1
|
Biancotto G, Rosti G, Madia F, Capra V, Scala M, Aleo E, Paladini D. Truncating variants in PAPSS2 gene: A cause of early prenatal onset brachyolmia? Prenat Diagn 2024; 44:1003-1007. [PMID: 38768012 DOI: 10.1002/pd.6596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/21/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
Brachyolmia is a rare form of skeletal dysplasia characterized by a wide genetic and clinical heterogeneity. This condition is usually diagnosed postnatally, and very few cases of prenatal diagnosis have been described so far. Here, we report a case of a pregnant woman at 20 weeks' gestation referred to our center because of fetal short long bones. On targeted ultrasound, mild bowing of the femurs and fibulae and mild micrognathia were also observed. Exome sequencing analysis showed the presence in compound heterozygosity of two pathogenic variants-both truncating variants-in the 3-prime-phosphoadenosine 5-prime-phosphosulfate synthase 2 (PAPSS2) gene, known to cause brachyolmia type 4 (OMIM #612847). Of note, all of the few cases reported prenatally have indeed truncating variants. Hence, we speculate this kind of variant is likely responsible for a complete loss of function of the protein leading to an earlier and more severe phenotype.
Collapse
Affiliation(s)
- Giulia Biancotto
- Fetal Medicine and Surgery Unit, Istituto IRCCS G.Gaslini, Genoa, Italy
| | - Giulia Rosti
- Genomics and Clinical Genetics Unit, Istituto IRCCS G.Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Francesca Madia
- Medical Genetics Unit, Istituto IRCCS G.Gaslini, Genoa, Italy
| | - Valeria Capra
- Genomics and Clinical Genetics Unit, Istituto IRCCS G.Gaslini, Genoa, Italy
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Medical Genetics Unit, Istituto IRCCS G.Gaslini, Genoa, Italy
| | - Elena Aleo
- Radiology Department, Istituto IRCCS G.Gaslini, Genoa, Italy
| | - Dario Paladini
- Fetal Medicine and Surgery Unit, Istituto IRCCS G.Gaslini, Genoa, Italy
| |
Collapse
|
2
|
den Bakker E, Smith DEC, Finken MJJ, Wamelink MMC, Salomons GS, van de Kamp JM, Bökenkamp A. Sulfate: a neglected (but potentially highly relevant) anion. Essays Biochem 2024:EBC20230097. [PMID: 38639060 DOI: 10.1042/ebc20230097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/20/2024]
Abstract
Sulfate is an important anion as sulfonation is essential in modulation of several compounds, such as exogens, polysaccharide chains of proteoglycans, cholesterol or cholesterol derivatives and tyrosine residues of several proteins. Sulfonation requires the presence of both the sulfate donor 3'-phosphoadenosine-5'-phosphosulfate (PAPS) and a sulfotransferase. Genetic disorders affecting sulfonation, associated with skeletal abnormalities, impaired neurological development and endocrinopathies, demonstrate the importance of sulfate. Yet sulfate is not measured in clinical practice. This review addresses sulfate metabolism and consequences of sulfonation defects, how to measure sulfate and why we should measure sulfate more often.
Collapse
Affiliation(s)
- Emil den Bakker
- Department of Pediatric Nephrology, Emma Childrens Hospital, Amsterdam UMC, Amsterdam, the Netherlands
| | - Desiree E C Smith
- Department of Metabolic Diseases, Amsterdam UMC, Amsterdam, the Netherlands
| | - Martijn J J Finken
- Department of Pediatric Endocrinology, Emma Childrens Hospital, Amsterdam UMC, Amsterdam, the Netherlands
| | | | - Gajja S Salomons
- Department of Metabolic Diseases, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Amsterdam, the Netherlands
| | - Jiddeke M van de Kamp
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Reproduction and Development, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Human Genetics, Amsterdam UMC, Amsterdam, the Netherlands
| | - Arend Bökenkamp
- Department of Pediatric Nephrology, Emma Childrens Hospital, Amsterdam UMC, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Zhang L, Song W, Li T, Mu Y, Zhang P, Hu J, Lin H, Zhang J, Gao H, Zhang L. Redox switching mechanism of the adenosine 5'-phosphosulfate kinase domain (APSK2) of human PAPS synthase 2. Structure 2023; 31:826-835.e3. [PMID: 37207644 DOI: 10.1016/j.str.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/24/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023]
Abstract
Adenosine 5'-phosphosulfate kinase (APSK) catalyzes the rate-limiting biosynthetic step of the universal sulfuryl donor 3'-phosphoadenosine-5'-phosphosulfate (PAPS). In higher eukaryotes, the APSK and ATP sulfurylase (ATPS) domains are fused in a single chain. Humans have two bifunctional PAPS synthetase isoforms: PAPSS1 with the APSK1 domain and PAPSS2 containing the APSK2 domain. APSK2 displays a distinct higher activity for PAPSS2-mediated PAPS biosynthesis during tumorigenesis. How APSK2 achieves excess PAPS production has remained unclear. APSK1 and APSK2 lack the conventional redox-regulatory element present in plant PAPSS homologs. Here we elucidate the dynamic substrate recognition mechanism of APSK2. We discover that APSK1 contains a species-specific Cys-Cys redox-regulatory element that APSK2 lacks. The absence of this element in APSK2 enhances its enzymatic activity for excess PAPS production and promotes cancer development. Our results help to understand the roles of human PAPSSs during cell development and may facilitate PAPSS2-specific drug discovery.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenyan Song
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tingting Li
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yajuan Mu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Pan Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingyan Hu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Houwen Lin
- Research Centre for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Jian Zhang
- Medicinal Bioinformatics Center, Shanghai JiaoTong University School of Medicine, Shanghai China
| | - Hai Gao
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Liang Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
4
|
Mustafa S, Hussain MF, Latif M, Ijaz M, Asif M, Hassan M, Faisal M, Iqbal F. A Missense Mutation (c.1037 G > C, p. R346P) in PAPSS2 Gene Results in Autosomal Recessive form of Brachyolmia Type 1 (Hobaek Form) in A Consanguineous Family. Genes (Basel) 2022; 13:2096. [PMID: 36421772 PMCID: PMC9690184 DOI: 10.3390/genes13112096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Brachyolmia is a skeletal disorder with an autosomal mode of inheritance (both dominant and recessive) in which the patients have a short height, scoliosis and a reduced trunk size. METHODS From the Muzaffargarh District in Pakistan, a consanguineous family with multiple Brachyolmia-affected subjects were enrolled in the present study. Basic epidemiological data and radiographs were collected for the subjects. Whole exome sequencing (WES) which was followed by Sanger sequencing was applied to report the geneticbasic of Brachyolmia. RESULTS The WES identified a missense mutation (c.1037 G > C, p. R346P) in exon 9 of the PAPSS2 gene that was confirmed by the Sanger sequencing in the enrolled subjects. The mutation followed a Mendalian pattern with an autosomal recessive inheritance mode. Multiple sequence alignment by Clustal Omega indicated that the PAPSS2 mutation-containing domain is highly conserved. The HEK293T whole-cell extract that was transfected with the Myc-tagged PCMV6-PAPSS2 of both the wild and mutant constructs were resolved by SDS-PAGE as well as by a Western blot, which confirmed that there are different PAPSS2 protein expression patterns when they were compared between the control and Brachyolmia patients. This difference between the normal and mutated protein was not evident when the three-dimensional computational structures were generated using homology modeling. CONCLUSION We report a missense mutation (c.1037 G > C, p. R346P) in the PAPSS2 gene that caused Brachyolmia in a consanguineous Pakistani family.
Collapse
Affiliation(s)
- Saima Mustafa
- Institute of Pure and Applied Biology, Zoology Division, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Malik Fiaz Hussain
- Institute of Pure and Applied Biology, Zoology Division, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Latif
- Department of Zoology, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| | - Maryam Ijaz
- Institute of Pure and Applied Biology, Zoology Division, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Asif
- Institute of Pure and Applied Biology, Zoology Division, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Muhammad Faisal
- Faculty of Health Studies, University of Bradford, Bradford BD7 1DP, UK
| | - Furhan Iqbal
- Institute of Pure and Applied Biology, Zoology Division, Bahauddin Zakariya University, Multan 60800, Pakistan
| |
Collapse
|
5
|
Cao Y, Guan X, Li S, Wu N, Chen X, Yang T, Yang B, Zhao X. Identification of variants in ACAN and PAPSS2 leading to spondyloepi(meta)physeal dysplasias in four Chinese families. Mol Genet Genomic Med 2022; 10:e1916. [PMID: 35261200 PMCID: PMC9034684 DOI: 10.1002/mgg3.1916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
Background Spondyloepi(meta)physeal dysplasias (SE[M]D) are a group of inherited skeletal disorders that mainly affect bone and cartilage, and next‐generation sequencing has aided the detection of genetic defects of such diseases. In this study, we aimed to identify causative variants in four Chinese families associated with SE(M)D. Methods We recruited four unrelated Chinese families all displaying short stature and growth retardation. Clinical manifestations and X‐ray imaging were recorded for all patients. Candidate variants were identified by whole‐exome sequencing (WES) and verified by Sanger sequencing. Pathogenicity was assessed by conservation analysis, 3D protein modeling and in silico prediction, and was confirmed according to American College of Medical Genetics and Genomics. Results Three novel SE(M)D‐related variants c.1090dupG, c.7168 T > G, and c.2947G > C in ACAN, and one reported variant c.712C > T in PAPSS2 were identified. Among them, c.1090dupG in ACAN and c.712C > T in PAPSS2 caused truncated protein and the other two variants led to amino acid alterations. Conservation analysis revealed sites of the two missense variants were highly conserved, and bioinformatic findings confirmed their pathogenicity. 3D modeling of mutant protein encoded by c.7168 T > G(p.Trp2390Gly) in ACAN proved the structural alteration in protein level. Conclusion Our data suggested ACAN is a common pathogenic gene of SE(M)D. This study enriched the genetic background of skeletal dysplasias, and expanded the mutation spectra of ACAN and PAPSS2.
Collapse
Affiliation(s)
- Yixuan Cao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xin Guan
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Shan Li
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiumin Chen
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Tao Yang
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Bo Yang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiuli Zhao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Brylski O, Shrestha P, House PJ, Gnutt P, Mueller JW, Ebbinghaus S. Disease-Related Protein Variants of the Highly Conserved Enzyme PAPSS2 Show Marginal Stability and Aggregation in Cells. Front Mol Biosci 2022; 9:860387. [PMID: 35463959 PMCID: PMC9024126 DOI: 10.3389/fmolb.2022.860387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cellular sulfation pathways rely on the activated sulfate 3'-phosphoadenosine-5'-phosphosulfate (PAPS). In humans, PAPS is exclusively provided by the two PAPS synthases PAPSS1 and PAPSS2. Mutations found in the PAPSS2 gene result in severe disease states such as bone dysplasia, androgen excess and polycystic ovary syndrome. The APS kinase domain of PAPSS2 catalyzes the rate-limiting step in PAPS biosynthesis. In this study, we show that clinically described disease mutations located in the naturally fragile APS kinase domain are associated either with its destabilization and aggregation or its deactivation. Our findings provide novel insights into possible molecular mechanisms that could give rise to disease phenotypes associated with sulfation pathway genes.
Collapse
Affiliation(s)
- Oliver Brylski
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Braunschweig, Germany
- Institute of Physical Chemistry II, Ruhr University, Bochum, Germany
| | - Puja Shrestha
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Braunschweig, Germany
| | - Philip J. House
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom
| | - Patricia Gnutt
- Institute of Physical Chemistry II, Ruhr University, Bochum, Germany
| | - Jonathan Wolf Mueller
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, United Kingdom
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Braunschweig, Germany
- Institute of Physical Chemistry II, Ruhr University, Bochum, Germany
| |
Collapse
|
7
|
Perez-Garcia EM, Whalen P, Gurtunca N. Novel Inactivating Homozygous PAPSS2 Mutation in Two Siblings With Disproportionate Short Stature. AACE Clin Case Rep 2021; 8:89-92. [PMID: 35415222 PMCID: PMC8984529 DOI: 10.1016/j.aace.2021.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 11/20/2022] Open
Abstract
Background/Objective Variants in PAPSS2 (3′-phosphoadenosine 5′-phosphosulfate synthetase 2) present with varying degrees of brachyolmia (short trunk, platyspondyly, mild long-bone abnormalities). Our objective is to present the phenotype of male and female siblings with the same novel inactivating variant in PAPSS2. Case Report A Jordanian female (case 1), born to consanguineous parents, was referred at 10 years of age for short stature (SS). She had a normal laboratory workup, including normal growth hormone stimulation testing. Spinal x-rays done for clinical scoliosis revealed platyspondyly. She attained an adult height of 143.5 cm (-3 SD). Years later, her brother (case 2) was referred at 21 months of age for SS. His laboratory workup and bone age were normal. His growth velocity declined at 6 years of age, but normal growth factors did not suggest growth hormone deficiency. When he returned during puberty, disproportionate body measurements were noted. A skeletal survey revealed platyspondyly, increasing suspicion of growth plate pathology. Exome sequencing in the family revealed a homozygous variant, p.His496Pro (H496P) in PAPSS2 (NM_004670.3:c.1487A>C). Both parents carried the same variant. Discussion PAPSS2 assists with the sulfonation of dehydroepiandrosterone (DHEA) to DHEA sulfate and the sulfonation of proteoglycans in the cartilage, necessary for endochondral bone formation. PAPSS2-inactivating variants present with skeletal dysplasia and elevated DHEA levels. Conclusion This novel variant in PAPSS2 manifested with mild brachyolmia but disproportionate SS in male and female siblings. Biochemical phenotype with low circulating DHEA sulfate and high DHEA levels reflect a sulfonation defect.
Collapse
Affiliation(s)
- E. Melissa Perez-Garcia
- Division of Pediatric Endocrinology, University of South Alabama, Mobile, Alabama
- Address correspondence to Dr E. Melissa Perez-Garcia, Division of Pediatric Endocrinology, 1601 Center St, Suite 1S, Mobile, AL 36604.
| | - Philip Whalen
- Section on Growth and Development, National Institute of Child Health and Development, NIH, Bethesda, Maryland
| | - Nursen Gurtunca
- Division of Pediatric Endocrinology and diabetes, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Mizumoto S, Yamada S. Congenital Disorders of Deficiency in Glycosaminoglycan Biosynthesis. Front Genet 2021; 12:717535. [PMID: 34539746 PMCID: PMC8446454 DOI: 10.3389/fgene.2021.717535] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/12/2021] [Indexed: 12/04/2022] Open
Abstract
Glycosaminoglycans (GAGs) including chondroitin sulfate, dermatan sulfate, and heparan sulfate are covalently attached to specific core proteins to form proteoglycans, which are distributed at the cell surface as well as in the extracellular matrix. Proteoglycans and GAGs have been demonstrated to exhibit a variety of physiological functions such as construction of the extracellular matrix, tissue development, and cell signaling through interactions with extracellular matrix components, morphogens, cytokines, and growth factors. Not only connective tissue disorders including skeletal dysplasia, chondrodysplasia, multiple exostoses, and Ehlers-Danlos syndrome, but also heart and kidney defects, immune deficiencies, and neurological abnormalities have been shown to be caused by defects in GAGs as well as core proteins of proteoglycans. These findings indicate that GAGs and proteoglycans are essential for human development in major organs. The glycobiological aspects of congenital disorders caused by defects in GAG-biosynthetic enzymes including specific glysocyltransferases, epimerases, and sulfotransferases, in addition to core proteins of proteoglycans will be comprehensively discussed based on the literature to date.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| |
Collapse
|
9
|
Dubail J, Cormier-Daire V. Chondrodysplasias With Multiple Dislocations Caused by Defects in Glycosaminoglycan Synthesis. Front Genet 2021; 12:642097. [PMID: 34220933 PMCID: PMC8242584 DOI: 10.3389/fgene.2021.642097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Chondrodysplasias with multiple dislocations form a group of severe disorders characterized by joint laxity and multiple dislocations, severe short stature of pre- and post-natal onset, hand anomalies, and/or vertebral anomalies. The majority of chondrodysplasias with multiple dislocations have been associated with mutations in genes encoding glycosyltransferases, sulfotransferases, and transporters implicated in the synthesis or sulfation of glycosaminoglycans, long and unbranched polysaccharides composed of repeated disaccharide bond to protein core of proteoglycan. Glycosaminoglycan biosynthesis is a tightly regulated process that occurs mainly in the Golgi and that requires the coordinated action of numerous enzymes and transporters as well as an adequate Golgi environment. Any disturbances of this chain of reactions will lead to the incapacity of a cell to construct correct glycanic chains. This review focuses on genetic and glycobiological studies of chondrodysplasias with multiple dislocations associated with glycosaminoglycan biosynthesis defects and related animal models. Strong comprehension of the molecular mechanisms leading to those disorders, mostly through extensive phenotypic analyses of in vitro and/or in vivo models, is essential for the development of novel biomarkers for clinical screenings and innovative therapeutics for these diseases.
Collapse
Affiliation(s)
- Johanne Dubail
- Université de Paris, INSERM UMR 1163, Institut Imagine, Paris, France
| | - Valérie Cormier-Daire
- Université de Paris, INSERM UMR 1163, Institut Imagine, Paris, France.,Service de Génétique Clinique, Centre de Référence Pour Les Maladies Osseuses Constitutionnelles, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Adrenarche is the pubertal maturation of the innermost zone of the adrenal cortex, the zona reticularis. The onset of adrenarche occurs between 6 and 8 years of age when dehydroepiandrosterone sulfate (DHEAS) concentrations increase. This review provides an update on adrenal steroidogenesis and the differential diagnosis of premature development of pubic hair. RECENT FINDINGS The complexity of adrenal steroidogenesis has increased with recognition of the alternative 'backdoor pathway' and the 11-oxo-androgens pathways. Traditionally, sulfated steroids such as DHEAS have been considered to be inactive metabolites. Recent data suggest that intracellular sulfated steroids may function as tissue-specific intracrine hormones particularly in the tissues expressing steroid sulfatases such as ovaries, testes, and placenta. SUMMARY The physiologic mechanisms governing the onset of adrenarche remain unclear. To date, no validated regulatory feedback mechanism has been identified for adrenal C19 steroid secretion. Available data indicate that for most children, premature adrenarche is a benign variation of development and a diagnosis of exclusion. Patients with premature adrenarche tend to have higher BMI values. Yet, despite greater knowledge about C19 steroids and zona reticularis function, much remains to be learned about adrenarche.
Collapse
|
11
|
Eltan M, Yavas Abali Z, Arslan Ates E, Kirkgoz T, Kaygusuz SB, Türkyılmaz A, Bereket A, Turan S, Guran T. Low DHEAS Concentration in a Girl Presenting with Short Stature and Premature Pubarche: A Novel PAPSS2 Gene Mutation. Horm Res Paediatr 2020; 92:262-268. [PMID: 31461705 DOI: 10.1159/000502114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/13/2019] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Dehydroepiandrosterone (DHEA) sulfotransferase (SULT2A1) converts DHEA to DHEA sulfate (DHEAS) which prevents bioactive androgen excess. This enzymatic reaction requires PAPS (3'-phospho-adenosine-5'-phosphosulfate) biosynthesis mediated by PAPS synthase 2 (PAPSS2). Here, we report a patient presenting with short stature and premature pubarche due to a novel homozygous mutation in the PAPPS2 gene. CASE REPORT A 7.5-year-old girl was referred for short stature. She was born at term with a birth weight of 2,850 g and her parents were first cousins. At presentation, her height was 113.0 cm (-2.1 SDS) and weight was 28.3 kg (+0.9 SDS), her arm span was 115.0 cm, and upper to lower segment ratio was 1.2. Her pubic hair and breast development were at Tanner stage III and I, respectively. Radiographs revealed mild lumbar scoliosis and platyspondyly and irregular vertebral endplates in the thoracolumbar region. Her serum DHEAS was low (39 ng/mL). The plasma DHEAS/DHEA ratio was significantly decreased on 2 separate measurements (4.4 and 19.8; normal range 31-345). PAPSS2 gene analysis identified a homozygous p.L440Wfs*12 (c.1318_1330 delCTACTACACCCTC) variant. This is the first report of a large deletion leading to a frameshift effect in the PAPSS2 gene and a truncated PAPSS2 protein. CONCLUSION We describe the third case with PAPSS2 deficiency presenting with premature pubarche, and the first large deletion in the PAPSS2 gene. Although PAPSS2 deficiency is a rare cause of premature pubarche and adrenal androgen excess, it should be considered, especially in cases with disproportionate short stature and clinical hyperandrogenism associated with low plasma DHEAS concentration.
Collapse
Affiliation(s)
- Mehmet Eltan
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Zehra Yavas Abali
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey,
| | - Esra Arslan Ates
- Department of Medical Genetics, Marmara University School of Medicine, Istanbul, Turkey
| | - Tarik Kirkgoz
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Sare Betul Kaygusuz
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Ayberk Türkyılmaz
- Department of Medical Genetics, Marmara University School of Medicine, Istanbul, Turkey
| | - Abdullah Bereket
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Serap Turan
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Tulay Guran
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| |
Collapse
|
12
|
Storbeck KH, Schiffer L, Baranowski ES, Chortis V, Prete A, Barnard L, Gilligan LC, Taylor AE, Idkowiak J, Arlt W, Shackleton CHL. Steroid Metabolome Analysis in Disorders of Adrenal Steroid Biosynthesis and Metabolism. Endocr Rev 2019; 40:1605-1625. [PMID: 31294783 PMCID: PMC6858476 DOI: 10.1210/er.2018-00262] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/04/2019] [Indexed: 01/01/2023]
Abstract
Steroid biosynthesis and metabolism are reflected by the serum steroid metabolome and, in even more detail, by the 24-hour urine steroid metabolome, which can provide unique insights into alterations of steroid flow and output indicative of underlying conditions. Mass spectrometry-based steroid metabolome profiling has allowed for the identification of unique multisteroid signatures associated with disorders of steroid biosynthesis and metabolism that can be used for personalized approaches to diagnosis, differential diagnosis, and prognostic prediction. Additionally, steroid metabolome analysis has been used successfully as a discovery tool, for the identification of novel steroidogenic disorders and pathways as well as revealing insights into the pathophysiology of adrenal disease. Increased availability and technological advances in mass spectrometry-based methodologies have refocused attention on steroid metabolome profiling and facilitated the development of high-throughput steroid profiling methods soon to reach clinical practice. Furthermore, steroid metabolomics, the combination of mass spectrometry-based steroid analysis with machine learning-based approaches, has facilitated the development of powerful customized diagnostic approaches. In this review, we provide a comprehensive up-to-date overview of the utility of steroid metabolome analysis for the diagnosis and management of inborn disorders of steroidogenesis and autonomous adrenal steroid excess in the context of adrenal tumors.
Collapse
Affiliation(s)
- Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Lina Schiffer
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Elizabeth S Baranowski
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
- Department of Paediatric Endocrinology and Diabetes, Birmingham Women’s and Children’s Hospital NHS Foundation Trust, Birmingham, United Kingdom
| | - Vasileios Chortis
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
- Department of Endocrinology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Alessandro Prete
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
- Department of Endocrinology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Lise Barnard
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Lorna C Gilligan
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Angela E Taylor
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Jan Idkowiak
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
- Department of Paediatric Endocrinology and Diabetes, Birmingham Women’s and Children’s Hospital NHS Foundation Trust, Birmingham, United Kingdom
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
- Department of Endocrinology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, United Kingdom
| | - Cedric H L Shackleton
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- UCSF Benioff Children’s Hospital Oakland Research Institute, Oakland, California
| |
Collapse
|
13
|
Bownass L, Abbs S, Armstrong R, Baujat G, Behzadi G, Berentsen RD, Burren C, Calder A, Cormier-Daire V, Newbury-Ecob R, Foulds N, Juliusson PB, Kant SG, Lefroy H, Mehta SG, Merckoll E, Michot C, Monsell F, Offiah AC, Richards A, Rosendahl K, Rustad CF, Shears D, Tveten K, Wellesley D, Wordsworth P, Smithson S. PAPSS2-related brachyolmia: Clinical and radiological phenotype in 18 new cases. Am J Med Genet A 2019; 179:1884-1894. [PMID: 31313512 DOI: 10.1002/ajmg.a.61282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 11/06/2022]
Abstract
Brachyolmia is a skeletal dysplasia characterized by short spine-short stature, platyspondyly, and minor long bone abnormalities. We describe 18 patients, from different ethnic backgrounds and ages ranging from infancy to 19 years, with the autosomal recessive form, associated with PAPSS2. The main clinical features include disproportionate short stature with short spine associated with variable symptoms of pain, stiffness, and spinal deformity. Eight patients presented prenatally with short femora, whereas later in childhood their short-spine phenotype emerged. We observed the same pattern of changing skeletal proportion in other patients. The radiological findings included platyspondyly, irregular end plates of the elongated vertebral bodies, narrow disc spaces and short over-faced pedicles. In the limbs, there was mild shortening of femoral necks and tibiae in some patients, whereas others had minor epiphyseal or metaphyseal changes. In all patients, exome and Sanger sequencing identified homozygous or compound heterozygous PAPSS2 variants, including c.809G>A, common to white European patients. Bi-parental inheritance was established where possible. Low serum DHEAS, but not overt androgen excess was identified. Our study indicates that autosomal recessive brachyolmia occurs across continents and may be under-recognized in infancy. This condition should be considered in the differential diagnosis of short femora presenting in the second trimester.
Collapse
Affiliation(s)
- Lucy Bownass
- Clinical Genetics, St Michael's Hospital Bristol, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Stephen Abbs
- East Midlands and East of England NHS Genomic Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ruth Armstrong
- East Anglian Medical Genetics Service, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Genevieve Baujat
- Département of Genetics, INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - Gry Behzadi
- Department of Radiology, Stavanger University Hospital, Stavanger, Norway
| | | | - Christine Burren
- Department of Paediatric Endocrinology and Diabetes, Bristol Royal Hospital for Children, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Alistair Calder
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Valérie Cormier-Daire
- Département of Genetics, INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - Ruth Newbury-Ecob
- Clinical Genetics, St Michael's Hospital Bristol, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Nicola Foulds
- Wessex Clinical Genetics, Princess Anne Hospital, Southampton, UK
| | - Petur B Juliusson
- Department of Health Registries, Norwegian Institute of Public Health, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Paediatrics, Haukeland University Hospital, Bergen, Norway
| | - Sarina G Kant
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Henrietta Lefroy
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sarju G Mehta
- East Anglian Medical Genetics Service, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Else Merckoll
- Department of Radiology, Oslo University Hospital, Oslo, Norway
| | - Caroline Michot
- Département of Genetics, INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - Fergal Monsell
- Department of Paediatric Orthopaedics, Bristol Royal Hospital for Children, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Amaka C Offiah
- University of Sheffield, Academic Unit of Child Health, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Allan Richards
- East Midlands and East of England NHS Genomic Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Karen Rosendahl
- Section of Paediatric Radiology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Cecilie F Rustad
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Deborah Shears
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
| | - Diana Wellesley
- Wessex Clinical Genetics, Princess Anne Hospital, Southampton, UK
| | | | -
- Wellcome Sanger Institute, Cambridge, UK
| | - Sarah Smithson
- Clinical Genetics, St Michael's Hospital Bristol, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| |
Collapse
|
14
|
Baranowski ES, Arlt W, Idkowiak J. Monogenic Disorders of Adrenal Steroidogenesis. Horm Res Paediatr 2018; 89:292-310. [PMID: 29874650 PMCID: PMC6067656 DOI: 10.1159/000488034] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 02/27/2018] [Indexed: 12/19/2022] Open
Abstract
Disorders of adrenal steroidogenesis comprise autosomal recessive conditions affecting steroidogenic enzymes of the adrenal cortex. Those are located within the 3 major branches of the steroidogenic machinery involved in the production of mineralocorticoids, glucocorticoids, and androgens. This mini review describes the principles of adrenal steroidogenesis, including the newly appreciated 11-oxygenated androgen pathway. This is followed by a description of pathophysiology, biochemistry, and clinical implications of steroidogenic disorders, including mutations affecting cholesterol import and steroid synthesis, the latter comprising both mutations affecting steroidogenic enzymes and co-factors required for efficient catalysis. A good understanding of adrenal steroidogenic pathways and their regulation is crucial as the basis for sound management of these disorders, which in the majority present in early childhood.
Collapse
Affiliation(s)
- Elizabeth S. Baranowski
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom,Department of Paediatric Endocrinology and Diabetes, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, United Kingdom
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom,*Prof. Wiebke Arlt, Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham B15 2TT (UK), E-Mail
| | - Jan Idkowiak
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom,Department of Paediatric Endocrinology and Diabetes, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
15
|
Sex-specific effects of serum sulfate level and SLC13A1 nonsense variants on DHEA homeostasis. Mol Genet Metab Rep 2017; 10:84-91. [PMID: 28154797 PMCID: PMC5278115 DOI: 10.1016/j.ymgmr.2017.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/10/2017] [Indexed: 11/22/2022] Open
Abstract
Context Sulfate is critical in the biotransformation of multiple compounds via sulfation. These compounds include neurotransmitters, proteoglycans, xenobiotics, and hormones such as dehydroepiandrosterone (DHEA). Sulfation reactions are thought to be rate-limited by endogenous sulfate concentrations. The gene, SLC13A1, encodes the sodium-sulfate cotransporter NaS1, responsible for sulfate (re)absorption in the intestines and kidneys. We previously reported two rare, non-linked, nonsense variants in SLC13A1 (R12X and W48X) associated with hyposulfatemia (P = 9 × 10− 20). Objective To examine the effect of serum sulfate concentration and sulfate-lowering genotype on DHEA homeostasis. Design Retrospective cohort study. Setting Academic research. Patients Participants of the Amish Pharmacogenomics of Anti-Platelet Intervention (PAPI) Study and the Amish Hereditary and Phenotype Intervention (HAPI) Study. Main outcome measures DHEA, DHEA-S, and DHEA-S/DHEA ratio. Results Increased serum sulfate was associated with decreased DHEA-S (P = 0.03) and DHEA-S/DHEA ratio (P = 0.06) in males but not females. Female SLC13A1 nonsense variant carriers, who had lower serum sulfate (P = 9 × 10− 13), exhibited 14% lower DHEA levels (P = 0.01) and 7% higher DHEA-S/DHEA ratios compared to female non-carriers (P = 0.002). Consistent with this finding, female SLC13A1 nonsense variant carriers also had lower total testosterone levels compared to non-carrier females (P = 0.03). Conclusions Our results demonstrate an inverse relationship between serum sulfate, and DHEA-S and DHEA-S/DHEA ratio in men, while also suggesting that the sulfate-lowering variants, SLC13A1 R12X and W48X, decrease DHEA and testosterone levels, and increase DHEA-S/DHEA ratio in women. While paradoxical, these results illustrate the complexity of the mechanisms involved in DHEA homeostasis and warrant additional studies to better understand sulfate's role in hormone physiology.
Collapse
|
16
|
Oostdijk W, Idkowiak J, Mueller JW, House PJ, Taylor AE, O'Reilly MW, Hughes BA, de Vries MC, Kant SG, Santen GWE, Verkerk AJMH, Uitterlinden AG, Wit JM, Losekoot M, Arlt W. PAPSS2 deficiency causes androgen excess via impaired DHEA sulfation--in vitro and in vivo studies in a family harboring two novel PAPSS2 mutations. J Clin Endocrinol Metab 2015; 100:E672-80. [PMID: 25594860 PMCID: PMC4399300 DOI: 10.1210/jc.2014-3556] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
CONTEXT PAPSS2 (PAPS synthase 2) provides the universal sulfate donor PAPS (3'-phospho-adenosine-5'-phosphosulfate) to all human sulfotransferases, including SULT2A1, responsible for sulfation of the crucial androgen precursor dehydroepiandrosterone (DHEA). Impaired DHEA sulfation is thought to increase the conversion of DHEA toward active androgens, a proposition supported by the previous report of a girl with inactivating PAPSS2 mutations who presented with low serum DHEA sulfate and androgen excess, clinically manifesting with premature pubarche and early-onset polycystic ovary syndrome. PATIENTS AND METHODS We investigated a family harboring two novel PAPSS2 mutations, including two compound heterozygous brothers presenting with disproportionate short stature, low serum DHEA sulfate, but normal serum androgens. Patients and parents underwent a DHEA challenge test comprising frequent blood sampling and urine collection before and after 100 mg DHEA orally, with subsequent analysis of DHEA sulfation and androgen metabolism by mass spectrometry. The functional impact of the mutations was investigated in silico and in vitro. RESULTS We identified a novel PAPSS2 frameshift mutation, c.1371del, p.W462Cfs*3, resulting in complete disruption, and a novel missense mutation, c.809G>A, p.G270D, causing partial disruption of DHEA sulfation. Both patients and their mother, who was heterozygous for p.W462Cfs*3, showed increased 5α-reductase activity at baseline and significantly increased production of active androgens after DHEA intake. The mother had a history of oligomenorrhea and chronic anovulation that required clomiphene for ovulation induction. CONCLUSIONS We provide direct in vivo evidence for the significant functional impact of mutant PAPSS2 on DHEA sulfation and androgen activation. Heterozygosity for PAPSS2 mutations can be associated with a phenotype resembling polycystic ovary syndrome.
Collapse
Affiliation(s)
- Wilma Oostdijk
- Department of Pediatrics (W.O., M.C.d.V., J.M.W.), Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Centre for Endocrinology, Diabetes, and Metabolism (J.I., J.W.M., P.J.H., A.E.T., M.W.O., B.A.H., W.A.), School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Clinical Genetics (S.G.K., G.W.E.S., M.L.), Leiden University Medical Center, 2300 RC Leiden, The Netherlands; and Department of Internal Medicine (A.J.M.H.V., A.G.U.), Erasmus Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mizumoto S, Yamada S, Sugahara K. Human genetic disorders and knockout mice deficient in glycosaminoglycan. BIOMED RESEARCH INTERNATIONAL 2014; 2014:495764. [PMID: 25126564 PMCID: PMC4122003 DOI: 10.1155/2014/495764] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/08/2014] [Indexed: 12/20/2022]
Abstract
Glycosaminoglycans (GAGs) are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore, mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused by disturbances in the biosynthetic enzymes for GAGs.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Kazuyuki Sugahara
- Laboratory of Proteoglycan Signaling and Therapeutics, Frontier Research Center for Post-Genomic Science and Technology, Graduate School of Life Science, Hokkaido University, West-11, North-21, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|