1
|
Xie X, Huang B, Su L, Cai M, Chen Y, Wu X, Xu L. Prenatal diagnosis and genetic etiology analysis of talipes equinovarus by chromosomal microarray analysis. BMC Med Genomics 2023; 16:298. [PMID: 37986075 PMCID: PMC10658977 DOI: 10.1186/s12920-023-01733-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND With the advancement of molecular technology, fetal talipes equinovarus (TE) is believed to be not only associated with chromosome aneuploidy, but also related to chromosomal microdeletion and microduplication. The study aimed to explore the molecular etiology of fetal TE and provide more information for the clinical screening and genetic counseling of TE by Chromosomal Microarray Analysis (CMA). METHODS This retrospectively study included 131 fetuses with TE identified by ultrasonography. Conventional karyotyping and SNP array analysis were performed for all the subjects. They were divided into isolated TE group (n = 55) and complex group (n = 76) according to structural anomalies. RESULTS Among the total of 131 fetuses, karyotype analysis found 12(9.2%) abnormal results, while SNP array found 27 (20.6%) cases. Trisomy 18 was detected most frequently among abnormal karyotypes. The detection rate of SNP array was significantly higher than that of traditional chromosome karyotype analysis (P < 0.05). SNP array detected 15 (11.5%) cases of submicroscopic abnormalities that karyotype analysis did not find. The most common CNV was the 22q11.2 microdeletion. For both analyses, the overall detection rates were significantly higher in the complex TE group than in the isolated TE group (karyotype: P < 0.05; SNP array: P < 0.05). The incremental yield of chromosomal abnormalities in fetuses with unilateral TE (22.0%) was higher than in fetuses with bilateral TE (19.8%), but this difference was not statistically significant (P > 0.05). Abnormal chromosomes were most frequently detected in fetuses with TE plus cardiovascular system abnormalities. CONCLUSION Fetal TE is related to chromosomal microdeletion or microduplication. Prenatal diagnosis is recommended for fetuses with TE, and CMA testing is preferred. CMA can improve the detection rate of chromosomal abnormalities associated with fetal TE, especially in pregnancies with complex TE.
Collapse
Affiliation(s)
- Xiaorui Xie
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Provincial Maternity and Children's Hospital, No. 18 Daoshan Road, Gulou District, Fuzhou, 350001, China
| | - Baojia Huang
- Prenatal Diagnosis Center, Quanzhou Maternity and Children's Hospital, Quanzhou, China
| | - Linjuan Su
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Provincial Maternity and Children's Hospital, No. 18 Daoshan Road, Gulou District, Fuzhou, 350001, China
| | - Meiying Cai
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Provincial Maternity and Children's Hospital, No. 18 Daoshan Road, Gulou District, Fuzhou, 350001, China
| | - Yuqin Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Provincial Maternity and Children's Hospital, No. 18 Daoshan Road, Gulou District, Fuzhou, 350001, China
| | - Xiaoqing Wu
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Provincial Maternity and Children's Hospital, No. 18 Daoshan Road, Gulou District, Fuzhou, 350001, China.
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Provincial Maternity and Children's Hospital, No. 18 Daoshan Road, Gulou District, Fuzhou, 350001, China.
| |
Collapse
|
2
|
Panza R, Albano F, Casto A, Del Vecchio C, Laforgia N, Dibello D. Incidence and prevalence of congenital clubfoot in Apulia: a regional model for future prospective national studies. Ital J Pediatr 2023; 49:151. [PMID: 37964341 PMCID: PMC10648723 DOI: 10.1186/s13052-023-01559-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/05/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Congenital clubfoot is a fairly common and severe congenital malformation, most often of idiopathic origin. A smaller percentage of cases is related to chromosomal abnormalities and genetic syndromes. It is estimated that 0.5/1000 newborns are affected worldwide, with a male to female ratio of 2:1 and greater distribution in developing countries (80%). The "European Surveillance of Congenital Anomalies (EUROCAT)" reported clubfoot prevalence in European newborns, but data regarding Italy are missing or poor. We aim to provide detailed data on clubfoot incidence according to the Apulian Regional Registry on Congenital Malformations and to report current knowledge on clubfoot genetic factors. METHODS We extrapolated data from the Regional Registry of Congenital Malformations to evaluate incidence and prevalence of congenital clubfoot in Apulia, Italy over a period of four years (2015-2018). We also performed a narrative review focusing on genetic mutations leading to congenital clubfoot. RESULTS Over the period from 2015 to 2018 in Apulia, Italy, 124,017 births were recorded and 209 cases of clubfoot were found, accounting for an incidence rate of 1.7/1,000 and a prevalence rate of 1.6/1,000. Six families of genes have been reported to have an etiopathogenetic role on congenital clubfoot. CONCLUSIONS Incidence and prevalence of congenital clubfoot in Apulia, Italy, are comparable with those reported in the other Italian regions but higher than those reported in previous studies from Europe. Genetic studies to better classify congenital clubfoot in either syndromic or isolated forms are desirable.
Collapse
Affiliation(s)
- Raffaella Panza
- Neonatology and Neonatal Intensive Care Unit (NICU), University of Bari Aldo Moro, Bari, Italy
| | - Federica Albano
- Orthopaedics Unit, Department of Basic Medical Science, Neuroscience and Sensory Organs, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Alberto Casto
- Orthopaedics Unit, Department of Basic Medical Science, Neuroscience and Sensory Organs, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Cosimo Del Vecchio
- Orthopaedics Unit, Department of Basic Medical Science, Neuroscience and Sensory Organs, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Nicola Laforgia
- Neonatology and Neonatal Intensive Care Unit (NICU), University of Bari Aldo Moro, Bari, Italy.
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy.
| | - Daniela Dibello
- Unit of Pediatric Orthopaedics and Traumatology, Giovanni XXIII Children's Hospital, Via Giovanni Amendola, Bari, 70126, Italy
| |
Collapse
|
3
|
Karolak JA, Welch CL, Mosimann C, Bzdęga K, West JD, Montani D, Eyries M, Mullen MP, Abman SH, Prapa M, Gräf S, Morrell NW, Hemnes AR, Perros F, Hamid R, Logan MPO, Whitsett J, Galambos C, Stankiewicz P, Chung WK, Austin ED. Molecular Function and Contribution of TBX4 in Development and Disease. Am J Respir Crit Care Med 2023; 207:855-864. [PMID: 36367783 PMCID: PMC10111992 DOI: 10.1164/rccm.202206-1039tr] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past decade, recognition of the profound impact of the TBX4 (T-box 4) gene, which encodes a member of the evolutionarily conserved family of T-box-containing transcription factors, on respiratory diseases has emerged. The developmental importance of TBX4 is emphasized by the association of TBX4 variants with congenital disorders involving respiratory and skeletal structures; however, the exact role of TBX4 in human development remains incompletely understood. Here, we discuss the developmental, tissue-specific, and pathological TBX4 functions identified through human and animal studies and review the published TBX4 variants resulting in variable disease phenotypes. We also outline future research directions to fill the gaps in our understanding of TBX4 function and of how TBX4 disruption affects development.
Collapse
Affiliation(s)
- Justyna A. Karolak
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | - Katarzyna Bzdęga
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | - James D. West
- Division of Allergy, Pulmonary and Critical Care Medicine, and
| | - David Montani
- Université Paris-Saclay, Assistance Publique–Hôpitaux de Paris, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, DMU 5 Thorinno, Inserm UMR_S999, Le Kremlin-Bicêtre, France
| | - Mélanie Eyries
- Sorbonne Université, AP-HP, Département de Génétique, Hôpital Pitié-Salpêtrière, Paris, France
| | - Mary P. Mullen
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | | - Matina Prapa
- St. George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Stefan Gräf
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Heart and Lung Research Institute, Cambridge, United Kingdom
| | - Nicholas W. Morrell
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Heart and Lung Research Institute, Cambridge, United Kingdom
| | - Anna R. Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, and
| | - Frédéric Perros
- Université Paris-Saclay, Assistance Publique–Hôpitaux de Paris, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, DMU 5 Thorinno, Inserm UMR_S999, Le Kremlin-Bicêtre, France
| | - Rizwan Hamid
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Malcolm P. O. Logan
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Jeffrey Whitsett
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Perinatal Institute, Cincinnati, Ohio
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Csaba Galambos
- Department of Pathology, University of Colorado School of Medicine, and Children’s Hospital Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Wendy K. Chung
- Department of Pediatrics and
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Eric D. Austin
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
4
|
Bianco AM, Ragusa G, Di Carlo V, Faletra F, Di Stazio M, Racano C, Trisolino G, Cappellani S, De Pellegrin M, d’Addetta I, Carluccio G, Monforte S, Andreacchio A, Dibello D, d’Adamo AP. What Is the Exact Contribution of PITX1 and TBX4 Genes in Clubfoot Development? An Italian Study. Genes (Basel) 2022; 13:1958. [PMID: 36360195 PMCID: PMC9690101 DOI: 10.3390/genes13111958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 09/13/2023] Open
Abstract
Congenital clubfoot is a common pediatric malformation that affects approximately 0.1% of all births. 80% of the cases appear isolated, while 20% can be secondary or associated with complex syndromes. To date, two genes that appear to play an important role are PTIX1 and TBX4, but their actual impact is still unclear. Our study aimed to evaluate the prevalence of pathogenic variants in PITX1 and TBX4 in Italian patients with idiopathic clubfoot. PITX1 and TBX4 genes were analyzed by sequence and SNP array in 162 patients. We detected only four nucleotide variants in TBX4, predicted to be benign or likely benign. CNV analysis did not reveal duplications or deletions involving both genes and intragenic structural variants. Our data proved that the idiopathic form of congenital clubfoot was rarely associated with mutations and CNVs on PITX1 and TBX4. Although in some patients, the disease was caused by mutations in both genes; they were responsible for only a tiny minority of cases, at least in the Italian population. It was not excluded that other genes belonging to the same TBX4-PITX1 axis were involved, even if genetic complexity at the origin of clubfoot required the involvement of other factors.
Collapse
Affiliation(s)
- Anna Monica Bianco
- Genetics Unit, Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, 34137 Trieste, Italy
| | - Giulia Ragusa
- Genetics Unit, Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, 34137 Trieste, Italy
| | - Valentina Di Carlo
- Unit of Paediatric Orthopaedic and Traumatology, Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, 34147 Trieste, Italy
| | - Flavio Faletra
- Genetics Unit, Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, 34137 Trieste, Italy
| | - Mariateresa Di Stazio
- Genetics Unit, Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, 34137 Trieste, Italy
| | - Costantina Racano
- Unit of Pediatric Orthopaedics and Traumatology, Istituto Ortopedico Rizzoli (IRCCS), 40136 Bologna, Italy
| | - Giovanni Trisolino
- Unit of Pediatric Orthopaedics and Traumatology, Istituto Ortopedico Rizzoli (IRCCS), 40136 Bologna, Italy
| | - Stefania Cappellani
- Genetics Unit, Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, 34137 Trieste, Italy
| | | | - Ignazio d’Addetta
- Unit of Pediatric Orthopaedics and Traumatology Giovanni XXIII Children’s Hospital, Via Giovanni Amendola, 70126 Bari, Italy
| | - Giuseppe Carluccio
- Unit of Pediatric Orthopaedics and Traumatology Giovanni XXIII Children’s Hospital, Via Giovanni Amendola, 70126 Bari, Italy
| | - Sergio Monforte
- Pediatric Orthopedic of Buzzi Children Hospital of Milano, 20154 Milan, Italy
| | - Antonio Andreacchio
- Pediatric Orthopedic of Buzzi Children Hospital of Milano, 20154 Milan, Italy
| | - Daniela Dibello
- Unit of Pediatric Orthopaedics and Traumatology Giovanni XXIII Children’s Hospital, Via Giovanni Amendola, 70126 Bari, Italy
| | - Adamo P. d’Adamo
- Genetics Unit, Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, 34137 Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34100 Trieste, Italy
| |
Collapse
|
5
|
Muhammad H, Haryana SM, Magetsari R, Karsten S, Saraswati PA. Genes on syndromic and idiopathic CTEV: A systematic review. INTERNATIONAL JOURNAL OF SURGERY OPEN 2022. [DOI: 10.1016/j.ijso.2022.100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Li P, Lan W, Li J, Zhang Y, Xiong Q, Ye J, Wu C, Xiao H. Identification and Functional Evaluation of a Novel TBX4 Mutation Underlies Small Patella Syndrome. Int J Mol Sci 2022; 23:ijms23042075. [PMID: 35216193 PMCID: PMC8875086 DOI: 10.3390/ijms23042075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Small patella syndrome (SPS) is a rare autosomal dominant disorder caused by mutations in TBX4 gene which encodes a transcription factor of FGF10. However, how TBX4 mutations result in SPS is poorly understood. Here, a novel TBX4 mutation c.1241C>T (p.P414L) was identified in a SPS family and series of studies were performed to evaluate the influences of TBX4 mutations (including c.1241C>T and two known mutations c.256G>C and c.743G>T). Results showed that mesenchymal stem cells (MSCs) with stable overexpression of either TBX4 wild-type (TBX4wt) or mutants (TBX4mt) were successfully generated. Immunofluorescence study revealed that both the overexpressed TBX4 wild-type and mutants were evenly expressed in the nucleus suggesting that these mutations do not alter the translocation of TBX4 into the nucleus. Interestingly, MSCs overexpression of TBX4mt exhibited reduced differentiation activities and decreased FGF10 expression. Chromatin immunoprecipitation (ChIP) study demonstrated that TBX4 mutants still could bind to the promoter of FGF10. However, dual luciferase reporter assay clarified that the binding efficiencies of TBX4 mutants to FGF10 promoter were reduced. Taken together, MSCs were firstly used to study the function of TBX4 mutations in this study and the results indicate that the reduced binding efficiencies of TBX4 mutants (TBX4mt) to the promoter of FGF10 result in the abnormal biological processes which provide important information for the pathogenesis of SPS.
Collapse
Affiliation(s)
- Ping Li
- Correspondence: (P.L.); (H.X.)
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Liang N, Deme L, Kong Q, Sun L, Cao Y, Wu T, Huang X, Xu S, Yang G. Divergence of Tbx4 hindlimb enhancer HLEA underlies the hindlimb loss during cetacean evolution. Genomics 2022; 114:110292. [DOI: 10.1016/j.ygeno.2022.110292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/13/2022] [Accepted: 02/01/2022] [Indexed: 11/04/2022]
|
8
|
Yıldız Bölükbaşı E, Karolak JA, Szafranski P, Gambin T, Murik O, Zeevi DA, Altarescu G, Stankiewicz P. Exacerbation of mild lung disorders to lethal pulmonary hypoplasia by a noncoding hypomorphic SNV in a lung-specific enhancer in trans to the frameshifting TBX4 variant. Am J Med Genet A 2022; 188:1420-1425. [PMID: 35075769 PMCID: PMC8995354 DOI: 10.1002/ajmg.a.62656] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 12/26/2022]
Abstract
Variants involving TBX4 are associated with a wide variety of disorders, including pulmonary arterial hypertension, ischiocoxopodopatellar syndrome (ICPPS)/small patella syndrome (SPS), lethal lung developmental disorders (LLDDs) in neonates, heart defects, and prenatally lethal posterior amelia with pelvic and pulmonary hypoplasia syndrome. The objective of our study was to elucidate the wide variable phenotypic expressivity and incomplete penetrance in a three-generation family with a truncating variant in TBX4. In addition to exome and genome sequencing analyses, a candidate noncoding regulatory single nucleotide variant (SNV) within the lung-specific TBX4 enhancer was functionally tested using an in vitro luciferase reporter assay. A heterozygous frameshift variant c.1112dup (p.Pro372Serfs*14) in TBX4 was identified in patients with mild interstitial lung disease (1), bronchiolitis obliterans (1), recurrent pneumothorax (1), ICPPS/SPS (1), LLDD (2), and in unaffected individuals (4). In two deceased neonates with LLDD, we identified a noncoding SNV rs62069651-C located in trans to the mutated TBX4 allele that reduced the TBX4 promoter activity by 63% in the reporter assay. Our findings provide a functional evidence for the recently reported model of complex compound inheritance in which both TBX4 coding and in trans noncoding hypomorphic variants in the lung-specific enhancer of TBX4 contribute to LLDD.
Collapse
Affiliation(s)
- Esra Yıldız Bölükbaşı
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Justyna A Karolak
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
| | - Omer Murik
- Translational Genomics Lab, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - David A Zeevi
- Translational Genomics Lab, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Gheona Altarescu
- Preimplantation Genetic Unit, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
9
|
Kakihana M, Tochigi Y, Ozeki S, Jinno T. Muscle volume evaluation using 3DCT for congenital clubfoot. Acta Radiol Open 2021; 10:20584601211062084. [PMID: 34881049 PMCID: PMC8646796 DOI: 10.1177/20584601211062084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/07/2021] [Indexed: 11/16/2022] Open
Abstract
Background In congenital clubfoot, the lower leg is very thin and the calf muscles are hypoplasic. However, there are few studies reporting real muscle volume. Purpose The purpose of this study is to assay the muscle volume in congenital clubfoot using 3DCT and to quantify the degree of the hypoplasia. Material and methods From January 2015 to December 2016, nine consecutive patients, seven male and two female, with unilateral congenital clubfeet were recruited for CT scans. Axial transverse sectional CT scans were acquired from the delineation of the fibular head to the tibial plafond. From the data, we rendered the entire muscle in 3D for muscle volume assay, and further segmented the posterior musculature for comparison between the normal and affected sides. Results The whole muscle volume on the normal side was 291.23 cm3 (181.23–593.49) and that on the affected side was 225.08 cm3 (120.71–429.08), for an affected side to normal side ratio of 0.79 (0.72–0.9), which was significantly smaller (p < .01). Posterior muscle volume on the normal side was 175.81 cm3 (103.72–376.32) and that on the affected side was 106.52 cm3 (58.3–188.39). The ratio of posterior muscle to whole muscle on the normal side was 0.62 (0.46–0.75), and that on the affected side was 0.48 (0.4–0.55), such that the affected side was significantly smaller (p < .01) Conclusion This study contributes quantitative data supporting the longstanding observations that the posterior calf muscles are significantly smaller on the affected side compared to the normal side in congenital clubfoot, and further underscores the importance of the extending the excursion of these muscles.
Collapse
Affiliation(s)
- Masataka Kakihana
- Department of Orthopedic Surgery, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Yuki Tochigi
- Department of Orthopedic Surgery, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Satoru Ozeki
- Lake Town Hospital of Orthopaedics, Koshigaya, Japan
| | - Tetsuya Jinno
- Department of Orthopedic Surgery, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| |
Collapse
|
10
|
Hordyjewska-Kowalczyk E, Nowosad K, Jamsheer A, Tylzanowski P. Genotype-phenotype correlation in clubfoot (talipes equinovarus). J Med Genet 2021; 59:209-219. [PMID: 34782442 DOI: 10.1136/jmedgenet-2021-108040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022]
Abstract
Clubfoot (talipes equinovarus) is a congenital malformation affecting muscles, bones, connective tissue and vascular or neurological structures in limbs. It has a complex aetiology, both genetic and environmental. To date, the most important findings in clubfoot genetics involve PITX1 variants, which were linked to clubfoot phenotype in mice and humans. Additionally, copy number variations encompassing TBX4 or single nucleotide variants in HOXC11, the molecular targets of the PITX1 transcription factor, were linked to the clubfoot phenotype. In general, genes of cytoskeleton and muscle contractile apparatus, as well as components of the extracellular matrix and connective tissue, are frequently linked with clubfoot aetiology. Last but not least, an equally important element, that brings us closer to a better understanding of the clubfoot genotype/phenotype correlation, are studies on the two known animal models of clubfoot-the pma or EphA4 mice. This review will summarise the current state of knowledge of the molecular basis of this congenital malformation.
Collapse
Affiliation(s)
- Ewa Hordyjewska-Kowalczyk
- Department of Biomedical Sciences, Laboratory of Molecular Genetics, Medical University of Lublin, Lublin, Lubelskie, Poland
| | - Karol Nowosad
- Department of Biomedical Sciences, Laboratory of Molecular Genetics, Medical University of Lublin, Lublin, Lubelskie, Poland.,The Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland.,Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Wielkopolskie, Poland
| | - Przemko Tylzanowski
- Department of Biomedical Sciences, Laboratory of Molecular Genetics, Medical University of Lublin, Lublin, Lubelskie, Poland .,Department of Development and Regeneration, Skeletal Biology and Engineering Research Centre, KU Leuven, Leuven, Flanders, Belgium
| |
Collapse
|
11
|
Khanshour AM, Kidane YH, Kozlitina J, Cornelia R, Rafipay A, De Mello V, Weston M, Paria N, Khalid A, Hecht JT, Dobbs MB, Richards BS, Vargesson N, Hamra FK, Wilson M, Wise C, Gurnett CA, Rios JJ. Genetic association and characterization of FSTL5 in isolated clubfoot. Hum Mol Genet 2020; 29:3717-3728. [PMID: 33105483 DOI: 10.1093/hmg/ddaa236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 01/01/2023] Open
Abstract
Talipes equinovarus (clubfoot, TEV) is a congenital rotational foot deformity occurring in 1 per 1000 births with increased prevalence in males compared with females. The genetic etiology of isolated clubfoot (iTEV) remains unclear. Using a genome-wide association study, we identified a locus within FSTL5, encoding follistatin-like 5, significantly associated with iTEV. FSTL5 is an uncharacterized gene whose potential role in embryonic and postnatal development was previously unstudied. Utilizing multiple model systems, we found that Fstl5 was expressed during later stages of embryonic hindlimb development, and, in mice, expression was restricted to the condensing cartilage anlage destined to form the limb skeleton. In the postnatal growth plate, Fstl5 was specifically expressed in prehypertrophic chondrocytes. As Fstl5 knockout rats displayed no gross malformations, we engineered a conditional transgenic mouse line (Fstl5LSL) to overexpress Fstl5 in skeletal osteochondroprogenitors. We observed that hindlimbs were slightly shorter and that bone mineral density was reduced in adult male, but not female, Prrx1-cre;Fstl5LSL mice compared with control. No overt clubfoot-like deformity was observed in Prrx1-cre;Fstl5LSL mice, suggesting FSTL5 may function in other cell types to contribute to iTEV pathogenesis. Interrogating published mouse embryonic single-cell expression data showed that Fstl5 was expressed in cell lineage subclusters whose transcriptomes were associated with neural system development. Moreover, our results suggest that lineage-specific expression of the Fstl genes correlates with their divergent roles as modulators of transforming growth factor beta and bone morphogenetic protein signaling. Results from this study associate FSTL5 with iTEV and suggest a potential sexually dimorphic role for Fstl5 in vivo.
Collapse
Affiliation(s)
- Anas M Khanshour
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Yared H Kidane
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Julia Kozlitina
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Reuel Cornelia
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Alexandra Rafipay
- School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Vanessa De Mello
- School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Mitchell Weston
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Nandina Paria
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Aysha Khalid
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Jacqueline T Hecht
- Department of Pediatrics, McGovern Medical School, University of Texas Health, Houston, TX 77030, USA
| | - Matthew B Dobbs
- Paley Orthopedic and Spine Institute, West Palm Beach, FL 33407, USA
| | - B Stephens Richards
- Department of Orthopaedics, Scottish Rite for Children, Dallas, TX 75219, USA.,Department of Orthopaedic Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Neil Vargesson
- School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - F Kent Hamra
- Department of Obstetrics and Gynecology, Cecil H. & Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Megan Wilson
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Carol Wise
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA.,McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Orthopaedic Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christina A Gurnett
- Department of Neurology, School of Medicine, Washington University, St. Louis, MO 63130, USA
| | - Jonathan J Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX 75219, USA.,McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Orthopaedic Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
12
|
Ding J, Liang Z, Feng W, Cai Q, Zhang Z. Integrated Bioinformatics Analysis Reveals Potential Pathway Biomarkers and Their Interactions for Clubfoot. Med Sci Monit 2020; 26:e925249. [PMID: 32829375 PMCID: PMC7462570 DOI: 10.12659/msm.925249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Congenital talipes equinovarus (clubfoot), one of the most regular pediatric congenital skeletal anomalies, seriously affects the normal growth and development of about 1 in 1000 newborns. Although it has been investigated widely, the etiology and pathogenesis of clubfoot are still controversial. Material/Methods g: Profiler, NetworkAnalyst and WebGestalt were used to probe the enriched signaling pathways by using the Gene Ontology (GO), Human Phenotype Ontology (HP), Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome (REAC), and WikiPathways (WP) databases. Large numbers of enriched signaling pathways were identified using the integrated bioinformatics enrichment analyses. Results Apoptosis or programmed cell death (PCD), disease, muscle contraction, metabolism, and immune system were the top functions. Embryo or organ morphogenesis and development, cell or muscle contraction, and apoptosis were the top biological processes, and cell/muscle contraction and apoptosis were the top molecular functions using enriched GO terms analysis. There were a large number of complex interactions in the genes, enriched pathways, and transcription factor (TF)-miRNA co-regulatory networks. Transcription factors such as FOXN3, GLI3, HOX, and NCOR2 family regulated the gene expression of APAF1, BCL2, BID, CASP, MTHFR, and TPM family. Conclusions The results of bioinformatics enrichment analysis not only supported the previously proposed hypotheses, e.g., extracellular matrix (ECM) abnormality, fetal movement reducing, genetic abnormality, muscle abnormality, neurological abnormality, skeletal abnormality and vascular abnormality, but also indicated that cellular or immune responses to external stimulus, molecular transport and metabolism may be new etiological mechanisms in clubfoot.
Collapse
Affiliation(s)
- Jing Ding
- Department of Pediatric Orthopaedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Zhenpeng Liang
- Department of Pediatric Orthopaedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Weijia Feng
- Department of Pediatric Orthopaedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Qixun Cai
- Department of Pediatric Orthopaedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Ziming Zhang
- Department of Pediatric Orthopaedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| |
Collapse
|
13
|
Sadler B, Haller G, Antunes L, Nikolov M, Amarillo I, Coe B, Dobbs MB, Gurnett CA. Rare and de novo duplications containing SHOX in clubfoot. J Med Genet 2020; 57:851-857. [PMID: 32518174 PMCID: PMC7688552 DOI: 10.1136/jmedgenet-2020-106842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 11/12/2022]
Abstract
Introduction Congenital clubfoot is a common birth defect that affects at least 0.1% of all births. Nearly 25% cases are familial and the remaining are sporadic in inheritance. Copy number variants (CNVs) involving transcriptional regulators of limb development, including PITX1 and TBX4, have previously been shown to cause familial clubfoot, but much of the heritability remains unexplained. Methods Exome sequence data from 816 unrelated clubfoot cases and 2645 in-house controls were analysed using coverage data to identify rare CNVs. The precise size and location of duplications were then determined using high-density Affymetrix Cytoscan chromosomal microarray (CMA). Segregation in families and de novo status were determined using qantitative PCR. Results Chromosome Xp22.33 duplications involving SHOX were identified in 1.1% of cases (9/816) compared with 0.07% of in-house controls (2/2645) (p=7.98×10−5, OR=14.57) and 0.27% (38/13592) of Atherosclerosis Risk in Communities/the Wellcome Trust Case Control Consortium 2 controls (p=0.001, OR=3.97). CMA validation confirmed an overlapping 180.28 kb duplicated region that included SHOX exons as well as downstream non-coding regions. In four of six sporadic cases where DNA was available for unaffected parents, the duplication was de novo. The probability of four de novo mutations in SHOX by chance in a cohort of 450 sporadic clubfoot cases is 5.4×10–10. Conclusions Microduplications of the pseudoautosomal chromosome Xp22.33 region (PAR1) containing SHOX and downstream enhancer elements occur in ~1% of patients with clubfoot. SHOX and regulatory regions have previously been implicated in skeletal dysplasia as well as idiopathic short stature, but have not yet been reported in clubfoot. SHOX duplications likely contribute to clubfoot pathogenesis by altering early limb development.
Collapse
Affiliation(s)
- Brooke Sadler
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Gabe Haller
- Department of Orthopedic Surgery, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Lilian Antunes
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Momchil Nikolov
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Ina Amarillo
- Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Bradley Coe
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA.,Department of Pathology & Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew B Dobbs
- Department of Orthopedic Surgery, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Christina A Gurnett
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
14
|
Zhang J, Li S, Ma S, Liu Y, Wang X, Li Y. Whole‑exome sequencing study identifies two novel rare variations associated with congenital talipes equinovarus. Mol Med Rep 2020; 21:2597-2602. [PMID: 32236576 DOI: 10.3892/mmr.2020.11038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/06/2020] [Indexed: 11/05/2022] Open
Abstract
Congenital talipes equinovarus (CTEV) is a common birth defect with an unclear genetic pathogenesis that results from both genetic and environmental factors. The present study aimed to identify novel variants in patients with CTEV using whole‑exome sequencing (WES) and to investigate the genetic factors responsible for the development of CTEV.A cohort of nine neonates/infants with suspected CTEV was recruited. Subsequently, sequential tests, including chromosome karyotyping and WES, were performed for each of the participants. Familial validation was performed using Sanger sequencing and low‑coverage copy‑number variation (CNV) sequencing. A novel CNV containing the mediator complex subunit 13L gene at 12q24.21‑q24.23 was detected by WES and further investigated by CNVseq. Additionally, a novel de novo missense variation, transforming growth factor‑β receptor 2: c.1280T>C, was identified by WES and further investigated by Sanger sequencing. The two identified variations were hypothesized to be causative genetic factors for the development of CTEV in the two cases the variations were identified in. In the present study, two pathogenic variations (one CNV and one single‑base variation) were detected in two Chinese families with CTEV. The results of the present study may aid in investigating the molecular basis of CTEV; however, further investigation is required.
Collapse
Affiliation(s)
- Jing Zhang
- Center of Prenatal Diagnosis, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Shang Li
- Department of Anesthesiology and Operating Room, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Suling Ma
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Yan Liu
- Department of Pediatric Orthopedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Xuan Wang
- Department of Pediatric Orthopedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Yazhou Li
- Department of Pediatric Orthopedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
15
|
Abstract
PURPOSE Congenital clubfoot is a serious birth defect that affects nearly 0.1% of all births. Though there is strong evidence for a genetic basis of isolated clubfoot, aside from a handful of associations, much of the heritability remains unexplained. METHODS By systematically examining the genes involved in syndromic clubfoot, we may find new candidate genes and pathways to investigate in isolated clubfoot. RESULTS In addition to the expected enrichment of extracellular matrix and transforming growth factor beta (TGF-β) signalling genes, we find many genes involved in syndromic clubfoot encode peroxisomal matrix proteins, as well as enzymes necessary for sulfation of proteoglycans, an important part of connective tissue. Further, the association of Filamin B with isolated clubfoot as well as syndromic clubfoot is an encouraging finding. CONCLUSION We should examine these categories for enrichment in isolated clubfoot patients to increase our understanding of the underlying biology and pathophysiology of this deformity. Understanding the spectrum of syndromes that have clubfoot as a feature enables a better understanding of the underlying pathophysiology of the disorder and directs future genetic screening efforts toward certain genes and genetic pathways. LEVEL OF EVIDENCE V.
Collapse
Affiliation(s)
- B. Sadler
- Department of Neurology, Washington University in St. Louis, St Louis, Missouri, USA
| | - C. A. Gurnett
- Department of Neurology, Washington University in St. Louis, St Louis, Missouri, USA
| | - M. B. Dobbs
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA,Correspondence should be sent to Matthew B. Dobbs, MD, 1 Children’s Place, Suite 4S-60, Department of Orthopedic Surgery, 660 S Euclid Ave, Campus Box 8233, Washington University in St Louis, St Louis, Missouri 63110, USA. E-mail:
| |
Collapse
|
16
|
Pavone V, Chisari E, Vescio A, Lucenti L, Sessa G, Testa G. The etiology of idiopathic congenital talipes equinovarus: a systematic review. J Orthop Surg Res 2018; 13:206. [PMID: 30134936 PMCID: PMC6104023 DOI: 10.1186/s13018-018-0913-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/15/2018] [Indexed: 12/19/2022] Open
Abstract
Background Also known as clubfoot, idiopathic congenital talipes equinovarus (ICTEV) is the most common pediatric deformity and occurs in 1 in every 1000 live births. Even though it has been widely researched, the etiology of ICTEV remains poorly understood and is often described as being based on a multifactorial genesis. Genetic and environmental factors seem to have a major role in the development of this disease. Thus, the aim of this review is to analyze the available literature to document the current evidence on ICTEV etiology. Methods The literature on ICTEV etiology was systematically reviewed using the following inclusion criteria: studies of any level of evidence, reporting clinical or preclinical results, published in the last 20 years (1998–2018), and dealing with the etiology of ICTEV. Results A total of 48 articles were included. ICTEV etiology is still controversial. Several hypotheses have been researched, but none of them are decisive. Emerging evidence suggests a role of several pathways and gene families associated with limb development (HOX family; PITX1-TBX4), the apoptotic pathway (caspases), and muscle contractile protein (troponin and tropomyosin), but a major candidate gene has still not been identified. Strong recent evidence emerging from twin studies confirmed major roles of genetics and the environment in the disease pathogenesis. Conclusions The available literature on the etiology of ICTEV presents major limitations in terms of great heterogeneity and a lack of high-profile studies. Although many studies focus on the genetic background of the disease, there is lack of consensus on one or multiple targets. Genetics and smoking seem to be strongly associated with ICTEV etiology, but more studies are needed to understand the complex and multifactorial genesis of this common congenital lower-limb disease.
Collapse
Affiliation(s)
- Vito Pavone
- Department of General Surgery and Medical Surgical Specialties, Section of Orthopaedics and Traumatology, University Hospital Policlinico-Vittorio Emanuele, University of Catania, Via Plebiscito, 628, 95124, Catania, Italy
| | - Emanuele Chisari
- Department of General Surgery and Medical Surgical Specialties, Section of Orthopaedics and Traumatology, University Hospital Policlinico-Vittorio Emanuele, University of Catania, Via Plebiscito, 628, 95124, Catania, Italy
| | - Andrea Vescio
- Department of General Surgery and Medical Surgical Specialties, Section of Orthopaedics and Traumatology, University Hospital Policlinico-Vittorio Emanuele, University of Catania, Via Plebiscito, 628, 95124, Catania, Italy
| | - Ludovico Lucenti
- Department of General Surgery and Medical Surgical Specialties, Section of Orthopaedics and Traumatology, University Hospital Policlinico-Vittorio Emanuele, University of Catania, Via Plebiscito, 628, 95124, Catania, Italy
| | - Giuseppe Sessa
- Department of General Surgery and Medical Surgical Specialties, Section of Orthopaedics and Traumatology, University Hospital Policlinico-Vittorio Emanuele, University of Catania, Via Plebiscito, 628, 95124, Catania, Italy
| | - Gianluca Testa
- Department of General Surgery and Medical Surgical Specialties, Section of Orthopaedics and Traumatology, University Hospital Policlinico-Vittorio Emanuele, University of Catania, Via Plebiscito, 628, 95124, Catania, Italy.
| |
Collapse
|
17
|
Collinson JM, Lindström NO, Neves C, Wallace K, Meharg C, Charles RH, Ross ZK, Fraser AM, Mbogo I, Oras K, Nakamoto M, Barker S, Duce S, Miedzybrodzka Z, Vargesson N. The developmental and genetic basis of 'clubfoot' in the peroneal muscular atrophy mutant mouse. Development 2018; 145:145/3/dev160093. [PMID: 29439133 DOI: 10.1242/dev.160093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/28/2017] [Indexed: 12/19/2022]
Abstract
Genetic factors underlying the human limb abnormality congenital talipes equinovarus ('clubfoot') remain incompletely understood. The spontaneous autosomal recessive mouse 'peroneal muscular atrophy' mutant (PMA) is a faithful morphological model of human clubfoot. In PMA mice, the dorsal (peroneal) branches of the sciatic nerves are absent. In this study, the primary developmental defect was identified as a reduced growth of sciatic nerve lateral motor column (LMC) neurons leading to failure to project to dorsal (peroneal) lower limb muscle blocks. The pma mutation was mapped and a candidate gene encoding LIM-domain kinase 1 (Limk1) identified, which is upregulated in mutant lateral LMC motor neurons. Genetic and molecular analyses showed that the mutation acts in the EphA4-Limk1-Cfl1/cofilin-actin pathway to modulate growth cone extension/collapse. In the chicken, both experimental upregulation of Limk1 by electroporation and pharmacological inhibition of actin turnover led to defects in hindlimb spinal motor neuron growth and pathfinding, and mimicked the clubfoot phenotype. The data support a neuromuscular aetiology for clubfoot and provide a mechanistic framework to understand clubfoot in humans.
Collapse
Affiliation(s)
- J Martin Collinson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Nils O Lindström
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Carlos Neves
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Karen Wallace
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Caroline Meharg
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Rebecca H Charles
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Zoe K Ross
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Amy M Fraser
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Ivan Mbogo
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Kadri Oras
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Masaru Nakamoto
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Simon Barker
- Royal Aberdeen Children's Hospital, Foresterhill, Aberdeen AB25 2ZN, UK
| | - Suzanne Duce
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Zosia Miedzybrodzka
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
18
|
Lansdon LA, Darbro BW, Petrin AL, Hulstrand AM, Standley JM, Brouillette RB, Long A, Mansilla MA, Cornell RA, Murray JC, Houston DW, Manak JR. Identification of Isthmin 1 as a Novel Clefting and Craniofacial Patterning Gene in Humans. Genetics 2018; 208:283-296. [PMID: 29162626 PMCID: PMC5753863 DOI: 10.1534/genetics.117.300535] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/20/2017] [Indexed: 12/26/2022] Open
Abstract
Orofacial clefts are one of the most common birth defects, affecting 1-2 per 1000 births, and have a complex etiology. High-resolution array-based comparative genomic hybridization has increased the ability to detect copy number variants (CNVs) that can be causative for complex diseases such as cleft lip and/or palate. Utilizing this technique on 97 nonsyndromic cleft lip and palate cases and 43 cases with cleft palate only, we identified a heterozygous deletion of Isthmin 1 in one affected case, as well as a deletion in a second case that removes putative 3' regulatory information. Isthmin 1 is a strong candidate for clefting, as it is expressed in orofacial structures derived from the first branchial arch and is also in the same "synexpression group" as fibroblast growth factor 8 and sprouty RTK signaling antagonist 1a and 2, all of which have been associated with clefting. CNVs affecting Isthmin 1 are exceedingly rare in control populations, and Isthmin 1 scores as a likely haploinsufficiency locus. Confirming its role in craniofacial development, knockdown or clustered randomly interspaced short palindromic repeats/Cas9-generated mutation of isthmin 1 in Xenopus laevis resulted in mild to severe craniofacial dysmorphologies, with several individuals presenting with median clefts. Moreover, knockdown of isthmin 1 produced decreased expression of LIM homeobox 8, itself a gene associated with clefting, in regions of the face that pattern the maxilla. Our study demonstrates a successful pipeline from CNV identification of a candidate gene to functional validation in a vertebrate model system, and reveals Isthmin 1 as both a new human clefting locus as well as a key craniofacial patterning gene.
Collapse
Affiliation(s)
- Lisa A Lansdon
- Department of Pediatrics
- Department of Biology
- Interdisciplinary Graduate Program in Genetics
| | - Benjamin W Darbro
- Department of Pediatrics
- Interdisciplinary Graduate Program in Genetics
| | - Aline L Petrin
- Department of Pediatrics
- College of Dentistry, University of Iowa, Iowa 52242 and
| | | | | | | | | | | | - Robert A Cornell
- Interdisciplinary Graduate Program in Genetics
- Department of Anatomy and Cell Biology, and
| | - Jeffrey C Murray
- Department of Pediatrics
- Department of Biology
- Department of Anatomy and Cell Biology, and
- Interdisciplinary Graduate Program in Genetics
- College of Dentistry, University of Iowa, Iowa 52242 and
| | | | - J Robert Manak
- Department of Pediatrics,
- Department of Biology
- Interdisciplinary Graduate Program in Genetics
| |
Collapse
|
19
|
Basit S, Khoshhal KI. Genetics of clubfoot; recent progress and future perspectives. Eur J Med Genet 2017; 61:107-113. [PMID: 28919208 DOI: 10.1016/j.ejmg.2017.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/05/2017] [Accepted: 09/10/2017] [Indexed: 12/20/2022]
Abstract
Clubfoot or talipes equinovarus (TEV) is an inborn three-dimensional deformity of leg, ankle and foot. It results from structural defects of several tissues of foot and lower leg leading to abnormal positioning of foot and ankle joints. TEV can lead to long-lasting functional disability, malformation and discomfort if left untreated. Substantial progress has been achieved in the management and diagnosis of limb defects; however, not much is known about the molecular players and signalling pathways underlying TEV disorder. The homeostasis and development of the limb depends on the complex interactions between the lateral plate mesoderm cells and outer ectoderm. These complex interactions include HOX signalling and PITX1-TBX4 pathways. The susceptibility to develop TEV is determined by a number of environmental and genetic factors, although the nature and level of interplay between them remains unclear. Familial occurrence and inter and intra phenotypic variability of TEV is well documented. Variants in genes that code for contractile proteins of skeletal myofibers might play a role in the aetiology of TEV but, to date, no strong candidate genes conferring increased risk have emerged, although variants in TBX4, PITX1, HOXA, HOXC and HOXD clusters genes, NAT2 and others have been shown to be associated with TEV. The mechanisms by which variants in these genes confer risk and the nature of the physical and genetic interaction between them remains to be determined. Elucidation of genetic players and cellular pathways underlying TEV will certainly increase our understanding of the pathophysiology of this deformity.
Collapse
Affiliation(s)
- Sulman Basit
- Centre for Genetics and Inherited Diseases, Taibah University Almadinah Almunawwarah, Saudi Arabia.
| | - Khalid I Khoshhal
- College of Medicine, Taibah University Almadinah Almunawwarah, Saudi Arabia
| |
Collapse
|
20
|
TBX2 subfamily suppression in lung cancer pathogenesis: a high-potential marker for early detection. Oncotarget 2017; 8:68230-68241. [PMID: 28978111 PMCID: PMC5620251 DOI: 10.18632/oncotarget.19938] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
The TBX2 subfamily (TBXs 2, 3, 4 and 5) transactivates or represses genes involved in lung organogenesis. Yet TBX2 subfamily expression in pathogenesis of non-small cell lung cancer (NSCLC), the most common lung malignancy, remains elusive. We sought to probe the expression profile of the TBX2 subfamily in early phases of NSCLC. Expression of TBX2 subfamily was analyzed in datasets of pan-normal specimens as well as NSCLCs and normal lung tissues. TBX2 subfamily expression in matched normal lungs, premalignant hyperplasias and NSCLCs was profiled by transcriptome sequencing. TBX2 subfamily expression was evaluated in the cancerization field consisting of matched NSCLCs and adjacent cytologically-normal airways relative to distant normal lungs and in a dataset of normal bronchial samples from smokers with indeterminate nodules suspicious for malignancy. Statistical analysis was performed using R. TBX2 subfamily expression was markedly elevated in normal lungs relative to other organ-specific normal tissues. Expression of the TBXs was significantly suppressed in NSCLCs relative to normal lungs (P < 10−9). TBX2 subfamily was significantly progressively decreased across premalignant lesions and NSCLCs relative to normal lungs (P < 10−4). The subfamily was significantly suppressed in NSCLCs and adjacent normal-appearing airways relative to distant normal lung tissues (P < 10−15). Further, suppressed TBX2 subfamily expression in normal bronchi was associated with lung cancer status (P < 10−5) in smokers. Our findings suggest that the TBX2 subfamily is notably suppressed in human NSCLC pathogenesis and may serve as a high-potential biomarker for early lung cancer detection in high-risk smokers.
Collapse
|
21
|
Dobbs MB, Gurnett CA. The 2017 ABJS Nicolas Andry Award: Advancing Personalized Medicine for Clubfoot Through Translational Research. Clin Orthop Relat Res 2017; 475:1716-1725. [PMID: 28236079 PMCID: PMC5406347 DOI: 10.1007/s11999-017-5290-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/16/2017] [Indexed: 01/31/2023]
Abstract
BACKGROUND Clubfoot is one of the most common pediatric orthopaedic disorders. While the Ponseti method has revolutionized clubfoot treatment, it is not effective for all patients. When the Ponseti method does not correct the foot, patients are at risk for lifelong disability and may require more-extensive surgery. QUESTIONS/PURPOSES (1) What genetic and morphologic abnormalities contribute to the development of clubfoot? (2) How can this information be used to devise personalized treatment paradigms for patients with clubfoot? METHODS Human gene sequencing, molecular genetic engineering of mouse models of clubfoot, MRI of clubfoot, and development of new treatment methods all have been used by our group to understand the biological basis and improve therapy for this group of disorders. RESULTS We gained new insight into clubfoot pathogenesis from our discovery that mutations in the PITX1-TBX4-HOXC transcriptional pathway cause familial clubfoot and vertical talus in a small number of families, with the unique lower limb expression of these genes providing an explanation for the lack of upper extremity involvement in these disorders. MRI studies revealed corresponding morphologic abnormalities, including hypomorphic muscle, bone, and vasculature, that are not only associated with these gene mutations, but also are biomarkers for treatment-resistant clubfoot. CONCLUSIONS Based on an understanding of the underlying biology, we improved treatment methods for neglected and syndromic clubfoot, developed new treatment for congenital vertical talus based on the principles of the Ponseti method, and designed a new dynamic clubfoot brace to improve strength and compliance.
Collapse
Affiliation(s)
- Matthew B. Dobbs
- 0000 0000 9953 7617grid.416775.6Department of Orthopaedics, St. Louis Children’s Hospital, 1 Children’s Place, Suite 4S-60, St. Louis, MO 63110 USA
| | - Christina A. Gurnett
- 0000 0001 2355 7002grid.4367.6Department of Neurology, Washington University School of Medicine in St Louis, St. Louis, MO USA
| |
Collapse
|
22
|
Three novel missense mutations in the filamin B gene are associated with isolated congenital talipes equinovarus. Hum Genet 2016; 135:1181-9. [DOI: 10.1007/s00439-016-1701-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/21/2016] [Indexed: 12/30/2022]
|
23
|
Yong BC, Xun FX, Zhao LJ, Deng HW, Xu HW. A systematic review of association studies of common variants associated with idiopathic congenital talipes equinovarus (ICTEV) in humans in the past 30 years. SPRINGERPLUS 2016; 5:896. [PMID: 27386344 PMCID: PMC4923008 DOI: 10.1186/s40064-016-2353-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/16/2016] [Indexed: 11/20/2022]
Abstract
The genetic cause of idiopathic congenital talipes equinovarus (ICTEV) is largely unknown. We performed a systematic review to describe the findings from 21 studies that have examined the genetic variants related to ICTEV, and to evaluate the quality of reporting. We found that ICTEV was positively associated with Hox family genes, collagen family genes, GLI3, N-acetylation genes, T-box family genes, apoptotic pathway genes, and muscle contractile family genes. Negative and controversial results were also discussed, and several genes associated with ICTEV were identified. Due to the limitation of the included studies, rare coding variants should be further investigated, sample size should be enlarged, and candidate genes should be replicated in larger ICTEV populations. Epigenetic study, pathways, chromosome capture, and detailed gene-environment interaction will also allow further elucidation of factors involved in ICTEV pathogenesis and may shed light on diagnosis and timely and accurate interventions.
Collapse
Affiliation(s)
- Bi-Cheng Yong
- Department of Pediatric Orthopedics, Guang Zhou Women and Children's Medical Center, Sun Yat-Sen University, 9th Floor, No 9., Jingsui Road, Guangzhou, China
| | - Fu-Xing Xun
- Department of Pediatric Orthopedics, Guang Zhou Women and Children's Medical Center, Sun Yat-Sen University, 9th Floor, No 9., Jingsui Road, Guangzhou, China
| | - Lan-Juan Zhao
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, Orleans, LA USA
| | - Hong-Wen Deng
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, Orleans, LA USA
| | - Hong-Wen Xu
- Department of Pediatric Orthopedics, Guang Zhou Women and Children's Medical Center, Sun Yat-Sen University, 9th Floor, No 9., Jingsui Road, Guangzhou, China
| |
Collapse
|
24
|
Don EK, de Jong-Curtain TA, Doggett K, Hall TE, Heng B, Badrock AP, Winnick C, Nicholson GA, Guillemin GJ, Currie PD, Hesselson D, Heath JK, Cole NJ. Genetic basis of hindlimb loss in a naturally occurring vertebrate model. Biol Open 2016; 5:359-66. [PMID: 26892237 PMCID: PMC4810746 DOI: 10.1242/bio.016295] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Here we genetically characterise pelvic finless, a naturally occurring model of hindlimb loss in zebrafish that lacks pelvic fin structures, which are homologous to tetrapod hindlimbs, but displays no other abnormalities. Using a hybrid positional cloning and next generation sequencing approach, we identified mutations in the nuclear localisation signal (NLS) of T-box transcription factor 4 (Tbx4) that impair nuclear localisation of the protein, resulting in altered gene expression patterns during pelvic fin development and the failure of pelvic fin development. Using a TALEN-induced tbx4 knockout allele we confirm that mutations within the Tbx4 NLS (A78V; G79A) are sufficient to disrupt pelvic fin development. By combining histological, genetic, and cellular approaches we show that the hindlimb initiation gene tbx4 has an evolutionarily conserved, essential role in pelvic fin development. In addition, our novel viable model of hindlimb deficiency is likely to facilitate the elucidation of the detailed molecular mechanisms through which Tbx4 functions during pelvic fin and hindlimb development. Summary: Here we genetically characterise mutations in tbx4 which underlie pelvic finless, a naturally occurring model of hindlimb loss in zebrafish that lacks pelvic fin structures.
Collapse
Affiliation(s)
- Emily K Don
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia Department of Anatomy & Histology, School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | - Karen Doggett
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Thomas E Hall
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Benjamin Heng
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Andrew P Badrock
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Claire Winnick
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Garth A Nicholson
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Gilles J Guillemin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Daniel Hesselson
- Garvan Institute of Medical Research, Diabetes and Metabolism Division, Sydney, New South Wales 2010, Australia St. Vincent's Clinical School, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Joan K Heath
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Nicholas J Cole
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia Department of Anatomy & Histology, School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
25
|
Alvarado DM, McCall K, Hecht JT, Dobbs MB, Gurnett CA. Deletions of 5' HOXC genes are associated with lower extremity malformations, including clubfoot and vertical talus. J Med Genet 2016; 53:250-5. [PMID: 26729820 DOI: 10.1136/jmedgenet-2015-103505] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/29/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND Deletions of the HOXC gene cluster result in variable phenotypes in mice, but have been rarely described in humans. OBJECTIVE To report chromosome 12q13.13 microdeletions ranging from 13 to 175 kb and involving the 5' HOXC genes in four families, segregating congenital lower limb malformations, including clubfoot, vertical talus and hip dysplasia. METHODS Probands (N=253) with clubfoot or vertical talus were screened for point mutations and copy number variants using multiplexed direct genomic selection, a pooled BAC targeted capture approach. SNP genotyping included 1178 probands with clubfoot or vertical talus and 1775 controls. RESULTS The microdeletions share a minimal non-coding region overlap upstream of HOXC13, with variable phenotypes depending upon HOXC13, HOXC12 or the HOTAIR lncRNA inclusion. SNP analysis revealed HOXC11 p.Ser191Phe segregating with clubfoot in a small family and enrichment of HOXC12 p.Asn176Lys in patients with clubfoot or vertical talus (rs189468720, p=0.0057, OR=3.8). Defects in limb morphogenesis include shortened and overlapping toes, as well as peroneus muscle hypoplasia. Finally, HOXC and HOXD gene expression is reduced in fibroblasts from a patient with a 5' HOXC deletion, consistent with previous studies demonstrating that dosage of lncRNAs alters expression of HOXD genes in trans. CONCLUSIONS Because HOXD10 has been implicated in the aetiology of congenital vertical talus, variation in its expression may contribute to the lower limb phenotypes occurring with 5' HOXC microdeletions. Identification of 5' HOXC microdeletions highlights the importance of transcriptional regulators in the aetiology of severe lower limb malformations and will improve their diagnosis and management.
Collapse
Affiliation(s)
- David M Alvarado
- Department of Orthopedic Surgery, Washington University, St. Louis, Missouri, USA
| | - Kevin McCall
- Department of Orthopedic Surgery, Washington University, St. Louis, Missouri, USA
| | - Jacqueline T Hecht
- Department of Pediatrics, University of Texas Medical School, Houston, Texas, USA
| | - Matthew B Dobbs
- Department of Orthopedic Surgery, Washington University, St. Louis, Missouri, USA Shriners Hospital for Children, St Louis, Missouri, USA
| | - Christina A Gurnett
- Department of Orthopedic Surgery, Washington University, St. Louis, Missouri, USA Department of Neurology, Washington University, St. Louis, Missouri, USA Department of Pediatrics, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
26
|
A glimpse into Texas Scottish Rite Hospital's educational, clinical care, and research development. J Pediatr Orthop B 2015; 24:84-8. [PMID: 25171573 DOI: 10.1097/bpb.0000000000000100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This article describes four areas of pediatric orthopaedic education, research, and clinical care undertaken at Texas Scottish Rite Hospital (TSRH) over the past 25 years. These areas include the weekly preoperative conferences, the evolution of the limb lengthening and deformity correction program, the development of the TSRH instrumentation system, and the evolution of the clubfoot treatment program.
Collapse
|
27
|
Werler MM, Yazdy MM, Kasser JR, Mahan ST, Meyer RE, Anderka M, Druschel CM, Mitchell AA. Maternal cigarette, alcohol, and coffee consumption in relation to risk of clubfoot. Paediatr Perinat Epidemiol 2015; 29:3-10. [PMID: 25417917 DOI: 10.1111/ppe.12163] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Clubfoot is associated with maternal cigarette smoking in several studies, but it is not clear if this association is confined to women who smoke throughout the at-risk period. Maternal alcohol and coffee drinking have not been well studied in relation to clubfoot. METHODS The present study used data from a population-based case-control study of clubfoot conducted in Massachusetts, New York, and North Carolina from 2007 to 2011. Mothers of 646 isolated clubfoot cases and 2037 controls were interviewed about pregnancy events and exposures, including the timing and frequency of cigarette smoking, alcohol intake, and coffee drinking. RESULTS More mothers of cases than controls reported smoking during early pregnancy (28.9% vs. 19.1%). Of women who smoked when they became pregnant, those who quit in the month after a first missed period had a 40% increase in clubfoot risk and those who continued to smoke during the next 3 months had more than a doubling in risk, after controlling for demographic factors, parity, obesity, and specific medication exposures. Adjusted odds ratios for women who drank >3 servings of alcohol or coffee per day throughout early pregnancy were 2.38 and 1.77, respectively, but the numbers of exposed women were small and odds ratios were unstable. CONCLUSIONS Clubfoot risk appears to be increased for offspring of women who smoke cigarettes, particularly those who continue smoking after pregnancy is recognisable, regardless of amount. For alcohol and coffee drinkers, suggested increased risks were only observed in higher levels of intake.
Collapse
|
28
|
Moon DK, Gurnett CA, Aferol H, Siegel MJ, Commean PK, Dobbs MB. Soft-Tissue Abnormalities Associated with Treatment-Resistant and Treatment-Responsive Clubfoot: Findings of MRI Analysis. J Bone Joint Surg Am 2014; 96:1249-1256. [PMID: 25100771 PMCID: PMC4116564 DOI: 10.2106/jbjs.m.01257] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Clubfoot treatment commonly fails and often results in impaired quality of life. An understanding of the soft-tissue abnormalities associated with both treatment-responsive and treatment-resistant clubfoot is important to improving the diagnosis of clubfoot, the prognosis for patients, and treatment. METHODS Twenty patients with clubfoot treated with the Ponseti method were recruited for magnetic resonance imaging (MRI) of their lower extremities. Among these were seven patients (six unilateral cases) with treatment-responsive clubfoot and thirteen patients (five unilateral cases) with treatment-resistant clubfoot. Demographic information and physical examination findings were recorded. A descriptive analysis of the soft-tissue abnormalities was performed for both patient cohorts. For the patients with unilateral clubfoot, we calculated the percentage difference in cross-sectional area between the affected limb and the unaffected limb in terms of muscle, subcutaneous fat, intracompartment fat, and total area. With use of the Wilcoxon signed-rank test, we compared inter-leg differences in cross-sectional areas and the intracompartment adiposity index (IAI) between treatment-responsive and treatment-resistant groups. The IAI characterizes the cross-sectional area of fat within a muscle compartment. RESULTS Extensive soft-tissue abnormalities were more present in patients with treatment-resistant clubfoot than in patients with treatment-responsive clubfoot. Treatment-resistant clubfoot abnormalities included excess epimysial fat and intramuscular fat replacement as well as unique patterns of hypoplasia in specific muscle groups that were present within a subset of patients. Among the unilateral cases, treatment-resistant clubfoot was associated with a significantly greater difference in muscle area between the affected and unaffected limb (-47.8%) compared with treatment-responsive clubfoot (-26.6%) (p = 0.02), a significantly greater difference in intracompartment fat area between the affected and unaffected limb (402.6%) compared with treatment-responsive clubfoot (9%) (p = 0.01), and a corresponding higher inter-leg IAI ratio (8.7) compared with treatment-responsive clubfoot (1.5) (p = 0.01). CONCLUSIONS MRI demonstrated a range of soft-tissue abnormalities in patients, including unique patterns of specific muscle-compartment aplasia/hypoplasia that were present in patients with treatment-resistant clubfoot and not present in patients with treatment-responsive clubfoot. Correlations between MRI, physical examination, and treatment responsiveness may aid in the development of a prognostic classification system for clubfoot. LEVEL OF EVIDENCE Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Daniel K. Moon
- Departments of Orthopaedic Surgery (D.K.M., C.A.G., H.A., and M.B.D.), Pediatrics (C.A.G.), Neurology (C.A.G.), and Radiology (M.J.S. and P.K.C.), Washington University School of Medicine, 1 Children’s Place, Suite 4S-60, St. Louis, MO 62110. E-mail address for M.B. Dobbs:
| | - Christina A. Gurnett
- Departments of Orthopaedic Surgery (D.K.M., C.A.G., H.A., and M.B.D.), Pediatrics (C.A.G.), Neurology (C.A.G.), and Radiology (M.J.S. and P.K.C.), Washington University School of Medicine, 1 Children’s Place, Suite 4S-60, St. Louis, MO 62110. E-mail address for M.B. Dobbs:
| | - Hyuliya Aferol
- Departments of Orthopaedic Surgery (D.K.M., C.A.G., H.A., and M.B.D.), Pediatrics (C.A.G.), Neurology (C.A.G.), and Radiology (M.J.S. and P.K.C.), Washington University School of Medicine, 1 Children’s Place, Suite 4S-60, St. Louis, MO 62110. E-mail address for M.B. Dobbs:
| | - Marilyn J. Siegel
- Departments of Orthopaedic Surgery (D.K.M., C.A.G., H.A., and M.B.D.), Pediatrics (C.A.G.), Neurology (C.A.G.), and Radiology (M.J.S. and P.K.C.), Washington University School of Medicine, 1 Children’s Place, Suite 4S-60, St. Louis, MO 62110. E-mail address for M.B. Dobbs:
| | - Paul K. Commean
- Departments of Orthopaedic Surgery (D.K.M., C.A.G., H.A., and M.B.D.), Pediatrics (C.A.G.), Neurology (C.A.G.), and Radiology (M.J.S. and P.K.C.), Washington University School of Medicine, 1 Children’s Place, Suite 4S-60, St. Louis, MO 62110. E-mail address for M.B. Dobbs:
| | - Matthew B. Dobbs
- Departments of Orthopaedic Surgery (D.K.M., C.A.G., H.A., and M.B.D.), Pediatrics (C.A.G.), Neurology (C.A.G.), and Radiology (M.J.S. and P.K.C.), Washington University School of Medicine, 1 Children’s Place, Suite 4S-60, St. Louis, MO 62110. E-mail address for M.B. Dobbs:
| |
Collapse
|
29
|
Werler MM, Yazdy MM, Kasser JR, Mahan ST, Meyer RE, Anderka M, Druschel CM, Mitchell AA. Medication use in pregnancy in relation to the risk of isolated clubfoot in offspring. Am J Epidemiol 2014; 180:86-93. [PMID: 24824985 DOI: 10.1093/aje/kwu096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Clubfoot, a common major structural malformation, develops early in gestation. Epidemiologic studies have identified higher risks among boys, first-born children, and babies with a family history of clubfoot, but studies of risks associated with maternal exposures are lacking. We conducted the first large-scale, population-based, case-control study of clubfoot with detailed information on maternal medication use in pregnancy. Study subjects were ascertained from birth defect registries in Massachusetts, New York, and North Carolina during 2007-2011. Cases were 646 mothers of children with clubfoot without other major structural malformations (i.e., isolated clubfoot); controls were mothers of 2,037 children born without major malformations. Mothers were interviewed within 12 months of delivery about medication use, including product, timing, and frequency. Odds ratios were estimated for exposure to 27 medications in pregnancy months 2-4 after adjustment for study site, infant sex, first-born status, body mass index (weight (kg)/height (m)(2)), and smoking. Odds ratios were less than 1.20 for 14 of the medications; of the remainder, most odds ratios were only slightly elevated (range, 1.21-1.66), with wide confidence intervals. The use of antiviral drugs was more common in clubfoot cases than in controls (odds ratio = 4.22, 95% confidence interval: 1.52, 11.73). Most of these results are new findings and require confirmation in other studies.
Collapse
|
30
|
Bacino CA, Hecht JT. Etiopathogenesis of equinovarus foot malformations. Eur J Med Genet 2014; 57:473-9. [PMID: 24932901 DOI: 10.1016/j.ejmg.2014.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/03/2014] [Indexed: 01/28/2023]
Abstract
Congenital talipes equinovarus (CTEV) is the most common musculoskeletal birth defect affecting approximately 1/700-1/1000 of liveborns. Even though extensive epidemiological and genetic studies have been carried out to address its causes, the precise mechanisms leading to this common birth defect remain elusive. CTEV is a multifactorial disorder, hence the combination of genetic and environmental factors are known contributors to this developmental abnormality. So far a handful of genes involved in limb patterning like PITX1, HOXA, HOXD, TBX4, and RBM10, as well as genes involved in muscle contraction, have been identified as possible players. Among many environmental factors investigated, maternal smoking seems to hold the strongest consistent association with this disorder. This article will review and discuss some of the most common genetic and environmental factors associated with the etiopathogenesis of CTEV.
Collapse
Affiliation(s)
- Carlos A Bacino
- Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, TX, USA.
| | | |
Collapse
|
31
|
Zhang TX, Haller G, Lin P, Alvarado DM, Hecht JT, Blanton SH, Stephens Richards B, Rice JP, Dobbs MB, Gurnett CA. Genome-wide association study identifies new disease loci for isolated clubfoot. J Med Genet 2014; 51:334-9. [DOI: 10.1136/jmedgenet-2014-102303] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
32
|
Peterson JF, Ghaloul-Gonzalez L, Madan-Khetarpal S, Hartman J, Surti U, Rajkovic A, Yatsenko SA. Familial microduplication of 17q23.1-q23.2 involving TBX4 is associated with congenital clubfoot and reduced penetrance in females. Am J Med Genet A 2013; 164A:364-9. [DOI: 10.1002/ajmg.a.36238] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jess F. Peterson
- Pittsburgh Cytogenetics Laboratory; Center for Medical Genetics and Genomics, Magee-Womens Hospital of UPMC; Pittsburgh Pennsylvania
- Department of Human Genetics; Graduate School of Public Health, University of Pittsburgh; Pittsburgh Pennsylvania
| | - Lina Ghaloul-Gonzalez
- Department of Medical Genetics; Children's Hospital of Pittsburgh of UPMC; Pittsburgh Pennsylvania
| | - Suneeta Madan-Khetarpal
- Department of Medical Genetics; Children's Hospital of Pittsburgh of UPMC; Pittsburgh Pennsylvania
| | - Jessica Hartman
- Department of Medical Genetics; Children's Hospital of Pittsburgh of UPMC; Pittsburgh Pennsylvania
| | - Urvashi Surti
- Pittsburgh Cytogenetics Laboratory; Center for Medical Genetics and Genomics, Magee-Womens Hospital of UPMC; Pittsburgh Pennsylvania
- Department of Human Genetics; Graduate School of Public Health, University of Pittsburgh; Pittsburgh Pennsylvania
- Department of Obstetrics, Gynecology and Reproductive Sciences; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
- Department of Pathology; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| | - Aleksandar Rajkovic
- Pittsburgh Cytogenetics Laboratory; Center for Medical Genetics and Genomics, Magee-Womens Hospital of UPMC; Pittsburgh Pennsylvania
- Department of Human Genetics; Graduate School of Public Health, University of Pittsburgh; Pittsburgh Pennsylvania
- Department of Obstetrics, Gynecology and Reproductive Sciences; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
- Department of Pathology; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| | - Svetlana A. Yatsenko
- Pittsburgh Cytogenetics Laboratory; Center for Medical Genetics and Genomics, Magee-Womens Hospital of UPMC; Pittsburgh Pennsylvania
- Department of Obstetrics, Gynecology and Reproductive Sciences; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
- Department of Pathology; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| |
Collapse
|