1
|
Ain Q, Hwang YH, Yeung D, Panpaprai P, Iamurairat W, Chutimongkonkul W, Trachoo O, Tassone F, Jiraanont P. Population-based FMR1 carrier screening among reproductive women. J Assist Reprod Genet 2024; 41:3237-3243. [PMID: 39320553 PMCID: PMC11621265 DOI: 10.1007/s10815-024-03242-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
PURPOSE Fragile X syndrome (FXS) is a neurodevelopmental disorder, caused by an CGG repeat expansion (FM, > 200 CGG) in the fragile X messenger ribonucleoprotein 1 (FMR1) gene. Female carriers of a premutation (PM; 55-200 CGG) can transmit the PM allele, which, depending on the CGG allele size, can expand to an allele in the FM range in the offspring. METHODS Carrier screening for FMR1 PM is not available in Thailand. This study aimed to investigate the prevalence of PM carriers among Thai reproductive women at the tertiary hospital. A total of 1250 females participated in this study; ages ranged from 20 to 45 years, mean of 30 years (S.D. = 6.27). RESULTS Two carriers of a premutation allele, with 32,62 and 32,69 CGG repeats respectively, were identified. This corresponds to 1 in 600 women or 0.17% of the population. Further, three women carrying a gray zone allele (45-54 CGG repeats) were identified (29,51; 29,49; and 30,47 CGG repeats) which equals to 1:400 women or 0.25% of the population. No FM case was detected. CONCLUSIONS This study heightens the importance of PM carrier screening of women of reproductive age, particularly for the higher risk of developing fragile X-associated primary ovarian insufficiency (FXPOI). Early identification of PM carrier status enhances family planning and fecundity alternatives and improves reproductive health outcomes leading to a better life.
Collapse
Affiliation(s)
- Quratul Ain
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Ye Hyun Hwang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Daryl Yeung
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA
| | - Pacharee Panpaprai
- Department of Obstetrics and Gynecology, Medical Service Department, Sirindhorn Hospital, Bangkok, Thailand
| | - Wiwat Iamurairat
- Department of Obstetrics and Gynecology, Medical Service Department, Sirindhorn Hospital, Bangkok, Thailand
| | - Wiboon Chutimongkonkul
- Department of Obstetrics and Gynecology, Medical Service Department, Sirindhorn Hospital, Bangkok, Thailand
| | - Objoon Trachoo
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- College of Health Sciences, VinUniversity, Hanoi, Vietnam
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA.
- UC Davis MIND Institute, University of California Davis, Sacramento, CA, USA.
| | - Poonnada Jiraanont
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.
| |
Collapse
|
2
|
Agustí I, Méndez M, Borrás A, Goday A, Guimerà M, Peralta S, Ribera L, Rodriguez-Revenga L, Manau D. Prevalence of the FMR1 Gene Premutation in Young Women with a Diminished Ovarian Reserve Included in an IVF Program: Implications for Clinical Practice. Genes (Basel) 2024; 15:1008. [PMID: 39202368 PMCID: PMC11353426 DOI: 10.3390/genes15081008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
The relationship between premature ovarian insufficiency (FXPOI) and premutation in the FMR1 gene is well established. In recent years, though, a potential relationship between the latter and a low ovarian reserve has been suggested. To explore it, we conducted a retrospective study in an IVF program at a university tertiary referral center in Barcelona (Spain). Data were obtained retrospectively from a total of 385 women referred for FMR1 gene testing at our institution from January 2018 to December 2021. We compared the prevalence of FMR1 gene premutation between 93 of them, younger than 35 years, with a diminished ovarian reserve (DOR), characterized by levels of anti-Mullerian hormone < 1.1 ng/mL and antral follicle count < 5; and 132 egg donors screened by protocol that served as the controls. We found a higher prevalence of FMR1 premutation in the DOR group (seven patients (7.69%)) than in the control group (one patient (1.32%)), Fisher-exact test p-value = 0.012). We concluded that compared with the general population represented by young egg donors, the prevalence of FMR1 gene premutation is higher in young patients with a diminished ovarian reserve. Although these findings warrant further prospective validation in a larger cohort of patients within DOR, they suggest that, in clinical practice, FMR1 premutation should be determined in infertile young patients with DOR in order to give them adequate genetic counselling.
Collapse
Affiliation(s)
- Inés Agustí
- Assisted Human Reproduction Unit, Gynecology Service, Clinic Institute of Gynecology, Obstetrics, and Neonatology (ICGON), Hospital Clínic Barcelona, 08036 Barcelona, Spain; (I.A.); (M.M.); (A.B.); (A.G.); (M.G.); (S.P.); (L.R.)
| | - Marta Méndez
- Assisted Human Reproduction Unit, Gynecology Service, Clinic Institute of Gynecology, Obstetrics, and Neonatology (ICGON), Hospital Clínic Barcelona, 08036 Barcelona, Spain; (I.A.); (M.M.); (A.B.); (A.G.); (M.G.); (S.P.); (L.R.)
| | - Aina Borrás
- Assisted Human Reproduction Unit, Gynecology Service, Clinic Institute of Gynecology, Obstetrics, and Neonatology (ICGON), Hospital Clínic Barcelona, 08036 Barcelona, Spain; (I.A.); (M.M.); (A.B.); (A.G.); (M.G.); (S.P.); (L.R.)
- Fundacio Clinic de Recerca Biomedique-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Anna Goday
- Assisted Human Reproduction Unit, Gynecology Service, Clinic Institute of Gynecology, Obstetrics, and Neonatology (ICGON), Hospital Clínic Barcelona, 08036 Barcelona, Spain; (I.A.); (M.M.); (A.B.); (A.G.); (M.G.); (S.P.); (L.R.)
| | - Marta Guimerà
- Assisted Human Reproduction Unit, Gynecology Service, Clinic Institute of Gynecology, Obstetrics, and Neonatology (ICGON), Hospital Clínic Barcelona, 08036 Barcelona, Spain; (I.A.); (M.M.); (A.B.); (A.G.); (M.G.); (S.P.); (L.R.)
| | - Sara Peralta
- Assisted Human Reproduction Unit, Gynecology Service, Clinic Institute of Gynecology, Obstetrics, and Neonatology (ICGON), Hospital Clínic Barcelona, 08036 Barcelona, Spain; (I.A.); (M.M.); (A.B.); (A.G.); (M.G.); (S.P.); (L.R.)
| | - Laura Ribera
- Assisted Human Reproduction Unit, Gynecology Service, Clinic Institute of Gynecology, Obstetrics, and Neonatology (ICGON), Hospital Clínic Barcelona, 08036 Barcelona, Spain; (I.A.); (M.M.); (A.B.); (A.G.); (M.G.); (S.P.); (L.R.)
| | - Laia Rodriguez-Revenga
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona—Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Dolors Manau
- Assisted Human Reproduction Unit, Gynecology Service, Clinic Institute of Gynecology, Obstetrics, and Neonatology (ICGON), Hospital Clínic Barcelona, 08036 Barcelona, Spain; (I.A.); (M.M.); (A.B.); (A.G.); (M.G.); (S.P.); (L.R.)
- Fundacio Clinic de Recerca Biomedique-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| |
Collapse
|
3
|
Rajan-Babu IS, Dolzhenko E, Eberle MA, Friedman JM. Sequence composition changes in short tandem repeats: heterogeneity, detection, mechanisms and clinical implications. Nat Rev Genet 2024; 25:476-499. [PMID: 38467784 DOI: 10.1038/s41576-024-00696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/13/2024]
Abstract
Short tandem repeats (STRs) are a class of repetitive elements, composed of tandem arrays of 1-6 base pair sequence motifs, that comprise a substantial fraction of the human genome. STR expansions can cause a wide range of neurological and neuromuscular conditions, known as repeat expansion disorders, whose age of onset, severity, penetrance and/or clinical phenotype are influenced by the length of the repeats and their sequence composition. The presence of non-canonical motifs, depending on the type, frequency and position within the repeat tract, can alter clinical outcomes by modifying somatic and intergenerational repeat stability, gene expression and mutant transcript-mediated and/or protein-mediated toxicities. Here, we review the diverse structural conformations of repeat expansions, technological advances for the characterization of changes in sequence composition, their clinical correlations and the impact on disease mechanisms.
Collapse
Affiliation(s)
- Indhu-Shree Rajan-Babu
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada.
| | | | | | - Jan M Friedman
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Shen YI, Cheng KC, Wei YJ, Lee IR. Structural Dynamics Role of AGG Interruptions in Inhibition CGG Repeat Expansion Associated with Fragile X Syndrome. ACS Chem Neurosci 2024; 15:230-235. [PMID: 38133821 DOI: 10.1021/acschemneuro.3c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Abnormal expansion of trinucleotide CGG repeats is responsible for Fragile X syndrome. AGG interruptions in CGG repeat tracts were found in most healthy individuals, suggesting a crucial role in preventing disease-prone repeat expansion. Previous biophysics studies emphasize a difference in the secondary structure affected by AGG interruptions. However, the mechanism of how AGG interruptions impede repeat expansion remains elusive. We utilized single-molecule fluorescence resonance energy transfer spectroscopy to investigate the structural dynamics of CGG repeats and their AGG-interrupted variants. Tandem CGG repeats fold into a stem-loop hairpin structure with the capability to undergo a conformational rearrangement to modulate the length of the overhang. However, this conformational rearrangement is much more retarded when two AGG interruptions are present. Considering the significance of hairpin slippage in repeat expansion, we present a molecular basis suggesting that the internal loop created by two AGG interruptions acts as a barrier, obstructing the hairpin slippage reconfiguration. This impediment potentially plays a crucial role in curbing abnormal expansion, thereby contributing to the genomic stability.
Collapse
Affiliation(s)
- Yang-I Shen
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | - Kai-Chun Cheng
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | - Yu-Jie Wei
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | - I-Ren Lee
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
5
|
Elhawary NA, AlJahdali IA, Abumansour IS, Azher ZA, Falemban AH, Madani WM, Alosaimi W, Alghamdi G, Sindi IA. Phenotypic variability to medication management: an update on fragile X syndrome. Hum Genomics 2023; 17:60. [PMID: 37420260 PMCID: PMC10329374 DOI: 10.1186/s40246-023-00507-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023] Open
Abstract
This review discusses the discovery, epidemiology, pathophysiology, genetic etiology, molecular diagnosis, and medication-based management of fragile X syndrome (FXS). It also highlights the syndrome's variable expressivity and common comorbid and overlapping conditions. FXS is an X-linked dominant disorder associated with a wide spectrum of clinical features, including but not limited to intellectual disability, autism spectrum disorder, language deficits, macroorchidism, seizures, and anxiety. Its prevalence in the general population is approximately 1 in 5000-7000 men and 1 in 4000-6000 women worldwide. FXS is associated with the fragile X messenger ribonucleoprotein 1 (FMR1) gene located at locus Xq27.3 and encodes the fragile X messenger ribonucleoprotein (FMRP). Most individuals with FXS have an FMR1 allele with > 200 CGG repeats (full mutation) and hypermethylation of the CpG island proximal to the repeats, which silences the gene's promoter. Some individuals have mosaicism in the size of the CGG repeats or in hypermethylation of the CpG island, both produce some FMRP and give rise to milder cognitive and behavioral deficits than in non-mosaic individuals with FXS. As in several monogenic disorders, modifier genes influence the penetrance of FMR1 mutations and FXS's variable expressivity by regulating the pathophysiological mechanisms related to the syndrome's behavioral features. Although there is no cure for FXS, prenatal molecular diagnostic testing is recommended to facilitate early diagnosis. Pharmacologic agents can reduce some behavioral features of FXS, and researchers are investigating whether gene editing can be used to demethylate the FMR1 promoter region to improve patient outcomes. Moreover, clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 and developed nuclease defective Cas9 (dCas9) strategies have promised options of genome editing in gain-of-function mutations to rewrite new genetic information into a specified DNA site, are also being studied.
Collapse
Affiliation(s)
- Nasser A. Elhawary
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Mecca, 21955 Saudi Arabia
| | - Imad A. AlJahdali
- Department of Community Medicine, College of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Iman S. Abumansour
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Mecca, 21955 Saudi Arabia
| | - Zohor A. Azher
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Mecca, 21955 Saudi Arabia
| | - Alaa H. Falemban
- Department of Pharmacology and Toxicology, College of Medicine, Umm Al-Qura University, Mecca, 24382 Saudi Arabia
| | - Wefaq M. Madani
- Department of Hematology and Immunology, Faculty of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Wafaa Alosaimi
- Department of Hematology, Maternity and Children Hospital, Mecca, Saudi Arabia
| | - Ghydda Alghamdi
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Mecca, 21955 Saudi Arabia
| | - Ikhlas A. Sindi
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Preparatory Year Program, Batterjee Medical College, Jeddah, 21442 Saudi Arabia
| |
Collapse
|
6
|
Fang Y, Li J, Zhang M, Cheng Y, Wang C, Zhu J. Clinical application value of expanded carrier screening in the population of childbearing age. Eur J Med Res 2023; 28:151. [PMID: 37031186 PMCID: PMC10082524 DOI: 10.1186/s40001-023-01112-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/30/2023] [Indexed: 04/10/2023] Open
Abstract
OBJECTIVE The objective of this study was to explore the clinical utility of the implementation of expanded carrier screening (ECS) in Chinese population of childbearing age. MATERIALS AND METHODS Based on capillary electrophoresis, a first-generation sequencing technology, a prospective screening study of carriers of 15 single-gene diseases was carried out in 327 subjects in Anhui Province, including 84 couples and 159 women of childbearing age, the disease carrier rate, types of screened pathogenic genes, and incidence of both partners carrying the same pathogenic genes were summarized and analyzed. RESULTS In 320 people with normal phenotypes who underwent ECS for 15 genetic diseases and 7 spouses who underwent targeted gene sequencing, 65 carriers of at least one disease were detected, with a total carrier rate of 20.31% (65/320). Among the 65 carriers, 81.54% (53/65) carried one genetic variant, 16.92% (11/65) carried two genetic variants, and 1.54% (1/65) carried three genetic variants. In this study, the three diseases with the highest carrier rates were hereditary deafness (8.13%, 26/320), Wilson's disease (4.06%, 13/320), and phenylketonuria (3.13%, 10/320). One high-risk couple (1.19%, 1/84) was detected. CONCLUSIONS It has certain clinical application value to implement ECS in the population of childbearing age in China.
Collapse
Affiliation(s)
- Yuqin Fang
- Affiliated Maternity and Child Health Hospital of Anhui Medical University, Hefei, China
- Maternity and Child Health Hospital of Anhui Province, Hefei, China
| | - Jingran Li
- Maternity and Child Health Hospital of Anhui Province, Hefei, China
| | - Miaomiao Zhang
- Maternity and Child Health Hospital of Anhui Province, Hefei, China
| | - Yuan Cheng
- Maternity and Child Health Hospital of Anhui Province, Hefei, China
| | - Chaohong Wang
- Maternity and Child Health Hospital of Anhui Province, Hefei, China
| | - Jiansheng Zhu
- Affiliated Maternity and Child Health Hospital of Anhui Medical University, Hefei, China.
- Maternity and Child Health Hospital of Anhui Province, Hefei, China.
| |
Collapse
|
7
|
Shahid R, Yasin M, Rehman ZU, Jadoon H, Tahir H, Meraj N, Khan N, Zubair M, Zulfiqar I, Nowshid M, Azeem A, Jabeen M, Hameed A, Saleha S. Maternal FMR1 alleles expansion in newborns during transmission: a prospective cohort study. Pediatr Res 2023; 93:720-724. [PMID: 35681093 DOI: 10.1038/s41390-022-02128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/05/2022] [Accepted: 05/17/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION The CGG repeats in the 5' untranslated region of the fragile X mental retardation 1 gene (FMR1) gene shows increased instability upon maternal transmission. Maternal FMR1 intermediate (45-54 repeats) and premutation (PM: 55-<200 repeats) alleles usually expand to full mutation (>200 repeats) alleles in offspring and consequently, cause fragile X syndrome (FXS) in them. METHODS In a prospective cohort study, Pakistani pregnant women in prenatal care were first screened for FMR1 expanded alleles. In the follow-up, pregnancy outcomes in women carrying FMR1 expanded alleles were recorded and their newborn offspring were also screened for FXS. RESULTS In a total of 1950 pregnant women, 89 (4.6%) were detected carriers for FMR1 expanded alleles; however, rates of detection of expanded alleles were found significantly high in women with a history of FXS. In addition, miscarriages and birth of affected newborns with FXS were significantly more common in women carrying large size PM alleles and had a history of FXS (P = 0.0494 and P = 0.0494, respectively). CONCLUSIONS The current study provides the first evidence of screening Pakistani pregnant women for FMR1 expanded alleles in prenatal care. Moreover, the miscarriage was also detected as a clinical predictor for FXS. IMPACT Offspring would have a higher risk of developing FXS due to maternal FMR1 alleles expansions during transmission. This is the first prospective cohort study in Pakistan for finding FMR1 allelic status of pregnant women and their newborn offspring in follow-up. The robust offspring risk for FXS estimated in this study may be valuable information for genetic counseling of women carriers for FMR1 expanded alleles. The family history and miscarriage were detected as effective indicators for FXS carrier screening in Pakistani women.
Collapse
Affiliation(s)
- Rabia Shahid
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Yasin
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Zia Ur Rehman
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Humaira Jadoon
- Department of Obstetrics & Gynecology, Ayub Medical Institute, Abbottabad, 22010, Khyber Pakhtunkhwa, Pakistan
| | - Haleema Tahir
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Neelam Meraj
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Niamat Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Maria Zubair
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Irba Zulfiqar
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Maha Nowshid
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Arfa Azeem
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Musarrat Jabeen
- Department of Obstetrics and Gynecology, Liaqat Memorial Hospital, KIMS, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Hameed
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, 44000, Pakistan
| | - Shamim Saleha
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
8
|
Archibald AD, McClaren BJ, Caruana J, Tutty E, King EA, Halliday JL, Best S, Kanga-Parabia A, Bennetts BH, Cliffe CC, Madelli EO, Ho G, Liebelt J, Long JC, Braithwaite J, Kennedy J, Massie J, Emery JD, McGaughran J, Marum JE, Boggs K, Barlow-Stewart K, Burnett L, Dive L, Freeman L, Davis MR, Downes MJ, Wallis M, Ferrie MM, Pachter N, Scuffham PA, Casella R, Allcock RJN, Ong R, Edwards S, Righetti S, Lunke S, Lewis S, Walker SP, Boughtwood TF, Hardy T, Newson AJ, Kirk EP, Laing NG, Delatycki MB. The Australian Reproductive Genetic Carrier Screening Project (Mackenzie's Mission): Design and Implementation. J Pers Med 2022; 12:1781. [PMID: 36579509 PMCID: PMC9698511 DOI: 10.3390/jpm12111781] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 01/01/2023] Open
Abstract
Reproductive genetic carrier screening (RGCS) provides people with information about their chance of having children with autosomal recessive or X-linked genetic conditions, enabling informed reproductive decision-making. RGCS is recommended to be offered to all couples during preconception or in early pregnancy. However, cost and a lack of awareness may prevent access. To address this, the Australian Government funded Mackenzie’s Mission—the Australian Reproductive Genetic Carrier Screening Project. Mackenzie’s Mission aims to assess the acceptability and feasibility of an easily accessible RGCS program, provided free of charge to the participant. In study Phase 1, implementation needs were mapped, and key study elements were developed. In Phase 2, RGCS is being offered by healthcare providers educated by the study team. Reproductive couples who provide consent are screened for over 1200 genes associated with >750 serious, childhood-onset genetic conditions. Those with an increased chance result are provided comprehensive genetic counseling support. Reproductive couples, recruiting healthcare providers, and study team members are also invited to complete surveys and/or interviews. In Phase 3, a mixed-methods analysis will be undertaken to assess the program outcomes, psychosocial implications and implementation considerations alongside an ongoing bioethical analysis and a health economic evaluation. Findings will inform the implementation of an ethically robust RGCS program.
Collapse
Affiliation(s)
- Alison D. Archibald
- Victorian Clinical Genetics Services, Parkville, VIC 3052, Australia
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Belinda J. McClaren
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Jade Caruana
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Australian Genomics, Parkville, VIC 3052, Australia
| | - Erin Tutty
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Emily A. King
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Jane L. Halliday
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Stephanie Best
- Australian Genomics, Parkville, VIC 3052, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Anaita Kanga-Parabia
- Victorian Clinical Genetics Services, Parkville, VIC 3052, Australia
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Bruce H. Bennetts
- Sydney Genome Diagnostics, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- Specialty of Genomic Medicine, The Children’s Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Corrina C. Cliffe
- NSW Health Pathology Randwick Genomics Laboratory, Randwick, NSW 2031, Australia
| | - Evanthia O. Madelli
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Australian Genomics, Parkville, VIC 3052, Australia
| | - Gladys Ho
- Sydney Genome Diagnostics, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- Specialty of Genomic Medicine, The Children’s Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Jan Liebelt
- South Australian Clinical Genetics Service, North Adelaide, SA 5006, Australia
- Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
- Repromed, Dulwich, SA 5065, Australia
| | - Janet C. Long
- Australian Institute of Health Innovation, Macquarie University, North Ryde, NSW 2109, Australia
| | - Jeffrey Braithwaite
- Australian Genomics, Parkville, VIC 3052, Australia
- Australian Institute of Health Innovation, Macquarie University, North Ryde, NSW 2109, Australia
- International Society for Quality in Health Care, D02 YY23 Dublin, Ireland
| | - Jillian Kennedy
- Genetic Services of Western Australia, Subiaco, WA 6008, Australia
| | - John Massie
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
- Department of Respiratory Medicine, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
| | - Jon D. Emery
- Department of General Practice and Centre for Cancer Research, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Julie McGaughran
- Genetic Health Queensland, Royal Brisbane and Women’s Hospital, Herston, QLD 4006, Australia
- School of Medicine, University of Queensland, St Lucia, QLD 4072, Australia
| | - Justine E. Marum
- Victorian Clinical Genetics Services, Parkville, VIC 3052, Australia
| | - Kirsten Boggs
- Australian Genomics, Parkville, VIC 3052, Australia
- Centre for Clinical Genetics, Sydney Children’s Hospital, Randwick, NSW 2031, Australia
- Department of Clinical Genetics, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Kristine Barlow-Stewart
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW 2065, Australia
- Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Leslie Burnett
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW 2065, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- St Vincent’s Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia
- Invitae Australia, Alexandria, NSW 2015, Australia
| | - Lisa Dive
- Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Sydney Health Ethics, Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| | - Lucinda Freeman
- Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
- School of Women’s and Children’s Health, University of New South Wales, Randwick, NSW 2031, Australia
| | - Mark R. Davis
- Department of Diagnostic Genomics, PathWest Laboratory Medicine, Nedlands, WA 6009, Australia
- Centre for Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Martin J. Downes
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia
- Centre for Applied Health Economics, School of Medicine and Dentistry, Griffith University, Nathan, QLD 4111, Australia
| | - Mathew Wallis
- Tasmanian Clinical Genetics Service, Tasmanian Health Service, Hobart, TAS 7000, Australia
- School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Monica M. Ferrie
- Victorian Clinical Genetics Services, Parkville, VIC 3052, Australia
- Genetic Support Network of Victoria, Parkville, VIC 3052, Australia
| | - Nicholas Pachter
- Genetic Services of Western Australia, Subiaco, WA 6008, Australia
- King Edward Memorial Hospital, Subiaco, WA 6008, Australia
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Paul A. Scuffham
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia
- Centre for Applied Health Economics, School of Medicine and Dentistry, Griffith University, Nathan, QLD 4111, Australia
| | | | - Richard J. N. Allcock
- Department of Diagnostic Genomics, PathWest Laboratory Medicine, Nedlands, WA 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Royston Ong
- Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia
| | - Samantha Edwards
- Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia
| | - Sarah Righetti
- Centre for Clinical Genetics, Sydney Children’s Hospital, Randwick, NSW 2031, Australia
- School of Women’s and Children’s Health, University of New South Wales, Randwick, NSW 2031, Australia
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Parkville, VIC 3052, Australia
- Department of Pathology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Sharon Lewis
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Susan P. Walker
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC 3084, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Tiffany F. Boughtwood
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Australian Genomics, Parkville, VIC 3052, Australia
| | - Tristan Hardy
- Monash IVF Group, Richmond, VIC 3121, Australia
- SA Pathology, Adelaide, SA 5000, Australia
| | - Ainsley J. Newson
- Australian Genomics, Parkville, VIC 3052, Australia
- Sydney Health Ethics, Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| | - Edwin P. Kirk
- NSW Health Pathology Randwick Genomics Laboratory, Randwick, NSW 2031, Australia
- Centre for Clinical Genetics, Sydney Children’s Hospital, Randwick, NSW 2031, Australia
- School of Women’s and Children’s Health, University of New South Wales, Randwick, NSW 2031, Australia
| | - Nigel G. Laing
- Department of Diagnostic Genomics, PathWest Laboratory Medicine, Nedlands, WA 6009, Australia
- Centre for Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
- Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia
| | - Martin B. Delatycki
- Victorian Clinical Genetics Services, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | | |
Collapse
|
9
|
Yousuf A, Ahmed N, Qurashi A. Non-canonical DNA/RNA structures associated with the pathogenesis of Fragile X-associated tremor/ataxia syndrome and Fragile X syndrome. Front Genet 2022; 13:866021. [PMID: 36110216 PMCID: PMC9468596 DOI: 10.3389/fgene.2022.866021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) and fragile X syndrome (FXS) are primary examples of fragile X-related disorders (FXDs) caused by abnormal expansion of CGG repeats above a certain threshold in the 5'-untranslated region of the fragile X mental retardation (FMR1) gene. Both diseases have distinct clinical manifestations and molecular pathogenesis. FXTAS is a late-adult-onset neurodegenerative disorder caused by a premutation (PM) allele (CGG expansion of 55-200 repeats), resulting in FMR1 gene hyperexpression. On the other hand, FXS is a neurodevelopmental disorder that results from a full mutation (FM) allele (CGG expansions of ≥200 repeats) leading to heterochromatization and transcriptional silencing of the FMR1 gene. The main challenge is to determine how CGG repeat expansion affects the fundamentally distinct nature of FMR1 expression in FM and PM ranges. Abnormal CGG repeat expansions form a variety of non-canonical DNA and RNA structures that can disrupt various cellular processes and cause distinct effects in PM and FM alleles. Here, we review these structures and how they are related to underlying mutations and disease pathology in FXS and FXTAS. Finally, as new CGG expansions within the genome have been identified, it will be interesting to determine their implications in disease pathology and treatment.
Collapse
Affiliation(s)
| | | | - Abrar Qurashi
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
10
|
Butler MG, Hossain WA, Steinle J, Gao H, Cox E, Niu Y, Quach M, Veatch OJ. Connective Tissue Disorders and Fragile X Molecular Status in Females: A Case Series and Review. Int J Mol Sci 2022; 23:ijms23169090. [PMID: 36012355 PMCID: PMC9408984 DOI: 10.3390/ijms23169090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 01/10/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited cause of intellectual disabilities and the second most common cause after Down syndrome. FXS is an X-linked disorder due to a full mutation of the CGG triplet repeat of the FMR1 gene which codes for a protein that is crucial in synaptogenesis and maintaining functions of extracellular matrix-related proteins, key for the development of normal neuronal and connective tissue including collagen. In addition to neuropsychiatric and behavioral problems, individuals with FXS show physical features suggestive of a connective tissue disorder including loose skin and joint laxity, flat feet, hernias and mitral valve prolapse. Disturbed collagen leads to hypermobility, hyperextensible skin and tissue fragility with musculoskeletal, cardiovascular, immune and other organ involvement as seen in hereditary disorders of connective tissue including Ehlers−Danlos syndrome. Recently, FMR1 premutation repeat expansion or carrier status has been reported in individuals with connective tissue disorder-related symptoms. We examined a cohort of females with features of a connective tissue disorder presenting for genetic services using next-generation sequencing (NGS) of a connective tissue disorder gene panel consisting of approximately 75 genes. In those females with normal NGS testing for connective tissue disorders, the FMR1 gene was then analyzed using CGG repeat expansion studies. Three of thirty-nine females were found to have gray zone or intermediate alleles at a 1:13 ratio which was significantly higher (p < 0.05) when compared with newborn females representing the general population at a 1:66 ratio. This association of connective tissue involvement in females with intermediate or gray zone alleles reported for the first time will require more studies on how the size variation may impact FMR1 gene function and protein directly or in relationship with other susceptibility genes involved in connective tissue disorders.
Collapse
Affiliation(s)
- Merlin G. Butler
- Department of Psychiatry & Behavioral Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd. MS 4015, Kansas City, KS 66160, USA
- Correspondence: ; Tel.: +1-(913)-588-1800; Fax: +1-(913)-588-1305
| | - Waheeda A. Hossain
- Department of Psychiatry & Behavioral Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd. MS 4015, Kansas City, KS 66160, USA
| | - Jacob Steinle
- Department of Psychiatry & Behavioral Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd. MS 4015, Kansas City, KS 66160, USA
| | - Harry Gao
- Fulgent Genetics, 4978 Santa Anita Ave., Temple City, CA 91780, USA
| | - Eleina Cox
- Fulgent Genetics, 4978 Santa Anita Ave., Temple City, CA 91780, USA
| | - Yuxin Niu
- Fulgent Genetics, 4978 Santa Anita Ave., Temple City, CA 91780, USA
| | - May Quach
- Fulgent Genetics, 4978 Santa Anita Ave., Temple City, CA 91780, USA
| | - Olivia J. Veatch
- Department of Psychiatry & Behavioral Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd. MS 4015, Kansas City, KS 66160, USA
| |
Collapse
|
11
|
Hwang YH, Hayward BE, Zafarullah M, Kumar J, Durbin Johnson B, Holmans P, Usdin K, Tassone F. Both cis and trans-acting genetic factors drive somatic instability in female carriers of the FMR1 premutation. Sci Rep 2022; 12:10419. [PMID: 35729184 PMCID: PMC9213438 DOI: 10.1038/s41598-022-14183-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
The fragile X mental retardation (FMR1) gene contains an expansion-prone CGG repeat within its 5' UTR. Alleles with 55-200 repeats are known as premutation (PM) alleles and confer risk for one or more of the FMR1 premutation (PM) disorders that include Fragile X-associated Tremor/Ataxia Syndrome (FXTAS), Fragile X-associated Primary Ovarian Insufficiency (FXPOI), and Fragile X-Associated Neuropsychiatric Disorders (FXAND). PM alleles expand on intergenerational transmission, with the children of PM mothers being at risk of inheriting alleles with > 200 CGG repeats (full mutation FM) alleles) and thus developing Fragile X Syndrome (FXS). PM alleles can be somatically unstable. This can lead to individuals being mosaic for multiple size alleles. Here, we describe a detailed evaluation of somatic mosaicism in a large cohort of female PM carriers and show that 94% display some evidence of somatic instability with the presence of a series of expanded alleles that differ from the next allele by a single repeat unit. Using two different metrics for instability that we have developed, we show that, as with intergenerational instability, there is a direct relationship between the extent of somatic expansion and the number of CGG repeats in the originally inherited allele and an inverse relationship with the number of AGG interruptions. Expansions are progressive as evidenced by a positive correlation with age and by examination of blood samples from the same individual taken at different time points. Our data also suggests the existence of other genetic or environmental factors that affect the extent of somatic expansion. Importantly, the analysis of candidate single nucleotide polymorphisms (SNPs) suggests that two DNA repair factors, FAN1 and MSH3, may be modifiers of somatic expansion risk in the PM population as observed in other repeat expansion disorders.
Collapse
Affiliation(s)
- Ye Hyun Hwang
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Bruce Eliot Hayward
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Jay Kumar
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Blythe Durbin Johnson
- Department of Public Health Sciences, University of California, Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Peter Holmans
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurology, School of Medicine, Cardiff University, Cardiff, UK
| | - Karen Usdin
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA. .,MIND Institute, University of California Davis Medical Center, Sacramento, CA, 95817, USA.
| |
Collapse
|
12
|
Rajan-Babu IS, Lian M, Chong SS. Triplet-Primed PCR Assays for Accurate Screening of FMR1 CGG Repeat Expansion and Genotype Verification. Curr Protoc 2022; 2:e427. [PMID: 35609145 DOI: 10.1002/cpz1.427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fragile X syndrome and other fragile X-associated disorders are caused by the full-mutation (>200 copies) and premutation (55 to 200 copies) expansion, respectively, of the CGG short tandem repeat in the fragile X messenger ribonucleoprotein 1 (FMR1) gene. Clinical diagnostic laboratories use Southern blot analysis and polymerase chain reaction (PCR)-based tests to detect and/or size the FMR1 CGG repeats. The development of sensitive and high-throughput triplet-primed PCR (TP-PCR) assays has diminished the need to subject all samples to Southern blot analysis, which is both labor- and time-intensive. In this article, we describe two direct TP-PCR (dTP-PCR) assays for the detection of FMR1 CGG repeat expansions. We outline a protocol that is based on melting curve analysis of dTP-PCR amplicons for a rapid and cost-effective first-tier screening and identification of individuals with premutation and full-mutation expansions. We also describe a protocol that employs capillary electrophoresis to resolve the dTP-PCR amplicon fragments and to estimate the repeat sizes of normal (5 to 44 copies), intermediate (45 to 54 copies), and premutation alleles, as well as to detect full mutations and determine the structure of the FMR1 alleles. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Direct triplet-primed PCR master mix preparation and amplification of the FMR1 CGG repeat locus for melting curve analysis Basic Protocol 2: Melting curve analysis of direct triplet-primed PCR amplicons on the Rotor-Gene Q MD × 5plex high-resolution melt platform Alternate Protocol: Melting curve analysis of direct triplet-primed PCR amplicons on the LightCycler 480 system Basic Protocol 3: Generation of direct triplet-primed PCR melting curve analysis profiles Basic Protocol 4: Direct triplet-primed PCR master mix preparation and amplification of the FMR1 CGG repeat locus for capillary electrophoresis Basic Protocol 5: Generation of control FMR1 plasmids for direct triplet-primed PCR melting curve analysis Basic Protocol 6: Sanger sequencing assay to verify FMR1 CGG repeat size and structure of plasmid DNA controls.
Collapse
Affiliation(s)
- Indhu-Shree Rajan-Babu
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Children's & Women's Hospital, Vancouver, British Columbia, Canada
| | - Mulias Lian
- Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore, Singapore
| | - Samuel S Chong
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| |
Collapse
|
13
|
Owens KM, Terhaar C, Zdrodowski J, Johnson LR, Eveleigh D. Refining reproductive risk for FMR1 premutation carriers in the general obstetric population. Am J Med Genet A 2022; 188:1476-1481. [PMID: 35129870 DOI: 10.1002/ajmg.a.62666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/31/2021] [Accepted: 01/06/2022] [Indexed: 11/08/2022]
Abstract
Female FMR1 premutation (FMR1 PM) carriers for fragile X syndrome (FXS) are at risk to have a child with FXS based on their CGG repeat size and AGG interruption number. Studies examining this risk in unselected populations of female PM carriers are lacking. This retrospective cohort study analyzed carrier status, CGG repeat length, AGG interruption result, and reproductive risk refinement in a population of female patients who underwent routine carrier screening for FXS. A total of 1536 PM carriers (0.43%) were identified, 95% of whom had between 55 and 90 CGG repeats. A number of 1334 carriers underwent AGG interruption testing. The majority had at least one AGG interruption and received a lower reproductive risk for FXS following AGG interruption testing (89% and 85%, respectively) as compared to their risk calculated based on CGG repeat size alone. The average change in risk across the population following AGG interruption testing was -3.4%, with a range from -50.8% to 48.9%. This article describes the range of CGG repeats and AGG interruptions in an unselected population of female PM carriers and suggests that most carriers would benefit from AGG interruption testing to refine their reproductive risk of having a child with FXS.
Collapse
|
14
|
Frequency of FMR1 Premutation Alleles in Patients with Undiagnosed Cerebellar Ataxia and Multiple System Atrophy in the Japanese Population. CEREBELLUM (LONDON, ENGLAND) 2021; 21:954-962. [PMID: 34845661 DOI: 10.1007/s12311-021-01329-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/26/2021] [Indexed: 10/19/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is an adult-onset neurodegenerative disorder caused by FMR1 premutation expansion of CGG repeats. FXTAS can be misdiagnosed with many neurodegenerative disorders manifesting with cerebellar ataxias owing to their overlapping clinical and radiological features. The frequency of the FMR1 premutation allele in Japan has not been fully determined. Herein, we aimed to determine the frequency of FMR1 premutation alleles in Japanese patients with undiagnosed cerebellar ataxia and multiple system atrophy, using repeat-primed PCR in 186 patients with adult onset of undiagnosed cerebellar ataxia and 668 patients with multiple system atrophy, to identify expanded CGG repeats as well as to detect AGG interruptions within the expanded alleles. The size of expansions was estimated using fragment length analysis of PCR products obtained by conventional PCR employing a pair of unique primers flanking the repeat sequence. We identified FMR1 premutation alleles in three male patients. One patient revealed 84 repeat units with one AGG interruption and another patient showed 103 repeat units. Both had presented with sporadic cerebellar ataxia, giving an estimated frequency of 3.7% among Japanese male patients with sporadic cerebellar ataxia with age at onset above 50 years. One patient with the clinical diagnosis of multiple system atrophy harbored 60 repeat units with four AGG interruptions. FMR1 intermediate alleles were observed in two males and one female among the multiple system atrophy patients. We found that genetic tests for FMR1 premutation should be considered in Japanese male patients with cerebellar ataxia with the age at onset above 50 years.
Collapse
|
15
|
Thomas S, Fayet OM, Truffault F, Fadel E, Provost B, Hamza A, Berrih-Aknin S, Bonnefont JP, Le Panse R. Altered expression of fragile X mental retardation-1 (FMR1) in the thymus in autoimmune myasthenia gravis. J Neuroinflammation 2021; 18:270. [PMID: 34789272 PMCID: PMC8597299 DOI: 10.1186/s12974-021-02311-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022] Open
Abstract
Predisposition to autoimmunity and inflammatory disorders is observed in patients with fragile X-associated syndromes. These patients have increased numbers of CGG triplets in the 5’ UTR region of FMR1 (Fragile X Mental Retardation 1) gene, that affects its expression. FMR1 is decreased in the thymus of myasthenia gravis (MG) patients, a prototypical autoimmune disease. We thus analyzed the number of CGG triplets in FMR1 in MG, and explored the regulatory mechanisms affecting thymic FMR1 expression. We measured the number of CGGs using thymic DNA from MG and controls, but no abnormalities in CGGs were found in MG that could explain thymic decrease of FMR1. We next analyzed by RT-PCR the expression of FMR1 and its transcription factors in thymic samples, and in thymic epithelial cell cultures in response to inflammatory stimuli. In control thymuses, FMR1 expression was higher in males than females, and correlated with CTCF (CCCTC-binding factor) expression. In MG thymuses, decreased expression of FMR1 was correlated with both CTCF and MAX (Myc-associated factor X) expression. Changes in FMR1 expression were supported by western blot analyses for FMRP. In addition, we demonstrated that FMR1, CTCF and MAX expression in thymic epithelial cells was also sensitive to inflammatory signals. Our results suggest that FMR1 could play a central role in the thymus and autoimmunity. First, in relation with the higher susceptibility of females to autoimmune diseases. Second, due to the modulation of its expression by inflammatory signals that are known to be altered in MG thymuses.
Collapse
Affiliation(s)
- Scott Thomas
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013, Paris, France
| | - Odessa-Maud Fayet
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013, Paris, France
| | - Frédérique Truffault
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013, Paris, France
| | - Elie Fadel
- Marie Lannelongue Hospital, Paris-Sud University, Le Plessis-Robinson, France
| | - Bastien Provost
- Marie Lannelongue Hospital, Paris-Sud University, Le Plessis-Robinson, France
| | - Abderaouf Hamza
- Université de Paris, Institut Imagine UMR1163, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
| | - Sonia Berrih-Aknin
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013, Paris, France
| | - Jean-Paul Bonnefont
- Université de Paris, Institut Imagine UMR1163, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
| | - Rozen Le Panse
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013, Paris, France.
| |
Collapse
|
16
|
Gu H, Kim MJ, Yang D, Song JY, Cho SI, Park SS, Seong MW. Accuracy and Performance Evaluation of Triplet Repeat Primed PCR as an Alternative to Conventional Diagnostic Methods for Fragile X Syndrome. Ann Lab Med 2021; 41:394-400. [PMID: 33536358 PMCID: PMC7884195 DOI: 10.3343/alm.2021.41.4.394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/12/2020] [Accepted: 12/03/2020] [Indexed: 11/26/2022] Open
Abstract
Background Conventional diagnosis of fragile X syndrome (FXS) is based on a combination of fragment analysis (FA) and Southern blotting (SB); however, this diagnostic approach is time- and labor-intensive and has pitfalls such as the possibility of missing large number alleles. Triplet repeat primed PCR (TP-PCR) is a current alternative used to overcome these limitations. We evaluated the diagnostic usefulness of TP-PCR compared with the conventional diagnostic protocol consisting of FA and/or SB in terms of allele categorization, repeat number correlation, and zygosity concordance in female genetic carriers. Methods From November 2013 to March 2018, 458 patients (326 males, 132 females) were simultaneously examined using FA and/or SB and TP-PCR by detecting CGG repeat numbers in FMR1 gene and diagnosed as per American College of Medical Genetics guidelines. Results The TP-PCR results showed high concordance with the FA and/or SB results for all three aspects (allele categorization, repeat number correlation, and zygosity concordance in female genetic carriers). TP-PCR detected CGG expansions ≥200 in all full mutation (FM) allele cases in male patients, as well as both the normal allele (NL) and FM allele in female carriers. In premutation (PM) allele carriers, the TP-PCR results were consistent with the FA and/or SB results. In terms of zygosity concordance in female genetic carriers, 12 NL cases detected by TP-PCR showed a merged peak consisting of two close heterozygous peaks; however, this issue was resolved using a 10-fold dilution. Conclusions TP-PCR may serve as a reliable alternative method for FXS diagnosis.
Collapse
Affiliation(s)
- Hyunjung Gu
- Department of Laboratory Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Man Jin Kim
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Dahae Yang
- Department of Laboratory Medicine, Kosin University Gospel Hospital, Busan, Korea
| | - Ji Yun Song
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Im Cho
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Sup Park
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
17
|
Usdin K, Rodriguez-Revenga L, Willemsen R, Hukema R, Giulivi C. Editorial: Proceedings of the "Fourth International Conference of the FMR1 Premutation: Basic Mechanisms, Clinical Involvement and Therapy". Front Mol Biosci 2021; 8:671875. [PMID: 33987206 PMCID: PMC8111284 DOI: 10.3389/fmolb.2021.671875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/29/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Karen Usdin
- Gene Structure and Disease Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Laia Rodriguez-Revenga
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona and CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Renate Hukema
- Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,The MIND Institute, University of California, Davis Medical Center, Sacramento, CA, United States
| |
Collapse
|
18
|
Berry-Kravis E, Zhou L, Jackson J, Tassone F. Diagnostic profile of the AmplideX Fragile X Dx and Carrier Screen Kit for diagnosis and screening of fragile X syndrome and other FMR1-related disorders. Expert Rev Mol Diagn 2021; 21:255-267. [PMID: 33666525 DOI: 10.1080/14737159.2021.1899812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: In 2009, a novel, CGG repeat primed FMR1 PCR assay was designed with primers flanking the triplet repeat region, as well as a third chimeric primer complementary to the (CGG)n repeat, that was capable of amplifying alleles throughout the repeat range. This assay for the first time allowed consistent detection of large full mutation alleles with PCR, resolution of heterozygosity in females and mapping of AGG interspersions.Areas Covered: The AmplideX Fragile X Dx and Carrier Screen Kit (Asuragen, Inc.) represents a refined assay that underwent validation with sensitivity analyses for FDA approval. Single-site precision, analytical sensitivity and specificity, limit of detection and diagnostic performance were assessed in comparison to reference methods at three independent sites. Single-site precision across all genotype categories showed 100% agreement at 20 ng input across multiple operators, days, instruments and kit lots. Compared to Southern Blot analysis, the overall percent agreement was over 98% for all expanded alleles.Expert Opinion: Limitations include no methylation assessment and hard to see full mutation peaks in some mosaic samples, but overall the assay is considered a highly accurate and time-efficient assay for FMR1 allele size determination.
Collapse
Affiliation(s)
- Elizabeth Berry-Kravis
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA.,Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.,Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Lili Zhou
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA.,Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Jonathan Jackson
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, USA.,MIND Institute, University of California Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
19
|
'Essential Tremor' Phenotype in FMR1 Premutation/Gray Zone Sibling Series: Exploring Possible Genetic Modifiers. Twin Res Hum Genet 2021; 24:95-102. [PMID: 33757613 DOI: 10.1017/thg.2021.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) occurs in carriers of fragile X mental retardation 1 (FMR1) X-linked small CGG expansion (gray zone [GZ] and premutation [PM]) alleles, containing 41-200 repeats. Major features comprise kinetic tremor, gait ataxia, cognitive decline and cerebellar peduncular white matter lesions, but atypical/incomplete FXTAS may occur. We explored the possibility of polygenic effects modifying the FXTAS spectrum phenotypes. We used three motor scales and selected cognitive tests in a series of three males and three females from a single sibship carrying PM or GZ alleles (44 to 75 repeats). The molecular profiles from these siblings were determined by genomewide association study with single-nucleotide polymorphism (SNP) genotyping by Illumina Global Screening Array. Nonparametric linkage analysis was applied and Parkinson's disease (PD) polygenic risk scores (PRSs) were calculated for all the siblings, based on 107 known risk variants. All male and female siblings manifested similar kinetic tremor phenotypes. In contrast to FXTAS, they showed negligible gait ataxia, and few white matter lesions on MRI. Cognitive functioning was unaffected. Suggestive evidence of linkage to a broad region of the short arm of chromosome 10 was obtained, and median PD PRS for the sibship fell within the top 30% of a sample of over 500,000 UK and Australian controls. The genomewide study results are suggestive of modifying effects of genetic risk loci linked to PD, on the neurological phenotype of FMR1-CGG small expansion carriers, resulting in an oligosymptomatic kinetic tremor seen in FXTAS spectrum, but also consistent with essential tremor.
Collapse
|
20
|
Abstract
Neurodevelopmental disorders are the most prevalent chronic medical conditions encountered in pediatric primary care. In addition to identifying appropriate descriptive diagnoses and guiding families to evidence-based treatments and supports, comprehensive care for individuals with neurodevelopmental disorders includes a search for an underlying etiologic diagnosis, primarily through a genetic evaluation. Identification of an underlying genetic etiology can inform prognosis, clarify recurrence risk, shape clinical management, and direct patients and families to condition-specific resources and supports. Here we review the utility of genetic testing in patients with neurodevelopmental disorders and describe the three major testing modalities and their yields - chromosomal microarray, exome sequencing (with/without copy number variant calling), and FMR1 CGG repeat analysis for fragile X syndrome. Given the diagnostic yield of genetic testing and the potential for clinical and personal utility, there is consensus that genetic testing should be offered to all patients with global developmental delay, intellectual disability, and/or autism spectrum disorder. Despite this recommendation, data suggest that a minority of children with autism spectrum disorder and intellectual disability have undergone genetic testing. To address this gap in care, we describe a structured but flexible approach to facilitate integration of genetic testing into clinical practice across pediatric specialties and discuss future considerations for genetic testing in neurodevelopmental disorders to prepare pediatric providers to care for patients with such diagnoses today and tomorrow.
Collapse
Affiliation(s)
- Juliann M. Savatt
- Autism & Developmental Medicine Institute, Geisinger, Danville, PA, United States
| | | |
Collapse
|
21
|
Tomé S, Gourdon G. Fast Assays to Detect Interruptions in CTG.CAG Repeat Expansions. Methods Mol Biol 2020; 2056:11-23. [PMID: 31586339 DOI: 10.1007/978-1-4939-9784-8_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Different interrupted repeat expansions have been found in several trinucleotide repeat (TNR) diseases such as fragile X syndrome (FXS), spinocerebellar ataxias (SCAs), and myotonic dystrophies (DMs). Their origins and roles remain poorly understood, especially in myotonic dystrophy type 1 (DM1). We present here the triplet repeat primed polymerase chain reaction (TP-PCR) and restriction enzyme-digested PCR to detect and identify interrupted triplet repeat alleles in DM1. TP-PCR consists of a PCR amplification using a fluoresceinated (FAM) primer flanking the repeat region and a primer pair in CTG.CAG repeats. A detailed analysis of interrupted triplet repeat tracts is essential to fully understand the role of interruptions in the pathogenesis and molecular mechanisms observed in TNR diseases.
Collapse
Affiliation(s)
- Stéphanie Tomé
- Laboratory CTGDM, Inserm UMR1163, Paris, France. .,Institut Imagine, Université Paris-Descartes-Sorbonne Paris-Cité, Paris, France. .,Centre de Recherche en Myologie, CRM, Association Institut de Myologie, INSERM UMRS 974, Sorbonne Université, Paris, France.
| | - Geneviève Gourdon
- Laboratory CTGDM, Inserm UMR1163, Paris, France.,Institut Imagine, Université Paris-Descartes-Sorbonne Paris-Cité, Paris, France.,Centre de Recherche en Myologie, CRM, Association Institut de Myologie, INSERM UMRS 974, Sorbonne Université, Paris, France
| |
Collapse
|
22
|
Budimirovic DB, Schlageter A, Filipovic-Sadic S, Protic DD, Bram E, Mahone EM, Nicholson K, Culp K, Javanmardi K, Kemppainen J, Hadd A, Sharp K, Adayev T, LaFauci G, Dobkin C, Zhou L, Brown WT, Berry-Kravis E, Kaufmann WE, Latham GJ. A Genotype-Phenotype Study of High-Resolution FMR1 Nucleic Acid and Protein Analyses in Fragile X Patients with Neurobehavioral Assessments. Brain Sci 2020; 10:E694. [PMID: 33008014 PMCID: PMC7601415 DOI: 10.3390/brainsci10100694] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 01/04/2023] Open
Abstract
Fragile X syndrome (FXS) is caused by silencing of the FMR1 gene, which encodes a protein with a critical role in synaptic plasticity. The molecular abnormality underlying FMR1 silencing, CGG repeat expansion, is well characterized; however, delineation of the pathway from DNA to RNA to protein using biosamples from well characterized patients with FXS is limited. Since FXS is a common and prototypical genetic disorder associated with intellectual disability (ID) and autism spectrum disorder (ASD), a comprehensive assessment of the FMR1 DNA-RNA-protein pathway and its correlations with the neurobehavioral phenotype is a priority. We applied nine sensitive and quantitative assays evaluating FMR1 DNA, RNA, and FMRP parameters to a reference set of cell lines representing the range of FMR1 expansions. We then used the most informative of these assays on blood and buccal specimens from cohorts of patients with different FMR1 expansions, with emphasis on those with FXS (N = 42 total, N = 31 with FMRP measurements). The group with FMRP data was also evaluated comprehensively in terms of its neurobehavioral profile, which allowed molecular-neurobehavioral correlations. FMR1 CGG repeat expansions, methylation levels, and FMRP levels, in both cell lines and blood samples, were consistent with findings of previous FMR1 genomic and protein studies. They also demonstrated a high level of agreement between blood and buccal specimens. These assays further corroborated previous reports of the relatively high prevalence of methylation mosaicism (slightly over 50% of the samples). Molecular-neurobehavioral correlations confirmed the inverse relationship between overall severity of the FXS phenotype and decrease in FMRP levels (N = 26 males, mean 4.2 ± 3.3 pg FMRP/ng genomic DNA). Other intriguing findings included a significant relationship between the diagnosis of FXS with ASD and two-fold lower levels of FMRP (mean 2.8 ± 1.3 pg FMRP/ng genomic DNA, p = 0.04), in particular observed in younger age- and IQ-adjusted males (mean age 6.9 ± 0.9 years with mean 3.2 ± 1.2 pg FMRP/ng genomic DNA, 57% with severe ASD), compared to FXS without ASD. Those with severe ID had even lower FMRP levels independent of ASD status in the male-only subset. The results underscore the link between FMR1 expansion, gene methylation, and FMRP deficit. The association between FMRP deficiency and overall severity of the neurobehavioral phenotype invites follow up studies in larger patient cohorts. They would be valuable to confirm and potentially extend our initial findings of the relationship between ASD and other neurobehavioral features and the magnitude of FMRP deficit. Molecular profiling of individuals with FXS may have important implications in research and clinical practice.
Collapse
Affiliation(s)
- Dejan B. Budimirovic
- Departments of Psychiatry and Neurogenetics, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
- Department of Psychiatry & Behavioral Sciences-Child Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Annette Schlageter
- Asuragen, Inc., Austin, TX 78744, USA; (A.S.); (S.F.-S.); (E.B.); (K.N.); (K.C.); (K.J.); (J.K.); (A.H.)
| | - Stela Filipovic-Sadic
- Asuragen, Inc., Austin, TX 78744, USA; (A.S.); (S.F.-S.); (E.B.); (K.N.); (K.C.); (K.J.); (J.K.); (A.H.)
| | - Dragana D. Protic
- Departments of Psychiatry and Neurogenetics, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Eran Bram
- Asuragen, Inc., Austin, TX 78744, USA; (A.S.); (S.F.-S.); (E.B.); (K.N.); (K.C.); (K.J.); (J.K.); (A.H.)
| | - E. Mark Mahone
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
| | - Kimberly Nicholson
- Asuragen, Inc., Austin, TX 78744, USA; (A.S.); (S.F.-S.); (E.B.); (K.N.); (K.C.); (K.J.); (J.K.); (A.H.)
| | - Kristen Culp
- Asuragen, Inc., Austin, TX 78744, USA; (A.S.); (S.F.-S.); (E.B.); (K.N.); (K.C.); (K.J.); (J.K.); (A.H.)
| | - Kamyab Javanmardi
- Asuragen, Inc., Austin, TX 78744, USA; (A.S.); (S.F.-S.); (E.B.); (K.N.); (K.C.); (K.J.); (J.K.); (A.H.)
| | - Jon Kemppainen
- Asuragen, Inc., Austin, TX 78744, USA; (A.S.); (S.F.-S.); (E.B.); (K.N.); (K.C.); (K.J.); (J.K.); (A.H.)
| | - Andrew Hadd
- Asuragen, Inc., Austin, TX 78744, USA; (A.S.); (S.F.-S.); (E.B.); (K.N.); (K.C.); (K.J.); (J.K.); (A.H.)
| | - Kevin Sharp
- Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA; (K.S.); (L.Z.); (E.B.-K.)
| | - Tatyana Adayev
- Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA; (T.A.); (G.L.); (C.D.); (W.T.B.)
| | - Giuseppe LaFauci
- Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA; (T.A.); (G.L.); (C.D.); (W.T.B.)
| | - Carl Dobkin
- Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA; (T.A.); (G.L.); (C.D.); (W.T.B.)
| | - Lili Zhou
- Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA; (K.S.); (L.Z.); (E.B.-K.)
| | - William Ted Brown
- Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA; (T.A.); (G.L.); (C.D.); (W.T.B.)
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA; (K.S.); (L.Z.); (E.B.-K.)
- Departments of Pediatrics, Neurological Sciences and Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Walter E. Kaufmann
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gary J. Latham
- Asuragen, Inc., Austin, TX 78744, USA; (A.S.); (S.F.-S.); (E.B.); (K.N.); (K.C.); (K.J.); (J.K.); (A.H.)
| |
Collapse
|
23
|
Hall DA, Nag S, Ouyang B, Bennett DA, Liu Y, Ali A, Zhou L, Berry-Kravis E. Fragile X Gray Zone Alleles Are Associated With Signs of Parkinsonism and Earlier Death. Mov Disord 2020; 35:1448-1456. [PMID: 32463542 DOI: 10.1002/mds.28086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/02/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Premutation size (55-199 CGG repeats) in the fragile X mental retardation 1 (FMR1) gene cause fragile X-associated tremor/ataxia syndrome, but it is unclear whether smaller "gray" zone expansions of 41-54 repeats are also associated with movement disorders. The objectives of this study were to determine the association between the FMR1 gene gray zone expansions, AGG interspersions, and the presence of parkinsonism and motor and cognitive function in an elderly community-based population. METHODS Automated FMR1 polymerase chain reaction was performed on existing samples from 2 longitudinal aging studies whose subjects agreed to brain donation. A detailed clinical evaluation including a modified Unified Parkinson's Disease Rating Scale score, a composite score of global motor function, 17 cognitive tests summarized as a global measure of cognition, and neuropathological examination were obtained for genotyped participants. RESULTS The average age of the population (n = 2362) was 85.9 ± 7.3 years, and average age at death was 88.6 ± 6.4 years (n = 1326), with 72% women. The prevalence of FMR1 gray zone alleles was 5.2% (122 of 2362). There was no difference between participants with gray zone expansions or those lacking AGG interspersions compared with normal participants in global cognition, global motor function, clinical diagnosis, or pathological changes. Gray zone alleles were associated with signs of parkinsonism in men (P = 0.01), and gray zone carrier men were more likely to die (hazard ratio, 2.34; 95% confidence interval, 1.31-4.16). CONCLUSIONS This is the largest study to investigate gray zone alleles in a community population. The key findings are that in men, the gray zone allele is associated with signs of parkinsonism and higher risk of death, but not with intranuclear neuronal inclusions. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Deborah A Hall
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Sukriti Nag
- Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA.,Rush Alzheimer's Disease Center, Chicago, Illinois, USA
| | - Bichun Ouyang
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - David A Bennett
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA.,Rush Alzheimer's Disease Center, Chicago, Illinois, USA
| | - Yuanqing Liu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Aisha Ali
- University of Illinois, Chicago, Illinois, USA
| | - Lili Zhou
- Department of Pediatrics, Rush University Medical Center, Chicago, Illinois, USA
| | - Elizabeth Berry-Kravis
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA.,Department of Pediatrics, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
24
|
Villate O, Ibarluzea N, Maortua H, de la Hoz AB, Rodriguez-Revenga L, Izquierdo-Álvarez S, Tejada MI. Effect of AGG Interruptions on FMR1 Maternal Transmissions. Front Mol Biosci 2020; 7:135. [PMID: 32766278 PMCID: PMC7381193 DOI: 10.3389/fmolb.2020.00135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/05/2020] [Indexed: 12/30/2022] Open
Abstract
There are four classes of CGG repeat alleles in the FMR1 gene: normal alleles have up to 44 repeats; patients with Fragile X Syndrome have more than 200 repeats; those between 55 and 200 CGGs are considered FMR1 premutation alleles, because they are associated with maternal expansions of the number of CGGs in the next generation and finally, alleles between 45 and 54 CGGs are called intermediate or gray zone alleles. In these last categories, the stability depends on the presence of AGG interruptions, which usually occurs between 9 and 10 CGGs. In this context, we have studied retrospectively 66 women with CGG repeats between 45 and 65, and their offspring. In total 87 transmissions were analyzed with triplet repeat primed PCR using AmplideX® FMR1 PCR (Asuragen, Austin, TX, USA) and we found that alleles with CGG repeats between 45 and 58 do not expand in the next generation except two cases with 56 repeats and 0 AGG interruptions. Furthermore, we have found four females with alleles with more than 59 CGG repeats and 2 AGG interruptions that do not expand either. Alleles from 56 CGG repeats without AGGs expand in all cases. In light of these results and those of the literature, we consider that the risk of unstable transmissions should be based on the presence or absence of AGG interruptions and not on the classical cutoffs which define each category of FMR1 alleles. The application of these results in the genetic and reproductive counseling is essential and AGG interruptions should always be studied.
Collapse
Affiliation(s)
- Olatz Villate
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Genetics Service, Cruces University Hospital, Osakidetza Basque Health Service, Barakaldo, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Nekane Ibarluzea
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Hiart Maortua
- Genetics Service, Cruces University Hospital, Osakidetza Basque Health Service, Barakaldo, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Ana Belén de la Hoz
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Laia Rodriguez-Revenga
- Centre for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain.,Biochemistry and Molecular Genetics Department, Hospital Clinic, Barcelona, Spain.,Institut d'Investigació Biomèdica August Pi i Sunyer IDIBAPS, Barcelona, Spain
| | - Silvia Izquierdo-Álvarez
- Genetics Department of Clinical Biochemistry, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - María Isabel Tejada
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Genetics Service, Cruces University Hospital, Osakidetza Basque Health Service, Barakaldo, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| |
Collapse
|
25
|
Gao F, Huang W, You Y, Huang J, Zhao J, Xue J, Kang H, Zhu Y, Hu Z, Allen EG, Jin P, Xia K, Duan R. Development of Chinese genetic reference panel for Fragile X Syndrome and its application to the screen of 10,000 Chinese pregnant women and women planning pregnancy. Mol Genet Genomic Med 2020; 8:e1236. [PMID: 32281281 PMCID: PMC7284044 DOI: 10.1002/mgg3.1236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/24/2020] [Accepted: 03/01/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is the most common inherited form of intellectual disability caused by a CGG repeat expansion in the 5' untranslated region of the FMR1 gene. When the number of repeats exceeds 200, the gene becomes hypermethylated and is transcriptionally silenced, resulting in FXS. Other allelic forms of the gene that are studied because of their instability or phenotypic consequence include intermediate alleles (45-54 CGG repeats) and premutation alleles (55-200 repeats). Normal alleles are classified as having <45 CGG repeats. Population screening studies have been conducted among American and Australian populations; however, large population-based studies have not been completed in China. METHODS AND RESULTS In this work we present FXS screening results from 10,145 women of childbearing age from China. We first created and tested a standard panel that was comprised of normal, intermediate, premutation, and full mutation samples, and we performed the screening after confirming the consistency of genotyping results among laboratories. CONCLUSION Based on our findings, we have determined the intermediate and premutation carrier prevalence of 1/130 and 1/634, respectively, among Chinese women.
Collapse
Affiliation(s)
- Fei Gao
- Center for Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunanChina
- National Institutes for Food and Drug ControlBeijingChina
| | - Wen Huang
- Center for Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunanChina
| | - Yanjun You
- National Institutes for Food and Drug ControlBeijingChina
| | - Jie Huang
- National Institutes for Food and Drug ControlBeijingChina
| | - Juan Zhao
- Center for Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunanChina
| | - Jin Xue
- Center for Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunanChina
| | - Huaixing Kang
- Center for Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunanChina
| | - Yingbao Zhu
- Center for Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunanChina
| | - Zhengmao Hu
- Center for Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Medical GeneticsCentral South UniversityChangshaHunanChina
| | - Emily G. Allen
- Department of Human GeneticsEmory University School of MedicineAtlantaGAUSA
| | - Peng Jin
- Department of Human GeneticsEmory University School of MedicineAtlantaGAUSA
| | - Kun Xia
- Center for Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Medical GeneticsCentral South UniversityChangshaHunanChina
| | - Ranhui Duan
- Center for Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Medical GeneticsCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Animal Models for Human DiseasesCentral South UniversityChangshaHunanChina
| |
Collapse
|
26
|
Manor E, Gonen R, Sarussi B, Keidar-Friedman D, Kumar J, Tang HT, Tassone F. The role of AGG interruptions in the FMR1 gene stability: A survey in ethnic groups with low and high rate of consanguinity. Mol Genet Genomic Med 2019; 7:e00946. [PMID: 31453660 PMCID: PMC6785435 DOI: 10.1002/mgg3.946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/21/2019] [Accepted: 07/26/2019] [Indexed: 11/07/2022] Open
Abstract
Background The prevalence and the role of AGG interruptions within the FMR1 gene in the normal population is unknown. In this study, we investigated the frequent of AGG loss, in one or two alleles within the normal population. The role of AGG in the FMR1 stability has been assessed by correlating AGG loss to the prevalence of premutation/full mutation in two ethnic groups differing in their consanguinity rate: high versus low consanguinity rate (HCR vs. LCR). Methods The CGG repeat allele size and AGG presence were measured in 6,865 and 6,204 females belonging to the LCR (5%) and HCR (>45%) groups, respectively, by Tripled‐Primed‐PCR technique. Results A lower prevalence of the premutation was observed in the HCR (1:158) as compared to the LCR group (1:128). No full mutation was found in the HCR females while in the LCR group the prevalence found was 1:1,149. Homozygosity rate was higher in the HCR population compared to the LCR group.The overall AGG loss was higher in the HCR population than in the LCR and increased with increased CGG repeat number in both ethnic groups. Conclusions Although we observed a significantly higher rate of homozygosity and AGG loss in the HCR group, this did not affect the prevalence of the premutation and full mutation in this population. Their prevalence was significantly lower than in the LCR population. Finally, we discuss whether the loss of AGG could be also a polymorphic event but not only a stabilizing factor.
Collapse
Affiliation(s)
- Esther Manor
- Faculty of Health Science, Ben-Gurion University of the Negev Genetic Institute, Soroka University Medical Center, Beer Sheva, Israel
| | | | | | | | - Jay Kumar
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, USA
| | - Hiu-Tung Tang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, USA
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, USA.,MIND Institute, Medical Center, University of California Davis, Sacramento, USA
| |
Collapse
|
27
|
Rajan-Babu IS, Chong SS. Triplet-Repeat Primed PCR and Capillary Electrophoresis for Characterizing the Fragile X Mental Retardation 1 CGG Repeat Hyperexpansions. Methods Mol Biol 2019; 1972:199-210. [PMID: 30847793 DOI: 10.1007/978-1-4939-9213-3_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Fragile X mental retardation 1 (FMR1) CGG repeat expansions cause fragile X syndrome-the leading monogenic form of intellectual disability-and increase the risk for fragile X-associated tremor ataxia syndrome and fragile X-associated primary ovarian insufficiency. Southern blot (SB) analysis is the current gold standard test for FMR1 molecular diagnosis. Several polymerase chain reaction (PCR)-based methods are now available for sizing FMR1 CGG repeat expansions. These methods offer higher diagnostic sensitivity and specificity compared to SB analysis, significantly reduce the turnaround time and increase throughput. In this chapter, we describe a triplet-repeat primed PCR protocol that employs capillary electrophoresis to resolve the derived amplicon products, enabling precise determination of the FMR1 genotypes in both males and females and characterization of the CGG repeat structure.
Collapse
Affiliation(s)
- Indhu-Shree Rajan-Babu
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Samuel S Chong
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore. .,Department of Laboratory Medicine, National University Hospital, Singapore, Singapore.
| |
Collapse
|
28
|
Nolin SL, Glicksman A, Tortora N, Allen E, Macpherson J, Mila M, Vianna‐Morgante AM, Sherman SL, Dobkin C, Latham GJ, Hadd AG. Expansions and contractions of the FMR1 CGG repeat in 5,508 transmissions of normal, intermediate, and premutation alleles. Am J Med Genet A 2019; 179:1148-1156. [PMID: 31050164 PMCID: PMC6619443 DOI: 10.1002/ajmg.a.61165] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/21/2019] [Accepted: 04/11/2019] [Indexed: 12/15/2022]
Abstract
Instability of the FMR1 repeat, commonly observed in transmissions of premutation alleles (55-200 repeats), is influenced by the size of the repeat, its internal structure and the sex of the transmitting parent. We assessed these three factors in unstable transmissions of 14/3,335 normal (~5 to 44 repeats), 54/293 intermediate (45-54 repeats), and 1561/1,880 premutation alleles. While most unstable transmissions led to expansions, contractions to smaller repeats were observed in all size classes. For normal alleles, instability was more frequent in paternal transmissions and in alleles with long 3' uninterrupted repeat lengths. For premutation alleles, contractions also occurred more often in paternal than maternal transmissions and the frequency of paternal contractions increased linearly with repeat size. All paternal premutation allele contractions were transmitted as premutation alleles, but maternal premutation allele contractions were transmitted as premutation, intermediate, or normal alleles. The eight losses of AGG interruptions in the FMR1 repeat occurred exclusively in contractions of maternal premutation alleles. We propose a refined model of FMR1 repeat progression from normal to premutation size and suggest that most normal alleles without AGG interruptions are derived from contractions of maternal premutation alleles.
Collapse
Affiliation(s)
- Sarah L. Nolin
- Department of Human GeneticsNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandNew York
| | - Anne Glicksman
- Department of Human GeneticsNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandNew York
| | - Nicole Tortora
- Department of Human GeneticsNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandNew York
| | - Emily Allen
- Department of Human GeneticsEmory University School of MedicineAtlantaGeorgia
| | - James Macpherson
- Wessex Regional Genetics LaboratorySalisbury NHS District HospitalSalisburyUnited Kingdom
| | - Montserrat Mila
- Biochemical and Molecular GeneticsHospital Clinic de Barcelona, IDIBAPS and CIBERERBarcelonaSpain
| | - Angela M. Vianna‐Morgante
- Department of Genetics and Evolutionary Biology, Institute of BiosciencesUniversidade de São PauloSão PauloBrazil
| | | | - Carl Dobkin
- Department of Human GeneticsNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandNew York
| | | | | |
Collapse
|
29
|
Dean DD, Agarwal S, Muthuswamy S. Fragile X molecular investigation and genetic counseling of intellectual disability/developmental delay patients in an Indian scenario. Expert Rev Mol Diagn 2019; 19:641-649. [PMID: 31159589 DOI: 10.1080/14737159.2019.1622416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Fragile X Syndrome (FXS), the most common cause of inherited intellectual disability (ID), is caused by a CGG repeat expansion (full mutation (FM), >200 CGG) at the Fragile X Mental Retardation 1 (FMR1) gene. Early identification of FXS has prognostic significance for affected individuals due to early initiation of interventions. Genetic counseling and family screening can aid parents and at-risk asymptomatic carriers (premutation (PM), 55-200 CGG) in taking proper reproductive decisions. Methodology: The present study utilizes Triplet Primed-Polymerase Chain Reaction (TP-PCR) methodology for detecting the repeat expansion at FMR1 gene in 233 Indian intellectual disability/developmental delay (ID/DD) patients. Results: We have identified 18/233 (7.7%) FXS positive cases. Early diagnosis was made in 66.7% cases (<10 years). Extended family screening in 14 affected individuals identified 9 additional FM cases (7 males and 2 females) and 23 carrier PM females, which otherwise could have been missed. Four prenatal diagnoses were also performed, leading to the identification of 1 PM and 1 FM carrier fetus. Conclusion: A high frequency (7.7%) of FXS among Indian ID/DD subjects obtained in this study depicted the need for more professional recommendations concerning prompt referral for genetic testing, and increased exposure to information about FXS to pediatricians.
Collapse
Affiliation(s)
- Deepika Delsa Dean
- a Department of Medical Genetics , Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS) , Lucknow , UP , India
| | - Sarita Agarwal
- a Department of Medical Genetics , Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS) , Lucknow , UP , India
| | - Srinivasan Muthuswamy
- a Department of Medical Genetics , Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS) , Lucknow , UP , India
| |
Collapse
|
30
|
Sachdeva A, Jain P, Gunasekaran V, Mahay SB, Mukherjee S, Hagerman R, Shankar S, Kapoor S, Kedia SN. Consensus Statement of the Indian Academy of Pediatrics on Diagnosis and Management of Fragile X Syndrome in India. Indian Pediatr 2019. [DOI: 10.1007/s13312-019-1504-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Repeat Instability in the Fragile X-Related Disorders: Lessons from a Mouse Model. Brain Sci 2019; 9:brainsci9030052. [PMID: 30832215 PMCID: PMC6468611 DOI: 10.3390/brainsci9030052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 12/21/2022] Open
Abstract
The fragile X-related disorders (FXDs) are a group of clinical conditions that result primarily from an unusual mutation, the expansion of a CGG-repeat tract in exon 1 of the FMR1 gene. Mouse models are proving useful for understanding many aspects of disease pathology in these disorders. There is also reason to think that such models may be useful for understanding the molecular basis of the unusual mutation responsible for these disorders. This review will discuss what has been learnt to date about mechanisms of repeat instability from a knock-in FXD mouse model and what the implications of these findings may be for humans carrying expansion-prone FMR1 alleles.
Collapse
|
32
|
Abstract
Individuals carrying an FMR1 expansion between 55 and 200 CGG repeats, are at risk of developing the Fragile X-associated tremor/ataxia syndrome (FXTAS), a late onset neurodegenerative disorder characterized by cerebellar gait ataxia, intentional tremor, neuropathy, parkinsonism, cognitive decline, and psychological disorders, such as anxiety and depression. In addition, brain atrophy, white matter disease, and hyperintensities of the middle cerebellar peduncles can also be present. The neuropathological distinct feature of FXTAS is represented by the presence of eosinophilic intranuclear inclusions in neurons and astrocytes throughout the brain and in other tissues. In this chapter, protocols for available diagnostic tools, in both humans and mice, the clinical features and the basic molecular mechanisms leading to FXTAS and the animal models proposed to study this disorder are discussed.
Collapse
|
33
|
Hayward BE, Usdin K. Assays for Determining Repeat Number, Methylation Status, and AGG Interruptions in the Fragile X-Related Disorders. Methods Mol Biol 2019; 1942:49-59. [PMID: 30900174 DOI: 10.1007/978-1-4939-9080-1_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Knowledge of the CGG•CCG-repeat number, AGG interruption status, and the extent of DNA methylation of the FMR1 gene are vital for both diagnosis of the fragile X-related disorders and for basic research into disease mechanisms. We describe here assays that we use in our laboratory to assess these parameters. Our assays are PCR-based and include one for repeat size that can also be used to assess the extent of methylation and a related assay that allows the AGG interruption pattern to be reliably determined even in women. A second more quantitative methylation assay is also described. We also describe our method for cloning of repeats to generate the reference standards necessary for the accurate determination of repeat number and AGG interruption status.
Collapse
Affiliation(s)
- Bruce E Hayward
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
34
|
Domniz N, Ries-Levavi L, Cohen Y, Marom-Haham L, Berkenstadt M, Pras E, Glicksman A, Tortora N, Latham GJ, Hadd AG, Nolin SL, Elizur SE. Absence of AGG Interruptions Is a Risk Factor for Full Mutation Expansion Among Israeli FMR1 Premutation Carriers. Front Genet 2018; 9:606. [PMID: 30619448 PMCID: PMC6300753 DOI: 10.3389/fgene.2018.00606] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/19/2018] [Indexed: 11/13/2022] Open
Abstract
Introduction: Fragile X syndrome (FXS) is a common form of X-linked intellectual and developmental disability with a prevalence of 1/4000-5000 in males and 1/6000-8000 in females. Most cases of the syndrome result from expansion of a premutation (55-200 CGGs) to a full mutation (>200 CGGs) repeat located in the 5' untranslated region of the fragile X mental retardation (FMR1) gene. The risk for full mutation expansions increases dramatically with increasing numbers of CGG repeats. Recent studies, however, revealed AGG interruptions within the repeat area function as a "protective factor" decreasing the risk of intergenerational expansion. Materials and Methods: This study was conducted to validate the relevance of AGG analysis for the ethnically diverse Israeli population. To increase the accuracy of our results, we combined results from Israel with those from the New York State Institute for Basic Research in Developmental Disabilities (IBR). To the best of our knowledge this is the largest cohort of different ethnicities to examine risks of unstable transmissions and full mutation expansions among FMR1 premutation carriers. Results: The combined data included 1471 transmissions of maternal premutation alleles: 369 (25.1%) stable and 1,102 (74.9%) unstable transmissions. Full mutation expansions were identified in 20.6% (303/1471) of transmissions. A total of 97.4% (388/397) of transmissions from alleles with no AGGs were unstable, 79.6% (513/644) in alleles with 1 AGG and 46.7% (201/430) in alleles with 2 or more AGGs. The same trend was seen with full mutation expansions where 40% (159/397) of alleles with no AGGs expanded to a full mutation, 20.2% (130/644) for alleles with 1 AGG and only 3.2% (14/430) in alleles with 2 AGGs or more. None of the alleles with 3 or more AGGs expanded to full mutations. Conclusion: We recommend that risk estimates for FMR1 premutation carriers be based on AGG interruptions as well as repeat size in Israel and worldwide.
Collapse
Affiliation(s)
- Noam Domniz
- IVF Unit, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liat Ries-Levavi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Danek Genetic Institute, Sheba Medical Center, Tel Hashomer, Israel
| | - Yoram Cohen
- IVF Unit, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lilach Marom-Haham
- IVF Unit, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Berkenstadt
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Danek Genetic Institute, Sheba Medical Center, Tel Hashomer, Israel
| | - Elon Pras
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Danek Genetic Institute, Sheba Medical Center, Tel Hashomer, Israel
| | - Anne Glicksman
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Nicole Tortora
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | | | | | - Sarah L Nolin
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Shai E Elizur
- IVF Unit, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
35
|
Pastore LM, Christianson MS, McGuinness B, Vaught KC, Maher JY, Kearns WG. Does theFMR1 gene affect IVF success? Reprod Biomed Online 2018; 38:560-569. [PMID: 30711457 DOI: 10.1016/j.rbmo.2018.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/13/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022]
Abstract
FMR1 CGG trinucleotide repeat expansions are associated with Fragile X syndrome (full mutations) and primary ovarian insufficiency (premutation range); the effect of FMR1 on the success of fertility treatment is unclear. The effect of FMR1 CGG repeat lengths on IVF outcomes after ovarian stimulation was reviewed. PubMed was searched for studies on IVF-related outcomes reported by FMR1 trinucleotide repeat length published between 2002 and December 2017. For women with CGG repeats in the normal (<45 CGG), intermediate range (45-54 CGG), or both, research supports a minimal effect on IVF outcomes, including pregnancy rates; although one study reported lower oocyte yields after IVF stimulation in women with lower CGG repeat lengths and normal ovarian reserve. Meta-analysis revealed no association within subcategories of normal repeat length (<45 CGG) and IVF pregnancy rates (summary OR 1.0, 95% CI 0.87 to 1.15). Premutation carriers (CGG 55-200) may have reduced success with IVF treatment (lower oocyte yield) than women with a normal CGG repeat length or a full mutation, although findings are inconsistent. Direct implications of the repeat length on inheritance and the risk of Fragile X syndrome have been observed. Patients may require clinical and psychological counselling, and further preimplantation genetic testing options should be considered. Thus, there are clinical and psychological counseling implications for patients and potential further patient decisions regarding preimplantation genetic testing options.
Collapse
Affiliation(s)
- Lisa M Pastore
- OB/GYN and Reproductive Medicine Department, Stony Brook Medicine, Stony Brook, New York USA
| | - Mindy S Christianson
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore MD, USA
| | | | - Kamaria Cayton Vaught
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore MD, USA
| | - Jacqueline Y Maher
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore MD, USA
| | | |
Collapse
|
36
|
Fink DA, Nelson LM, Pyeritz R, Johnson J, Sherman SL, Cohen Y, Elizur SE. Fragile X Associated Primary Ovarian Insufficiency (FXPOI): Case Report and Literature Review. Front Genet 2018; 9:529. [PMID: 30542367 PMCID: PMC6278244 DOI: 10.3389/fgene.2018.00529] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/22/2018] [Indexed: 11/29/2022] Open
Abstract
Abnormalities in the X-linked FMR1 gene are associated with a constellation of disorders, which have broad and profound implications for the person first diagnosed, and extended family members of all ages. The rare and pleiotropic nature of the associated disorders, both common and not, place great burdens on (1) the affected families, (2) their care providers and clinicians, and (3) investigators striving to conduct research on the conditions. Fragile X syndrome, occurring more severely in males, is the leading genetic cause of intellectual disability. Fragile X associated tremor and ataxia syndrome (FXTAS) is a neurodegenerative disorder seen more often in older men. Fragile X associated primary ovarian insufficiency (FXPOI) is a chronic disorder characterized by oligo/amenorrhea and hypergonadotropic hypogonadism before age 40 years. There may be significant morbidity due to: (1) depression and anxiety related to the loss of reproductive hormones and infertility; (2) reduced bone mineral density; and (3) increased risk of cardiovascular disease related to estrogen deficiency. Here we report the case of a young woman who never established regular menses and yet experienced a 5-year diagnostic odyssey before establishing a diagnosis of FXPOI despite a known family history of fragile X syndrome and early menopause. Also, despite having clearly documented FXPOI the woman conceived spontaneously and delivered two healthy children. We review the pathophysiology and management of FXPOI. As a rare disease, the diagnosis of FXPOI presents special challenges. Connecting patients and community health providers with investigators who have the requisite knowledge and expertise about the FMR1 gene and FXPOI would facilitate both patient care and research. There is a need for an international natural history study on FXPOI. The effort should be coordinated by a global virtual center, which takes full advantage of mobile device communication systems.
Collapse
Affiliation(s)
- Dorothy A Fink
- Hospital for Special Surgery, New York, NY, United States
| | | | - Reed Pyeritz
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Josh Johnson
- University of Colorado, Denver, CO, United States
| | | | - Yoram Cohen
- Sheba Medical Center, Tel Hashomer and Tel Aviv University, Tel Aviv, Israel
| | - Shai E Elizur
- Sheba Medical Center, Tel Hashomer and Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
37
|
Allen EG, Glicksman A, Tortora N, Charen K, He W, Amin A, Hipp H, Shubeck L, Nolin SL, Sherman SL. FXPOI: Pattern of AGG Interruptions Does not Show an Association With Age at Amenorrhea Among Women With a Premutation. Front Genet 2018; 9:292. [PMID: 30123240 PMCID: PMC6086008 DOI: 10.3389/fgene.2018.00292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/13/2018] [Indexed: 01/13/2023] Open
Abstract
Fragile X-associated primary ovarian insufficiency (FXPOI) occurs in about 20% of women who carry a premutation allele (55–200 CGG repeats). These women develop hypergonadotropic hypogonadism and have secondary amenorrhea before age 40. A non-linear association with repeat size and risk for FXPOI has been seen in multiple studies women with a premutation: those with a mid-range of repeats are at highest risk (∼70–100 CGG repeats). Importantly, not all carriers with 70–100 repeats experience FXPOI. We investigated whether AGG interruptions, adjusted for repeat size, impacted age at secondary amenorrhea. We have reproductive history information and AGG interruption data on 262 premutation women: 164 had an established age at amenorrhea (AAA) (for some, age at onset of FXPOI) or menopause, 16 had a surgery involving the reproductive system such as a hysterectomy, and 82 women were still cycling at the last interview. Reproductive status was determined using self-report reproductive questionnaires and interviews with a reproductive endocrinologist. For each of these 262 women, FMR1 repeat size and number of AGG interruptions were determined. We confirmed the association of repeat size with AAA or menopause among women with a premutation. As expected, both premutation repeat size and the quadratic form of repeat size (i.e., squared term) were significant in a survival analysis model predicting AAA (p < 0.0001 for both variables). When number of AGG interruptions was added to the model, this variable was not significant (p = 0.59). Finally, we used a regression model based on the 164 women with established AAA to estimate the proportion of variance in AAA explained by repeat size and its squared term. Both terms were again highly significant (p < 0.0001 for both), but together only explained 13% of the variation in AAA. The non-linear association between AAA and FMR1 repeat size has been described in several studies. We have determined that AGG interruption pattern does not contribute to this association. Because only 13% of the variation is described using repeat size, it is clear that further research of FXPOI is needed to identify other factors that affect the risk for FXPOI.
Collapse
Affiliation(s)
- Emily G Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Anne Glicksman
- New York State Institute for Basic Research in Developmental Disabilities, New York, NY, United States
| | - Nicole Tortora
- New York State Institute for Basic Research in Developmental Disabilities, New York, NY, United States
| | - Krista Charen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Weiya He
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Ashima Amin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Heather Hipp
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Lisa Shubeck
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Sarah L Nolin
- New York State Institute for Basic Research in Developmental Disabilities, New York, NY, United States
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
38
|
McGinty RJ, Mirkin SM. Cis- and Trans-Modifiers of Repeat Expansions: Blending Model Systems with Human Genetics. Trends Genet 2018; 34:448-465. [PMID: 29567336 PMCID: PMC5959756 DOI: 10.1016/j.tig.2018.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 12/30/2022]
Abstract
Over 30 hereditary diseases are caused by the expansion of microsatellite repeats. The length of the expandable repeat is the main hereditary determinant of these disorders. They are also affected by numerous genomic variants that are either nearby (cis) or physically separated from (trans) the repetitive locus, which we review here. These genetic variants have largely been elucidated in model systems using gene knockouts, while a few have been directly observed as single-nucleotide polymorphisms (SNPs) in patients. There is a notable disconnect between these two bodies of knowledge: knockouts poorly approximate the SNP-level variation in human populations that gives rise to medically relevant cis- and trans-modifiers, while the rarity of these diseases limits the statistical power of SNP-based analysis in humans. We propose that high-throughput SNP-based screening in model systems could become a useful approach to quickly identify and characterize modifiers of clinical relevance for patients.
Collapse
Affiliation(s)
- Ryan J McGinty
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
39
|
Tomé S, Dandelot E, Dogan C, Bertrand A, Geneviève D, Péréon Y, Simon M, Bonnefont JP, Bassez G, Gourdon G. Unusual association of a unique CAG interruption in 5' of DM1 CTG repeats with intergenerational contractions and low somatic mosaicism. Hum Mutat 2018; 39:970-982. [PMID: 29664219 DOI: 10.1002/humu.23531] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/23/2018] [Accepted: 04/10/2018] [Indexed: 11/11/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a dominant multisystemic disorder associated with high variability of symptoms and anticipation. DM1 is caused by an unstable CTG repeat expansion that usually increases in successive generations and tissues. DM1 family pedigrees have shown that ∼90% and 10% of transmissions result in expansions and contractions of the CTG repeat, respectively. To date, the mechanisms of CTG repeat contraction remain poorly documented in DM1. In this report, we identified two new DM1 families with apparent contractions and no worsening of DM1 symptoms in two and three successive maternal transmissions. A new and unique CAG interruption was found in 5' of the CTG expansion in one family, whereas multiple 5' CCG interruptions were detected in the second family. We showed that these interruptions are associated with maternal intergenerational contractions and low somatic mosaicism in blood. By specific triplet-prime PCR, we observed that CTG repeat changes (contractions/expansions) occur preferentially in 3' of the interruptions for both families.
Collapse
Affiliation(s)
- Stéphanie Tomé
- Laboratory CTGDM, Inserm UMR1163, Paris, France; Institut Imagine, Université Paris-Descartes-Sorbonne Paris-Cité, Paris, France
| | - Elodie Dandelot
- Laboratory CTGDM, Inserm UMR1163, Paris, France; Institut Imagine, Université Paris-Descartes-Sorbonne Paris-Cité, Paris, France
| | - Céline Dogan
- Neuromuscular Reference Center, AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris, France
| | - Alexis Bertrand
- Laboratory CTGDM, Inserm UMR1163, Paris, France; Institut Imagine, Université Paris-Descartes-Sorbonne Paris-Cité, Paris, France
| | - David Geneviève
- Molecular Genetic Laboratory, Necker Hospital, Paris, France.,Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, CHU Montpellier, Université Montpellier, Montpellier, France
| | - Yann Péréon
- Centre for Neuromuscular Diseases, Hôtel-Dieu Hospital, Nantes, France
| | -
- Pauline Arnaud: Department of genetic, Bichat Hospital, Paris, France, Raphaële Chasserieau: Centre for Neuromuscular Diseases, Hôtel-Dieu Hospital, Nantes, France, Pascal Cintas: Neuromuscular Reference Center, Purpan Hospital, Toulouse, France, Ana-maria Cobo Esteban: Neuromuscular Reference Center, Marin Hospital, Hendaye, France, Marie-Carmen Cruz: Neuromuscular Reference Center, Purpan Hospital, Toulouse, France, Dalil Hamroun: Centre Hospitalo-Universitaire de Montpellier, Montpellier, France, Armelle Magot: Neuromuscular Reference Center, Hôtel-Dieu Hospital, Nantes, France, Alexandra Nadaj-Pakleza Neuromuscular Reference Center, Larrey Hospital, Angers, France, Anne-catherine Aube-Gauthier Neuromuscular Reference Center, Larrey Hospital, Angers, France, Andoni Urtizberea: Neuromuscular Reference Center, Marin Hospital, Hendaye, France
| | - Marie Simon
- Molecular Genetic Laboratory, Necker Hospital, Paris, France
| | | | - Guillaume Bassez
- Sorbonne Université, Inserm, UMRS974, Neuromuscular Reference center, AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris, France
| | - Geneviève Gourdon
- Laboratory CTGDM, Inserm UMR1163, Paris, France; Institut Imagine, Université Paris-Descartes-Sorbonne Paris-Cité, Paris, France
| |
Collapse
|
40
|
Ardui S, Race V, de Ravel T, Van Esch H, Devriendt K, Matthijs G, Vermeesch JR. Detecting AGG Interruptions in Females With a FMR1 Premutation by Long-Read Single-Molecule Sequencing: A 1 Year Clinical Experience. Front Genet 2018; 9:150. [PMID: 29868108 PMCID: PMC5964127 DOI: 10.3389/fgene.2018.00150] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/10/2018] [Indexed: 11/18/2022] Open
Abstract
The fragile X syndrome arises from the FMR1 CGG expansion of a premutation (55–200 repeats) to a full mutation allele (>200 repeats) and is the most frequent cause of inherited X-linked intellectual disability. The risk for a premutation to expand to a full mutation allele depends on the repeat length and AGG triplets interrupting this repeat. In genetic counseling it is important to have information on both these parameters to provide an accurate risk estimate to women carrying a premutation allele and weighing up having children. For example, in case of a small risk a woman might opt for a natural pregnancy followed up by prenatal diagnosis while she might choose for preimplantation genetic diagnosis (PGD) if the risk is high. Unfortunately, the detection of AGG interruptions was previously hampered by technical difficulties complicating their use in diagnostics. Therefore we recently developed, validated and implemented a new methodology which uses long-read single-molecule sequencing to identify AGG interruptions in females with a FMR1 premutation. Here we report on the assets of AGG interruption detection by sequencing and the impact of implementing the assay on genetic counseling.
Collapse
Affiliation(s)
- Simon Ardui
- Center for Human Genetics, University Hospitals Leuven, University of Leuven, Leuven, Belgium
| | - Valerie Race
- Center for Human Genetics, University Hospitals Leuven, University of Leuven, Leuven, Belgium
| | - Thomy de Ravel
- Center for Human Genetics, University Hospitals Leuven, University of Leuven, Leuven, Belgium
| | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, University of Leuven, Leuven, Belgium
| | - Koenraad Devriendt
- Center for Human Genetics, University Hospitals Leuven, University of Leuven, Leuven, Belgium
| | - Gert Matthijs
- Center for Human Genetics, University Hospitals Leuven, University of Leuven, Leuven, Belgium
| | - Joris R Vermeesch
- Center for Human Genetics, University Hospitals Leuven, University of Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Dahlhaus R. Of Men and Mice: Modeling the Fragile X Syndrome. Front Mol Neurosci 2018; 11:41. [PMID: 29599705 PMCID: PMC5862809 DOI: 10.3389/fnmol.2018.00041] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/31/2018] [Indexed: 12/26/2022] Open
Abstract
The Fragile X Syndrome (FXS) is one of the most common forms of inherited intellectual disability in all human societies. Caused by the transcriptional silencing of a single gene, the fragile x mental retardation gene FMR1, FXS is characterized by a variety of symptoms, which range from mental disabilities to autism and epilepsy. More than 20 years ago, a first animal model was described, the Fmr1 knock-out mouse. Several other models have been developed since then, including conditional knock-out mice, knock-out rats, a zebrafish and a drosophila model. Using these model systems, various targets for potential pharmaceutical treatments have been identified and many treatments have been shown to be efficient in preclinical studies. However, all attempts to turn these findings into a therapy for patients have failed thus far. In this review, I will discuss underlying difficulties and address potential alternatives for our future research.
Collapse
Affiliation(s)
- Regina Dahlhaus
- Institute for Biochemistry, Emil-Fischer Centre, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
42
|
|
43
|
Wotton T, Wiley V, Bennetts B, Christie L, Wilcken B, Jenkins G, Rogers C, Boyle J, Field M. Are We Ready for Fragile X Newborn Screening Testing?-Lessons Learnt from a Feasibility Study. Int J Neonatal Screen 2018; 4:9. [PMID: 33072935 PMCID: PMC7548904 DOI: 10.3390/ijns4010009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/23/2018] [Indexed: 12/17/2022] Open
Abstract
Fragile X syndrome (FXS) is the most prevalent heritable cause of cognitive impairment but is not yet included in a newborn screening (NBS) program within Australia. This paper aims to assess the feasibility and reliability of population screening for FXS using a pilot study in one hospital. A total of 1971 mothers consented for 2000 newborns to be tested using routine NBS dried blood spot samples. DNA was extracted and a modified PCR assay with a chimeric CGG primer was used to detect fragile X alleles in both males and females in the normal, premutation, and full mutation ranges. A routine PCR-based fragile X assay was run in parallel to validate the chimeric primer assay. Babies with CGG repeat number ≥59 were referred for family studies. One thousand nine hundred and ninety NBS samples had a CGG repeat number less than 55 (1986 < 50); 10 had premutation alleles >54 CGG repeats (1/123 females and 1/507 males). There was complete concordance between the two PCR-based assays. A recent review revealed no clinically identified cases in the cohort up to 5 years later. The cost per test was $AUD19. Fragile X status can be determined on routine NBS samples using the chimeric primer assay. However, whilst this assay may not be considered cost-effective for population screening, it could be considered as a second-tier assay to a developed immunoassay for fragile X mental retardation protein (FMRP).
Collapse
Affiliation(s)
- Tiffany Wotton
- The NSW Newborn Screening Programme, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- Correspondence:
| | - Veronica Wiley
- The NSW Newborn Screening Programme, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- Disciplines of Paediatrics & Child Health and Genetic Medicine, The University of Sydney, Sydney, NSW 2006, Australia
| | - Bruce Bennetts
- Disciplines of Paediatrics & Child Health and Genetic Medicine, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Genome Diagnostics—Department of Molecular Genetics, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Louise Christie
- Genetics of Learning Disability, Hunter Genetics, Waratah, NSW 2298, Australia
| | - Bridget Wilcken
- The NSW Newborn Screening Programme, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- Disciplines of Paediatrics & Child Health and Genetic Medicine, The University of Sydney, Sydney, NSW 2006, Australia
| | - Gemma Jenkins
- Sydney Genome Diagnostics—Department of Molecular Genetics, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Carolyn Rogers
- Genetics of Learning Disability, Hunter Genetics, Waratah, NSW 2298, Australia
| | - Jackie Boyle
- Genetics of Learning Disability, Hunter Genetics, Waratah, NSW 2298, Australia
| | - Michael Field
- Genetics of Learning Disability, Hunter Genetics, Waratah, NSW 2298, Australia
| |
Collapse
|
44
|
Lekovich J, Man L, Xu K, Canon C, Lilienthal D, Stewart JD, Pereira N, Rosenwaks Z, Gerhardt J. CGG repeat length and AGG interruptions as indicators of fragile X-associated diminished ovarian reserve. Genet Med 2017; 20:957-964. [PMID: 29267266 DOI: 10.1038/gim.2017.220] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/26/2017] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Fragile X premutation (PM) carriers may experience difficulties conceiving a child probably due to fragile X-associated diminished ovarian reserve (FXDOR). We investigated which subgroups of carriers with a PM are at higher risk of FXDOR, and whether the number of AGG interruptions within the repeat sequence further ameliorates the risk. METHODS We compared markers of ovarian reserve, including anti-Müllerian hormone, antral follicle count, and number of oocytes retrieved between different subgroups of patients with a PM. RESULTS We found that carriers with midrange repeats size (70-90 CGG) demonstrate significantly lower ovarian reserve. Additionally, the number of AGG interruptions directly correlated with parameters of ovarian reserve. Patients with longer uninterrupted CGG repeats post-AGG interruptions had the lowest ovarian reserve. CONCLUSION This study connects AGG interruptions and certain CGG repeat length to reduced ovarian reserve in carriers with a PM. A possible explanation for our findings is the proposed gonadotoxicity of the FMR1 transcripts. Reduction of AGG interruptions could increase the likelihood that secondary RNA structures in the FMR1 messenger RNA are formed, which could cause cell dysfunction within the ovaries. These findings may provide women with guidance regarding their fertility potential and accordingly assist with their family planning.
Collapse
Affiliation(s)
- Jovana Lekovich
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Limor Man
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Kangpu Xu
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Chelsea Canon
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, New York, USA
| | - Debra Lilienthal
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Joshua D Stewart
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Nigel Pereira
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Zev Rosenwaks
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Jeannine Gerhardt
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York, USA. .,Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
45
|
Dean DD, Agarwal S, Kapoor D, Singh K, Vati C. Molecular Characterization of FMR1 Gene by TP-PCR in Women of Reproductive Age and Women with Premature Ovarian Insufficiency. Mol Diagn Ther 2017; 22:91-100. [PMID: 29188551 DOI: 10.1007/s40291-017-0305-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Fragile X syndrome is caused by CGG repeat expansion mutation in the FMR1 gene. Normal alleles have 5-44 CGG repeats with AGG interruptions. The expanded gray zone (GZ) (45-54 repeats) and premutation (PM) (55-200 repeats) alleles are often uninterrupted and are unstably inherited in subsequent generations. The prevalence of PM and GZ carriers is high in the female population, at 1/66 and 1/113, respectively, and PM is associated with fertility problems in 20% of cases. OBJECTIVE Our objective was to molecularly characterize CGG repeats and AGG interruption sequences in the FMR1 gene in women of reproductive age and in women with premature ovarian insufficiency (POI). MATERIALS AND METHODS We conducted molecular analysis of the FMR1 gene from 300 women of reproductive age and 140 women with POI using triplet primed-polymerase chain reaction. This enabled us to identify carriers and to document CGG repeat size and the AGG interruption pattern. RESULTS In women of reproductive age, 1.7% were GZ carriers and 0.3% were PM carriers; in women with POI, 3.6% were GZ carriers and 2.14% were PM carriers. The frequency of GZ and PM carriers did not significantly differ between the cohorts (Fisher's exact test: p < 2.23 for GZ vs. control and p < 0.101 for PM vs. control). Carriers received genetic counselling; family screening identified an additional seven carriers. CONCLUSION We documented preliminary data on the prevalence of GZ and PM carriers among the studied cohorts. The identification of PM carriers among women with POI serves a dual purpose of recognizing a cause for ovarian dysfunction and enabling genetic counselling, which will help carriers when making reproductive decisions.
Collapse
Affiliation(s)
- Deepika Delsa Dean
- Department of Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Sarita Agarwal
- Department of Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India.
| | - Deepa Kapoor
- Department of Obstetrics and Gynecology, General Hospital, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Kuldeep Singh
- Department of Pediatrics, AIIMS, Jodhpur, Rajasthan, India
| | - Chandra Vati
- Department of Obstetrics and Gynecology, Krishna Medical Centre, Lucknow, India
| |
Collapse
|
46
|
Manor E, Jabareen A, Magal N, Kofman A, Hagerman RJ, Tassone F. Prenatal Diagnosis of Fragile X: Can a Full Mutation Allele in the FMR1 Gene Contract to a Normal Size? Front Genet 2017; 8:158. [PMID: 29163631 PMCID: PMC5675867 DOI: 10.3389/fgene.2017.00158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/09/2017] [Indexed: 01/29/2023] Open
Abstract
Here we describe a case of a prenatal diagnosis of a male fetus that inherited the unstable allele from his full mutation mosaic mother (29, 160, >200 CGG repeats) reduced to a normal size range (19 CGG repeats). Haplotype analysis showed that the fetus 19 CGG repeats allele derived from the maternal unstable allele which was inherited from his maternal grandmother. No size mosaicism was detected by testing the DNA from in vitro cultured samples, including seventh passage culture as well as from two amniocentesis samples. Sequence analysis confirmed that the allele was 19 CGG repeats long. Methylation assay showed no methylation. Although none of the techniques used in this study can provide with absolute certainty the diagnosis, the results strongly indicate the presence in the fetus of an allele with a CGG repeat number in the normal range. Because this is a prenatal diagnosis case, the crucial question is whether the 19 CGG allele derived from the maternal unstable expanded allele, which contracted to the normal range, became a normal stable allele or a normal unstable allele which could expand in the next generation. It is also possible that allele size mosaicism of the FMR1 gene that went undetected exists. Because this is a prenatal diagnosis case, we cannot with certainty exclude the presence of an undetected expanded allele of the FMR1 gene, in addition to the 19 CGG allele derived from an unstable expanded allele, which contracted to the normal range.
Collapse
Affiliation(s)
- Esther Manor
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel.,Genetics Institute, Soroka Medical Center, Beersheba, Israel
| | - Azhar Jabareen
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel.,Genetics Institute, Soroka Medical Center, Beersheba, Israel
| | - Nurit Magal
- Department of Medical Genetics, Rabin Medical Center, Petah Tikva, Israel.,Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Arei Kofman
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel.,Genetics Institute, Soroka Medical Center, Beersheba, Israel
| | - Randi J Hagerman
- Department of Pediatrics, MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States.,MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| |
Collapse
|
47
|
Mila M, Alvarez-Mora M, Madrigal I, Rodriguez-Revenga L. Fragile X syndrome: An overview and update of the FMR1
gene. Clin Genet 2017; 93:197-205. [DOI: 10.1111/cge.13075] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 01/31/2023]
Affiliation(s)
- M. Mila
- Biochemistry and Molecular Genetics Department, Hospital Clinic; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Salud Carlos III; Madrid Spain
| | - M.I. Alvarez-Mora
- Biochemistry and Molecular Genetics Department, Hospital Clinic; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Salud Carlos III; Madrid Spain
| | - I. Madrigal
- Biochemistry and Molecular Genetics Department, Hospital Clinic; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Salud Carlos III; Madrid Spain
| | - L. Rodriguez-Revenga
- Biochemistry and Molecular Genetics Department, Hospital Clinic; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Salud Carlos III; Madrid Spain
| |
Collapse
|
48
|
Debrey SM, Leehey MA, Klepitskaya O, Filley CM, Shah RC, Kluger B, Berry-Kravis E, Spector E, Tassone F, Hall DA. Clinical Phenotype of Adult Fragile X Gray Zone Allele Carriers: a Case Series. THE CEREBELLUM 2017; 15:623-31. [PMID: 27372099 DOI: 10.1007/s12311-016-0809-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Considerable research has focused on patients with trinucleotide (CGG) repeat expansions in the fragile X mental retardation 1 (FMR1) gene that fall within either the full mutation (>200 repeats) or premutation range (55-200 repeats). Recent interest in individuals with gray zone expansions (41-54 CGG repeats) has grown due to reported phenotypes that are similar to those observed in premutation carriers, including neurological, molecular, and cognitive signs. The purpose of this manuscript is to describe a series of adults with FMR1 alleles in the gray zone presenting with movement disorders or memory loss. Gray zone carriers ascertained in large FMR1 screening studies were identified and their clinical phenotypes studied. Thirty-one gray zone allele carriers were included, with mean age of symptom onset of 53 years in patients with movement disorders and 57 years in those with memory loss. Four patients were chosen for illustrative case reports and had the following diagnoses: early-onset Parkinson disease (PD), atypical parkinsonism, dementia, and atypical essential tremor. Some gray zone carriers presenting with parkinsonism had typical features, including bradykinesia, rigidity, and a positive response to dopaminergic medication. These patients had a higher prevalence of peripheral neuropathy and psychiatric complaints than would be expected. The patients seen in memory clinics had standard presentations of cognitive impairment with no apparent differences. Further studies are necessary to determine the associations between FMR1 expansions in the gray zone and various phenotypes of neurological dysfunction.
Collapse
Affiliation(s)
- Sarah M Debrey
- Department of Psychiatry, Emory University, Atlanta, GA, USA
| | - Maureen A Leehey
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Olga Klepitskaya
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Christopher M Filley
- Departments of Neurology and Psychiatry, University of Colorado School of Medicine, Aurora, CO, USA
- Denver Veterans Affairs Medical Center, Denver, CO, USA
| | - Raj C Shah
- Rush Alzheimer's Disease Center, Rush University, Chicago, IL, USA
| | - Benzi Kluger
- Departments of Neurology and Psychiatry, University of Colorado School of Medicine, Aurora, CO, USA
| | - Elizabeth Berry-Kravis
- Departments of Pediatrics and Biochemistry, Rush University, Chicago, IL, USA
- Department of Neurological Sciences, Rush University, 1725 West Harrison Street, Suite 755, Chicago, IL, 60612, USA
| | - Elaine Spector
- Denver Genetics DNA Diagnostic Laboratory at Children's Hospital Colorado, Department of Pediatrics, University of Colorado-Denver, Aurora, CO, USA
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California School of Medicine, Davis, CA, USA
- M.I.N.D. Institute, University of California-Davis Medical Center, Sacramento, CA, USA
| | - Deborah A Hall
- Department of Neurological Sciences, Rush University, 1725 West Harrison Street, Suite 755, Chicago, IL, 60612, USA.
| |
Collapse
|
49
|
Hayward BE, Kumari D, Usdin K. Recent advances in assays for the fragile X-related disorders. Hum Genet 2017; 136:1313-1327. [PMID: 28866801 DOI: 10.1007/s00439-017-1840-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/24/2017] [Indexed: 12/17/2022]
Abstract
The fragile X-related disorders are a group of three clinical conditions resulting from the instability of a CGG-repeat tract at the 5' end of the FMR1 transcript. Fragile X-associated tremor/ataxia syndrome (FXTAS) and fragile X-associated primary ovarian insufficiency (FXPOI) are disorders seen in carriers of FMR1 alleles with 55-200 repeats. Female carriers of these premutation (PM) alleles are also at risk of having a child who has an FMR1 allele with >200 repeats. Most of these full mutation (FM) alleles are epigenetically silenced resulting in a deficit of the FMR1 gene product, FMRP. This results in fragile X Syndrome (FXS), the most common heritable cause of intellectual disability and autism. The diagnosis and study of these disorders is challenging, in part because the detection of alleles with large repeat numbers has, until recently, been either time-consuming or unreliable. This problem is compounded by the mosaicism for repeat length and/or DNA methylation that is frequently seen in PM and FM carriers. Furthermore, since AGG interruptions in the repeat tract affect the risk that a FM allele will be maternally transmitted, the ability to accurately detect these interruptions in female PM carriers is an additional challenge that must be met. This review will discuss some of the pros and cons of some recently described assays for these disorders, including those that detect FMRP levels directly, as well as emerging technologies that promise to improve the diagnosis of these conditions and to be useful in both basic and translational research settings.
Collapse
Affiliation(s)
- Bruce E Hayward
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, Building 8, Room 2A19, National Institutes of Health, 8 Center Drive MSC 0830, Bethesda, MD, 20892, USA
| | - Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, Building 8, Room 2A19, National Institutes of Health, 8 Center Drive MSC 0830, Bethesda, MD, 20892, USA
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, Building 8, Room 2A19, National Institutes of Health, 8 Center Drive MSC 0830, Bethesda, MD, 20892, USA.
| |
Collapse
|
50
|
Hayward BE, Usdin K. Improved Assays for AGG Interruptions in Fragile X Premutation Carriers. J Mol Diagn 2017; 19:828-835. [PMID: 28818679 DOI: 10.1016/j.jmoldx.2017.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/05/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022] Open
Abstract
The learning disability fragile X syndrome results from the presence of >200 CGG/CCG repeats in exon 1 of the X-linked gene FMR1. Such alleles arise by expansion from maternally transmitted FMR1 premutation alleles, alleles having 55 to 200 repeats. Expansion risk is directly related to maternal repeat number. However, AGG interruptions to the repeat tract are important modifiers of expansion risk. Thus, the ability to identify such interruptions is crucial for the appropriate genetic counseling of females who are premutation carriers. First-generation triplet-primed PCR assays allow these interruptions to be detected. However, because the triplet primer used has multiple binding sites in the repeat tract, interpreting the results is not straightforward and it is not always possible to unambiguously determine the AGG-interruption status in females because of the difficulties associated with the presence of a second X chromosome. Interpretation is further complicated by any repeat size mosaicism that may be present. We have developed second-generation PCR assays that prime specifically at the interruptions. These assays are simpler to interpret and better able to evaluate this important determinant of expansion risk in females even in those with a mixture of premutation allele sizes.
Collapse
Affiliation(s)
- Bruce E Hayward
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|