loss DFNA6/14/38. To date, more than 300 pathogenic variants of WFS1 have been identified. Generally, the audiological phenotype of Wolfram syndrome or DFNA6/14/38 is characterized by low-frequency hearing loss; however, this phenotype is largely variable. Hence, there is a need to better understand the diversity in audiological and vestibular profiles associated with WFS1 variants, as this can have significant implications for diagnosis and management. This study aims to investigate the clinical characteristics, audiological phenotypes, and vestibular function in patients with DFNA6/14/38. Methods: Whole-exome or targeted deafness gene panel sequencing was performed to confirm the pathogenic variants in patients with genetic hearing loss. Results: We identified nine independent families with affected individuals who carried a heterozygous pathogenic variant of WFS1. The onset of hearing loss varied from the first to the fifth decade. On a pure-tone audiogram, hearing loss was symmetrical, and the severity ranged from mild to severe. Notably, either both low-frequency and high-frequency or all-frequency-specific hearing loss was observed. However, hearing loss was non-progressive in all types. In addition, vestibular impairment was identified in patients with DFNA6/14/38, indicating that impaired WFS1 may also affect the vestibular organs. Conclusions: Diverse audiological and vestibular profiles were observed in patients with pathogenic variants of WFS1. These findings highlight the importance of comprehensive audiological and vestibular assessments in patients with WFS1 mutations for accurate diagnosis and management.
Collapse
Affiliation(s)
- Joonho Jung
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.J.); (S.H.J.); (J.Y.C.)
| | - Seung Hyun Jang
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.J.); (S.H.J.); (J.Y.C.)
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Dongju Won
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Jae Young Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.J.); (S.H.J.); (J.Y.C.)
| | - Jinsei Jung
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.J.); (S.H.J.); (J.Y.C.)
| |
Collapse
|
3
|
Caruso V, Raia A, Rigoli L. Wolfram Syndrome 1: A Neuropsychiatric Perspective on a Rare Disease. Genes (Basel) 2024; 15:984. [PMID: 39202345 PMCID: PMC11353439 DOI: 10.3390/genes15080984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Wolfram syndrome 1 (WS1) is an uncommon autosomal recessive neurological disorder that is characterized by diabetes insipidus, early-onset non-autoimmune diabetes mellitus, optic atrophy, and deafness (DIDMOAD). Other clinical manifestations are neuropsychiatric symptoms, urinary tract alterations, and endocrinological disorders. The rapid clinical course of WS1 results in death by the age of 30. Severe brain atrophy leads to central respiratory failure, which is the main cause of death in WS1 patients. Mutations in the WFS1 gene, located on chromosome 4p16, account for approximately 90% of WS1 cases. The gene produces wolframin, a transmembrane glycoprotein widely distributed and highly expressed in retinal, neural, and muscular tissues. Wolframin plays a crucial role in the regulation of apoptosis, insulin signaling, and ER calcium homeostasis, as well as the ER stress response. WS1 has been designated as a neurodegenerative and neurodevelopmental disorder due to the numerous abnormalities in the ER stress-mediated system. WS1 is a devastating neurodegenerative disease that affects patients and their families. Early diagnosis and recognition of the initial clinical signs may slow the disease's progression and improve symptomatology. Moreover, genetic counseling should be provided to the patient's relatives to extend multidisciplinary care to their first-degree family members. Regrettably, there are currently no specific drugs for the therapy of this fatal disease. A better understanding of the etiology of WS1 will make possible the development of new therapeutic approaches that may enhance the life expectancy of patients. This review will examine the pathogenetic mechanisms, development, and progression of neuropsychiatric symptoms commonly associated with WS1. A thorough understanding of WS1's neurophysiopathology is critical for achieving the goal of improving patients' quality of life and life expectancy.
Collapse
Affiliation(s)
- Valerio Caruso
- Department of Neuroscience, Psychiatric Section, Azienda Ospedaliera Universitaria Pisana (A.U.O.P.), 56126 Pisa, Italy;
| | - Accursio Raia
- Department of Neuroscience, Psychiatric Section, Azienda Ospedaliera Universitaria Pisana (A.U.O.P.), 56126 Pisa, Italy;
| | - Luciana Rigoli
- Department of Human Pathology of Adulthood and Childhood G. Barresi, University of Messina, 98125 Messina, Italy
| |
Collapse
|
4
|
Borrelli E, Bandello F, Boon CJF, Carelli V, Lenaers G, Reibaldi M, Sadda SR, Sadun AA, Sarraf D, Yu-Wai-Man P, Barboni P. Mitochondrial retinopathies and optic neuropathies: The impact of retinal imaging on modern understanding of pathogenesis, diagnosis, and management. Prog Retin Eye Res 2024; 101:101264. [PMID: 38703886 DOI: 10.1016/j.preteyeres.2024.101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Advancements in ocular imaging have significantly broadened our comprehension of mitochondrial retinopathies and optic neuropathies by examining the structural and pathological aspects of the retina and optic nerve in these conditions. This article aims to review the prominent imaging characteristics associated with mitochondrial retinopathies and optic neuropathies, aiming to deepen our insight into their pathogenesis and clinical features. Preceding this exploration, the article provides a detailed overview of the crucial genetic and clinical features, which is essential for the proper interpretation of in vivo imaging. More importantly, we will provide a critical analysis on how these imaging modalities could serve as biomarkers for characterization and monitoring, as well as in guiding treatment decisions. However, these imaging methods have limitations, which will be discussed along with potential strategies to mitigate them. Lastly, the article will emphasize the potential advantages and future integration of imaging techniques in evaluating patients with mitochondrial eye disorders, considering the prospects of emerging gene therapies.
Collapse
Affiliation(s)
- Enrico Borrelli
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy.
| | - Francesco Bandello
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, the Netherlands; Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Valerio Carelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Guy Lenaers
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, Université d'Angers, 49933, Angers, France; Service de Neurologie, CHU d'Angers, 49100, Angers, France
| | - Michele Reibaldi
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Srinivas R Sadda
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - David Sarraf
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK; Institute of Ophthalmology, University College London, London, UK
| | - Piero Barboni
- IRCCS San Raffaele Scientific Institute, Milan, Italy; Studio Oculistico d'Azeglio, Bologna, Italy.
| |
Collapse
|
5
|
Ghosh Dastidar R, Banerjee S, Lal PB, Ghosh Dastidar S. Multifaceted Roles of AFG3L2, a Mitochondrial ATPase in Relation to Neurological Disorders. Mol Neurobiol 2024; 61:3788-3808. [PMID: 38012514 PMCID: PMC11236935 DOI: 10.1007/s12035-023-03768-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
AFG3L2 is a zinc metalloprotease and an ATPase localized in an inner mitochondrial membrane involved in mitochondrial quality control of several nuclear- and mitochondrial-encoded proteins. Mutations in AFG3L2 lead to diseases like slow progressive ataxia, which is a neurological disorder. This review delineates the cellular functions of AFG3L2 and its dysfunction that leads to major clinical outcomes, which include spinocerebellar ataxia type 28, spastic ataxia type 5, and optic atrophy type 12. It summarizes all relevant AFG3L2 mutations associated with the clinical outcomes to understand the detailed mechanisms attributable to its structure-related multifaceted roles in proteostasis and quality control. We face early diagnostic challenges of ataxia and optic neuropathy due to asymptomatic parents and variable clinical manifestations due to heterozygosity/homozygosity of AFG3L2 mutations. This review intends to promote AFG3L2 as a putative prognostic or diagnostic marker.
Collapse
Affiliation(s)
- Ranita Ghosh Dastidar
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India.
| | - Saradindu Banerjee
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India
| | - Piyush Behari Lal
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India.
| | - Somasish Ghosh Dastidar
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India.
| |
Collapse
|
6
|
Kheriji N, Dallali H, Gouiza I, Hechmi M, Mahjoub F, Mrad M, Krir A, Soltani M, Trabelsi H, Hamdi W, Bahlous A, Ben Ahmed M, Jamoussi H, Kefi R. Whole-exome sequencing reveals novel variants of monogenic diabetes in Tunisia: impact on diagnosis and healthcare management. Front Genet 2023; 14:1224284. [PMID: 38162681 PMCID: PMC10757615 DOI: 10.3389/fgene.2023.1224284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction: Monogenic diabetes (MD) accounts for 3%-6% of all cases of diabetes. This prevalence is underestimated due to its overlapping clinical features with type 1 and type 2 diabetes. Hence, genetic testing is the most appropriate tool for obtaining an accurate diagnosis. In Tunisia, few cohorts of MD have been investigated until now. The aim of this study is to search for pathogenic variants among 11 patients suspected of having MD in Tunisia using whole-exome sequencing (WES). Materials and methods: WES was performed in 11 diabetic patients recruited from a collaborating medical center. The pathogenicity of genetic variation was assessed using combined filtering and bioinformatics prediction tools. The online ORVAL tool was used to predict the likelihood of combinations of pathogenic variations. Then, Sanger sequencing was carried out to confirm likely pathogenic predicted variants among patients and to check for familial segregation. Finally, for some variants, we performed structural modeling to study their impact on protein function. Results: We identified novel variants related to MD in Tunisia. Pathogenic variants are located in several MODY and non-MODY genes. We highlighted the presence of syndromic forms of diabetes, including the Bardet-Biedl syndrome, Alström syndrome, and severe insulin resistance, as well as the presence of isolated diabetes with significantly reduced penetrance for Wolfram syndrome-related features. Idiopathic type 1 diabetes was also identified in one patient. Conclusion: In this study, we emphasized the importance of genetic screening for MD in patients with a familial history of diabetes, mainly among admixed and under-represented populations living in low- and middle-income countries. An accurate diagnosis with molecular investigation of MD may improve the therapeutic choice for better management of patients and their families. Additional research and rigorous investigations are required to better understand the physiopathological mechanisms of MD and implement efficient therapies that take into account genomic context and other related factors.
Collapse
Affiliation(s)
- Nadia Kheriji
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Hamza Dallali
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Ismail Gouiza
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
- MitoLab Team, Unité MitoVasc, UMR CNRS 6015, Institut national de la santé et de la recherche médicale U1083, SFR ICAT, University of Angers, Angers, France
| | - Meriem Hechmi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Faten Mahjoub
- University of Tunis El Manar, Tunis, Tunisia
- Faculté de Médecine de Tunis, Research Unit UR18ES01 on “Obesity”, Tunis, Tunisia
- National Institute of Nutrition and Food Technology, Tunis, Tunisia
| | - Mehdi Mrad
- University of Tunis El Manar, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
- Laboratory of Clinical Biochemistry and Hormonology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Asma Krir
- Laboratory of Clinical Biochemistry and Hormonology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Manel Soltani
- Laboratory of Clinical Biochemistry and Hormonology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Hajer Trabelsi
- Laboratory of Clinical Biochemistry and Hormonology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Walid Hamdi
- Laboratory of Clinical Immunology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Afef Bahlous
- University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Clinical Biochemistry and Hormonology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Melika Ben Ahmed
- University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Clinical Immunology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Henda Jamoussi
- University of Tunis El Manar, Tunis, Tunisia
- Faculté de Médecine de Tunis, Research Unit UR18ES01 on “Obesity”, Tunis, Tunisia
- National Institute of Nutrition and Food Technology, Tunis, Tunisia
| | - Rym Kefi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
7
|
Golovina EL, Grishkevich IR, Vaizova OE, Samoilova IG, Podchinenova DV, Matveeva MV, Kudlay DA. [Genetic aspects of type 1 glucagon peptide agonists clinical efficacy: A review]. TERAPEVT ARKH 2023; 95:274-278. [PMID: 37167150 DOI: 10.26442/00403660.2023.03.202150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
A review of publications devoted to the analysis of genetic polymorphisms of the gene encoding the glucagon-like peptide type 1 receptor and some other genes directly and indirectly involved in the implementation of its physiological action is presented. The aim of the study: to search for information on genes polymorphism that can affect the effectiveness of glucagon-like peptide type 1 agonists. The review was carried out in accordance with the PRISMA 2020 recommendations, the search for publications was based on PubMed databases (including Medline), Web of Science, as well as Russian scientific electronic source eLIBRARY.RU from 1993 to 2022. The several genes polymorphisms (GLP1R, TCF7L2, CNR1, SORCS1, WFS1, PPARD, CTRB1/2) that may affect the course and therapy of type 2 diabetes mellitus, metabolic syndrome and obesity, was described. Single nucleotide substitutions in some regions of these genes can both decrease and increase the clinical efficacy of the treatment of diabetes mellitus and metabolic syndrome with the help of type 1 glucagon-like peptide agonists: exenatide, liraglutide. Data on the role of genetic variations in the structure of the products of these genes in the effectiveness of other type 1 glucacone-like peptide agonists have not been found.
Collapse
Affiliation(s)
| | | | | | | | | | | | - D A Kudlay
- Sechenov First Moscow State Medical University (Sechenov University)
- NRC Institute of Immunology FMBA of Russia
| |
Collapse
|
8
|
Pál M, Nagy D, Neller A, Farkas K, Leprán-Török D, Nagy N, Füstös D, Nagy R, Németh A, Szilvássy J, Rovó L, Kiss JG, Széll M. Genetic Etiology of Nonsyndromic Hearing Loss in Hungarian Patients. Int J Mol Sci 2023; 24:ijms24087401. [PMID: 37108562 PMCID: PMC10138659 DOI: 10.3390/ijms24087401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Hearing loss is the most prevalent sensory disorder worldwide. The majority of congenital nonsyndromic hearing loss (NSHL) cases are caused by hereditary factors. Previously, the majority of NSHL studies focused on the GJB2 gene; however, with the availability of next-generation sequencing (NGS) methods, the number of novel variants associated with NSHL has increased. The purpose of this study was to design effective genetic screening for a Hungarian population based on a pilot study with 139 NSHL patients. A stepwise, comprehensive genetic approach was developed, including bidirectional capillary sequencing, multiplex ligation-dependent probe amplification (MLPA), and an NGS panel of 108 hearing loss genes. With our results, a genetic diagnosis was possible for 92 patients. Sanger sequencing and MLPA identified the genetic background of 50% of these diagnosed cases, and the NGS panel identified another 16%. The vast majority (92%) of the diagnosed cases showed autosomal recessive inheritance and 76% were attributed to GJB2. The implementation of this stepwise analysis markedly increased our diagnostic yield and proved to be cost-effective as well.
Collapse
Affiliation(s)
- Margit Pál
- Department of Medical Genetics, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
- ELKH-SZTE Functional Clinical Genetics Research Group, Eötvös Loránd Research Network, 6720 Szeged, Hungary
| | - Dóra Nagy
- Department of Medical Genetics, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
- Institute of Medical Genetics, Kepler University Hospital Med Campus IV, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Alexandra Neller
- Department of Medical Genetics, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
- ELKH-SZTE Functional Clinical Genetics Research Group, Eötvös Loránd Research Network, 6720 Szeged, Hungary
| | - Katalin Farkas
- Department of Medical Genetics, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| | - Dóra Leprán-Török
- Department of Medical Genetics, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| | - Nikoletta Nagy
- Department of Medical Genetics, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
- ELKH-SZTE Functional Clinical Genetics Research Group, Eötvös Loránd Research Network, 6720 Szeged, Hungary
| | - Dalma Füstös
- Department of Medical Genetics, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| | - Roland Nagy
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Adrienne Németh
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Pécs, 7621 Pécs, Hungary
| | - Judit Szilvássy
- Department of Otorhinolaryngology and Head-Neck Surgery, University of Debrecen, 4032 Debrecen, Hungary
| | - László Rovó
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - József Géza Kiss
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Márta Széll
- Department of Medical Genetics, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
- ELKH-SZTE Functional Clinical Genetics Research Group, Eötvös Loránd Research Network, 6720 Szeged, Hungary
| |
Collapse
|
9
|
Lim HD, Lee SM, Yun YJ, Lee DH, Lee JH, Oh SH, Lee SY. WFS1 autosomal dominant variants linked with hearing loss: update on structural analysis and cochlear implant outcome. BMC Med Genomics 2023; 16:79. [PMID: 37041640 PMCID: PMC10088283 DOI: 10.1186/s12920-023-01506-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/02/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Wolfram syndrome type 1 gene (WFS1), which encodes a transmembrane structural protein (wolframin), is essential for several biological processes, including proper inner ear function. Unlike the recessively inherited Wolfram syndrome, WFS1 heterozygous variants cause DFNA6/14/38 and wolfram-like syndrome, characterized by autosomal dominant nonsyndromic hearing loss, optic atrophy, and diabetes mellitus. Here, we identified two WFS1 heterozygous variants in three DFNA6/14/38 families using exome sequencing. We reveal the pathogenicity of the WFS1 variants based on three-dimensional (3D) modeling and structural analysis. Furthermore, we present cochlear implantation (CI) outcomes in WFS1-associated DFNA6/14/38 and suggest a genotype-phenotype correlation based on our results and a systematic review. METHODS We performed molecular genetic test and evaluated clinical phenotypes of three WFS1-associated DFNA6/14/38 families. A putative WFS1-NCS1 interaction model was generated, and the impacts of WFS1 variants on stability were predicted by comparing intramolecular interactions. A total of 62 WFS1 variants associated with DFNA6/14/38 were included in a systematic review. RESULTS One variant is a known mutational hotspot variant in the endoplasmic reticulum (ER)-luminal domain WFS1(NM_006005.3) (c.2051 C > T:p.Ala684Val), and the other is a novel frameshift variant in transmembrane domain 6 (c.1544_1545insA:p.Phe515LeufsTer28). The two variants were pathogenic, based on the ACMG/AMP guidelines. Three-dimensional modeling and structural analysis show that non-polar, hydrophobic substitution of Ala684 (p.Ala684Val) destabilizes the alpha helix and contributes to the loss of WFS1-NCS1 interaction. Also, the p.Phe515LeufsTer28 variant truncates transmembrane domain 7-9 and the ER-luminal domain, possibly impairing membrane localization and C-terminal signal transduction. The systematic review demonstrates favorable outcomes of CI. Remarkably, p.Ala684Val in WFS1 is associated with early-onset severe-to-profound deafness, revealing a strong candidate variant for CI. CONCLUSIONS We expanded the genotypic spectrum of WFS1 heterozygous variants underlying DFNA6/14/38 and revealed the pathogenicity of mutant WFS1, providing a theoretical basis for WFS1-NCS1 interactions. We presented a range of phenotypic traits for WFS1 heterozygous variants and demonstrated favorable functional CI outcomes, proposing p.Ala684Val a strong potential marker for CI candidates.
Collapse
Affiliation(s)
- Hui Dong Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - So Min Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ye Jin Yun
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dae Hee Lee
- CTCELLS, Inc, 21, Yuseong-daero, 1205beon-gil, Yuseong-gu, Daejeon, Republic of Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seung-Ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Chan YH, Tsai CY, Ho CH, Lu YC, Lin PH, Chen TC, Chen YT, Huang CY, Liu TC, Hsu CJ, Wu CC. Generation of induced pluripotent stem cells (IBMSi027-A) from a patient with hearing loss carrying WFS1 c.2051C > T (p.Ala684Val) variant. Stem Cell Res 2023; 69:103068. [PMID: 36933359 DOI: 10.1016/j.scr.2023.103068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Pathogenic variants of the WFS1 gene can cause recessive-inherited Wolfram syndrome or dominant-inherited Wolfram-like syndrome with optic atrophy and hearing impairment. Using the Sendai virus delivery system, we generated induced pluripotent stem cells from the peripheral blood mononuclear cells of a female patient with the WFS1 pathogenic variant c.2051C > T (p.Ala684Val). The resulting induced pluripotent stem cells exhibited a normal karyotype and pluripotency, as confirmed using immunofluorescence staining, and differentiated into three germ layers in vivo. This cellular model provides a useful platform for investigating the pathogenic mechanisms of both blindness and deafness related to WFS1 variants.
Collapse
Affiliation(s)
- Yen-Hui Chan
- Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan; Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Yu Tsai
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chang-Han Ho
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ying-Chang Lu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Hsuan Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ta-Ching Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - You-Tzung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cheng-Yen Huang
- Gene Knockout/in Cell Line Modeling Core, Human Disease Modeling Center, First Core Laboratory, Branch Office of Research and Development, College of Medicine, National Taiwan University, Taiwan
| | - Tien-Chen Liu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chuan-Jen Hsu
- Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan.
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
11
|
Serbis A, Rallis D, Giapros V, Galli-Tsinopoulou A, Siomou E. Wolfram Syndrome 1: A Pediatrician's and Pediatric Endocrinologist's Perspective. Int J Mol Sci 2023; 24:ijms24043690. [PMID: 36835101 PMCID: PMC9960967 DOI: 10.3390/ijms24043690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/21/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Wolfram syndrome 1 (WS1) is a rare autosomal recessive neurodegenerative disease caused by mutations in WFS1 and WFS2 genes that produce wolframin, a protein involved in endoplasmic reticulum calcium homeostasis and cellular apoptosis. Its main clinical features are diabetes insipidus (DI), early-onset non-autoimmune insulin-dependent diabetes mellitus (DM), gradual loss of vision due to optic atrophy (OA) and deafness (D), hence the acronym DIDMOAD. Several other features from different systems have been reported such as urinary tract, neurological, and psychiatric abnormalities. In addition, endocrine disorders that can appear during childhood and adolescence include primary gonadal atrophy and hypergonadotropic hypogonadism in males and menstrual cycle abnormalities in females. Further, anterior pituitary dysfunction with deficient GH and/or ACTH production have been described. Despite the lack of specific treatment for the disease and its poor life expectancy, early diagnosis and supportive care is important for timely identifying and adequately managing its progressive symptoms. The current narrative review focuses on the pathophysiology and the clinical features of the disease, with a special emphasis on its endocrine abnormalities that appear during childhood and adolescence. Further, therapeutic interventions that have been proven to be effective in the management of WS1 endocrine complications are discussed.
Collapse
Affiliation(s)
- Anastasios Serbis
- Department of Pediatrics, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece
- Correspondence:
| | - Dimitrios Rallis
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece
| | - Vasileios Giapros
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece
| | - Assimina Galli-Tsinopoulou
- Second Department of Pediatrics, School of Medicine, Faculty of Health Sciences, AHEPA University General Hospital, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Ekaterini Siomou
- Department of Pediatrics, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece
| |
Collapse
|
12
|
Guo L, Gu X, Sun Q, Zhang Y, Li H, Du Q. Novel WFS1 mutations in patients with low-to-middle frequency hearing loss. Int J Pediatr Otorhinolaryngol 2023; 167:111484. [PMID: 36958120 DOI: 10.1016/j.ijporl.2023.111484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/28/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Hearing loss (HL) is the most common sensorineural disorder in human. It is estimated that genetic factors contribute to over 50% of prelingual hearing loss. Most of dominant HHL patients manifest postlingual progressive hearing loss that mainly affect high frequencies. However, mutations in a few dominant HL genes, such as WFS1, TECTA and DIAPH1, cause distinct audiogram that primarily affects the low and middle frequencies. METHODS We recruited twelve independent HL families with worse low or middle frequency audiograms. Each proband of these families was excluded for pathogenic mutations in GJB2, SLC26A4, and MT-RNR1 genes. Mutation screening was performed by whole exome sequencing. Next, candidate variants were validated in each family by sanger sequencing. RESULTS Six heterozygous WFS1 variants were identified in six families, including three novel mutations (c.2519T > G, p.F840C; c.2048T > G, p.M683R and c.2419A > C, p.S807R) and three previously reported variants (c.2005T > C, p.Y669H; c.2590G > A, p.E864K and c.G2389A, p.D797 N). All the novel mutations were absent in 100 ethnically matched controls and were predicted to be deleterious by multiple algorithms. CONCLUSIONS We identified three novel and three previously reported WFS1 mutations in six unrelated Chinese families. Our findings enriched the genotype-phenotype spectrum of WFS1 related NSHL. Additional genotype-phenotype correlation study will clarify the detailed phenotypic range caused by WFS1 mutations.
Collapse
Affiliation(s)
- Luo Guo
- Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, ENT Institute and Otorhinolaryngology, Fudan University, No. 83, Fenyang Road, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Xiaodong Gu
- Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, ENT Institute and Otorhinolaryngology, Fudan University, No. 83, Fenyang Road, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Qin Sun
- Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, ENT Institute and Otorhinolaryngology, Fudan University, No. 83, Fenyang Road, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Yike Zhang
- Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, ENT Institute and Otorhinolaryngology, Fudan University, No. 83, Fenyang Road, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Huawei Li
- Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, ENT Institute and Otorhinolaryngology, Fudan University, No. 83, Fenyang Road, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Shanghai Engineering Research Centre of Cochlear Implant, Shanghai, 200031, China; The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| | - Qiang Du
- Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, ENT Institute and Otorhinolaryngology, Fudan University, No. 83, Fenyang Road, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
13
|
de Muijnck C, Brink JBT, Bergen AA, Boon CJF, van Genderen MM. Delineating Wolfram-like syndrome: A systematic review and discussion of the WFS1-associated disease spectrum. Surv Ophthalmol 2023:S0039-6257(23)00035-8. [PMID: 36764396 DOI: 10.1016/j.survophthal.2023.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Wolfram-like syndrome (WFLS) is a recently described autosomal dominant disorder with phenotypic similarities to autosomal recessive Wolfram syndrome (WS), including optic atrophy, hearing impairment, and diabetes mellitus. We summarize current literature, define the clinical characteristics, and investigate potential genotype phenotype correlations. A systematic literature search was conducted in electronic databases Pubmed/MEDLINE, EMBACE, and Cochrane Library. We included studies reporting patients with a clinical picture consisting at least 2 typical clinical manifestations of WSF1 disorders and heterozygous mutations in WFS1. In total, 86 patients from 35 studies were included. The most common phenotype consisted of the combination of optic atrophy (87%) and hearing impairment (94%). Diabetes mellitus was seen in 44% of the patients. Nineteen percent developed cataract. Patients with missense mutations in WFS1 had a lower number of clinical manifestations, less chance of developing diabetes insipidus, but a younger age at onset of hearing impairment compared to patients with nonsense mutations or deletions causing frameshift. There were no studies reporting decreased life expectancy. This review shows that, within the spectrum of WFS1-associated disorders or "wolframinopathies," autosomal dominantly inherited WFLS has a relatively mild phenotype compared to autosomal recessive WS. The clinical manifestations and their age at onset are associated with the specific underlying mutations in the WFS1 gene.
Collapse
Affiliation(s)
- Cansu de Muijnck
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Jacoline B Ten Brink
- Department of Human Genetics, Section Ophthalmogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Arthur A Bergen
- Department of Human Genetics, Section Ophthalmogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands; Queen Emma Center of Precision Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, the Netherlands; Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maria M van Genderen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands; Diagnostic Center for Complex Visual Disorders, Zeist, the Netherlands.
| |
Collapse
|
14
|
Chen Y, Zhang M, Zhou Y, Li P. Case Report: A novel mutation in WFS1 gene (c.1756G>A p.A586T) is responsible for early clinical features of cognitive impairment and recurrent ischemic stroke. Front Genet 2023; 14:1072978. [PMID: 36816038 PMCID: PMC9932685 DOI: 10.3389/fgene.2023.1072978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
Wolfram syndrome 1 (WFS1) gene mutations can be dominantly or recessively inherited, and the onset of the clinical picture is highly heterogeneity in both appearance and degree of severity. Different types of WFS1 mutations have been identified. Autosomal recessive mutations in the WFS1 gene will underlie Wolfram syndrome 1 (WS1), a rare and severe neurodegenerative disease characterized by diabetes insipidus, diabetes mellitus, optic atrophy, deafness, and other neurological, urological and psychiatric abnormalities. Other WFS1-related disorders such as low-frequency sensorineural hearing impairment (LFSNHI) and Wolfram syndrome-like disease with autosomal dominant transmission have been described. It is difficult to establish genotype-phenotype correlations because of the molecular complexity of wolframin protein. In this report, we presented a case of WSF1 gene mutation-related disease with cognitive impairment as the initial symptom and recurrent cerebral infarction in the course of the disease. Brain structural imaging results suggested decreased intracranial volume, dramatically reduced in cerebral cortex and cerebellum regions. Multimodal molecular imaging results suggested Tau protein deposition in the corresponding brain regions without Aβ pathology changes. These pathological changes may indicate a role of WFS1 in neuronal vulnerability to tau pathology associated with neurodegeneration and ischemia-induced damage.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Neurology, Tianjin Huanhu Hospital, Clinical College of Neurology, Neurosurgery, and Neurorehabilitation, Tianjin Medical University, Tianjin, China,Department of Neurology, Tianjin Huanhu Hospital affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Miao Zhang
- Department of Neurology, Tianjin Huanhu Hospital, Clinical College of Neurology, Neurosurgery, and Neurorehabilitation, Tianjin Medical University, Tianjin, China,Department of Neurology, Tianjin Huanhu Hospital affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Yuying Zhou
- Department of Neurology, Tianjin Huanhu Hospital, Clinical College of Neurology, Neurosurgery, and Neurorehabilitation, Tianjin Medical University, Tianjin, China,Department of Neurology, Tianjin Huanhu Hospital affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Pan Li
- Department of Neurology, Tianjin Huanhu Hospital, Clinical College of Neurology, Neurosurgery, and Neurorehabilitation, Tianjin Medical University, Tianjin, China,Department of Neurology, Tianjin Huanhu Hospital affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China,*Correspondence: Pan Li,
| |
Collapse
|
15
|
Saidia AR, Ruel J, Bahloul A, Chaix B, Venail F, Wang J. Current Advances in Gene Therapies of Genetic Auditory Neuropathy Spectrum Disorder. J Clin Med 2023; 12:jcm12030738. [PMID: 36769387 PMCID: PMC9918155 DOI: 10.3390/jcm12030738] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Auditory neuropathy spectrum disorder (ANSD) refers to a range of hearing impairments characterized by an impaired transmission of sound from the cochlea to the brain. This defect can be due to a lesion or defect in the inner hair cell (IHC), IHC ribbon synapse (e.g., pre-synaptic release of glutamate), postsynaptic terminals of the spiral ganglion neurons, or demyelination and axonal loss within the auditory nerve. To date, the only clinical treatment options for ANSD are hearing aids and cochlear implantation. However, despite the advances in hearing-aid and cochlear-implant technologies, the quality of perceived sound still cannot match that of the normal ear. Recent advanced genetic diagnostics and clinical audiology made it possible to identify the precise site of a lesion and to characterize the specific disease mechanisms of ANSD, thus bringing renewed hope to the treatment or prevention of auditory neurodegeneration. Moreover, genetic routes involving the replacement or corrective editing of mutant sequences or defected genes to repair damaged cells for the future restoration of hearing in deaf people are showing promise. In this review, we provide an update on recent discoveries in the molecular pathophysiology of genetic lesions, auditory synaptopathy and neuropathy, and gene-therapy research towards hearing restoration in rodent models and in clinical trials.
Collapse
Affiliation(s)
- Anissa Rym Saidia
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
| | - Jérôme Ruel
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
- Cognitive Neuroscience Laboratory, Aix-Marseille University, CNRS, UMR 7291, 13331 Marseille, France
| | - Amel Bahloul
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
| | - Benjamin Chaix
- Department of ENT and Head and Neck Surgery, University Hospital of Montpellier, 34295 Montpellier, France
| | - Frédéric Venail
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
- Department of ENT and Head and Neck Surgery, University Hospital of Montpellier, 34295 Montpellier, France
| | - Jing Wang
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
- Department of ENT and Head and Neck Surgery, University Hospital of Montpellier, 34295 Montpellier, France
- Correspondence: ; Tel.: +33-499-63-60-48
| |
Collapse
|
16
|
Abstract
Mitochondrial optic neuropathies have a leading role in the field of mitochondrial medicine ever since 1988, when the first mutation in mitochondrial DNA was associated with Leber's hereditary optic neuropathy (LHON). Autosomal dominant optic atrophy (DOA) was subsequently associated in 2000 with mutations in the nuclear DNA affecting the OPA1 gene. LHON and DOA are both characterized by selective neurodegeneration of retinal ganglion cells (RGCs) triggered by mitochondrial dysfunction. This is centered on respiratory complex I impairment in LHON and defective mitochondrial dynamics in OPA1-related DOA, leading to distinct clinical phenotypes. LHON is a subacute, rapid, severe loss of central vision involving both eyes within weeks or months, with age of onset between 15 and 35 years old. DOA is a more slowly progressive optic neuropathy, usually apparent in early childhood. LHON is characterized by marked incomplete penetrance and a clear male predilection. The introduction of next-generation sequencing has greatly expanded the genetic causes for other rare forms of mitochondrial optic neuropathies, including recessive and X-linked, further emphasizing the exquisite sensitivity of RGCs to compromised mitochondrial function. All forms of mitochondrial optic neuropathies, including LHON and DOA, can manifest either as pure optic atrophy or as a more severe multisystemic syndrome. Mitochondrial optic neuropathies are currently at the forefront of a number of therapeutic programs, including gene therapy, with idebenone being the only approved drug for a mitochondrial disorder.
Collapse
Affiliation(s)
- Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy.
| | - Chiara La Morgia
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom; Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
17
|
Alías L, López de Heredia M, Luna S, Clivillé N, González-Quereda L, Gallano P, de Juan J, Pujol A, Diez S, Boronat S, Orús C, Lasa A, Venegas MDP. Case report: De novo pathogenic variant in WFS1 causes Wolfram-like syndrome debuting with congenital bilateral deafness. Front Genet 2022; 13:998898. [PMID: 36330437 PMCID: PMC9623256 DOI: 10.3389/fgene.2022.998898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/29/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Congenital deafness could be the first manifestation of a syndrome such as in Usher, Pendred, and Wolfram syndromes. Therefore, a genetic study is crucial in this deficiency to significantly improve its diagnostic efficiency, to predict the prognosis, to select the most adequate treatment required, and to anticipate the development of other associated clinical manifestations. Case presentation: We describe a young girl with bilateral congenital profound deafness, who initially received a single cochlear implant. The genetic study of her DNA using a custom-designed next-generation sequencing (NGS) panel detected a de novo pathogenic heterozygous variant in the WFS1 gene related to Wolfram-like syndrome, which is characterized by the presence of other symptoms such as optic atrophy. Due to this diagnosis, a second implant was placed after the optic atrophy onset. The speech audiometric results obtained with both implants indicate that this work successfully allows the patient to develop normal speech. Deterioration of the auditory nerves has not been observed. Conclusion: The next-generation sequencing technique allows a precise molecular diagnosis of diseases with high genetic heterogeneity, such as hereditary deafness, while this was the only symptom presented by the patient at the time of analysis. The NGS panel, in which genes responsible for both syndromic and non-syndromic hereditary deafness were included, was essential to reach the diagnosis in such a young patient. Early detection of the pathogenic variant in the WFS1 gene allowed us to anticipate the natural evolution of the disease and offer the most appropriate management to the patient.
Collapse
Affiliation(s)
- Laura Alías
- Genetics Department, IIB Sant Pau, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
- U705—Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Laura Alías,
| | - Miguel López de Heredia
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Sabina Luna
- Ophthalmology Department, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Núria Clivillé
- Genetics Department, IIB Sant Pau, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Lídia González-Quereda
- Genetics Department, IIB Sant Pau, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
- U705—Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Pía Gallano
- Genetics Department, IIB Sant Pau, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
- U705—Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Júlia de Juan
- Otorhinolaringologyst Department, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Albert Pujol
- Otorhinolaringologyst Department, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Santiago Diez
- Otorhinolaringology Department, Hospital Esperit Sant, Santa Coloma de Gramenet, Spain
| | - Susana Boronat
- Child Neurology Unit, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - César Orús
- Otorhinolaringologyst Department, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Adriana Lasa
- Genetics Department, IIB Sant Pau, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
- U705—Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
18
|
Majander A, Jurkute N, Burté F, Brock K, João C, Huang H, Neveu MM, Chan CM, Duncan HJ, Kelly S, Burkitt-Wright E, Khoyratty F, Lai YT, Subash M, Chinnery PF, Bitner-Glindzicz M, Arno G, Webster AR, Moore AT, Michaelides M, Stockman A, Robson AG, Yu-Wai-Man P. WFS1-Associated Optic Neuropathy: Genotype-Phenotype Correlations and Disease Progression. Am J Ophthalmol 2022; 241:9-27. [PMID: 35469785 DOI: 10.1016/j.ajo.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To evaluate the pattern of vision loss and genotype-phenotype correlations in WFS1-associated optic neuropathy (WON). DESIGN Multicenter cohort study. METHODS The study involved 37 patients with WON carrying pathogenic or candidate pathogenic WFS1 variants. Genetic and clinical data were retrieved from the medical records. Thirteen patients underwent additional comprehensive ophthalmologic assessment. Deep phenotyping involved visual electrophysiology and advanced psychophysical testing with a complementary metabolomic study. MAIN OUTCOME MEASURES WFS1 variants, functional and structural optic nerve and retinal parameters, and metabolomic profile. RESULTS Twenty-two recessive and 5 dominant WFS1 variants were identified. Four variants were novel. All WFS1 variants caused loss of macular retinal ganglion cells (RGCs) as assessed by optical coherence tomography (OCT) and visual electrophysiology. Advanced psychophysical testing indicated involvement of the major RGC subpopulations. Modeling of vision loss showed an accelerated rate of deterioration with increasing age. Dominant WFS1 variants were associated with abnormal reflectivity of the outer plexiform layer (OPL) on OCT imaging. The dominant variants tended to cause less severe vision loss compared with recessive WFS1 variants, which resulted in more variable phenotypes ranging from isolated WON to severe multisystem disease depending on the WFS1 alleles. The metabolomic profile included markers seen in other neurodegenerative diseases and type 1 diabetes mellitus. CONCLUSIONS WFS1 variants result in heterogenous phenotypes influenced by the mode of inheritance and the disease-causing alleles. Biallelic WFS1 variants cause more variable, but generally more severe, vision and RGC loss compared with heterozygous variants. Abnormal cleftlike lamination of the OPL is a distinctive OCT feature that strongly points toward dominant WON.
Collapse
Affiliation(s)
- Anna Majander
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom; Moorfields Eye Hospital (A.M., N.J., M.M.N., C.M.C., G.A., A.R.W., A.T.M., M.M., A.G.R., P.Y.-W.-M.), London, United Kingdom; Department of Ophthalmology, Helsinki University Hospital, University of Helsinki (A.M.), Helsinki, Finland.
| | - Neringa Jurkute
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom; Moorfields Eye Hospital (A.M., N.J., M.M.N., C.M.C., G.A., A.R.W., A.T.M., M.M., A.G.R., P.Y.-W.-M.), London, United Kingdom
| | - Florence Burté
- Biosciences Institute, International Centre for Life, Newcastle University (F.B.), Newcastle upon Tyne, United Kingdom
| | - Kristian Brock
- Cancer Research UK Clinical Trials Unit, University of Birmingham (K.B.), Birmingham, United Kingdom
| | - Catarina João
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom
| | - Houbin Huang
- Hainan Hospital of the General Hospital of Chinese People's Liberation Army (H.H.), Sanya, China
| | - Magella M Neveu
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom; Moorfields Eye Hospital (A.M., N.J., M.M.N., C.M.C., G.A., A.R.W., A.T.M., M.M., A.G.R., P.Y.-W.-M.), London, United Kingdom
| | - Choi Mun Chan
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom; Moorfields Eye Hospital (A.M., N.J., M.M.N., C.M.C., G.A., A.R.W., A.T.M., M.M., A.G.R., P.Y.-W.-M.), London, United Kingdom
| | - Holly J Duncan
- Newcastle Eye Centre, Royal Victoria Infirmary (H.J.D.), Newcastle upon Tyne, United Kingdom
| | - Simon Kelly
- Bolton NHS Foundation Trust (S.K., F.K., Y.T.L.), Bolton, United Kingdom
| | - Emma Burkitt-Wright
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust (E.B.-W.), Manchester, United Kingdom; Division of Evolution and Genomic Sciences, University of Manchester, Manchester Academic Health Sciences Centre (E.B.-W.), Manchester, United Kingdom
| | - Fadil Khoyratty
- Bolton NHS Foundation Trust (S.K., F.K., Y.T.L.), Bolton, United Kingdom
| | - Yoon Tse Lai
- Bolton NHS Foundation Trust (S.K., F.K., Y.T.L.), Bolton, United Kingdom
| | - Mala Subash
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom
| | - Patrick F Chinnery
- MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge (P.F.C.), Cambridge, United Kingdom
| | | | - Gavin Arno
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom; Moorfields Eye Hospital (A.M., N.J., M.M.N., C.M.C., G.A., A.R.W., A.T.M., M.M., A.G.R., P.Y.-W.-M.), London, United Kingdom
| | - Andrew R Webster
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom; Moorfields Eye Hospital (A.M., N.J., M.M.N., C.M.C., G.A., A.R.W., A.T.M., M.M., A.G.R., P.Y.-W.-M.), London, United Kingdom
| | - Anthony T Moore
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom; Moorfields Eye Hospital (A.M., N.J., M.M.N., C.M.C., G.A., A.R.W., A.T.M., M.M., A.G.R., P.Y.-W.-M.), London, United Kingdom; Department of Ophthalmology, UCSF School of Medicine (A.T.M.), San Francisco, California, USA
| | - Michel Michaelides
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom; Moorfields Eye Hospital (A.M., N.J., M.M.N., C.M.C., G.A., A.R.W., A.T.M., M.M., A.G.R., P.Y.-W.-M.), London, United Kingdom
| | - Andrew Stockman
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom
| | - Anthony G Robson
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom; Moorfields Eye Hospital (A.M., N.J., M.M.N., C.M.C., G.A., A.R.W., A.T.M., M.M., A.G.R., P.Y.-W.-M.), London, United Kingdom
| | - Patrick Yu-Wai-Man
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom; Moorfields Eye Hospital (A.M., N.J., M.M.N., C.M.C., G.A., A.R.W., A.T.M., M.M., A.G.R., P.Y.-W.-M.), London, United Kingdom; John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge (P.Y.-W.-M.), Cambridge, United Kingdom; and Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals (P.Y.-W.-M.), Cambridge, United Kingdom
| |
Collapse
|
19
|
Zhang X, Xie Y, Xu K, Chang H, Zhang X, Li Y. Comprehensive Genetic Analysis Unraveled the Missing Heritability in a Chinese Cohort With Wolfram Syndrome 1: Clinical and Genetic Findings. Invest Ophthalmol Vis Sci 2022; 63:9. [PMID: 36098976 PMCID: PMC9482318 DOI: 10.1167/iovs.63.10.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To identify the missing heritability of patients with Wolfram syndrome 1 (WFS1) in a Chinese cohort and to report their clinical and genetic features. Methods We recruited 24 unrelated patients with suspected WFS1 who carried at least one variant in WFS1. All patients underwent ophthalmic examinations and comprehensive molecular genetic analyses, including Sanger-DNA sequencing of WFS1 and next-generation sequencing of the whole WFS1 sequence. Results We identified 38 distinct pathogenic variants of WFS1 in the 24 probands, comprising 23 patients with biallelic variants and one patient with a monoallelic variant. Sanger-DNA sequencing of WFS1 initially detected 35 variants, and subsequent whole genome sequencing revealed three missing variants: one novel deep intronic variant (DIV), one copy number variant (CNV), and one variant in the promoter region. Minigene assays showed that the DIV activated cryptic splice sites, leading to the insertion of pseudoexons. Optic atrophy was observed in all patients, and diabetes mellitus (DM) was revealed in 21 patients (91.3%), hearing loss in nine patients (39.1%), renal tract abnormalities in nine patients (39.1%), and diabetes insipidus in five patients (21.7%). The mean onset age for DM was significantly younger in the patients with biallelic null variants than in the patients with biallelic missense variants. Conclusions Our results extend the pathogenic variant spectrum of WFS1. DIVs and CNVs explained rare unresolved Chinese cases with WFS1. The patients showed a wide and variable clinical spectrum, supporting the importance of genetic analysis for patients with atypical WFS1.
Collapse
Affiliation(s)
- Xin Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab. Beijing, China
| | - Yue Xie
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab. Beijing, China
| | - Ke Xu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab. Beijing, China
| | - Haoyu Chang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab. Beijing, China
| | - Xiaohui Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab. Beijing, China
| | - Yang Li
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab. Beijing, China
| |
Collapse
|
20
|
Mair H, Fowler N, Papatzanaki ME, Sudhakar P, Maldonado RS. Novel missense WFS1 variant causing autosomal dominant atypical Wolfram syndrome. Ophthalmic Genet 2022; 43:567-572. [PMID: 35450504 DOI: 10.1080/13816810.2022.2068038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/02/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND In contrast to the classic autosomal recessive Wolfram syndrome, Wolfram-like syndrome (WLS) is an autosomal dominant disease caused by heterozygous variants in the WFS1 gene. Here, we present deep phenotyping of a mother and son with a WFS1 variant NM_006005.3:c.2508 G > T, p. (Lys836Asn) detected with next-generation sequencing, which is novel at the nucleotide level. In this Greek family, the proband and mother had sensorineural hearing loss and mild non-progressive vision loss with optic nerve atrophy. An initial optic atrophy panel that did not test for WFS1 was unremarkable, but a broader inherited retinal dystrophy panel found the WFS1 variant. CONCLUSION This study highlights the importance of including WFS1 sequencing in the evaluation of optic nerve atrophy to discover syndromic conditions.
Collapse
Affiliation(s)
- Hailey Mair
- Department of Ophthalmology and Visual Sciences-Ophthalmic Genetics Service, University of Kentucky, Lexington, Kentucky, USA
| | - Nicholas Fowler
- Department of Ophthalmology and Visual Sciences-Ophthalmic Genetics Service, University of Kentucky, Lexington, Kentucky, USA
| | | | - Padmaja Sudhakar
- Department of Ophthalmology and Visual Sciences-Ophthalmic Genetics Service, University of Kentucky, Lexington, Kentucky, USA
- Department of Neurology, University of Kentucky, Lexington, Kentucky, USA
| | - Ramiro S Maldonado
- Department of Ophthalmology and Visual Sciences-Ophthalmic Genetics Service, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
21
|
Charif M, Chevrollier A, Gueguen N, Kane S, Bris C, Goudenège D, Desquiret-Dumas V, Meunier I, Mochel F, Jeanjean L, Varenne F, Procaccio V, Reynier P, Bonneau D, Amati-Bonneau P, Lenaers G. Next-Generation Sequencing Identifies Novel PMPCA Variants in Patients with Late-Onset Dominant Optic Atrophy. Genes (Basel) 2022; 13:1202. [PMID: 35885985 PMCID: PMC9320445 DOI: 10.3390/genes13071202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/11/2022] [Accepted: 07/01/2022] [Indexed: 02/01/2023] Open
Abstract
Dominant Optic Atrophy (DOA) is one of the most common inherited mitochondrial diseases, leading to blindness. It is caused by the chronic degeneration of the retinal ganglion cells (RGCs) and their axons forming the optic nerve. Until now, DOA has been mainly associated with genes encoding proteins involved in mitochondrial network dynamics. Using next-generation and exome sequencing, we identified for the first time heterozygous PMPCA variants having a causative role in the pathology of late-onset primary DOA in five patients. PMPCA encodes an α subunit of the mitochondrial peptidase (MPP), responsible for the cleavage and maturation of the mitochondrial precursor proteins imported from the cytoplasm into mitochondria. Recently, PMPCA has been identified as the gene responsible for Autosomal Recessive Cerebellar Ataxia type 2 (SCAR2) and another severe recessive mitochondrial disease. In this study, four PMPCA variants were identified, two are frameshifts (c.309delA and c.820delG) classified as pathogenic and two are missenses (c.1363G>A and c.1547G>A) classified with uncertain pathological significance. Functional assays on patients’ fibroblasts show a hyperconnection of the mitochondrial network and revealed that frameshift variants reduced α-MPP levels, while not significantly affecting the respiratory machinery. These results suggest that alterations in mitochondrial peptidase function can affect the fusion-fission balance, a key element in maintaining the physiology of retinal ganglion cells, and consequently lead to their progressive degeneration.
Collapse
Affiliation(s)
- Majida Charif
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Genetics and Immuno-Cell Therapy Team, Mohammed First University, Oujda 60000, Morocco
| | - Arnaud Chevrollier
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
| | - Naïg Gueguen
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Departments of Biochemistry and Molecular Biology, University Hospital Angers, 49933 Angers, France
| | - Selma Kane
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
| | - Céline Bris
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Departments of Biochemistry and Molecular Biology, University Hospital Angers, 49933 Angers, France
| | - David Goudenège
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Departments of Biochemistry and Molecular Biology, University Hospital Angers, 49933 Angers, France
| | - Valerie Desquiret-Dumas
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Departments of Biochemistry and Molecular Biology, University Hospital Angers, 49933 Angers, France
| | - Isabelle Meunier
- National Reference Centre for Inherited Sensory Diseases, University Hospital of Montpellier, University of Montpellier, 34000 Montpellier, France;
- Institut des Neurosciences de Montpellier, INSERM U1051, Université de Montpellier, 34000 Montpellier, France
| | - Fanny Mochel
- Department of Genetics, AP-HP, Pitié-Salpêtrière University Hospital, 75013 Paris, France;
| | - Luc Jeanjean
- Department of Ophthalmology, Nîmes University Hospital, CEDEX 9, 30900 Nîmes, France;
| | - Fanny Varenne
- Department of Ophthalmology, Hôpital Pierre Paul Riquet CHU Purpan, 31300 Toulouse, France;
| | - Vincent Procaccio
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Departments of Genetics, University Hospital Angers, 49933 Angers, France
| | - Pascal Reynier
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Departments of Biochemistry and Molecular Biology, University Hospital Angers, 49933 Angers, France
| | - Dominique Bonneau
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Departments of Genetics, University Hospital Angers, 49933 Angers, France
| | - Patrizia Amati-Bonneau
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Departments of Biochemistry and Molecular Biology, University Hospital Angers, 49933 Angers, France
| | - Guy Lenaers
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Service de Neurologie, University Hospital Angers, 49933 Angers, France
| |
Collapse
|
22
|
Lin PH, Wu HP, Wu CM, Chiang YT, Hsu JS, Tsai CY, Wang H, Tseng LH, Chen PY, Yang TH, Hsu CJ, Chen PL, Wu CC, Liu TC. Cochlear Implantation Outcomes in Patients with Auditory Neuropathy Spectrum Disorder of Genetic and Non-Genetic Etiologies: A Multicenter Study. Biomedicines 2022; 10:biomedicines10071523. [PMID: 35884828 PMCID: PMC9313466 DOI: 10.3390/biomedicines10071523] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/04/2023] Open
Abstract
With diverse etiologies and clinical features, the management of pediatric auditory neuropathy spectrum disorder (ANSD) is often challenging, and the outcomes of cochlear implants (CIs) are variable. This study aimed to investigate CI outcomes in pediatric patients with ANSD of different etiologies. Thirty-six children with ANSD who underwent cochlear implantation between 2001 and 2021 were included. Comprehensive etiological analyses were conducted, including a history review, next-generation sequencing-based genetic examinations, and imaging studies using high-resolution computed tomography and magnetic resonance imaging. Serial behavioral and speech audiometry were performed before and after surgery, and the outcomes with CI were evaluated using the Categories of Auditory Performance (CAP) and Speech Intelligibility Rating (SIR) scores. By etiology, 18, 1, 1, and 10 patients had OTOF-related, WFS1-related, OPA1-related, and cochlear nerve deficiency (CND)-related ANSD, respectively. Six patients had no definite etiology. The average CI-aided behavioral threshold was 28.3 ± 7.8 dBHL, and those with CND-related ANSD were significantly worse than OTOF-related ANSD. The patients’ median CAP and SIR scores were 6 and 4, respectively. Favorable CI outcomes were observed in patients with certain etiologies of ANSD, particularly those with OTOF (CAP/SIR scores 5–7/2–5), WFS1 (CAP/SIR score 6/5), and OPA1 variants (CAP/SIR score 7/5). Patients with CND had suboptimal CI outcomes (CAP/SIR scores 2–6/1–3). Identifying the etiologies in ANSD patients is crucial before surgery and can aid in predicting prognoses.
Collapse
Affiliation(s)
- Pei-Hsuan Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; (P.-H.L.); (P.-L.C.)
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
- Department of Otolaryngology, National Taiwan University Hospital Yunlin Branch, Yunlin 64041, Taiwan
| | - Hung-Pin Wu
- Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan;
| | - Che-Ming Wu
- Department of Otolaryngology & Head and Neck Surgery, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City 23652, Taiwan;
- Department of Otolaryngology & Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, Linkou, Taoyuan 33305, Taiwan
| | - Yu-Ting Chiang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
| | - Jacob Shujui Hsu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
| | - Cheng-Yu Tsai
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
| | - Han Wang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
| | - Li-Hui Tseng
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
| | - Pey-Yu Chen
- Department of Otolaryngology, MacKay Memorial Hospital, Taipei 10449, Taiwan;
- Department of Audiology and Speech-Language Pathology, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Ting-Hua Yang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
| | - Chuan-Jen Hsu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
- Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan;
| | - Pei-Lung Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; (P.-H.L.); (P.-L.C.)
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10002, Taiwan
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu 30261, Taiwan
- Department of Otolaryngology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu 30261, Taiwan
- Hearing and Speech Center, National Taiwan University Hospital, Taipei 10002, Taiwan
- Correspondence: (C.-C.W.); (T.-C.L.)
| | - Tien-Chen Liu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
- Correspondence: (C.-C.W.); (T.-C.L.)
| |
Collapse
|
23
|
Rotsos T, Papakonstantinou E, Symeonidis C, Krassas A, Kamakari S. Wolfram Syndrome: A case report of two sisters Wolfram Syndrome: Case report of two sisters. Am J Ophthalmol Case Rep 2022; 26:101452. [PMID: 35252627 PMCID: PMC8892096 DOI: 10.1016/j.ajoc.2022.101452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 02/08/2023] Open
Abstract
PURPOSE To present a case of two siblings with optic atrophy associated with Wolfram Syndrome. OBSERVATIONS Two young adult siblings presented with serious bilateral loss of vision and dyschromatopsia established in early adolescence. They were referred with a presumed diagnosis of Leber's Hereditary Optic Neuropathy. At baseline, visual acuity was 20/400 in the right eye and 20/200 in the left eye in patient A and 20/200 in both eyes in patient B, color perception tested with pseudo-isochromatic plates was 0/17 in each eye, optic discs were pale, visual field testing revealed diffuse scotomas bilaterally while electrophysiology showed delayed prominent positive deflection (P100) values in both patients. Personal history revealed Type 1 diabetes mellitus since early childhood. Patients were lost to follow-up and presented 4 years later with significant VA decrease (<20/400) and suspected hearing loss. At that point, genetic testing revealed a pathogenic variation in the WFS1 gene thus confirming the diagnosis of Wolfram syndrome. Treatment with idebenone was proposed, to which only one of the siblings agreed. The other patient remained under observation, as no known treatment for optic atrophy in Wolfram syndrome exists to date. CONCLUSIONS AND IMPORTANCE Wolfram syndrome is a rare neurodegenerative genetic disease associated with diabetes mellitus, optic atrophy and deafness. Careful and detailed medical and family history led to appropriate testing that confirmed the diagnosis of Wolfram syndrome. To this day, there is no definite treatment for this disease, but the experimental use of idebenone has been suggested to improve visual function. Genetic testing of family members and offspring of patients is strongly recommended.
Collapse
Affiliation(s)
- Tryfon Rotsos
- 1st Department of Ophthalmology, University of Athens, G. Gennimatas General Hospital, 154 Mesogion Av., 115 27, Athens, Greece
| | - Evangelia Papakonstantinou
- 1st Department of Ophthalmology, University of Athens, G. Gennimatas General Hospital, 154 Mesogion Av., 115 27, Athens, Greece
| | - Chrysanthos Symeonidis
- 2nd Department of Ophthalmology, Aristotle University of Thessaloniki, Thessaloniki Ring Road, 546 03, Thessaloniki, Greece
- Corresponding author. 44 Tsimiski str., 546 23, Thessaloniki, Greece.
| | - Augoustinos Krassas
- 1st Department of Ophthalmology, University of Athens, G. Gennimatas General Hospital, 154 Mesogion Av., 115 27, Athens, Greece
| | - Smaragda Kamakari
- Ophthalmic Genetics Unit, OMMA Institute, 74 Katechaki Str., 115 25, Athens, Greece
| |
Collapse
|
24
|
Two Cases of Wolfram Syndrome Who Were Initially Diagnosed With Type 1 Diabetes. AACE Clin Case Rep 2022; 8:128-130. [PMID: 35602877 PMCID: PMC9123558 DOI: 10.1016/j.aace.2022.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 11/30/2022] Open
Abstract
Objective Early diagnosis of syndromic monogenic diabetes allows for proper management and can lead to improved quality of life in the long term. This report aimed to describe 2 genetically confirmed cases of Wolfram syndrome, a rare endoplasmic reticulum disorder characterized by insulin-dependent diabetes mellitus, optic nerve atrophy, and progressive neurodegeneration. Case Report A 16-year-old Caucasian male patient and a 25-year-old Caucasian female patient with a history of diabetes mellitus and optic nerve atrophy presented at our medical center. Both patients were initially diagnosed with type 1 diabetes but negative for islet autoantibodies. Their body mass indexes were under 25 at the diagnosis. Their history and presentation were highly suspicious for Wolfram syndrome. Discussion The genetic tests revealed a known Wolfram syndrome 1 (WFS1) pathogenic variant (homozygous) in the 16-year-old male patient and 2 known WFS1 pathogenic variants (compound heterozygous) in the 25-year-old female patient with diabetes mellitus and optic nerve atrophy, confirming the diagnosis of Wolfram syndrome. The first patient had a moderate form, and the second patient had a milder form of Wolfram syndrome. Conclusion Providers should consider monogenic diabetes genetic testing, including WFS1 gene, for patients with early-onset diabetes who are negative for islet autoantibodies and lean. Two patients described in this article could have been diagnosed with Wolfram syndrome before they developed optic nerve atrophy. Genetic testing is a valuable tool for the early detection of Wolfram syndrome, which leads to proper management and improved quality of life in patients with this rare medical condition.
Collapse
|
25
|
Kabanovski A, Donaldson L, Margolin E. Neuro-ophthalmological manifestations of Wolfram syndrome: Case series and review of the literature. J Neurol Sci 2022; 437:120267. [DOI: 10.1016/j.jns.2022.120267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 04/03/2022] [Accepted: 04/15/2022] [Indexed: 12/13/2022]
|
26
|
Wolfram Syndrome 1: From Genetics to Therapy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063225. [PMID: 35328914 PMCID: PMC8949990 DOI: 10.3390/ijerph19063225] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023]
Abstract
Wolfram syndrome 1 (WS1) is a rare neurodegenerative disease transmitted in an autosomal recessive mode. It is characterized by diabetes insipidus (DI), diabetes mellitus (DM), optic atrophy (OA), and sensorineural hearing loss (D) (DIDMOAD). The clinical picture may be complicated by other symptoms, such as urinary tract, endocrinological, psychiatric, and neurological abnormalities. WS1 is caused by mutations in the WFS1 gene located on chromosome 4p16 that encodes a transmembrane protein named wolframin. Many studies have shown that wolframin regulates some mechanisms of ER calcium homeostasis and therefore plays a role in cellular apoptosis. More than 200 mutations are responsible for WS1. However, abnormal phenotypes of WS with or without DM, inherited in an autosomal dominant mode and associated with one or more WFS1 mutations, have been found. Furthermore, recessive Wolfram-like disease without DM has been described. The prognosis of WS1 is poor, and the death occurs prematurely. Although there are no therapies that can slow or stop WS1, a careful clinical monitoring can help patients during the rapid progression of the disease, thus improving their quality of life. In this review, we describe natural history and etiology of WS1 and suggest criteria for a most pertinent approach to the diagnosis and clinical follow up. We also describe the hallmarks of new therapies for WS1.
Collapse
|
27
|
Lee J, Iwasaki T, Kaida T, Chuman H, Yoshimura A, Okamoto Y, Takashima H, Miyata K. A case of adult-onset Wolfram syndrome with compound heterozygous mutations of the WFS1 gene. Am J Ophthalmol Case Rep 2022; 25:101315. [PMID: 35112031 PMCID: PMC8790281 DOI: 10.1016/j.ajoc.2022.101315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 09/29/2021] [Accepted: 01/20/2022] [Indexed: 10/26/2022] Open
|
28
|
Smetek M, Gadzalska K, Jakiel P, Grzybowska J, Mysliwiec M, Borowiec M, Zmysłowska A. Wolfram-like syndrome - another face of a rare disease in children. J Pediatr Endocrinol Metab 2022; 35:121-124. [PMID: 34643356 DOI: 10.1515/jpem-2021-0348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/27/2021] [Indexed: 01/23/2023]
Abstract
OBJECTIVES The presence of two pathogenic variants in the WFS1 gene leads to the occurrence of a rare genetic disease in children - Wolfram syndrome (WFS), which includes insulin-dependent diabetes mellitus (DM), optic atrophy (OA), diabetes insipidus (DI), and deafness (D). However, the presence of a single mutation in the WFS1 gene results in a number of other autosomal dominant inherited diseases, including Wolfram-like syndrome (WFS-like). CASE PRESENTATION A 10-year-old boy was referred to the Genetic Outpatient Clinic with suspected WFS based on the coexistence of D, type 1 DM, short stature, and abnormalities in ophthalmologic examination (astigmatism and OA due to the optical coherence tomography result). The genetic analysis did not confirm WFS syndrome in the boy but identified a single likely pathogenic de novo variant in the WFS1 gene, which confirmed WFS-like syndrome. CONCLUSIONS Currently, the patient is under the care of an endocrinologist, diabetologist, ophthalmologist, audiologist, and also psychologist because of mood disorders.
Collapse
Affiliation(s)
- Mariusz Smetek
- Department of Pediatrics, Diabetology and Endocrinology, Medical University of Gdansk, Gdansk, Poland
| | - Karolina Gadzalska
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - Paulina Jakiel
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - Julia Grzybowska
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - Malgorzata Mysliwiec
- Department of Pediatrics, Diabetology and Endocrinology, Medical University of Gdansk, Gdansk, Poland
| | - Maciej Borowiec
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | | |
Collapse
|
29
|
Urinary Tract Involvement in Wolfram Syndrome: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211994. [PMID: 34831749 PMCID: PMC8624443 DOI: 10.3390/ijerph182211994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/18/2022]
Abstract
Wolfram Syndrome (WS) is a rare neurodegenerative disease with autosomal recessive inheritance and characterized by juvenile onset, non-autoimmune diabetes mellitus and later followed by optic atrophy leading to blindness, diabetes insipidus, hearing loss, and other neurological and endocrine dysfunctions. A wide spectrum of neurodegenerative abnormalities affecting the central nervous system has been described. Among these complications, neurogenic bladder and urodynamic abnormalities also deserve attention. Urinary tract dysfunctions (UTD) up to end stage renal disease are a life-threatening complication of WS patients. Notably, end stage renal disease is reported as one of the most common causes of death among WS patients. UTD have been also reported in affected adolescents. Involvement of the urinary tract occurs in about 90% of affected patients, at a median age of 20 years and with peaks at 13, 21 and 33 years. The aim of our narrative review was to provide an overview of the most important papers regarding urological impairment in Wolfram Syndrome. A comprehensive search on PubMed including Wolfram Syndrome and one or more of the following terms: chronic renal failure, bladder dysfunction, urological aspects, and urinary tract dysfunction, was done. The exclusion criteria were studies not written in English and not including urinary tract dysfunction deep evaluation and description. Studies mentioning general urologic abnormalities without deep description and/or follow-up were not considered. Due to the rarity of the condition, we considered not only papers including pediatric patients, but also papers with pediatric and adult case reports
Collapse
|
30
|
Lin CW, Huang CW, Luo AC, Chou YT, Huang YS, Chen PL, Chen TC. Genetic Spectrum and Characteristics of Hereditary Optic Neuropathy in Taiwan. Genes (Basel) 2021; 12:genes12091378. [PMID: 34573359 PMCID: PMC8467776 DOI: 10.3390/genes12091378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/20/2021] [Accepted: 08/30/2021] [Indexed: 12/30/2022] Open
Abstract
Hereditary optic neuropathy (HON) is a group of genetically heterogeneous diseases that cause optic nerve atrophy and lead to substantial visual impairment. HON may present with optic nerve atrophy only or in association with various systemic abnormalities. Although a genetic survey is indispensable for diagnosing HON, conventional sequencing techniques could render its diagnosis challenging. In this study, we attempted to explore the genetic background of patients with HON in Taiwan through capture-based next-generation sequencing targeting 52 HON-related genes. In total, 57 patients from 48 families were recruited, with 6 patients diagnosed as having Leber hereditary optic neuropathy through initial screening for three common variants (m.3460G>A, m.11778G>A, m.14484T>C). Disease-causing genotypes were identified in 14 (33.3%) probands, and OPA1 variants were the most prevalent cause of autosomal HON. Exposure to medications such as ethambutol could trigger an attack of autosomal dominant optic atrophy. WFS1 variants were identified in three probands with variable clinical features in our cohort. Hearing impairment could occur in patients with OPA1 or WFS1 variants. This is the first comprehensive study investigating the genetic characteristics of HON in Taiwan, especially for autosomal HON. Our results could provide useful information for clinical diagnosis and genetic counseling in this field.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Child
- Child, Preschool
- DNA Mutational Analysis/statistics & numerical data
- Female
- GTP Phosphohydrolases/genetics
- Genetic Counseling
- Genetic Testing/statistics & numerical data
- Humans
- Male
- Membrane Proteins/genetics
- Middle Aged
- Mutation
- Optic Atrophy, Autosomal Dominant/diagnosis
- Optic Atrophy, Autosomal Dominant/epidemiology
- Optic Atrophy, Autosomal Dominant/genetics
- Optic Atrophy, Hereditary, Leber/diagnosis
- Optic Atrophy, Hereditary, Leber/epidemiology
- Optic Atrophy, Hereditary, Leber/genetics
- Taiwan/epidemiology
- Young Adult
Collapse
Affiliation(s)
- Chao-Wen Lin
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-W.L.); (C.-W.H.); (Y.-S.H.)
| | - Ching-Wen Huang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-W.L.); (C.-W.H.); (Y.-S.H.)
| | - Allen Chilun Luo
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100, Taiwan; (A.C.L.); (Y.-T.C.)
| | - Yuh-Tsyr Chou
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100, Taiwan; (A.C.L.); (Y.-T.C.)
| | - Yu-Shu Huang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-W.L.); (C.-W.H.); (Y.-S.H.)
| | - Pei-Lung Chen
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100, Taiwan; (A.C.L.); (Y.-T.C.)
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Correspondence: (P.-L.C.); (T.-C.C.); Tel.: +886-2-23123456 (ext. 71942) (P.-L.C.); +886-2-23123456 (ext. 63783) (T.-C.C.); Fax: +886-2-23934420 (T.-C.C.)
| | - Ta-Ching Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-W.L.); (C.-W.H.); (Y.-S.H.)
- Correspondence: (P.-L.C.); (T.-C.C.); Tel.: +886-2-23123456 (ext. 71942) (P.-L.C.); +886-2-23123456 (ext. 63783) (T.-C.C.); Fax: +886-2-23934420 (T.-C.C.)
| |
Collapse
|
31
|
Cruz Marino T, Tardif J, Leblanc J, Lavoie J, Morin P, Harvey M, Thomas MJ, Pratte A, Braverman N. First glance at the molecular etiology of hearing loss in French-Canadian families from Saguenay-Lac-Saint-Jean's founder population. Hum Genet 2021; 141:607-622. [PMID: 34387732 DOI: 10.1007/s00439-021-02332-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/04/2021] [Indexed: 11/24/2022]
Abstract
The French-Canadian population of Saguenay-Lac-Saint-Jean is known for its homogenous genetic background. The hereditary causes of hearing loss were previously unexplored in this population. Individuals with hearing loss were referred from the otorhinolaryngology, pediatrics and family physicians' clinics to the medical genetics service at the Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean between June 2015 and March 2021. A regional clinical evaluation strategy was developed. Samples from 63 individuals belonging to 41 families were sent independently to different molecular clinical laboratories and index cases were analyzed through comprehensive multigene panels, with a diagnostic rate of 54%. Sixteen hearing loss causal variants were identified in 12 genes, with eight of these variants not been previously reported in the literature. Recurrent variants were present in four genes, suggesting a possible founder effect, while GJB2 gene variants were scarce. A comprehensive multigene panel approach as part of the proposed clinical evaluation strategy offers a high diagnostic yield for this population.
Collapse
Affiliation(s)
- Tania Cruz Marino
- Department of Laboratory Medicine, CIUSSS Saguenay-Lac-St-Jean, Saguenay-Lac-Saint-Jean, Canada.
| | - Jessica Tardif
- Department of Laboratory Medicine, CIUSSS Saguenay-Lac-St-Jean, Saguenay-Lac-Saint-Jean, Canada
| | - Josianne Leblanc
- Department of Laboratory Medicine, CIUSSS Saguenay-Lac-St-Jean, Saguenay-Lac-Saint-Jean, Canada
| | - Janie Lavoie
- Department of Otolaryngology-Head and Neck Surgery, CIUSSS Saguenay-Lac-St-Jean, Saguenay-Lac-Saint-Jean, Canada
| | - Pascal Morin
- Department of Otolaryngology-Head and Neck Surgery, CIUSSS Saguenay-Lac-St-Jean, Saguenay-Lac-Saint-Jean, Canada
| | - Michel Harvey
- Department of Otolaryngology-Head and Neck Surgery, CIUSSS Saguenay-Lac-St-Jean, Saguenay-Lac-Saint-Jean, Canada
| | - Marie-Jacqueline Thomas
- Department of Laboratory Medicine, CIUSSS Saguenay-Lac-St-Jean, Saguenay-Lac-Saint-Jean, Canada
| | - Annabelle Pratte
- Department of Laboratory Medicine, CIUSSS Saguenay-Lac-St-Jean, Saguenay-Lac-Saint-Jean, Canada
| | - Nancy Braverman
- Division of Medical Genetics, Department of Pediatrics and Human Genetics, McGill University, Montreal, Canada
| |
Collapse
|
32
|
Lin YH, Wu PC, Tsai CY, Lin YH, Lo MY, Hsu SJ, Lin PH, Erdenechuluun J, Wu HP, Hsu CJ, Wu CC, Chen PL. Hearing Impairment with Monoallelic GJB2 Variants: A GJB2 Cause or Non-GJB2 Cause? J Mol Diagn 2021; 23:1279-1291. [PMID: 34325055 DOI: 10.1016/j.jmoldx.2021.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/23/2021] [Accepted: 07/07/2021] [Indexed: 12/26/2022] Open
Abstract
Recessive variants in GJB2 are the most common genetic cause of sensorineural hearing impairment. However, in many patients, only one variant in the GJB2 coding region is identified using conventional sequencing strategy (eg, Sanger sequencing), resulting in nonconfirmative diagnosis. Conceivably, there might be other unidentified pathogenic variants in the noncoding region of GJB2 or other deafness-causing genes in these patients. To address this, a next-generation sequencing-based diagnostic panel targeting the entire GJB2 gene and the coding regions of 158 other known deafness-causing genes was designed and applied to 95 patients with nonsyndromic sensorineural hearing impairment (including 81 Han Taiwanese and 14 Mongolian patients) in whom only a single GJB2 variant had been detected using conventional Sanger sequencing. The panel confirmed the genetic diagnosis in 24 patients (25.3%). Twenty-two of them had causative variants in several deafness-causing genes other than GJB2, including MYO15A, MYO7A, TECTA, POU4F3, KCNQ4, SLC26A4, OTOF, MT-RNR1, MITF, WFS1, and USH2A. The other two patients had causative variants in GJB2, including a Taiwanese patient with a mosaic maternal uniparental disomy c.235delC variant (approximately 69% mosaicism) and a Mongolian patient with compound heterozygous c.35dupG and c.35delG variants, which occurred at the same site. This study demonstrates the utility of next-generation sequencing in clarifying the genetic diagnosis of hearing-impaired patients with nonconfirmative GJB2 genotypes on conventional genetic examinations.
Collapse
Affiliation(s)
- Yi-Hsin Lin
- Department of Otolaryngology, National Taiwan University Hospital, National Taiwan University Hospital, Taipei, Taiwan; Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ping-Che Wu
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Yu Tsai
- Department of Otolaryngology, National Taiwan University Hospital, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institutes of Medical Genomic, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yin-Hung Lin
- Department of Otolaryngology, National Taiwan University Hospital, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institutes of Medical Genomic, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Yu Lo
- Department of Otolaryngology, National Taiwan University Hospital, National Taiwan University Hospital, Taipei, Taiwan; Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Jui Hsu
- Graduate Institutes of Medical Genomic, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Hsuan Lin
- Department of Otolaryngology, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Jargalkhuu Erdenechuluun
- Department of Otolaryngology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia; The EMJJ Otolaryngology Hospital, Ulaanbaatar, Mongolia
| | - Hung-Pin Wu
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chuan-Jen Hsu
- Department of Otolaryngology, National Taiwan University Hospital, National Taiwan University Hospital, Taipei, Taiwan; Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, National Taiwan University Hospital, Taipei, Taiwan; Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Pei-Lung Chen
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institutes of Medical Genomic, National Taiwan University College of Medicine, Taipei, Taiwan; Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
33
|
Weisschuh N, Schimpf-Linzenbold S, Mazzola P, Kieninger S, Xiao T, Kellner U, Neuhann T, Kelbsch C, Tonagel F, Wilhelm H, Kohl S, Wissinger B. Mutation spectrum of the OPA1 gene in a large cohort of patients with suspected dominant optic atrophy: Identification and classification of 48 novel variants. PLoS One 2021; 16:e0253987. [PMID: 34242285 PMCID: PMC8270428 DOI: 10.1371/journal.pone.0253987] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
Autosomal dominant optic atrophy is one of the most common inherited optic neuropathies. This disease is genetically heterogeneous, but most cases are due to pathogenic variants in the OPA1 gene: depending on the population studied, 32–90% of cases harbor pathogenic variants in this gene. The aim of this study was to provide a comprehensive overview of the entire spectrum of likely pathogenic variants in the OPA1 gene in a large cohort of patients. Over a period of 20 years, 755 unrelated probands with a diagnosis of bilateral optic atrophy were referred to our laboratory for molecular genetic investigation. Genetic testing of the OPA1 gene was initially performed by a combined analysis using either single-strand conformation polymorphism or denaturing high performance liquid chromatography followed by Sanger sequencing to validate aberrant bands or melting profiles. The presence of copy number variations was assessed using multiplex ligation-dependent probe amplification. Since 2012, genetic testing was based on next-generation sequencing platforms. Genetic screening of the OPA1 gene revealed putatively pathogenic variants in 278 unrelated probands which represent 36.8% of the entire cohort. A total of 156 unique variants were identified, 78% of which can be considered null alleles. Variant c.2708_2711del/p.(V903Gfs*3) was found to constitute 14% of all disease-causing alleles. Special emphasis was placed on the validation of splice variants either by analyzing cDNA derived from patients´ blood samples or by heterologous splice assays using minigenes. Splicing analysis revealed different aberrant splicing events, including exon skipping, activation of exonic or intronic cryptic splice sites, and the inclusion of pseudoexons. Forty-eight variants that we identified were novel. Nine of them were classified as pathogenic, 34 as likely pathogenic and five as variant of uncertain significance. Our study adds a significant number of novel variants to the mutation spectrum of the OPA1 gene and will thereby facilitate genetic diagnostics of patients with suspected dominant optic atrophy.
Collapse
Affiliation(s)
- Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Simone Schimpf-Linzenbold
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany.,CeGaT GmbH and Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Pascale Mazzola
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Sinja Kieninger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Ting Xiao
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Ulrich Kellner
- Zentrum für seltene Netzhauterkrankungen, AugenZentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, Siegburg, Germany.,RetinaScience, Bonn, Germany
| | | | - Carina Kelbsch
- Centre for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
| | - Felix Tonagel
- Centre for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
| | - Helmut Wilhelm
- Centre for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
34
|
Lenaers G, Neutzner A, Le Dantec Y, Jüschke C, Xiao T, Decembrini S, Swirski S, Kieninger S, Agca C, Kim US, Reynier P, Yu-Wai-Man P, Neidhardt J, Wissinger B. Dominant optic atrophy: Culprit mitochondria in the optic nerve. Prog Retin Eye Res 2021; 83:100935. [PMID: 33340656 DOI: 10.1016/j.preteyeres.2020.100935] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022]
Abstract
Dominant optic atrophy (DOA) is an inherited mitochondrial disease leading to specific degeneration of retinal ganglion cells (RGCs), thus compromising transmission of visual information from the retina to the brain. Usually, DOA starts during childhood and evolves to poor vision or legal blindness, affecting the central vision, whilst sparing the peripheral visual field. In 20% of cases, DOA presents as syndromic disorder, with secondary symptoms affecting neuronal and muscular functions. Twenty years ago, we demonstrated that heterozygous mutations in OPA1 are the most frequent molecular cause of DOA. Since then, variants in additional genes, whose functions in many instances converge with those of OPA1, have been identified by next generation sequencing. OPA1 encodes a dynamin-related GTPase imported into mitochondria and located to the inner membrane and intermembrane space. The many OPA1 isoforms, resulting from alternative splicing of three exons, form complex homopolymers that structure mitochondrial cristae, and contribute to fusion of the outer membrane, thus shaping the whole mitochondrial network. Moreover, OPA1 is required for oxidative phosphorylation, maintenance of mitochondrial genome, calcium homeostasis and regulation of apoptosis, thus making OPA1 the Swiss army-knife of mitochondria. Understanding DOA pathophysiology requires the understanding of RGC peculiarities with respect to OPA1 functions. Besides the tremendous energy requirements of RGCs to relay visual information from the eye to the brain, these neurons present unique features related to their differential environments in the retina, and to the anatomical transition occurring at the lamina cribrosa, which parallel major adaptations of mitochondrial physiology and shape, in the pre- and post-laminar segments of the optic nerve. Three DOA mouse models, with different Opa1 mutations, have been generated to study intrinsic mechanisms responsible for RGC degeneration, and these have further revealed secondary symptoms related to mitochondrial dysfunctions, mirroring the more severe syndromic phenotypes seen in a subgroup of patients. Metabolomics analyses of cells, mouse organs and patient plasma mutated for OPA1 revealed new unexpected pathophysiological mechanisms related to mitochondrial dysfunction, and biomarkers correlated quantitatively to the severity of the disease. Here, we review and synthesize these data, and propose different approaches for embracing possible therapies to fulfil the unmet clinical needs of this disease, and provide hope to affected DOA patients.
Collapse
Affiliation(s)
- Guy Lenaers
- MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France.
| | - Albert Neutzner
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Ophthalmology University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Yannick Le Dantec
- MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France
| | - Christoph Jüschke
- Human Genetics, Faculty VI - School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Ting Xiao
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Sarah Decembrini
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Ophthalmology University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sebastian Swirski
- Human Genetics, Faculty VI - School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Sinja Kieninger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Cavit Agca
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey; Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, Turkey
| | - Ungsoo S Kim
- Kim's Eye Hospital, Seoul, South Korea; Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital, London, UK
| | - Pascal Reynier
- MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France; Department of Biochemistry, University Hospital of Angers, Angers, France
| | - Patrick Yu-Wai-Man
- Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital, London, UK; UCL Institute of Ophthalmology, University College London, London, UK
| | - John Neidhardt
- Human Genetics, Faculty VI - School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany; Research Center Neurosensory Science, University Oldenburg, Oldenburg, Germany.
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
35
|
Delvecchio M, Iacoviello M, Pantaleo A, Resta N. Clinical Spectrum Associated with Wolfram Syndrome Type 1 and Type 2: A Review on Genotype-Phenotype Correlations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094796. [PMID: 33946243 PMCID: PMC8124476 DOI: 10.3390/ijerph18094796] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/27/2022]
Abstract
Wolfram syndrome is a rare neurodegenerative disorder that is typically characterized by diabetes mellitus and optic atrophy. Other common features are diabetes insipidus and hearing loss, but additional less-frequent findings may also be present. The phenotype spectrum is quite wide, and penetrance may be incomplete. The syndrome is progressive, and thus, the clinical picture may change during follow-up. Currently, two different subtypes of this syndrome have been described, and they are associated with two different disease-genes, wolframin (WFS1) and CISD2. These genes encode a transmembrane protein and an endoplasmic reticulum intermembrane protein, respectively. These genes are detected in different organs and account for the pleiotropic features of this syndrome. In this review, we describe the phenotypes of both syndromes and discuss the most pertinent literature about the genotype–phenotype correlation. The clinical presentation of Wolfram syndrome type 1 suggests that the pathogenic variant does not predict the phenotype. There are few papers on Wolfram syndrome type 2 and, thus, predicting the phenotype on the basis of genotype is not yet supported. We also discuss the most pertinent approach to gene analysis.
Collapse
Affiliation(s)
- Maurizio Delvecchio
- Metabolic Diseases, Clinical Genetics and Diabetology Unit, Giovanni XXIII Children’s Hospital, 70126 Bari, Italy
- Correspondence: ; Tel.: +39-08-0559-6771
| | - Matteo Iacoviello
- Department of Biomedical Sciences and Human Oncology (DIMO), Division of Medical Genetics, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.I.); (A.P.); (N.R.)
| | - Antonino Pantaleo
- Department of Biomedical Sciences and Human Oncology (DIMO), Division of Medical Genetics, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.I.); (A.P.); (N.R.)
| | - Nicoletta Resta
- Department of Biomedical Sciences and Human Oncology (DIMO), Division of Medical Genetics, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.I.); (A.P.); (N.R.)
| |
Collapse
|
36
|
Gong Y, Xiong L, Li X, Su L, Xiao H. A novel mutation of WFS1 gene leading to increase ER stress and cell apoptosis is associated an autosomal dominant form of Wolfram syndrome type 1. BMC Endocr Disord 2021; 21:76. [PMID: 33879153 PMCID: PMC8059287 DOI: 10.1186/s12902-021-00748-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Wolfram syndrome (WS) is a rare autosomal recessive disorder characterized by diabetes insipidus, diabetes mellitus, optic atrophy and deafness. Mutations in Wolfram syndrome 1 (WFS1) gene may cause dysregulated endoplasmic reticulum (ER)-stress and cell apoptosis, contributing to WS symptoms. The aim of this study was to identify the molecular etiology of a case of WS and to explore the functional consequence of the mutant WFS1 gene in vitro. METHODS A 27 years-old Chinese man was diagnosed as wolfram syndrome type 1 based on clinical data and laboratory data. DNA sequencing of WFS1 gene and mitochondrial m.3337G > A, m.3243A > G mutations were performed in the patient and his 4 family members. Functional analysis was performed to assessed the in vitro effect of the newly identified mutant. ER stress were evaluated by ER stress response element (ERSE)-luciferase assay. Cell apoptosis were performed by CCK-8, TUNEL staining and flow cytometric analysis. RESULTS A novel heterozygous 10-base deletion (c. 2067_2076 del10, p.W690fsX706) was identified in the patient. In vitro studies showed that mutant p.W690fsX706 increased ERSE reporter activity in the presence or absence of thapsigargin instead of wild type WFS1. Knockdown of WFS1 activated the unfolded protein response (UPR) pathway and increased the cell apoptosis, which could not be restored by transfection with WFS1 mutant (p.W690fsX706) comparable to the wild type WFS1. CONCLUSIONS A novel heterozygous mutation of WFS1 detected in the patient resulted in loss-of-function of wolframin, thereby inducing dysregulated ER stress signaling and cell apoptosis. These findings increase the spectrum of WFS1 gene mutations and broaden our insights into the roles of mutant WFS1 in the pathogenesis of WS.
Collapse
Affiliation(s)
- Yingying Gong
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road 2, Guangzhou, 510080, P. R. China
- Department of Geriatrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Li Xiong
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road 2, Guangzhou, 510080, P. R. China
| | - Xiujun Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road 2, Guangzhou, 510080, P. R. China
| | - Lei Su
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road 2, Guangzhou, 510080, P. R. China
- Department of Geriatrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road 2, Guangzhou, 510080, P. R. China.
| |
Collapse
|
37
|
Acharya A, Raza SI, Anwar MZ, Bharadwaj T, Liaqat K, Khokhar MAS, Everard JL, Nasir A, Nickerson DA, Bamshad MJ, Ansar M, Schrauwen I, Ahmad W, Leal SM. Wolfram-like syndrome with bicuspid aortic valve due to a homozygous missense variant in CDK13. J Hum Genet 2021; 66:1009-1018. [PMID: 33879837 PMCID: PMC8472924 DOI: 10.1038/s10038-021-00922-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/03/2022]
Abstract
Background Wolfram syndrome (WFS) is characterized by deafness, diabetes mellitus, and diabetes insipidus along with optic atrophy. WFS has an autosomal recessive mode of inheritance and is due to variants in WFS1 and CISD2. Methods We evaluated the underlying molecular etiology of three affected members of a consanguineous family with hearing impairment, bicuspid aortic valve, diabetes mellitus and insipidus, clinodactyly, and gastrointestinal tract abnormalities via exome sequencing approach. We correlated clinical and imaging data with the genetic findings and their associated phenotypes. Results We identified a homozygous missense variant p.(Asn1097Lys) in CDK13, a gene previously associated with autosomal dominant congenital heart defects, dysmorphic facial features, clinodactyly, gastrointestinal tract abnormalities, intellectual developmental disorder, and seizures with variable phenotypic features. Conclusion We report a homozygous variant in CDK13 and suggest that this gene causes an autosomal recessive disorder with hearing impairment, bicuspid aortic valve, diabetes mellitus and insipidus, clinodactyly, and gastrointestinal tract abnormalities.
Collapse
Affiliation(s)
- Anushree Acharya
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Syed Irfan Raza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Department of Biochemistry, HBS Medical and Dental College, Islamabad, Pakistan
| | | | - Thashi Bharadwaj
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Khurram Liaqat
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Jenna L Everard
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Abdul Nasir
- Synthetic Protein Engineering Lab (SPEL), Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | | | | | - Michael J Bamshad
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Muhammad Ansar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Isabelle Schrauwen
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Suzanne M Leal
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA. .,Taub Institute for Alzheimer's Disease and The Aging Brain, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
38
|
Charif M, Bris C, Goudenège D, Desquiret-Dumas V, Colin E, Ziegler A, Procaccio V, Reynier P, Bonneau D, Lenaers G, Amati-Bonneau P. Use of Next-Generation Sequencing for the Molecular Diagnosis of 1,102 Patients With a Autosomal Optic Neuropathy. Front Neurol 2021; 12:602979. [PMID: 33841295 PMCID: PMC8027346 DOI: 10.3389/fneur.2021.602979] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Advances in next-generation sequencing (NGS) facilitate the diagnosis of genetic disorders. To evaluate its use for the molecular diagnosis of inherited optic neuropathy (ION), a blinding disease caused by the degeneration of retinal ganglion cells, we performed genetic analysis using targeted NGS of 22 already known and candidate genes in a cohort of 1,102 affected individuals. The panel design, library preparation, and sequencing reactions were performed using the Ion AmpliSeq technology. Pathogenic variants were detected in 16 genes in 245 patients (22%), including 186 (17%) and 59 (5%) dominant and recessive cases, respectively. Results confirmed that OPA1 variants are responsible for the majority of dominant IONs, whereas ACO2 and WFS1 variants are also frequently involved in both dominant and recessive forms of ION. All pathogenic variants were found in genes encoding proteins involved in the mitochondrial function, highlighting the importance of mitochondria in the survival of retinal ganglion cells.
Collapse
Affiliation(s)
- Majida Charif
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Genetics and Immuno-Cell Therapy Team, Mohammed First University, Oujda, Morocco
| | - Céline Bris
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - David Goudenège
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Valérie Desquiret-Dumas
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Estelle Colin
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Alban Ziegler
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Vincent Procaccio
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Pascal Reynier
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Dominique Bonneau
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Guy Lenaers
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France
| | - Patrizia Amati-Bonneau
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| |
Collapse
|
39
|
Munshani S, Ibrahim EY, Domenicano I, Ehrlich BE. The Impact of Mutations in Wolframin on Psychiatric Disorders. Front Pediatr 2021; 9:718132. [PMID: 34746052 PMCID: PMC8567103 DOI: 10.3389/fped.2021.718132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022] Open
Abstract
Wolfram Syndrome is a rare autosomal recessive disease characterized by early-onset diabetes mellitus, neurodegeneration, and psychological disorders. Mutations in the gene WFS1, coding for the protein wolframin, cause Wolfram Syndrome and are associated with bipolar disorder and schizophrenia. This report aims to connect WFS1 mutations to their impact on protein expression and structure, which ultimately translates to altered cell function and behavioral alterations of an individual. Methods: Published data were used to compile WFS1 mutations associated with psychiatric symptoms, both in homozygous patients and heterozygous carriers of WFS1 mutations. These mutations were evaluated in silico using SNAP2, PolyPhen-2, and PROVEAN to predict the effects of sequence variants. Statistical analysis was performed to assess the correlation between the locations of the mutations and the damage prediction scores. Results: Several mutations, clustering in the center and C-terminus of the WFS1 polypeptide, such as A559T and R558C, are found in individuals with psychiatric diseases and appear particularly impactful on protein structure. Our analysis showed that mutations in all regions of wolframin were present in patients with schizophrenia whereas only cytoplasmic and ER luminal mutations were reported in patients with manic episodes and bipolar disorders. According to Poly-Phen-2 predictions, 82.4% of the ER lumen mutations and 85.7% of the membrane mutations are damaging. Conclusion: We propose mood disorders in Wolfram Syndrome and heterozygous carriers of WFS1 mutations are the consequence of specific mutations in WFS1 that alter the structure of wolframin, resulting in intracellular calcium dysregulations and impaired cell signaling, Understanding the effect of WFS1 mutations on bipolar disorder and schizoprenia is integral to designing clinically targeted treatments for both diseases, which need more specialized treatments.
Collapse
Affiliation(s)
- Saira Munshani
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT, United States
| | - Eiman Y Ibrahim
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT, United States.,Department of Medicine, Frank H. Netter MD School of Medicine, Quinnipiac University, North Haven, CT, United States
| | - Ilaria Domenicano
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Barbara E Ehrlich
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
40
|
Stone SI, Abreu D, McGill JB, Urano F. Monogenic and syndromic diabetes due to endoplasmic reticulum stress. J Diabetes Complications 2021; 35:107618. [PMID: 32518033 PMCID: PMC7648725 DOI: 10.1016/j.jdiacomp.2020.107618] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER) lies at the crossroads of protein folding, calcium storage, lipid metabolism, and the regulation of autophagy and apoptosis. Accordingly, dysregulation of ER homeostasis leads to β-cell dysfunction in type 1 and type 2 diabetes that ultimately culminates in cell death. The ER is therefore an emerging target for understanding the mechanisms of diabetes mellitus that captures the complex etiologies of this multifactorial class of metabolic disorders. Our strategy for developing ER-targeted diagnostics and therapeutics is to focus on monogenic forms of diabetes related to ER dysregulation in an effort to understand the exact contribution of ER stress to β-cell death. In this manner, we can develop personalized genetic medicine for ERstress-related diabetic disorders, such as Wolfram syndrome. In this article, we describe the phenotypes and molecular pathogenesis of ERstress-related monogenic forms of diabetes.
Collapse
Affiliation(s)
- Stephen I Stone
- Department of Pediatrics, Division of Endocrinology and Diabetes, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Damien Abreu
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Janet B McGill
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fumihiko Urano
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
41
|
Mishra R, Chen BS, Richa P, Yu-Wai-Man P. Wolfram syndrome: new pathophysiological insights and therapeutic strategies. THERAPEUTIC ADVANCES IN RARE DISEASE 2021; 2:26330040211039518. [PMID: 37181110 PMCID: PMC10032446 DOI: 10.1177/26330040211039518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/23/2021] [Indexed: 05/16/2023]
Abstract
Wolfram Syndrome (WS) is an ultra-rare, progressive neurodegenerative disease characterized by early-onset diabetes mellitus and irreversible loss of vision, secondary to optic nerve degeneration. Visual loss in WS is an important cause of registrable blindness in children and young adults and the pathological hallmark is the preferential loss of retinal ganglion cells within the inner retina. In addition to optic atrophy, affected individuals frequently develop variable combinations of neurological, endocrinological, and psychiatric complications. The majority of patients carry recessive mutations in the WFS1 (4p16.1) gene that encodes for a multimeric transmembrane protein, wolframin, embedded within the endoplasmic reticulum (ER). An increasingly recognised subgroup of patients harbor dominant WFS1 mutations that usually cause a milder phenotype, which can be limited to optic atrophy. Wolframin is a ubiquitous protein with high levels of expression in retinal, neuronal, and muscle tissues. It is a multifunctional protein that regulates a host of cellular functions, in particular the dynamic interaction with mitochondria at mitochondria-associated membranes. Wolframin has been implicated in several crucial cellular signaling pathways, including insulin signaling, calcium homeostasis, and the regulation of apoptosis and the ER stress response. There is currently no cure for WS; management remains largely supportive. This review will cover the clinical, genetic, and pathophysiological features of WS, with a specific focus on disease models and the molecular pathways that could serve as potential therapeutic targets. The current landscape of therapeutic options will also be discussed in the context of the latest evidence, including the pipeline for repurposed drugs and gene therapy. Plain language summary Wolfram syndrome - disease mechanisms and treatment options Wolfram syndrome (WS) is an ultra-rare genetic disease that causes diabetes mellitus and progressive loss of vision from early childhood. Vision is affected in WS because of damage to a specialized type of cells in the retina, known as retinal ganglion cells (RGCs), which converge at the back of the eye to form the optic nerve. The optic nerve is the fast-conducting cable that transmits visual information from the eye to the vision processing centers within the brain. As RGCs are lost, the optic nerve degenerates and it becomes pale in appearance (optic atrophy). Although diabetes mellitus and optic atrophy are the main features of WS, some patients can develop more severe problems because the brain and other organs, such as the kidneys and the bladder, are also affected. The majority of patients with WS carry spelling mistakes (mutations) in the WFS1 gene, which is located on the short arm of chromosome 4 (4p16.1). This gene is highly expressed in the eye and in the brain, and it encodes for a protein located within a compartment of the cell known as the endoplasmic reticulum. For reasons that still remain unclear, WFS1 mutations preferentially affect RGCs, accounting for the prominent visual loss in this genetic disorder. There is currently no effective treatment to halt or slow disease progression and management remains supportive, including the provision of visual aids and occupational rehabilitation. Research into WS has been limited by its relative rarity and the inability to get access to eye and brain tissues from affected patients. However, major advances in our understanding of this disease have been made recently by making use of more accessible cells from patients, such as skin cells (fibroblasts), or animal models, such as mice and zebrafish. This review summarizes the mechanisms by which WFS1 mutations affect cells, impairing their function and eventually leading to their premature loss. The possible treatment strategies to block these pathways are also discussed, with a particular focus on drug repurposing (i.e., using drugs that are already approved for other diseases) and gene therapy (i.e., replacing or repairing the defective WFS1 gene).
Collapse
Affiliation(s)
- Ratnakar Mishra
- Cambridge Centre for Brain Repair and MRC
Mitochondrial Biology Unit, Department of Clinical Neurosciences, University
of Cambridge, Cambridge, UK
| | - Benson S. Chen
- Cambridge Centre for Brain Repair and MRC
Mitochondrial Biology Unit, Department of Clinical Neurosciences, University
of Cambridge, Cambridge, UK
- Cambridge Eye Unit, Addenbrooke’s Hospital,
Cambridge University Hospitals, Cambridge, UK
| | - Prachi Richa
- Department of Physiology, Development and
Neuroscience, University of Cambridge, Cambridge, UK
| | - Patrick Yu-Wai-Man
- Cambridge Centre for Brain Repair and MRC
Mitochondrial Biology Unit, Department of Clinical Neurosciences, University
of Cambridge, ED Adrian Building, Robinson Way, Cambridge, CB2 0PY, UK
- Cambridge Eye Unit, Addenbrooke’s Hospital,
Cambridge University Hospitals, Cambridge, UK
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University
College London, London, UK
| |
Collapse
|
42
|
Lock JH, Irani NK, Newman NJ. Neuro-ophthalmic manifestations of mitochondrial disorders and their management. Taiwan J Ophthalmol 2020; 11:39-52. [PMID: 33767954 PMCID: PMC7971441 DOI: 10.4103/tjo.tjo_68_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/23/2020] [Indexed: 12/30/2022] Open
Abstract
The visual system has high metabolic requirements and is therefore particularly vulnerable to mitochondrial dysfunction. The most commonly affected tissues include the extraocular muscles, photoreceptors, retinal pigment epithelium, optic nerve and visual cortex. Hence, the most common manifestations of mitochondrial disorders are progressive external ophthalmoplegia, macular pattern dystrophy, pigmentary retinopathy, optic neuropathy and retrochiasmal visual field loss. With the exception of Leber hereditary optic neuropathy and stroke-like episodes seen in mitochondrial encephalopathy, lactic acidosis and stroke-like episodes, the majority of neuro-ophthalmic manifestations have an insidious onset. As such, some patients may not recognize subtle progressive visual symptoms. When mitochondrial disorders are highly suspected, meticulous examination performed by an ophthalmologist with targeted ancillary testing can help confirm the diagnosis. Similarly, neuro-ophthalmic symptoms and signs may be the first indication of mitochondrial disease and should prompt systemic investigations for potentially life-threatening associations, such as cardiac conduction defects. Finally, the ophthalmologist can offer symptomatic treatments for some of the most disabling manifestations of these disorders.
Collapse
Affiliation(s)
- Jane H Lock
- Department of Ophthalmology, Royal Perth Hospital, Perth, WA, Australia.,Department of Ophthalmology, Sir Charles Gairdner Hospital, Perth, WA, Australia.,Department of Ophthalmology, Perth's Children's Hospital, Perth, WA, Australia
| | - Neha K Irani
- Department of Ophthalmology, Royal Perth Hospital, Perth, WA, Australia.,Department of Neurology, Fiona Stanley Hospital, Perth, WA, Australia.,Department of Neurology, Joondalup Health Campus, Perth, WA, Australia
| | - Nancy J Newman
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
43
|
Nasykhova YA, Tonyan ZN, Mikhailova AA, Danilova MM, Glotov AS. Pharmacogenetics of Type 2 Diabetes-Progress and Prospects. Int J Mol Sci 2020; 21:ijms21186842. [PMID: 32961860 PMCID: PMC7555942 DOI: 10.3390/ijms21186842] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus (T2D) is a chronic metabolic disease resulting from insulin resistance and progressively reduced insulin secretion, which leads to impaired glucose utilization, dyslipidemia and hyperinsulinemia and progressive pancreatic beta cell dysfunction. The incidence of type 2 diabetes mellitus is increasing worldwide and nowadays T2D already became a global epidemic. The well-known interindividual variability of T2D drug actions such as biguanides, sulfonylureas/meglitinides, DPP-4 inhibitors/GLP1R agonists and SGLT-2 inhibitors may be caused, among other things, by genetic factors. Pharmacogenetic findings may aid in identifying new drug targets and obtaining in-depth knowledge of the causes of disease and its physiological processes, thereby, providing an opportunity to elaborate an algorithm for tailor or precision treatment. The aim of this article is to summarize recent progress and discoveries for T2D pharmacogenetics and to discuss the factors which limit the furthering accumulation of genetic variability knowledge in patient response to therapy that will allow improvement the personalized treatment of T2D.
Collapse
Affiliation(s)
- Yulia A. Nasykhova
- Department of Genomic Medicine, D.O. Ott’s Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia; (Y.A.N.); (Z.N.T.); (A.A.M.); (M.M.D.)
- Laboratory of Biobanking and Genomic Medicine, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Ziravard N. Tonyan
- Department of Genomic Medicine, D.O. Ott’s Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia; (Y.A.N.); (Z.N.T.); (A.A.M.); (M.M.D.)
| | - Anastasiia A. Mikhailova
- Department of Genomic Medicine, D.O. Ott’s Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia; (Y.A.N.); (Z.N.T.); (A.A.M.); (M.M.D.)
- Laboratory of Biobanking and Genomic Medicine, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Maria M. Danilova
- Department of Genomic Medicine, D.O. Ott’s Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia; (Y.A.N.); (Z.N.T.); (A.A.M.); (M.M.D.)
| | - Andrey S. Glotov
- Department of Genomic Medicine, D.O. Ott’s Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia; (Y.A.N.); (Z.N.T.); (A.A.M.); (M.M.D.)
- Laboratory of Biobanking and Genomic Medicine, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
- Correspondence: ; Tel.: +7-9117832003
| |
Collapse
|
44
|
Li L, Venkataraman L, Chen S, Fu H. Function of WFS1 and WFS2 in the Central Nervous System: Implications for Wolfram Syndrome and Alzheimer's disease. Neurosci Biobehav Rev 2020; 118:775-783. [PMID: 32949681 DOI: 10.1016/j.neubiorev.2020.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/25/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022]
Abstract
L.P. Li, L. Venkataraman, S. Chen, and H.J. Fu. Function of WFS1 and WFS2 in the Central Nervous System: Implications for Wolfram Syndrome and Alzheimer's Disease. NEUROSCI BIOBEHAV REVXXX-XXX,2020.-Wolfram syndrome (WS) is a rare monogenetic spectrum disorder characterized by insulin-dependent juvenile-onset diabetes mellitus, diabetes insipidus, optic nerve atrophy, hearing loss, progressive neurodegeneration, and a wide spectrum of psychiatric manifestations. Most WS patients belong to Wolfram Syndrome type 1 (WS1) caused by mutations in the Wolfram Syndrome 1 (WFS1/Wolframin) gene, while a small fraction of patients belongs to Wolfram Syndrome type 2 (WS2) caused by pathogenic variants in the CDGSH Iron Sulfur Domain 2 (CISD2/WFS2) gene. Although currently there is no treatment for this life-threatening disease, the molecular mechanisms underlying the pathogenesis of WS have been proposed. Interestingly, Alzheimer's disease (AD), an age-dependent neurodegenerative disease, shares some common mechanisms with WS. In this review, we focus on the function of WFS1 and WFS2 in the central nervous system as well as their implications in WS and AD. We also propose three future directions for elucidating the role of WFS1 and WFS2 in WS and AD.
Collapse
Affiliation(s)
- Liangping Li
- Department of Neuroscience, Chronic Brain Injury, Discovery Themes, The Ohio State University, Columbus, OH, USA
| | - Lalitha Venkataraman
- Department of Neuroscience, Chronic Brain Injury, Discovery Themes, The Ohio State University, Columbus, OH, USA
| | - Shuo Chen
- Department of Neuroscience, Chronic Brain Injury, Discovery Themes, The Ohio State University, Columbus, OH, USA
| | - Hongjun Fu
- Department of Neuroscience, Chronic Brain Injury, Discovery Themes, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
45
|
Liu XW, Wang JC, Wang SY, Li SJ, Zhu YM, Ding WJ, Xu CY, Duan L, Xu BC, Guo YF. The mutation frequencies of GJB2, GJB3, SLC26A4 and MT-RNR1 of patients with severe to profound sensorineural hearing loss in northwest China. Int J Pediatr Otorhinolaryngol 2020; 136:110143. [PMID: 32645618 DOI: 10.1016/j.ijporl.2020.110143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To expose the spectrum and frequency of GJB2, GJB3, SLC26A4 and MT-RNR1 in northwest China and to investigate the underlying causative genes in patients without common mutations. METHODS We analyzed the mutation screening results of GJB2, GJB3, SLC26A4 and MT-RNR1 in 398 unrelated severe-to-profound probands with bilateral, symmetrical sensorineural hearing loss. Subsequently, we selected 10 probands with a significant family history of inherited hearing loss (HL) that did not have the above four common gene mutations to perform next-generation sequencing (NGS) of 139 known deafness genes, followed by co-segregation analysis of all available family members. RESULTS Among the 398 patients, 69 (17.34%) had the biallelic GJB2 gene mutations, and the most common mutations were c.235delC, c.109G>A and c.299_300delAT, with allele frequencies of 12.31%, 3.38% and 3.89%, respectively. A total of 63 (15.83%) cases with biallelic SLC26A4 mutations were detected, and the most common pathogenic alleles were c.919-2A>G, c.2168A>G and c.1174A>T, with allele frequencies of 9.17%, 2.26% and 0.88%, respectively. Mitochondrial gene mutations were detected in 9 (2.26%) patients, with 5 cases of mitochondrial DNA (mtDNA) m.1555A>G mutation and 4 cases of mtDNA m.1095T>C mutation. In 10 probands with a clear family history of HL, NGS showed two novel pathogenic variants in 2 families, including c.4129C>T/c.3268C>T in LOXHD1, c.334G>A/c.2968G>T in CDH23. Sanger sequencing confirmed that these variants segregated with the HL in each family. CONCLUSIONS Our results showed that GJB2 and SLC26A4 were the two major HL-causing genes in northwest China. The most common mutation alleles in GJB2 were c.235delC, c.109G>A and c.299_300delAT, and those in SLC26A4 were c.919-2A>G, c.2168A>G and c.1174A>T. In addition, both genes and their loci can be used as the first selection of deafness gene screening. Additionally, for patients who did not have mutations of these common genes, NGS provided an efficient diagnosis for increasing known deafness genes.
Collapse
Affiliation(s)
- Xiao-Wen Liu
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, PR China
| | - Jian-Chao Wang
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, PR China; Department of Otolaryngology-Head and Neck Surgery, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518100, PR China
| | - Su-Yang Wang
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, PR China; Department of Otolaryngology-Head and Neck Surgery, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, 730050, PR China
| | - Shu-Juan Li
- Department of Otolaryngology-Head and Neck Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, 730000, PR China
| | - Yi-Ming Zhu
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, PR China
| | - Wen-Juan Ding
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, PR China
| | - Chen-Yang Xu
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, PR China
| | - Lei Duan
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, PR China
| | - Bai-Cheng Xu
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, PR China
| | - Yu-Fen Guo
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, PR China; Health Commission of Gansu Province, Lanzhou, Gansu, 730000, PR China.
| |
Collapse
|
46
|
Fischer TT, Ehrlich BE. Wolfram Syndrome: a Monogenic Model to Study Diabetes Mellitus and Neurodegeneration. CURRENT OPINION IN PHYSIOLOGY 2020; 17:115-123. [PMID: 32864536 DOI: 10.1016/j.cophys.2020.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Wolfram syndrome (WS) is a rare, progressive disorder characterized by childhood-onset diabetes mellitus, optic nerve atrophy, hearing loss, diabetes insipidus, and neurodegeneration. Currently, there is no effective treatment for WS, and patients typically die between 30 and 40 years of age. WS is primarily caused by autosomal recessive mutations in the Wolfram syndrome 1 (WFS1) gene (OMIM 222300), which encodes for wolframin (WFS1). This disorder is therefore a valuable monogenic model for prevalent diseases, particularly diabetes mellitus and neurodegeneration. Whereas reduced survival and secretion are known cellular impairments causing WS, the underlying molecular pathways and the physiological function of WFS1 remain incompletely described. Here, we characterize WFS1 as a regulator of intracellular calcium homeostasis, review our current understanding of the disease mechanism of WS, and discuss candidate treatment approaches. These insights will facilitate identification of new therapeutic strategies not only for WS but also for diabetes mellitus and neurodegeneration.
Collapse
Affiliation(s)
- Tom T Fischer
- Department of Pharmacology, Yale University, New Haven, CT-06520, USA.,Institute of Pharmacology, University of Heidelberg, Germany
| | - Barbara E Ehrlich
- Department of Pharmacology, Yale University, New Haven, CT-06520, USA.,Department of Molecular Physiology, Yale University, New Haven, CT-06520, USA
| |
Collapse
|
47
|
Guan J, Wang H, Lan L, Wu Y, Chen G, Zhao C, Wang D, Wang Q. Recurrent de novo WFS1 pathogenic variants in Chinese sporadic patients with nonsyndromic sensorineural hearing loss. Mol Genet Genomic Med 2020; 8:e1367. [PMID: 32567228 PMCID: PMC7434732 DOI: 10.1002/mgg3.1367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/11/2020] [Accepted: 05/22/2020] [Indexed: 11/09/2022] Open
Abstract
Background Hereditary hearing loss (HL) is heterogeneous in terms of their phenotypic features, modes of inheritance, and causative gene mutations. The contribution of genetic variants to sporadic HL remains largely expanding. Either recessive or de novo dominant variants could result in an apparently sporadic occurrence of HL. In an attempt to find such variants we recruited 128 Chinese patients with sporadic nonsyndromic sensorineural HL (NSHL) and performed targeted deafness multigene sequencing in these unrelated trios‐families to elucidate the molecular basis. Methods We analyzed a total of 384 available members (probands and their two parents) from 128 unrelated Chinese families presenting with bilateral sensorineural HL, in which previous screening had found no mutations with the GJB2, SLC26A4, and MT‐RNR1 genes. We used a targeted genomic enrichment platform to simultaneously capture exons, splicing sites, and immediate flanking intron sequences of 127 known deafness genes. Sanger sequencing was used to identify probands and their two parents segregating causative variants in the candidate gene. Results We observed that two heterozygous de novo WFS1 mutations in exon 8: c.2051C>T (p.A684V) and c.2590G>A (p.E864K) in five families. The two de novo WFS1 mutations were found in 3.9% (5/128) of sporadic HL patients. We found that four of the five patients had the same de novo p.A684V mutation, and their audiograms showed symmetrical bilateral and profound sensorineural hearing impairments at all frequencies, but only the proband with de novo p.E864K mutation demonstrated significantly bilateral moderate low–mid frequency sensorineural HL. Our data suggest that this WFS1 p.A684V is likely to be a de novo mutational hot spot. Conclusions We found 3.9% (5/128) of sporadic NSHL is caused by de novo WFS1 mutations. Our data provide that the de novo p.E864K mutation is first identified and de novo p.A684V mutation is likely to be a mutational hot spot in WFS1. It is the first study to highlight that WFS1 gene with the two de novo mutations has been indicated to classify the distinct hearing impairment phenotypes. Furthermore, de novo p.A684V serves as a WFS1 mutational hot spot that was found in the Chinese population with sporadic childhood NSHL, and our study also provides pointers toward the necessity for sequencing of asymptomatic parents of a sporadic case with an apparent dominant pathogenic variant.
Collapse
Affiliation(s)
- Jing Guan
- College of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,State Key Lab of Hearing Science, Ministry of Education, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Hongyang Wang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,State Key Lab of Hearing Science, Ministry of Education, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Lan Lan
- College of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,State Key Lab of Hearing Science, Ministry of Education, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Yusen Wu
- College of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,State Key Lab of Hearing Science, Ministry of Education, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Guohui Chen
- College of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,State Key Lab of Hearing Science, Ministry of Education, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Cui Zhao
- College of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,State Key Lab of Hearing Science, Ministry of Education, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Dayong Wang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,State Key Lab of Hearing Science, Ministry of Education, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Qiuju Wang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,State Key Lab of Hearing Science, Ministry of Education, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| |
Collapse
|
48
|
An integrative approach for pediatric auditory neuropathy spectrum disorders: revisiting etiologies and exploring the prognostic utility of auditory steady-state response. Sci Rep 2020; 10:9816. [PMID: 32555439 PMCID: PMC7299968 DOI: 10.1038/s41598-020-66877-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/12/2020] [Indexed: 11/22/2022] Open
Abstract
Auditory neuropathy is an important entity in childhood sensorineural hearing loss. Due to diverse etiologies and clinical features, the management is often challenging. This study used an integrative patient-history, audiologic, genetic, and imaging-based approach to investigate the etiologies and audiologic features of 101 children with auditory neuropathy. Etiologically, 48 (47.5%), 16 (15.8%), 11 (10.9%), and 26 (25.7%) children were categorized as having acquired, genetic, cochlear nerve deficiency-related, and indefinite auditory neuropathy, respectively. The most common causes of acquired and genetic auditory neuropathy were prematurity and OTOF mutations, respectively. Patients with acquired auditory neuropathy presented hearing loss earlier (odds ratio, 10.2; 95% confidence interval, 2.2–47.4), whereas patients with genetic auditory neuropathy had higher presence rate of distortion product otoacoustic emissions (odds ratio, 10.7; 95% confidence interval, 1.3–85.4). In patients with different etiologies or pathological sites, moderate to strong correlations (Pearson’s r = 0.51–0.83) were observed between behavioral thresholds and auditory steady-state response thresholds. In conclusion, comprehensive assessments can provide etiological clues in ~75% of the children with auditory neuropathy. Different etiologies are associated with different audiologic features, and auditory steady-state responses might serve as an objective measure for estimating behavioral thresholds.
Collapse
|
49
|
Riachi M, Yilmaz S, Kurnaz E, Aycan Z, Çetinkaya S, Tranebjærg L, Rendtorff ND, Bitner-Glindzicz M, Bockenhauer D, Hussain K. Functional assessment of variants associated with Wolfram syndrome. Hum Mol Genet 2020; 28:3815-3824. [PMID: 31600780 DOI: 10.1093/hmg/ddz212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 11/14/2022] Open
Abstract
Wolfram syndrome (WS) is a heterogeneous multisystem neurodegenerative disorder with two allelic variations in addition to a separate subtype known as WS type 2. The wide phenotypic spectrum of WS includes diabetes mellitus and optic atrophy which is often accompanied by diabetes insipidus, deafness, urological and neurological complications in combination or in isolation. To date, the understanding of the genotype-phenotype relationship in this complex syndrome remains poorly understood. In this study, we identified and explored the functionality of rare and novel variants in the two causative WS genes WFS1 and CISD2 by assessing the effects of the mutations on the encoded proteins Wolframin and ERIS, in a cohort of 12 patients with autosomal recessive WS, dominant WS and WS type 2. The identified pathogenic variants included missense changes, frameshift deletions and insertions in WFS1 and an exonic deletion in CISD2 which all altered the respective encoded protein in a manner that did not correlate to the phenome previously described. These observations suggest the lack of genotype-phenotype correlation in this complex syndrome and the need to explore other molecular genetic mechanisms. Additionally, our findings highlight the importance of functionally assessing variants for their pathogenicity to tackle the problem of increasing variants of unknown significance in the public genetic databases.
Collapse
Affiliation(s)
- Melissa Riachi
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Sebahat Yilmaz
- Dr. Sami Ulus Obstetrics and Gynecology, Pediatric Health and Disease Training and Research Hospital, Pediatric Endocrinology Clinic, Ankara, Turkey
| | - Erdal Kurnaz
- Dr. Sami Ulus Obstetrics and Gynecology, Pediatric Health and Disease Training and Research Hospital, Pediatric Endocrinology Clinic, Ankara, Turkey
| | - Zehra Aycan
- Dr. Sami Ulus Obstetrics and Gynecology, Pediatric Health and Disease Training and Research Hospital, Pediatric Endocrinology Clinic, Ankara, Turkey
| | - Semra Çetinkaya
- Dr. Sami Ulus Obstetrics and Gynecology, Pediatric Health and Disease Training and Research Hospital, Pediatric Endocrinology Clinic, Ankara, Turkey
| | - Lisbeth Tranebjærg
- Department of Clinical Genetics, The Kennedy Center, University Hospital, Copenhagen, Denmark.,Institute of Clinical Medicine (IKM), The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nanna Dahl Rendtorff
- Department of Clinical Genetics, The Kennedy Center, University Hospital, Copenhagen, Denmark
| | | | - Detlef Bockenhauer
- Department of Renal Medicine, UCL, London, UK.,Renal Unit, Great Ormond Street Hospital for Children, London, UK
| | - Khalid Hussain
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK.,Department of Pediatrics, Division of Endocrinology, Sidra Medicine, Doha, Qatar
| |
Collapse
|
50
|
Caporali L, Magri S, Legati A, Del Dotto V, Tagliavini F, Balistreri F, Nasca A, La Morgia C, Carbonelli M, Valentino ML, Lamantea E, Baratta S, Schöls L, Schüle R, Barboni P, Cascavilla ML, Maresca A, Capristo M, Ardissone A, Pareyson D, Cammarata G, Melzi L, Zeviani M, Peverelli L, Lamperti C, Marzoli SB, Fang M, Synofzik M, Ghezzi D, Carelli V, Taroni F. ATPase Domain AFG3L2 Mutations Alter OPA1 Processing and Cause Optic Neuropathy. Ann Neurol 2020; 88:18-32. [PMID: 32219868 PMCID: PMC7383914 DOI: 10.1002/ana.25723] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Dominant optic atrophy (DOA) is the most common inherited optic neuropathy, with a prevalence of 1:12,000 to 1:25,000. OPA1 mutations are found in 70% of DOA patients, with a significant number remaining undiagnosed. METHODS We screened 286 index cases presenting optic atrophy, negative for OPA1 mutations, by targeted next generation sequencing or whole exome sequencing. Pathogenicity and molecular mechanisms of the identified variants were studied in yeast and patient-derived fibroblasts. RESULTS Twelve cases (4%) were found to carry novel variants in AFG3L2, a gene that has been associated with autosomal dominant spinocerebellar ataxia 28 (SCA28). Half of cases were familial with a dominant inheritance, whereas the others were sporadic, including de novo mutations. Biallelic mutations were found in 3 probands with severe syndromic optic neuropathy, acting as recessive or phenotype-modifier variants. All the DOA-associated AFG3L2 mutations were clustered in the ATPase domain, whereas SCA28-associated mutations mostly affect the proteolytic domain. The pathogenic role of DOA-associated AFG3L2 mutations was confirmed in yeast, unraveling a mechanism distinct from that of SCA28-associated AFG3L2 mutations. Patients' fibroblasts showed abnormal OPA1 processing, with accumulation of the fission-inducing short forms leading to mitochondrial network fragmentation, not observed in SCA28 patients' cells. INTERPRETATION This study demonstrates that mutations in AFG3L2 are a relevant cause of optic neuropathy, broadening the spectrum of clinical manifestations and genetic mechanisms associated with AFG3L2 mutations, and underscores the pivotal role of OPA1 and its processing in the pathogenesis of DOA. ANN NEUROL 2020 ANN NEUROL 2020;88:18-32.
Collapse
Affiliation(s)
- Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Andrea Legati
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Valentina Del Dotto
- Neurology Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Tagliavini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Francesca Balistreri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessia Nasca
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.,Neurology Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Michele Carbonelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Maria L Valentino
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.,Neurology Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Eleonora Lamantea
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvia Baratta
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Rebecca Schüle
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Piero Barboni
- Studio Oculistico D'Azeglio, Bologna, Italy.,IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Mariantonietta Capristo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Anna Ardissone
- Unit of Child Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Davide Pareyson
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gabriella Cammarata
- Neuro-Ophthalmology Center and Ocular Electrophysiology Laboratory, IRCCS Istituto Auxologico Italiano, Capitanio Hospital, Milan, Italy
| | - Lisa Melzi
- Neuro-Ophthalmology Center and Ocular Electrophysiology Laboratory, IRCCS Istituto Auxologico Italiano, Capitanio Hospital, Milan, Italy
| | - Massimo Zeviani
- Department of Neuroscience, University of Padua, Padua, Italy
| | - Lorenzo Peverelli
- Neurology Unit, Azienda Socio Sanitaria Territoriale Lodi, Ospedale Maggiore di Lodi, Lodi, Italy
| | - Costanza Lamperti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania B Marzoli
- Neuro-Ophthalmology Center and Ocular Electrophysiology Laboratory, IRCCS Istituto Auxologico Italiano, Capitanio Hospital, Milan, Italy
| | - Mingyan Fang
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Medical-Surgical Physiopathology and Transplantation, University of Milan, Milan, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.,Neurology Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|