1
|
Gabaldon-Albero A, Cordon L, Sempere A, Pedrola L, Martin-Grau C, Oltra S, Monfort S, Caro-Llopis A, Dominguez-Martinez M, Hernandez-Muela S, Rosello M, Orellana C, Martinez F. Multiple Congenital Anomalies-Hypotonia-Seizures Syndrome 2 Caused by a Novel PIGA Variant Not Associated with a Skewed X-Inactivation Pattern. Genes (Basel) 2024; 15:802. [PMID: 38927738 PMCID: PMC11203057 DOI: 10.3390/genes15060802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Germline variants in the phosphatidylinositol glycan class A (PIGA) gene, which is involved in glycosylphosphatidylinositol (GPI) biosynthesis, cause multiple congenital anomalies-hypotonia-seizures syndrome 2 (MCAHS2) with X-linked recessive inheritance. The available literature has described a pattern of almost 100% X-chromosome inactivation in mothers carrying PIGA variants. Here, we report a male infant with MCAHS2 caused by a novel PIGA variant inherited from his mother, who has a non-skewed pattern of X inactivation. Phenotypic evidence supporting the pathogenicity of the variant was obtained by flow-cytometry tests. We propose that the assessment in neutrophils of the expression of GPI-anchored proteins (GPI-APs), especially CD16, should be considered in cases with variants of unknown significance with random X-inactivation in carrier mothers in order to clarify the pathogenic role of PIGA or other gene variants linked to the synthesis of GPI-APs.
Collapse
Affiliation(s)
- Alba Gabaldon-Albero
- Translational Genetics Research Group, Instituto de Investigacion Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (A.G.-A.); (L.P.); (C.M.-G.); (S.O.); (S.M.); (A.C.-L.); (M.D.-M.); (M.R.); (C.O.)
- Pediatric Neurology Unit, Hospital Universitario y Politecnico La Fe, 46026 Valencia, Spain;
| | - Lourdes Cordon
- Hematology Research Group, Instituto de Investigacion Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (L.C.); (A.S.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 20029 Madrid, Spain
| | - Amparo Sempere
- Hematology Research Group, Instituto de Investigacion Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (L.C.); (A.S.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 20029 Madrid, Spain
- Hematology and Hemotherapy Service, Hospital Universitario y Politecnico La Fe, 46026 Valencia, Spain
| | - Laia Pedrola
- Translational Genetics Research Group, Instituto de Investigacion Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (A.G.-A.); (L.P.); (C.M.-G.); (S.O.); (S.M.); (A.C.-L.); (M.D.-M.); (M.R.); (C.O.)
- Genetics Unit, Hospital Universitario y Politecnico La Fe, 46026 Valencia, Spain
| | - Carla Martin-Grau
- Translational Genetics Research Group, Instituto de Investigacion Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (A.G.-A.); (L.P.); (C.M.-G.); (S.O.); (S.M.); (A.C.-L.); (M.D.-M.); (M.R.); (C.O.)
- Genetics Unit, Hospital Universitario y Politecnico La Fe, 46026 Valencia, Spain
| | - Silvestre Oltra
- Translational Genetics Research Group, Instituto de Investigacion Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (A.G.-A.); (L.P.); (C.M.-G.); (S.O.); (S.M.); (A.C.-L.); (M.D.-M.); (M.R.); (C.O.)
- Genetics Unit, Hospital Universitario y Politecnico La Fe, 46026 Valencia, Spain
| | - Sandra Monfort
- Translational Genetics Research Group, Instituto de Investigacion Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (A.G.-A.); (L.P.); (C.M.-G.); (S.O.); (S.M.); (A.C.-L.); (M.D.-M.); (M.R.); (C.O.)
- Genetics Unit, Hospital Universitario y Politecnico La Fe, 46026 Valencia, Spain
| | - Alfonso Caro-Llopis
- Translational Genetics Research Group, Instituto de Investigacion Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (A.G.-A.); (L.P.); (C.M.-G.); (S.O.); (S.M.); (A.C.-L.); (M.D.-M.); (M.R.); (C.O.)
- Genetics Unit, Hospital Universitario y Politecnico La Fe, 46026 Valencia, Spain
| | - Marta Dominguez-Martinez
- Translational Genetics Research Group, Instituto de Investigacion Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (A.G.-A.); (L.P.); (C.M.-G.); (S.O.); (S.M.); (A.C.-L.); (M.D.-M.); (M.R.); (C.O.)
- Genetics Unit, Hospital Universitario y Politecnico La Fe, 46026 Valencia, Spain
| | - Sara Hernandez-Muela
- Pediatric Neurology Unit, Hospital Universitario y Politecnico La Fe, 46026 Valencia, Spain;
| | - Monica Rosello
- Translational Genetics Research Group, Instituto de Investigacion Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (A.G.-A.); (L.P.); (C.M.-G.); (S.O.); (S.M.); (A.C.-L.); (M.D.-M.); (M.R.); (C.O.)
- Genetics Unit, Hospital Universitario y Politecnico La Fe, 46026 Valencia, Spain
| | - Carmen Orellana
- Translational Genetics Research Group, Instituto de Investigacion Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (A.G.-A.); (L.P.); (C.M.-G.); (S.O.); (S.M.); (A.C.-L.); (M.D.-M.); (M.R.); (C.O.)
- Genetics Unit, Hospital Universitario y Politecnico La Fe, 46026 Valencia, Spain
| | - Francisco Martinez
- Translational Genetics Research Group, Instituto de Investigacion Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (A.G.-A.); (L.P.); (C.M.-G.); (S.O.); (S.M.); (A.C.-L.); (M.D.-M.); (M.R.); (C.O.)
- Genetics Unit, Hospital Universitario y Politecnico La Fe, 46026 Valencia, Spain
| |
Collapse
|
2
|
Crenshaw MM, Thompson L, Piqué DG, Micke K, Saenz M, Baker PR. Congenital diaphragmatic hernia in siblings with PIGA-related congenital disorder of glycosylation. Am J Med Genet A 2023; 191:2860-2867. [PMID: 37589195 DOI: 10.1002/ajmg.a.63373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
There are over 150 proteins involved in glycosylphosphatidylinositol (GPI)-anchored protein biosynthesis, a class within the larger category of congenital disorders of glycosylation (CDG). Pathogenic variants identified in phosphatidylinositol glycan class A protein (PIGA) are associated with X-linked PIGA-CDG, a GPI-anchor defect. The disease has primarily been characterized by hypotonia, epilepsy, and global developmental delay; however, only 89 known cases are reported, so the phenotypic spectrum has likely not yet been fully delineated. Congenital diaphragmatic hernia (CDH) has been reported in patients with various GPI-anchor related defects but has only been described in one prior individual with PIGA-CDG. Here, we describe the second and third reported cases of CDH in two brothers with PIGA-CDG caused by a pathogenic missense variant in PIGA: c.355C > T, p.R119W. Chromosomal microarray and whole exome sequencing did not reveal another plausible explanation for the CDH. We relate our patients' clinical features to the single previously reported individual with CDH and PIGA-CDG. We then compare this case series with the subset of individuals with CDH and other GPI-anchor defects. These findings suggest that CDH should be considered in the phenotypic disease spectrum of PIGA-CDG.
Collapse
Affiliation(s)
- Molly M Crenshaw
- Department of Pediatrics, Section of Genetics and Metabolism, University of Colorado School of Medicine (CU-SOM), Aurora, Colorado, USA
| | - Lauren Thompson
- Department of Pediatrics, Section of Genetics and Metabolism, University of Colorado School of Medicine (CU-SOM), Aurora, Colorado, USA
| | - Daniel G Piqué
- Department of Pediatrics, Section of Genetics and Metabolism, University of Colorado School of Medicine (CU-SOM), Aurora, Colorado, USA
| | - Kestutis Micke
- Department of Pediatrics, Section of Genetics and Metabolism, University of Colorado School of Medicine (CU-SOM), Aurora, Colorado, USA
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, CU-SOM, Aurora, Colorado, USA
| | - Margarita Saenz
- Department of Pediatrics, Section of Genetics and Metabolism, University of Colorado School of Medicine (CU-SOM), Aurora, Colorado, USA
| | - Peter R Baker
- Department of Pediatrics, Section of Genetics and Metabolism, University of Colorado School of Medicine (CU-SOM), Aurora, Colorado, USA
| |
Collapse
|
3
|
Bayat A, Lindau T, Aledo-Serrano A, Gil-Nagel A, Barić I, Bartoniček D, Mateševac J, Ramadža DP, Žigman T, Pušeljić S, Dorner S, Bupp C, Devries S, Møller RS. GPI-anchoring disorders and the heart: Is cardiomyopathy an overlooked feature? Clin Genet 2023; 104:598-603. [PMID: 37489290 DOI: 10.1111/cge.14405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/26/2023]
Abstract
Glycosylphosphatidylinositol anchoring disorders (GPI-ADs) are a subgroup of congenital disorders of glycosylation. GPI biosynthesis requires proteins encoded by over 30 genes of which 24 genes are linked to neurodevelopmental disorders. Patients, especially those with PIGA-encephalopathy, have a high risk of premature mortality which sometimes is attributed to cardiomyopathy. We aimed to explore the occurrence of cardiomyopathy among patients with GPI-ADs and to raise awareness about this potentially lethal feature. Unpublished patients with genetically proven GPI-ADs and cardiomyopathy were identified through an international collaboration and recruited through the respective clinicians. We also reviewed the literature for published patients with cardiomyopathy and GPI-AD and contacted the corresponding authors for additional information. We identified four novel and unrelated patients with GPI-AD and cardiomyopathy. Cardiomyopathy was diagnosed before adulthood and was the cause of early demise in two patients. Only one patients underwent cardiac workup after being diagnosed with a GPI-AD. All were diagnosed with PIGA-encephalopathy and three had a disease-causing variant at the same residue. The literature reports five additional children with GPI-AD related cardiomyopathy, three of which died before adulthood. We have shown that patients with GPI-ADs are at risk of developing cardiomyopathy and that regular cardiac workup with echocardiography is necessary.
Collapse
Affiliation(s)
- Allan Bayat
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Tobias Lindau
- Department of General Pediatrics, Gemeinschaftsklinikum Mittelrhein, Koblenz, Germany
| | - Angel Aledo-Serrano
- Epilepsy Program, Neurology Department, Hospital Ruber Internacional, Madrid, Spain
| | - Antonio Gil-Nagel
- Epilepsy Unit, Neurology Department, Hospital Ruber Internacional, Madrid, Spain
| | - Ivo Barić
- Department of Pediatrics, University Hospital Center, Zagreb, Croatia
- Faculty of Medicine, University Hospital Center, Zagreb, Croatia
| | | | - Josipa Mateševac
- Department of Neurology, University Hospital Center, Zagreb, Croatia
| | - Danijela Petković Ramadža
- Department of Pediatrics, University Hospital Center, Zagreb, Croatia
- Faculty of Medicine, University Hospital Center, Zagreb, Croatia
| | - Tamara Žigman
- Department of Pediatrics, University Hospital Center, Zagreb, Croatia
- Faculty of Medicine, University Hospital Center, Zagreb, Croatia
| | - Silvija Pušeljić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Pediatrics, University Hospital Center Osijek, Osijek, Croatia
| | - Sanja Dorner
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Pediatrics, University Hospital Center Osijek, Osijek, Croatia
| | - Caleb Bupp
- Medical Genetics and Genomics at Corewell Health and Helen DeVos Children's Hospital, Grand Rapids, Michigan, USA
| | - Seth Devries
- Department of Pediatric Neurology, Helen DeVos Children's Hospital, Grand Rapids, Michigan, USA
| | - Rikke Steensbjerre Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
4
|
Conte F, Sam JE, Lefeber DJ, Passier R. Metabolic Cardiomyopathies and Cardiac Defects in Inherited Disorders of Carbohydrate Metabolism: A Systematic Review. Int J Mol Sci 2023; 24:ijms24108632. [PMID: 37239976 DOI: 10.3390/ijms24108632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Heart failure (HF) is a progressive chronic disease that remains a primary cause of death worldwide, affecting over 64 million patients. HF can be caused by cardiomyopathies and congenital cardiac defects with monogenic etiology. The number of genes and monogenic disorders linked to development of cardiac defects is constantly growing and includes inherited metabolic disorders (IMDs). Several IMDs affecting various metabolic pathways have been reported presenting cardiomyopathies and cardiac defects. Considering the pivotal role of sugar metabolism in cardiac tissue, including energy production, nucleic acid synthesis and glycosylation, it is not surprising that an increasing number of IMDs linked to carbohydrate metabolism are described with cardiac manifestations. In this systematic review, we offer a comprehensive overview of IMDs linked to carbohydrate metabolism presenting that present with cardiomyopathies, arrhythmogenic disorders and/or structural cardiac defects. We identified 58 IMDs presenting with cardiac complications: 3 defects of sugar/sugar-linked transporters (GLUT3, GLUT10, THTR1); 2 disorders of the pentose phosphate pathway (G6PDH, TALDO); 9 diseases of glycogen metabolism (GAA, GBE1, GDE, GYG1, GYS1, LAMP2, RBCK1, PRKAG2, G6PT1); 29 congenital disorders of glycosylation (ALG3, ALG6, ALG9, ALG12, ATP6V1A, ATP6V1E1, B3GALTL, B3GAT3, COG1, COG7, DOLK, DPM3, FKRP, FKTN, GMPPB, MPDU1, NPL, PGM1, PIGA, PIGL, PIGN, PIGO, PIGT, PIGV, PMM2, POMT1, POMT2, SRD5A3, XYLT2); 15 carbohydrate-linked lysosomal storage diseases (CTSA, GBA1, GLA, GLB1, HEXB, IDUA, IDS, SGSH, NAGLU, HGSNAT, GNS, GALNS, ARSB, GUSB, ARSK). With this systematic review we aim to raise awareness about the cardiac presentations in carbohydrate-linked IMDs and draw attention to carbohydrate-linked pathogenic mechanisms that may underlie cardiac complications.
Collapse
Affiliation(s)
- Federica Conte
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7522 NH Enschede, The Netherlands
| | - Juda-El Sam
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Robert Passier
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7522 NH Enschede, The Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
5
|
The correlation between multiple congenital anomalies hypotonia seizures syndrome 2 and PIGA: a case of novel PIGA germline variant and literature review. Mol Biol Rep 2022; 49:10469-10477. [DOI: 10.1007/s11033-022-07614-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022]
|
6
|
New Players in Neuronal Iron Homeostasis: Insights from CRISPRi Studies. Antioxidants (Basel) 2022; 11:antiox11091807. [PMID: 36139881 PMCID: PMC9495848 DOI: 10.3390/antiox11091807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Selective regional iron accumulation is a hallmark of several neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease. The underlying mechanisms of neuronal iron dyshomeostasis have been studied, mainly in a gene-by-gene approach. However, recent high-content phenotypic screens using CRISPR/Cas9-based gene perturbations allow for the identification of new pathways that contribute to iron accumulation in neuronal cells. Herein, we perform a bioinformatic analysis of a CRISPR-based screening of lysosomal iron accumulation and the functional genomics of human neurons derived from induced pluripotent stem cells (iPSCs). Consistent with previous studies, we identified mitochondrial electron transport chain dysfunction as one of the main mechanisms triggering iron accumulation, although we substantially expanded the gene set causing this phenomenon, encompassing mitochondrial complexes I to IV, several associated assembly factors, and coenzyme Q biosynthetic enzymes. Similarly, the loss of numerous genes participating through the complete macroautophagic process elicit iron accumulation. As a novelty, we found that the impaired synthesis of glycophosphatidylinositol (GPI) and GPI-anchored protein trafficking also trigger iron accumulation in a cell-autonomous manner. Finally, the loss of critical components of the iron transporters trafficking machinery, including MON2 and PD-associated gene VPS35, also contribute to increased neuronal levels. Our analysis suggests that neuronal iron accumulation can arise from the dysfunction of an expanded, previously uncharacterized array of molecular pathways.
Collapse
|
7
|
Madaan P, Kaushal Y, Srivastava P, Crow YJ, Livingston JH, Ahuja C, Sankhyan N. Delineating the epilepsy phenotype of NRROS-related microgliopathy: A case report and literature review. Seizure 2022; 100:15-20. [PMID: 35716448 DOI: 10.1016/j.seizure.2022.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Negative regulator of reactive oxygen species (NRROS) related microgliopathy, a rare and recently recognized neurodegenerative condition, is caused by pathogenic variants in the NRROS gene, which plays a major role in the regulation of transforming growth factor-beta 1. METHODS We report a child presenting with infantile spasms syndrome (ISS) with subsequent progressive neurodegeneration who was identified to harbour a novel likely pathogenic NRROS variant (c.1359del; p.Ser454Alafs*11). The previously published reports of patients with this disorder were also reviewed systematically. RESULTS Including our index patient, 11 children (6 girls) were identified in total. Early development was normal in seven of these eleven children. All had a history of drug-resistant epilepsy, with 3 having epileptic spasms. The median age at seizure onset and developmental regression was 12 months, and the median age at death was 36 months. Intracranial calcifications were described in eight of eleven children. Neuroimaging revealed progressive cerebral atrophy and white matter loss in all children. The most common reported genetic variation was c.1981delC; (p.Leu661Serfs*97) observed in two families (likely due to a founder effect). CONCLUSIONS Pathogenic variants in NRROS should be suspected in children with neuro-regression and drug-resistant epilepsy including ISS with onset in the first two years of life. Punctate or serpiginous calcifications at the grey-white matter junction and acquired microcephaly are further clues towards the diagnosis.
Collapse
Affiliation(s)
- Priyanka Madaan
- Pediatric Neurology Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Yashovardhan Kaushal
- Pediatric Neurology Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | | - Yanick J Crow
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK; Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Université de Paris, Paris, France
| | - John H Livingston
- Department of Paediatric Neurology, Leeds Teaching Hospitals, Leeds, UK
| | - Chirag Ahuja
- Department of Radiodiagnosis and Imaging (Section of Neuroimaging and Interventional Radiology), PGIMER, Chandigarh, India
| | - Naveen Sankhyan
- Pediatric Neurology Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| |
Collapse
|
8
|
Muckenthaler L, Marques O, Colucci S, Kunz J, Fabrowski P, Bast T, Altamura S, Höchsmann B, Schrezenmeier H, Langlotz M, Richter-Pechanska P, Rausch T, Hofmeister-Mielke N, Gunkel N, Hentze MW, Kulozik AE, Muckenthaler MU. Constitutional PIGA mutations cause a novel subtype of hemochromatosis in patients with neurologic dysfunction. Blood 2022; 139:1418-1422. [PMID: 34875027 PMCID: PMC10652939 DOI: 10.1182/blood.2021013519] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022] Open
Abstract
Muckenthaler et al describe a novel form of hemochromatosis caused by a constitutional PIGA mutation in 3 children with associated neurologic dysfunction. Hemochromatosis results from decreased hepcidin, which is regulated by HFE, hemojuvelin (HJV), and transferrin receptor 2. HJV is a glycosylphosphatidylinositol-linked protein, so PIGA mutation leads to decreased HJV expression. Interestingly, none of the children had evidence of paroxysmal nocturnal hemoglobinuria. The cause of the novel association with central nervous system manifestations remains to be elucidated.
Collapse
Affiliation(s)
- Lena Muckenthaler
- Department of Pediatric Oncology, Hematology and Immunology and Hopp Children Cancer Center, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany
| | - Oriana Marques
- Department of Pediatric Oncology, Hematology and Immunology and Hopp Children Cancer Center, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany
| | - Silvia Colucci
- Department of Pediatric Oncology, Hematology and Immunology and Hopp Children Cancer Center, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany
| | - Joachim Kunz
- Department of Pediatric Oncology, Hematology and Immunology and Hopp Children Cancer Center, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany
| | - Piotr Fabrowski
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Bast
- Pediatric Epilepsy Centre, Diaconia Kork, Kehl-Kork, Germany
| | - Sandro Altamura
- Department of Pediatric Oncology, Hematology and Immunology and Hopp Children Cancer Center, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany
| | - Britta Höchsmann
- Department of Transfusion Medicine and Immunogenetics, University Hospital Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Department of Transfusion Medicine and Immunogenetics, University Hospital Ulm, Ulm, Germany
| | - Monika Langlotz
- Flow Cytometry & FACS Core Facility, Centre of Molecular Biology, University of Heidelberg, Heidelberg, Germany
| | - Paulina Richter-Pechanska
- Department of Pediatric Oncology, Hematology and Immunology and Hopp Children Cancer Center, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany
| | - Tobias Rausch
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany
- Genome Biology Unit, EMBL, Heidelberg, Germany
| | | | - Nikolas Gunkel
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Andreas E. Kulozik
- Department of Pediatric Oncology, Hematology and Immunology and Hopp Children Cancer Center, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany
| | - Martina U. Muckenthaler
- Department of Pediatric Oncology, Hematology and Immunology and Hopp Children Cancer Center, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research, University of Heidelberg, Heidelberg, Germany; and
- German Centre for Cardiovascular Research (DZHK), Partner Site, Heidelberg/Mannheim, Germany
| |
Collapse
|
9
|
Paprocka J, Hutny M, Hofman J, Tokarska A, Kłaniewska M, Szczałuba K, Stembalska A, Jezela-Stanek A, Śmigiel R. Spectrum of Neurological Symptoms in Glycosylphosphatidylinositol Biosynthesis Defects: Systematic Review. Front Neurol 2022; 12:758899. [PMID: 35058872 PMCID: PMC8763846 DOI: 10.3389/fneur.2021.758899] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Mutations of genes involved in the synthesis of glycosylphosphatidylinositol and glycosylphosphatidylinositol-anchored proteins lead to rare syndromes called glycosylphosphatidylinositol-anchored proteins biosynthesis defects. Alterations of their structure and function in these disorders impair often fundamental processes in cells, resulting in severe clinical image. This study aimed to provide a systematic review of GPIBD cases reports published in English-language literature. Methods: The browsing of open-access databases (PubMed, PubMed Central. and Medline) was conducted, followed by statistical analysis of gathered information concerning neurological symptomatology. The inclusion criteria were: studies on humans, age at onset (<18 y.o.), and report of GPIBD cases with adequate data on the genetic background and symptomatology. Exclusion criteria were: publication type (manuscripts, personal communication, review articles); reports of cases of GPI biosynthesis genes mutations in terms of other disorders; reports of GPIBD cases concentrating on non-neurological symptoms; or articles concentrating solely on the genetic issues of GPI biosynthesis. Risk of bias was assessed using Joanna Brigs Institute Critical Appraisal Checklists. Data synthesis was conducted using STATISTICA 13.3.721.1 (StatSoft Polska Sp. z.o.o.). Used tests were chi-square, Fisher's exact test (for differences in phenotype), and Mann-Whitney U test (for differences in onset of developmental delay). Results: Browsing returned a total of 973 articles which, after ruling out the repetitions and assessing the inclusion and exclusion criteria, led to final inclusion of 77 articles (337 GPIBD cases) in the analysis. The main outcomes were prevalence of neurological symptoms, onset and semiology of seizures and their response to treatment, and onset of developmental delay. Based on this data a synthesis of phenotypical differences between the groups of GPIBD cases and the general GPIBD cases population was made. Discussion: A synthetical analysis of neurological components in clinical image of GPIBD patients was presented. It highlights the main features of these disorders, which might be useful in clinical practice for consideration in differential diagnosis with children presenting with early-onset seizures and developmental delay. The limitation of this review is the scarcity of the specific data in some reports, concerning the semiology and onset of two main features of GPIBD.
Collapse
Affiliation(s)
- Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Michał Hutny
- Students' Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Jagoda Hofman
- Students' Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Tokarska
- Department of Pediatrics and Developmental Age Neurology, Upper Silesian Child Health Centre, Katowice, Poland
| | | | - Krzysztof Szczałuba
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Robert Śmigiel
- Department of Pediatrics, Medical University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
10
|
Lukacs M, Blizzard LE, Stottmann RW. CNS glycosylphosphatidylinositol deficiency results in delayed white matter development, ataxia and premature death in a novel mouse model. Hum Mol Genet 2021; 29:1205-1217. [PMID: 32179897 DOI: 10.1093/hmg/ddaa046] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/31/2020] [Accepted: 03/11/2020] [Indexed: 01/06/2023] Open
Abstract
The glycosylphosphatidylinositol (GPI) anchor is a post-translational modification added to approximately 150 different proteins to facilitate proper membrane anchoring and trafficking to lipid rafts. Biosynthesis and remodeling of the GPI anchor requires the activity of over 20 distinct genes. Defects in the biosynthesis of GPI anchors in humans lead to inherited glycosylphosphatidylinositol deficiency (IGD). IGD patients display a wide range of phenotypes though the central nervous system (CNS) appears to be the most commonly affected tissue. A full understanding of the etiology of these phenotypes has been hampered by the lack of animal models due to embryonic lethality of GPI biosynthesis gene null mutants. Here we model IGD by genetically ablating GPI production in the CNS with a conditional mouse allele of phosphatidylinositol glycan anchor biosynthesis, class A (Piga) and Nestin-Cre. We find that the mutants do not have structural brain defects but do not survive past weaning. The mutants show progressive decline with severe ataxia consistent with defects in cerebellar development. We show that the mutants have reduced myelination and defective Purkinje cell development. Surprisingly, we found that Piga was expressed in a fairly restricted pattern in the early postnatal brain consistent with the defects we observed in our model. Thus, we have generated a novel mouse model of the neurological defects of IGD which demonstrates a critical role for GPI biosynthesis in cerebellar and white matter development.
Collapse
Affiliation(s)
- Marshall Lukacs
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lauren E Blizzard
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rolf W Stottmann
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
11
|
Flores-Torres J, Carver JD, Sanchez-Valle A. PIGA Mutations Can Mimic Neonatal Hemochromatosis. Pediatrics 2021; 147:peds.2020-0918. [PMID: 33632934 DOI: 10.1542/peds.2020-0918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/13/2020] [Indexed: 11/24/2022] Open
Abstract
Neonatal hemochromatosis (NH), one of the most common causes of liver failure in the neonate, often causes fetal loss or death during the neonatal period. Most cases are thought to be due to gestational alloimmune disease; however, other rare causes have been reported. NH is generally considered congenital and familial but not heritable. We present an infant diagnosed with NH whose clinical course differed significantly from that of most NH cases: at 11 months of age he had normal levels of liver enzymes, ferritin, and bilirubin, and normal neurodevelopment. This term male infant was born with a history of intrauterine growth restriction, oligohydramnios, and pericardial effusion. On day of life 1, he had hyperbilirubinemia and transaminitis; on day of life 3, ferritin was elevated; and on day of life 9, an MRI revealed iron deposits in the liver and renal cortex. Phenotypic features prompted a genetics consult. Whole-exome sequencing revealed a variant in the phosphatidylinositol glycan biosynthesis class A protein (PIGA) gene. Germ-line PIGA mutations are generally thought to be lethal in utero; however, there are reports of infants with PIGA mutations associated with dysmorphic features, neurologic manifestations, biochemical perturbations, and systemic iron overload; development can be normal up to 6 months of age. Because of the differences between infants with NH versus PIGA germ-line mutations in inheritance, prognosis, and natural history of disease, we propose that PIGA gene testing should be considered when evaluating newborns who present with NH.
Collapse
Affiliation(s)
- Jaime Flores-Torres
- Department of Pediatrics, College of Medicine, University of South Florida Morsani, Tampa, Florida
| | - Jane D Carver
- Department of Pediatrics, College of Medicine, University of South Florida Morsani, Tampa, Florida
| | - Amarilis Sanchez-Valle
- Department of Pediatrics, College of Medicine, University of South Florida Morsani, Tampa, Florida
| |
Collapse
|
12
|
Kandasamy LC, Tsukamoto M, Banov V, Tsetsegee S, Nagasawa Y, Kato M, Matsumoto N, Takeda J, Itohara S, Ogawa S, Young LJ, Zhang Q. Limb-clasping, cognitive deficit and increased vulnerability to kainic acid-induced seizures in neuronal glycosylphosphatidylinositol deficiency mouse models. Hum Mol Genet 2021; 30:758-770. [PMID: 33607654 PMCID: PMC8161520 DOI: 10.1093/hmg/ddab052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 11/26/2022] Open
Abstract
Posttranslational modification of a protein with glycosylphosphatidylinositol (GPI) is a conserved mechanism exists in all eukaryotes. Thus far, >150 human GPI-anchored proteins have been discovered and ~30 enzymes have been reported to be involved in the biosynthesis and maturation of mammalian GPI. Phosphatidylinositol glycan biosynthesis class A protein (PIGA) catalyzes the very first step of GPI anchor biosynthesis. Patients carrying a mutation of the PIGA gene usually suffer from inherited glycosylphosphatidylinositol deficiency (IGD) with intractable epilepsy and intellectual developmental disorder. We generated three mouse models with PIGA deficits specifically in telencephalon excitatory neurons (Ex-M-cko), inhibitory neurons (In-M-cko) or thalamic neurons (Th-H-cko), respectively. Both Ex-M-cko and In-M-cko mice showed impaired long-term fear memory and were more susceptible to kainic acid-induced seizures. In addition, In-M-cko demonstrated a severe limb-clasping phenotype. Hippocampal synapse changes were observed in Ex-M-cko mice. Our Piga conditional knockout mouse models provide powerful tools to understand the cell-type specific mechanisms underlying inherited GPI deficiency and to test different therapeutic modalities.
Collapse
Affiliation(s)
- Lenin C Kandasamy
- Laboratory of Social Neural Networks, Center for Social Neural Networks, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Mina Tsukamoto
- Laboratory of Social Neural Networks, Center for Social Neural Networks, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Vitaliy Banov
- Laboratory for Behavioral Genetics, CBS, RIKEN, Wako 351-0198, Japan.,Institute of Neuroinformatics, University of Zürich, ETH Zürich, Zürich 8057, Switzerland
| | - Sambuu Tsetsegee
- Laboratory of Social Neural Networks, Center for Social Neural Networks, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Yutaro Nagasawa
- Laboratory of Social Neural Networks, Center for Social Neural Networks, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo 142-8555, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Junji Takeda
- Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | | | - Sonoko Ogawa
- Laboratory of Behavioral Neuroendocrinology, Faculty of Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Larry J Young
- Faculty of Human Sciences, Center for Social Neural Networks, University of Tsukuba, Tsukuba 305-8577, Japan.,Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta GA 30329, USA
| | - Qi Zhang
- Laboratory of Social Neural Networks, Center for Social Neural Networks, University of Tsukuba, Tsukuba 305-8577, Japan.,Laboratory for Behavioral Genetics, CBS, RIKEN, Wako 351-0198, Japan.,Faculty of Human Sciences, Center for Social Neural Networks, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
13
|
Paprocka J, Jezela-Stanek A, Tylki-Szymańska A, Grunewald S. Congenital Disorders of Glycosylation from a Neurological Perspective. Brain Sci 2021; 11:brainsci11010088. [PMID: 33440761 PMCID: PMC7827962 DOI: 10.3390/brainsci11010088] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Most plasma proteins, cell membrane proteins and other proteins are glycoproteins with sugar chains attached to the polypeptide-glycans. Glycosylation is the main element of the post-translational transformation of most human proteins. Since glycosylation processes are necessary for many different biological processes, patients present a diverse spectrum of phenotypes and severity of symptoms. The most frequently observed neurological symptoms in congenital disorders of glycosylation (CDG) are: epilepsy, intellectual disability, myopathies, neuropathies and stroke-like episodes. Epilepsy is seen in many CDG subtypes and particularly present in the case of mutations in the following genes: ALG13, DOLK, DPAGT1, SLC35A2, ST3GAL3, PIGA, PIGW, ST3GAL5. On brain neuroimaging, atrophic changes of the cerebellum and cerebrum are frequently seen. Brain malformations particularly in the group of dystroglycanopathies are reported. Despite the growing number of CDG patients in the world and often neurological symptoms dominating in the clinical picture, the number of performed screening tests eg transferrin isoforms is systematically decreasing as broadened genetic testing is recently more favored. The aim of the review is the summary of selected neurological symptoms in CDG described in the literature in one paper. It is especially important for pediatric neurologists not experienced in the field of metabolic medicine. It may help to facilitate the diagnosis of this expanding group of disorders. Biochemically, this paper focuses on protein glycosylation abnormalities.
Collapse
Affiliation(s)
- Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Science in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
- Correspondence: ; Tel.: +48-606-415-888
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland;
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, W 04-730 Warsaw, Poland;
| | - Stephanie Grunewald
- NIHR Biomedical Research Center (BRC), Metabolic Unit, Great Ormond Street Hospital and Institute of Child Health, University College London, London SE1 9RT, UK;
| |
Collapse
|
14
|
Castiglioni C, Feillet F, Barnerias C, Wiedemann A, Muchart J, Cortes F, Hernando-Davalillo C, Montero R, Dupré T, Bruneel A, Seta N, Vuillaumier-Barrot S, Serrano M. Expanding the phenotype of X-linked SSR4-CDG: Connective tissue implications. Hum Mutat 2020; 42:142-149. [PMID: 33300232 DOI: 10.1002/humu.24151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/07/2020] [Accepted: 12/04/2020] [Indexed: 02/01/2023]
Abstract
Signal sequence receptor protein 4 (SSR4) is a subunit of the translocon-associated protein complex, which participates in the translocation of proteins across the endoplasmic reticulum membrane, enhancing the efficiency of N-linked glycosylation. Pathogenic variants in SSR4 cause a congenital disorder of glycosylation: SSR4-congenital disorders of glycosylation (CDG). We describe three SSR4-CDG boys and review the previously reported. All subjects presented with hypotonia, failure to thrive, developmental delay, and dysmorphic traits and showed a type 1 serum sialotransferrin profile, facilitating the diagnosis. Genetic confirmation of this X-linked CDG revealed one de novo hemizygous deletion, one maternally inherited deletion, and one de novo nonsense mutation of SSR4. The present subjects highlight the similarities with a connective tissue disorder (redundant skin, joint laxity, blue sclerae, and vascular tortuosity). The connective tissue problems are relevant, and require preventive rehabilitation measures. As an X-linked disorder, genetic counseling is essential.
Collapse
Affiliation(s)
- Claudia Castiglioni
- Department of Pediatric Neurology, Rare Disease Center, Clínica Las Condes, Santiago, Chile
| | - François Feillet
- Department of Pediatrics, Reference Center for Inborn Errors of Metabolism, University Hospital of Nancy, Nancy, France.,INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, Nancy, France
| | - Christine Barnerias
- Pediatric Neurology Department, Center de Référence Maladies Neuromusculaires (GNMH), Necker University Hospital, AP-HP, Paris, France
| | - Arnaud Wiedemann
- Department of Pediatrics, Reference Center for Inborn Errors of Metabolism, University Hospital of Nancy, Nancy, France.,INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, Nancy, France
| | - Jordi Muchart
- Department of Radiology, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Fanny Cortes
- Pediatric Department. Rare Diseases Center, Clínica Las Condes, Santiago, Chile
| | - Cristina Hernando-Davalillo
- Department of Genetic and Molecular Medicine and Pediatric Institute of Rare Diseases, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Raquel Montero
- Clinical Biochemistry Department, Institut de Recerca Hospital Sant Joan de Déu Barcelona, Barcelona, Spain.,Unit-703 Center for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Madrid, Spain
| | - Thierry Dupré
- Service de Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, AP-HP, Paris, France.,INSERM UMR_S 1149, Faculté de Médecine Xavier Bichat, Université de Paris, Paris, France
| | - Arnaud Bruneel
- Service de Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, AP-HP, Paris, France.,INSERM UMR1193, "Mécanismes cellulaires et moléculaires de l'adaptation au stress et cancérogenèse", Université Paris-Sud, Châtenay-Malabry, France
| | - Nathalie Seta
- Service de Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
| | | | - Mercedes Serrano
- Unit-703 Center for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Madrid, Spain.,Pediatric Neurology Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| |
Collapse
|
15
|
Bayat A, Kløvgaard M, Johannesen KM, Barakat TS, Kievit A, Montomoli M, Parrini E, Pietrafusa N, Schelhaas J, van Slegtenhorst M, Miya K, Guerrini R, Tranebjærg L, Tümer Z, Rubboli G, Møller RS. Deciphering the premature mortality in PIGA-CDG - An untold story. Epilepsy Res 2020; 170:106530. [PMID: 33508693 DOI: 10.1016/j.eplepsyres.2020.106530] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Congenital disorder of glycosylation (CDG) due to a defective phosphatidylinositol glycan anchor biosynthesis class A protein (PIGA) is a severe X-linked developmental and epileptic encephalopathy. Seizures are often treatment refractory, and patients have intellectual disability and global developmental delay. Previous reports have suggested that patients with PIGA-CDG have a high risk of premature mortality. This study aimed to evaluate the observed high mortality and the causes of death in PIGA-CDG patients. METHODS We reviewed the literature and collected additional unpublished patients through an international network. RESULTS In total, we reviewed the data of 88 patients of whom 30 patients born alive were deceased, and the overall mortality before the age of 20 years was 30 % (26/88). Age at death ranged from 15 days to 48 years of life. The median age at death was two years and more than half of the patients deceased in early childhood. The PIGA-specific mortality rate/1000 person-years was 44.9/1000 person-years (95 %, CI 31.4-64.3). There were no cases of definite or probable sudden unexpected death in epilepsy (SUDEP) and half of the patients died due to respiratory failure (15/30, 50 %) or possible SUDEP (3/30, 10 %). Three patients (10 %) died from severe cardiomyopathy, liver failure and gastrointestinal bleeding, respectively. The cause of death was unclassified in nine patients (30 %). Autopsies were rarely performed and the true cause of death remains unknown for the majority of patients. SIGNIFICANCE Our data indicate an increased risk of premature death in patients with PIGA-CDG when compared to most monogenic developmental and epileptic encephalopathies.
Collapse
Affiliation(s)
- Allan Bayat
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark; Department for Regional Health Services, University of Southern Denmark, Odense, Denmark.
| | - Marius Kløvgaard
- The Epilepsy Clinic, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Katrine M Johannesen
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark; Department for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC - University Medical Center, Rotterdam, the Netherlands
| | - Anneke Kievit
- Department of Clinical Genetics, Erasmus MC - University Medical Center, Rotterdam, the Netherlands
| | - Martino Montomoli
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Elena Parrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Nicola Pietrafusa
- Department of Neuroscience and Neurorehabilitation, Bambino Gesù Pediatric Hospital, Rome, Italy
| | - Jurgen Schelhaas
- Stichting Epilepsie Instellingen Nederland (SEIN), the Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC - University Medical Center, Rotterdam, the Netherlands
| | - Kazushi Miya
- Department of Educational Sciences (Human Development and Welfare Course), University of Toyama, Faculty of Human Development, Toyama, Japan
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Lisbeth Tranebjærg
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Guido Rubboli
- Department for Regional Health Services, University of Southern Denmark, Odense, Denmark; Department of Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark; Department for Regional Health Services, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
16
|
Tremblay-Laganière C, Kaiyrzhanov R, Maroofian R, Nguyen TTM, Salayev K, Chilton IT, Chung WK, Madden JA, Phornphutkul C, Agrawal PB, Houlden H, Campeau PM. PIGH deficiency can be associated with severe neurodevelopmental and skeletal manifestations. Clin Genet 2020; 99:313-317. [PMID: 33156547 PMCID: PMC7839508 DOI: 10.1111/cge.13877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 01/10/2023]
Abstract
Phosphatidylinositol Glycan Anchor Biosynthesis class H (PIGH) is an essential player in the glycosylphosphatidylinositol (GPI) synthesis, an anchor for numerous cell membrane-bound proteins. PIGH deficiency is a newly described and rare disorder associated with developmental delay, seizures and behavioral difficulties. Herein, we report three new unrelated families with two different bi-allelic PIGH variants, including one new variant p.(Arg163Trp) which seems associated with a more severe phenotype. The common clinical features in all affected individuals are developmental delay/intellectual disability and hypotonia. Variable clinical features include seizures, autism spectrum disorder, apraxia, severe language delay, dysarthria, feeding difficulties, facial dysmorphisms, microcephaly, strabismus, and musculoskeletal anomalies. The two siblings homozygous for the p.(Arg163Trp) variant have severe symptoms including profound psychomotor retardation, intractable seizures, multiple bone fractures, scoliosis, loss of independent ambulation, and delayed myelination on brain MRI. Serum iron levels were significantly elevated in one individual. All tested individuals with PIGH deficiency had normal alkaline phosphatase and CD16, a GPI-anchored protein (GPI-AP), was found to be decreased by 60% on granulocytes from one individual. This study expands the PIGH deficiency phenotype range toward the severe end of the spectrum with the identification of a novel pathogenic variant.
Collapse
Affiliation(s)
| | - Rauan Kaiyrzhanov
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | | | - Kamran Salayev
- Department of Neurology, Azerbaijan Medical University, Baku, Azerbaijan
| | - Ilana T Chilton
- Departments of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Wendy K Chung
- Departments of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.,Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Jill A Madden
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Chanika Phornphutkul
- Departments of Pediatric and Pathology, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Pankaj B Agrawal
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | | |
Collapse
|
17
|
PIGA-related epileptic encephalopathy demonstrating intrafamilial phenotypic heterogeneity. Acta Neurol Belg 2020; 120:1247-1250. [PMID: 32562213 DOI: 10.1007/s13760-020-01403-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/08/2020] [Indexed: 10/24/2022]
|
18
|
Cabasson S, Van-Gils J, Villéga F, Abi-Warde MT, Barcia G, Lazaro L, Cancés C, Chelly J, Karsenty C, Rivera S, de Saint-Martin A, Trimouille A, Villard L, Pédespan JM. Early-onset epileptic encephalopathy related to germline PIGA mutations: A series of 5 cases. Eur J Paediatr Neurol 2020; 28:214-220. [PMID: 32694024 DOI: 10.1016/j.ejpn.2020.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 05/25/2020] [Accepted: 06/07/2020] [Indexed: 11/26/2022]
Abstract
The molecular diagnosis of early-onset epileptic encephalopathy (EOEE), an expanding field in child neurology, is becoming increasingly possible thanks to the widespread availability of next-generation sequencing and whole-exome sequencing. In the past 15 years, mutations in STXBP1, KCNQ2, SCN2A, SCN8A and numerous other genes have been reported, giving a more accurate insight for these rare diseases. Among these genes, germline mutations in Phosphatidyl Inositol Glycan A (PIGA) gene were first reported in 2012. Located on Xp22.2, PIGA is involved in the synthesis of GPI (glycosylphosphatidylinositol) which acts as a membrane anchor for different proteins: enzymes, adhesion molecules, regulation of the complement way, and co-receptor in transduction signal. Children suffering from this condition exhibit developmental delay with early-onset epilepsy, severe dysmorphic signs, multi-visceral anomalies and early death in the most severe forms. Here, we report five cases of germline PIGA mutations, with two missense mutations that have not been reported to date. We provide a new insight into the electroclinical phenotype. At the onset, epileptic spasms and focal-onset seizures with upper limbs and ocular involvements were present. Epilepsy proved pharmacoresistant in 4 out of 5 cases. Interictal EEG may be normal at the onset of epilepsy, but abnormalities in electroencephalographic studies were eventually present in all cases. Different types of seizures may be present simultaneously, and epileptic phenotypes evolve with aging.
Collapse
Affiliation(s)
- Sébastien Cabasson
- Unité de neurologie de l'enfant et de l'adolescent. Centre Hospitalo-Universitaire de Bordeaux, Hôpital Pellegrin Enfants, Place Amélie-Raba-Léon, 33 076, Bordeaux cedex, France.
| | - Julien Van-Gils
- Service de génétique médicale. Centre Hospitalo-Universitaire de Bordeaux, Hôpital Pellegrin Enfants, Place Amélie-Raba-Léon, 33 076, Bordeaux cedex, France
| | - Frédéric Villéga
- Unité de neurologie de l'enfant et de l'adolescent. Centre Hospitalo-Universitaire de Bordeaux, Hôpital Pellegrin Enfants, Place Amélie-Raba-Léon, 33 076, Bordeaux cedex, France
| | - Marie-Thérèse Abi-Warde
- Département de neurologie pédiatrique, CHRU de Strasbourg, 1 avenue Molière, 67 000, Strasbourg, France
| | - Giulia Barcia
- Service de génétique médicale. Unité de génétique moléculaire, unité d'embryologie moléculaire. Hôpital Necker-Enfants Malades, Tour Lavoisier (3(ème) étage), 149 rue de Sèvres, 75743, Paris cedex 15, France
| | - Leila Lazaro
- Service de pédiatrie. Centre hospitalier de la côte basque, 13 avenue de l'interne Jacques-Loëb, 64 109, Bayonne, France
| | - Claude Cancés
- Service de Neuropédiatrie, Hôpital Purpan, 330 avenue de Grande-Bretagne, 31300, Toulouse, France
| | - Jamel Chelly
- Unité de génétique moléculaire, Nouvel Hôpital Civil, 1 place de l'Hôpital, BP 426, 67 091, Strasbourg cedex, France
| | - Caroline Karsenty
- Service de Neuropédiatrie, Hôpital Purpan, 330 avenue de Grande-Bretagne, 31300, Toulouse, France
| | - Serge Rivera
- Service de pédiatrie. Centre hospitalier de la côte basque, 13 avenue de l'interne Jacques-Loëb, 64 109, Bayonne, France
| | - Anne de Saint-Martin
- Département de neurologie pédiatrique, CHRU de Strasbourg, 1 avenue Molière, 67 000, Strasbourg, France
| | - Aurélien Trimouille
- Service de génétique médicale. Centre Hospitalo-Universitaire de Bordeaux, Hôpital Pellegrin Enfants, Place Amélie-Raba-Léon, 33 076, Bordeaux cedex, France
| | - Laurent Villard
- Département de génétique médicale, Laboratoire de génétique moléculaire, Assistance publique-Hôpitaux de Marseille, 264 rue Saint-Pierre, 13 385, Marseille cedex 5, France
| | - Jean-Michel Pédespan
- Unité de neurologie de l'enfant et de l'adolescent. Centre Hospitalo-Universitaire de Bordeaux, Hôpital Pellegrin Enfants, Place Amélie-Raba-Léon, 33 076, Bordeaux cedex, France
| |
Collapse
|
19
|
Bayat A, Knaus A, Pendziwiat M, Afenjar A, Barakat TS, Bosch F, Callewaert B, Calvas P, Ceulemans B, Chassaing N, Depienne C, Endziniene M, Ferreira CR, Moura de Souza CF, Freihuber C, Ganesan S, Gataullina S, Guerrini R, Guerrot A, Hansen L, Jezela‐Stanek A, Karsenty C, Kievit A, Kooy FR, Korff CM, Kragh Hansen J, Larsen M, Layet V, Lesca G, McBride KL, Meuwissen M, Mignot C, Montomoli M, Moore H, Naudion S, Nava C, Nougues M, Parrini E, Pastore M, Schelhaas JH, Skinner S, Szczałuba K, Thomas A, Thomassen M, Tranebjærg L, Slegtenhorst M, Wolfe LA, Lal D, Gardella E, Bomme Ousager L, Brünger T, Helbig I, Krawitz P, Møller RS. Lessons learned from 40 novel
PIGA
patients and a review of the literature. Epilepsia 2020; 61:1142-1155. [DOI: 10.1111/epi.16545] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Allan Bayat
- Institute for Regional Health Services University of Southern Denmark Odense Denmark
- Department of Epilepsy Genetics and Personalized Medicine Danish Epilepsy Center Dianalund Denmark
| | - Alexej Knaus
- Institute for Genomic Statistics and Bioinformatics University Hospital Bonn Rheinische Friedrich‐Wilhelms‐University Bonn Bonn Germany
| | - Manuela Pendziwiat
- Department of Neuropediatrics University Medical Center Schleswig‐Holstein Christian Albrechts University Kiel Germany
| | - Alexandra Afenjar
- CRMR Congenital Malformations and Diseases of the Cerebellum and Rare Causes of Intellectual Disabilities Department of Genetics Sorbonne University, AP‐HP, Trousseau Hospital Paris France
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics Erasmus MC, University Medical Center Rotterdam the Netherlands
| | | | - Bert Callewaert
- Center for Medical Genetics Ghent University Hospital Ghent Belgium
- Department of Biomolecular Medicine Ghent University Ghent Belgium
| | - Patrick Calvas
- UMR1056 INSERM‐Université de Toulouse, Department of Genetics University Hospital of Toulouse Toulouse France
| | - Berten Ceulemans
- Department of Pediatric Neurology University Hospital and University of Antwerp Antwerp Belgium
| | - Nicolas Chassaing
- UMR1056 INSERM‐Université de Toulouse, Department of Genetics University Hospital of Toulouse Toulouse France
| | - Christel Depienne
- Institute of Human Genetics University Hospital Essen University of Duisburg‐Essen Essen Germany
- UMR S1127, Inserm U1127, CNRS UMR 7225 Institute of brain and spinal cord Sorbonne University Paris France
| | - Milda Endziniene
- Neurology Department Medical Academy Lithuanian University of Health Sciences Kaunas Lithuania
| | - Carlos R. Ferreira
- Medical Genomics and Metabolic Genetics Branch National Human Genome Research Institute, National Institutes of Health Bethesda MarylandUSA
| | | | - Cécile Freihuber
- Department of Pediatric Neurology AP‐HP, GHUEP Armand Trousseau University Hospital Paris France
- GRC ConCer‐LD Sorbonne University, UPMC University of Paris 06 Paris France
| | - Shiva Ganesan
- Division of Neurology Children’s Hospital of Philadelphia Philadelphia PennsylvaniaUSA
- Epilepsy NeuroGenetics Initiative Children's Hospital of Philadelphia Philadelphia PennsylvaniaUSA
- Department of Biomedical and Health Informatics Children’s Hospital of Philadelphia Philadelphia PennsylvaniaUSA
| | - Svetlana Gataullina
- Sleep Disorders Center AP‐HP, Antoine‐Béclère Hospital Clamart France
- Department of Pediatrics and Neonatal Intensive Care André Grégoire Hospital Montreuil France
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories Department of Neuroscience, A. Meyer Children's Hospital University of Florence Florence Italy
| | - Anne‐Marie Guerrot
- Department of Genetics and Reference Center for Developmental Disorders Normandy Center for Genomic and Personalized Medicine Normandy University, UNIROUEN Inserm U1245 and Rouen University Hospital Rouen France
| | - Lars Hansen
- Department of Cellular and Molecular Medicine Faculty of Health Science Copenhagen Center for Glycomics Copenhagen Denmark
| | - Aleksandra Jezela‐Stanek
- Department of Genetics and Clinical Immunology National Institute of Tuberculosis and Lung Diseases Warsaw Poland
| | - Caroline Karsenty
- Neuropediatrics Department University Hospital of Toulouse Toulouse France
| | - Anneke Kievit
- Department of Clinical Genetics Erasmus MC, University Medical Center Rotterdam the Netherlands
| | - Frank R. Kooy
- Department of Medical Genetics University of Antwerp Antwerp Belgium
| | - Christian M. Korff
- Pediatric Neurology Unit Department of the Woman, Child, and Adolescent University Hospitals Geneva Geneva Switzerland
| | | | - Martin Larsen
- Department of Clinical Genetics Odense University Hospital Odense Denmark
- Human Genetics Department of Clinical Research University of Southern Denmark Odense Denmark
| | - Valérie Layet
- Department of Genetics Du Havre Hospital Le Havre France
| | - Gaetan Lesca
- Department of Medical Genetics Lyon University Hospital Lyon France
- Institut Neuromyogene University Claude Bernard Lyon 1, Lyon University Lyon France
| | - Kim L. McBride
- Division of Genetic and Genomic Medicine Nationwide Children's Hospital Columbus OhioUSA
- Center for Cardiovascular Research Nationwide Children's Hospital Columbus OhioUSA
- Department of Pediatrics Ohio State University Columbus OhioUSA
| | - Marije Meuwissen
- Department of Medical Genetics University of Antwerp Antwerp Belgium
| | - Cyril Mignot
- APHP Department of Genetics Pitié‐Salpêtrière Hospital Reference Center for Rare Causes of Intellectual Disabilities Paris France
- Department of Genetics Inserm U1127, CNRS UMR 7225 Institute for brain and spinal cord ICM, AP‐HP De la Pitié Salpêtrière Hospital, Sorbonne University Paris France
| | - Martino Montomoli
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories Department of Neuroscience, A. Meyer Children's Hospital University of Florence Florence Italy
| | - Hannah Moore
- Greenwood Genetic Center Greenwood South CarolinaUSA
| | - Sophie Naudion
- Department of Genetics, University of Bordeaux Bordeaux France
| | - Caroline Nava
- Department of Genetics Inserm U1127, CNRS UMR 7225 Institute for brain and spinal cord ICM, AP‐HP De la Pitié Salpêtrière Hospital, Sorbonne University Paris France
| | | | - Elena Parrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories Department of Neuroscience, A. Meyer Children's Hospital University of Florence Florence Italy
| | - Matthew Pastore
- Division of Genetic and Genomic Medicine Nationwide Children's Hospital Columbus OhioUSA
- Department of Pediatrics Ohio State University Columbus OhioUSA
| | | | | | | | - Ashley Thomas
- Department of Neurology University of Alabama at Birmingham Birmingham AlabamaUSA
| | - Mads Thomassen
- Department of Clinical Genetics Odense University Hospital Odense Denmark
- Human Genetics Department of Clinical Research University of Southern Denmark Odense Denmark
| | - Lisbeth Tranebjærg
- Department of Clinical Genetics Rigshospitalet/Kennedy Center Glostrup Denmark
- Institute of Clinical Medicine University of Copenhagen Copenhagen Denmark
| | - Marjon Slegtenhorst
- Department of Clinical Genetics Erasmus MC, University Medical Center Rotterdam the Netherlands
| | - Lynne A. Wolfe
- Undiagnosed Diseases Program, Common Fund National Institutes of Health Bethesda MarylandUSA
- Section of Human Biochemical Genetics National Human Genome Research Institute Bethesda MarylandUSA
| | - Dennis Lal
- Cologne Center for Genomics University Hospital Cologne, University of Cologne Cologne Germany
- Stanley Center for Psychiatric Research Broad Institute of Massachusetts Institute of Technology and Harvard Cambridge MassachusettsUSA
- Analytic and Translational Genetics Unit Massachusetts General Hospital Boston MassachusettsUSA
- Epilepsy Center Neurological Institute Cleveland Clinic Cleveland OhioUSA
- Genomic Medicine Institute Lerner Research Institute Cleveland Clinic Cleveland OhioUSA
| | - Elena Gardella
- Institute for Regional Health Services University of Southern Denmark Odense Denmark
- Department of Epilepsy Genetics and Personalized Medicine Danish Epilepsy Center Dianalund Denmark
- Department of Clinical Neurophysiology Danish Epilepsy Center Dianalund Denmark
| | - Lilian Bomme Ousager
- Department of Clinical Genetics Odense University Hospital Odense Denmark
- Human Genetics Department of Clinical Research University of Southern Denmark Odense Denmark
| | - Tobias Brünger
- Cologne Center for Genomics University Hospital Cologne, University of Cologne Cologne Germany
| | - Ingo Helbig
- Department of Neuropediatrics University Medical Center Schleswig‐Holstein Christian Albrechts University Kiel Germany
- Division of Neurology Children’s Hospital of Philadelphia Philadelphia PennsylvaniaUSA
- Epilepsy NeuroGenetics Initiative Children's Hospital of Philadelphia Philadelphia PennsylvaniaUSA
- Department of Biomedical and Health Informatics Children’s Hospital of Philadelphia Philadelphia PennsylvaniaUSA
- Department of Neurology University of Pennsylvania, Perelman School of Medicine Philadelphia PennsylvaniaUSA
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics University Hospital Bonn Rheinische Friedrich‐Wilhelms‐University Bonn Bonn Germany
| | - Rikke S. Møller
- Institute for Regional Health Services University of Southern Denmark Odense Denmark
- Department of Epilepsy Genetics and Personalized Medicine Danish Epilepsy Center Dianalund Denmark
| |
Collapse
|
20
|
Davids M, Menezes M, Guo Y, McLean SD, Hakonarson H, Collins F, Worgan L, Billington CJ, Maric I, Littlejohn RO, Onyekweli T, Adams DR, Tifft CJ, Gahl WA, Wolfe LA, Christodoulou J, Malicdan MCV. Homozygous splice-variants in human ARV1 cause GPI-anchor synthesis deficiency. Mol Genet Metab 2020; 130:49-57. [PMID: 32165008 PMCID: PMC7303973 DOI: 10.1016/j.ymgme.2020.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/15/2020] [Accepted: 02/07/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Mutations in the ARV1 Homolog, Fatty Acid Homeostasis Modulator (ARV1), have recently been described in association with early infantile epileptic encephalopathy 38. Affected individuals presented with epilepsy, ataxia, profound intellectual disability, visual impairment, and central hypotonia. In S. cerevisiae, Arv1 is thought to be involved in sphingolipid metabolism and glycophosphatidylinositol (GPI)-anchor synthesis. The function of ARV1 in human cells, however, has not been elucidated. METHODS Mutations were discovered through whole exome sequencing and alternate splicing was validated on the cDNA level. Expression of the variants was determined by qPCR and Western blot. Expression of GPI-anchored proteins on neutrophils and fibroblasts was analyzed by FACS and immunofluorescence microscopy, respectively. RESULTS Here we describe seven patients from two unrelated families with biallelic splice mutations in ARV1. The patients presented with early onset epilepsy, global developmental delays, profound hypotonia, delayed speech development, cortical visual impairment, and severe generalized cerebral and cerebellar atrophy. The splice variants resulted in decreased ARV1 expression and significant decreases in GPI-anchored protein on the membranes of neutrophils and fibroblasts, indicating that the loss of ARV1 results in impaired GPI-anchor synthesis. CONCLUSION Loss of GPI-anchored proteins on our patients' cells confirms that the yeast Arv1 function of GPI-anchor synthesis is conserved in humans. Overlap between the phenotypes in our patients and those reported for other GPI-anchor disorders suggests that ARV1-deficiency is a GPI-anchor synthesis disorder.
Collapse
Affiliation(s)
- Mariska Davids
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Minal Menezes
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Child and Adolescent Health and Genomic Medicine, Sydney Medical School, Sydney University, Sydney, NSW, Australia
| | - Yiran Guo
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Scott D McLean
- Department of Clinical Genetics, The Children's Hospital of San Antonio, San Antonio, TX, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Felicity Collins
- Discipline of Child and Adolescent Health and Genomic Medicine, Sydney Medical School, Sydney University, Sydney, NSW, Australia; Department of Clinical Genetics, Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Lisa Worgan
- Department of Clinical Genetics, Liverpool Hospital, Liverpool, NSW, Australia
| | - Charles J Billington
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Irina Maric
- Hematology Service, Clinical Center, NIH, Bethesda, MD, USA
| | | | - Tito Onyekweli
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - David R Adams
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia J Tifft
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - William A Gahl
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lynne A Wolfe
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - John Christodoulou
- Genetic Metabolic Disorders Research Unit, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Child and Adolescent Health and Genomic Medicine, Sydney Medical School, Sydney University, Sydney, NSW, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Pediatrics, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia.
| | - May Christine V Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
21
|
Analyzing clinical and genetic characteristics of a cohort with multiple congenital anomalies-hypotonia-seizures syndrome (MCAHS). Orphanet J Rare Dis 2020; 15:78. [PMID: 32220244 PMCID: PMC7099766 DOI: 10.1186/s13023-020-01365-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/18/2020] [Indexed: 12/28/2022] Open
Abstract
Objective To summarize and extend the phenotypic characterization of Multiple Congenital Anomalies-Hypotonia-Seizures Syndrome, and to discuss genotype-phenotype correlations. Methods Collecting clinical information of 17 patients with pathogenic variants in PIGN, PIGA, and PIGT. Genetic studies were performed on all patients. Results There were 7 patients with 15 PIGN mutations (one patient carrying 3 mutations), 8 patients with 8 PIGA mutations, and 2 patients with 5 PIGT mutations (one patient carrying 3 mutations). All patients had epilepsy and developmental delay, with 71% of them showed hypotonia. And among these patients’ various seizure types, the focal seizure was the most common one. Eighty-two percent patients showed a significant relationship between seizures and fever. Serum ALP was elevated in one patient with PIGN mutations and in two patients with PIGA mutations. Brain MRI showed enlarged subarachnoid space in 56% of patients. Some other different characteristics had also been found in our patients: First, atypical absence seizures presented in three patients with PIGN mutations; Second, diffuse slow waves mixed with focal or multifocal discharges of interictal EEG in 88% cases with PIGA-deficient; Third, phenotypes of seven out of eight patients with PIGA mutations were difficult to be classified as severe or less severe group; Last, mild neurological symptoms and developmental status rather than severe conditions occurred in one patient with PIGT mutations. Conclusion With epilepsy, developmental delay, and/or hypotonia as common features, the knowledge of MCAHS in terms of phenotype and genotype has been expanded. In cases with PIGN-deficient, we expanded the types of atypical absence seizures, and described one patient with elevated serum ALP. Focal seizures with diffuse slow waves mixed with focal or multifocal discharges on EEG rather than infantile spasms with hypsarrhythmia, which as previously reported were often seen in our patients with PIGA mutations. The classifications of phenotypes caused by PIGA mutations should be more continuous than discrete. The mild phenotype of one patient with PIGT mutations expanded the clinical presentation of MCAHS3.
Collapse
|
22
|
Neuhofer CM, Funke R, Wilken B, Knaus A, Altmüller J, Nürnberg P, Li Y, Wollnik B, Burfeind P, Pauli S. A Novel Mutation in PIGA Associated with Multiple Congenital Anomalies-Hypotonia-Seizure Syndrome 2 (MCAHS2) in a Boy with a Combination of Severe Epilepsy and Gingival Hyperplasia. Mol Syndromol 2020; 11:30-37. [PMID: 32256299 DOI: 10.1159/000505797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2019] [Indexed: 01/25/2023] Open
Abstract
Multiple congenital anomalies-hypotonia-seizures syndrome 2 (MCAHS2) is a rare disease caused by mutations in the X chromosomal PIGA gene. Clinically it is characterized by early-onset epilepsy, hypotonia, dysmorphic features, and variable congenital anomalies. PIGA codes for the phosphatidylinositol glycan-class A protein, which forms a subunit of an enzymatic complex involved in glycophosphatidylinositol (GPI) biosynthesis. We present a new case of MCAHS2 and perform a comprehensive review of the available literature to delineate the phenotypical traits associated with germline PIGA mutations. Furthermore, we provide functional evidence of pathogenicity of the novel missense mutation, c.154C>T; (p.His52Tyr), in the PIGA gene causative of MCAHS2 in our patient. By flow cytometry, we observed reduced expression of GPI-anchored surface proteins in patient granulocytes compared to control samples, proving GPI-biogenesis impairment. The patient's severe epilepsy with several daily attacks was refractory to treatment, but the frequency of seizures reduced temporarily under triple therapy with perampanel, rufinamide and vigabatrin. Our study delineates the known MCAHS2 phenotype and discusses challenges of diagnosis and clinical management in this complex, rare disease. Furthermore, we present a novel mutation with functional evidence of pathogenicity.
Collapse
Affiliation(s)
- Christiane M Neuhofer
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Rudolf Funke
- Department of Pediatric Neurology, Klinikum Kassel, Kassel, Germany
| | - Bernd Wilken
- Department of Pediatric Neurology, Klinikum Kassel, Kassel, Germany
| | - Alexej Knaus
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Köln, Köln, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Köln, Köln, Germany
| | - Yun Li
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Peter Burfeind
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Silke Pauli
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
23
|
Carmody LC, Blau H, Danis D, Zhang XA, Gourdine JP, Vasilevsky N, Krawitz P, Thompson MD, Robinson PN. Significantly different clinical phenotypes associated with mutations in synthesis and transamidase+remodeling glycosylphosphatidylinositol (GPI)-anchor biosynthesis genes. Orphanet J Rare Dis 2020; 15:40. [PMID: 32019583 PMCID: PMC7001271 DOI: 10.1186/s13023-020-1313-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/21/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Defects in the glycosylphosphatidylinositol (GPI) biosynthesis pathway can result in a group of congenital disorders of glycosylation known as the inherited GPI deficiencies (IGDs). To date, defects in 22 of the 29 genes in the GPI biosynthesis pathway have been identified in IGDs. The early phase of the biosynthetic pathway assembles the GPI anchor (Synthesis stage) and the late phase transfers the GPI anchor to a nascent peptide in the endoplasmic reticulum (ER) (Transamidase stage), stabilizes the anchor in the ER membrane using fatty acid remodeling and then traffics the GPI-anchored protein to the cell surface (Remodeling stage). RESULTS We addressed the hypothesis that disease-associated variants in either the Synthesis stage or Transamidase+Remodeling-stage GPI pathway genes have distinct phenotypic spectra. We reviewed clinical data from 58 publications describing 152 individual patients and encoded the phenotypic information using the Human Phenotype Ontology (HPO). We showed statistically significant differences between the Synthesis and Transamidase+Remodeling Groups in the frequencies of phenotypes in the musculoskeletal system, cleft palate, nose phenotypes, and cognitive disability. Finally, we hypothesized that phenotypic defects in the IGDs are likely to be at least partially related to defective GPI anchoring of their target proteins. Twenty-two of one hundred forty-two proteins that receive a GPI anchor are associated with one or more Mendelian diseases and 12 show some phenotypic overlap with the IGDs, represented by 34 HPO terms. Interestingly, GPC3 and GPC6, members of the glypican family of heparan sulfate proteoglycans bound to the plasma membrane through a covalent GPI linkage, are associated with 25 of these phenotypic abnormalities. CONCLUSIONS IGDs associated with Synthesis and Transamidase+Remodeling stages of the GPI biosynthesis pathway have significantly different phenotypic spectra. GPC2 and GPC6 genes may represent a GPI target of general disruption to the GPI biosynthesis pathway that contributes to the phenotypes of some IGDs.
Collapse
Affiliation(s)
- Leigh C Carmody
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Hannah Blau
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Daniel Danis
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Xingman A Zhang
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | | | | | - Peter Krawitz
- Institute of Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Miles D Thompson
- Department of Pediatrics, UCSD School of Medicine, La Jolla, CA, 92093, USA
| | - Peter N Robinson
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA.
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA.
| |
Collapse
|
24
|
PIGA related disorder as a range of phenotypes rather than two distinct subtypes. Brain Dev 2020; 42:205-210. [PMID: 31704190 DOI: 10.1016/j.braindev.2019.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 11/21/2022]
Abstract
Patients with germline phosphatidylinositol glycan biosynthesis class A (PIGA) related disorder have historically been categorized into one of two distinct subtypes: a severe form which is often fatal, and a less severe form. However, the increasing number of cases with features indicative of both subtypes raise the possibility of a phenotypic spectrum associated with PIGA disorder. In order to further characterize this phenotypic spectrum, we present two patients with features of both the severe and less severe subtypes with a review of phenotypes reported to date in the literature. In eight year old patient 1, a maternally inherited PIGA likely pathogenic variant was discovered using exome sequencing. He presented with myoclonic epilepsy, mild intellectual disability, spastic diplegia, developmental motor delay, and autism spectrum disorder. Patient 2 is a 13 year old with focal epilepsy, profound developmental delay, coarse facial features, severe intellectual disability and autism spectrum disorder. A de novo PIGA likely pathogenic variant was found through exome sequencing. Both patients had normal alkaline phosphatase levels and are without related organ abnormalities. We conclude that pathogenic PIGA variants cause a spectrum of phenotypes rather than the categories of "severe" and "less severe" as previously posited.
Collapse
|
25
|
Vetro A, Pisano T, Chiaro S, Procopio E, Guerra A, Parrini E, Mei D, Virdò S, Mangone G, Azzari C, Guerrini R. Early infantile epileptic-dyskinetic encephalopathy due to biallelic PIGP mutations. NEUROLOGY-GENETICS 2020; 6:e387. [PMID: 32042915 PMCID: PMC6984131 DOI: 10.1212/nxg.0000000000000387] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022]
Abstract
Objective To describe clinical, biochemical, and molecular genetic findings in a large inbred family in which 4 children with a severe early-onset epileptic-dyskinetic encephalopathy, with suppression burst EEG, harbored homozygous mutations of phosphatidylinositol glycan anchor biosynthesis, class P (PIGP), a member of the large glycosylphosphatidylinositol (GPI) anchor biosynthesis gene family. Methods We studied clinical features, EEG, brain MRI scans, whole-exome sequencing (WES), and measured the expression of a subset of GPI-anchored proteins (GPI-APs) in circulating granulocytes using flow cytometry. Results The 4 affected children exhibited a severe neurodevelopmental disorder featuring severe hypotonia with early dyskinesia progressing to quadriplegia, associated with infantile spasms, focal, tonic, and tonic-clonic seizures and a burst suppression EEG pattern. Two of the children died prematurely between age 2 and 12 years; the remaining 2 children are aged 2 years 7 months and 7 years 4 months. The homozygous c.384del variant of PIGP, present in the 4 patients, introduces a frame shift 6 codons before the expected stop signal and is predicted to result in the synthesis of a protein longer than the wild type, with impaired functionality. We demonstrated a reduced expression of the GPI-AP CD16 in the granulocytic membrane in affected individuals. Conclusions PIGP mutations are consistently associated with an epileptic-dyskinetic encephalopathy with the features of early infantile epileptic encephalopathy with profound disability and premature death. CD16 is a valuable marker to support a genetic diagnosis of inherited GPI deficiencies.
Collapse
Affiliation(s)
- Annalisa Vetro
- Pediatric Neurology (A.V., T.P., S.C., E. Parrini, D.M., S.V., R.G.), Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence; Metabolic and Muscular Unit (E. Procopio), Meyer Children's Hospital, University of Florence; Department of Medical and Surgical Science (A.G.), University of Modena and Reggio Emilia; Pediatric Immunology (G.M., C.A.), Department of Health Sciences, Meyer Children's Hospital, University of Florence; and IRCCS Stella Maris (R.G.), Pisa, Italy
| | - Tiziana Pisano
- Pediatric Neurology (A.V., T.P., S.C., E. Parrini, D.M., S.V., R.G.), Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence; Metabolic and Muscular Unit (E. Procopio), Meyer Children's Hospital, University of Florence; Department of Medical and Surgical Science (A.G.), University of Modena and Reggio Emilia; Pediatric Immunology (G.M., C.A.), Department of Health Sciences, Meyer Children's Hospital, University of Florence; and IRCCS Stella Maris (R.G.), Pisa, Italy
| | - Silvia Chiaro
- Pediatric Neurology (A.V., T.P., S.C., E. Parrini, D.M., S.V., R.G.), Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence; Metabolic and Muscular Unit (E. Procopio), Meyer Children's Hospital, University of Florence; Department of Medical and Surgical Science (A.G.), University of Modena and Reggio Emilia; Pediatric Immunology (G.M., C.A.), Department of Health Sciences, Meyer Children's Hospital, University of Florence; and IRCCS Stella Maris (R.G.), Pisa, Italy
| | - Elena Procopio
- Pediatric Neurology (A.V., T.P., S.C., E. Parrini, D.M., S.V., R.G.), Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence; Metabolic and Muscular Unit (E. Procopio), Meyer Children's Hospital, University of Florence; Department of Medical and Surgical Science (A.G.), University of Modena and Reggio Emilia; Pediatric Immunology (G.M., C.A.), Department of Health Sciences, Meyer Children's Hospital, University of Florence; and IRCCS Stella Maris (R.G.), Pisa, Italy
| | - Azzurra Guerra
- Pediatric Neurology (A.V., T.P., S.C., E. Parrini, D.M., S.V., R.G.), Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence; Metabolic and Muscular Unit (E. Procopio), Meyer Children's Hospital, University of Florence; Department of Medical and Surgical Science (A.G.), University of Modena and Reggio Emilia; Pediatric Immunology (G.M., C.A.), Department of Health Sciences, Meyer Children's Hospital, University of Florence; and IRCCS Stella Maris (R.G.), Pisa, Italy
| | - Elena Parrini
- Pediatric Neurology (A.V., T.P., S.C., E. Parrini, D.M., S.V., R.G.), Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence; Metabolic and Muscular Unit (E. Procopio), Meyer Children's Hospital, University of Florence; Department of Medical and Surgical Science (A.G.), University of Modena and Reggio Emilia; Pediatric Immunology (G.M., C.A.), Department of Health Sciences, Meyer Children's Hospital, University of Florence; and IRCCS Stella Maris (R.G.), Pisa, Italy
| | - Davide Mei
- Pediatric Neurology (A.V., T.P., S.C., E. Parrini, D.M., S.V., R.G.), Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence; Metabolic and Muscular Unit (E. Procopio), Meyer Children's Hospital, University of Florence; Department of Medical and Surgical Science (A.G.), University of Modena and Reggio Emilia; Pediatric Immunology (G.M., C.A.), Department of Health Sciences, Meyer Children's Hospital, University of Florence; and IRCCS Stella Maris (R.G.), Pisa, Italy
| | - Simona Virdò
- Pediatric Neurology (A.V., T.P., S.C., E. Parrini, D.M., S.V., R.G.), Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence; Metabolic and Muscular Unit (E. Procopio), Meyer Children's Hospital, University of Florence; Department of Medical and Surgical Science (A.G.), University of Modena and Reggio Emilia; Pediatric Immunology (G.M., C.A.), Department of Health Sciences, Meyer Children's Hospital, University of Florence; and IRCCS Stella Maris (R.G.), Pisa, Italy
| | - Giusi Mangone
- Pediatric Neurology (A.V., T.P., S.C., E. Parrini, D.M., S.V., R.G.), Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence; Metabolic and Muscular Unit (E. Procopio), Meyer Children's Hospital, University of Florence; Department of Medical and Surgical Science (A.G.), University of Modena and Reggio Emilia; Pediatric Immunology (G.M., C.A.), Department of Health Sciences, Meyer Children's Hospital, University of Florence; and IRCCS Stella Maris (R.G.), Pisa, Italy
| | - Chiara Azzari
- Pediatric Neurology (A.V., T.P., S.C., E. Parrini, D.M., S.V., R.G.), Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence; Metabolic and Muscular Unit (E. Procopio), Meyer Children's Hospital, University of Florence; Department of Medical and Surgical Science (A.G.), University of Modena and Reggio Emilia; Pediatric Immunology (G.M., C.A.), Department of Health Sciences, Meyer Children's Hospital, University of Florence; and IRCCS Stella Maris (R.G.), Pisa, Italy
| | - Renzo Guerrini
- Pediatric Neurology (A.V., T.P., S.C., E. Parrini, D.M., S.V., R.G.), Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence; Metabolic and Muscular Unit (E. Procopio), Meyer Children's Hospital, University of Florence; Department of Medical and Surgical Science (A.G.), University of Modena and Reggio Emilia; Pediatric Immunology (G.M., C.A.), Department of Health Sciences, Meyer Children's Hospital, University of Florence; and IRCCS Stella Maris (R.G.), Pisa, Italy
| |
Collapse
|
26
|
Agrahari AK, Pieroni E, Gatto G, Kumar A. The impact of missense mutation in PIGA associated to paroxysmal nocturnal hemoglobinuria and multiple congenital anomalies-hypotonia-seizures syndrome 2: A computational study. Heliyon 2019; 5:e02709. [PMID: 31687525 PMCID: PMC6820265 DOI: 10.1016/j.heliyon.2019.e02709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 08/12/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022] Open
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal blood disorder that manifests with hemolytic anemia, thrombosis, and peripheral blood cytopenias. The disease is caused by the deficiency of two glycosylphosphatidylinositols (GPI)-anchored proteins (CD55 and CD59) in the hemopoietic stem cells. The deficiency of GPI-anchored proteins has been associated with the somatic mutations in phosphatidylinositol glycan class A (PIGA). However, the mutations that do not cause PNH is associated with the multiple congenital anomalies-hypotonia-seizures syndrome 2 (MCAHS2). To best of our knowledge, no computational study has been performed to explore at an atomistic level the impact of PIGA missense mutations on the structure and dynamics of the protein. Therefore, we focused our study to provide molecular insights into the changes in protein structural dynamics upon mutation. In the initial step, screening for the most pathogenic mutations from the pool of publicly available mutations was performed. Further, to get a better understanding, pathogenic mutations were mapped to the modeled structure and the resulting protein was subjected to 100 ns molecular dynamics simulation. The residues close to C- and N-terminal regions of the protein were found to exhibit greater flexibility upon mutation. Our study suggests that four mutations are highly effective in altering the structural conformation and stability of the PIGA protein. Among them, mutant G48D was found to alter protein's structural dynamics to the greatest extent, both on a local and a global scale.
Collapse
Affiliation(s)
- Ashish Kumar Agrahari
- Department of Integrative Biology, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu 632014, India
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Enrico Pieroni
- CRS4 – Modeling & Simulation Group, Biosciences Department, 09010, Pula, Italy
| | - Gianluca Gatto
- Department of Electrical and Electronic Engineering, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy
| | - Amit Kumar
- Department of Electrical and Electronic Engineering, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy
| |
Collapse
|
27
|
Onoufriadis A, Simpson JK, McDonald C, Nguyen TTM, Campeau PM, Simpson MA, Martinez AE, McGrath JA. Nonsyndromic erythrodermic ichthyosis resulting from a homozygous mutation in PIGL. Clin Exp Dermatol 2019; 45:391-394. [PMID: 31535386 DOI: 10.1111/ced.14077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2019] [Indexed: 12/01/2022]
Affiliation(s)
- A Onoufriadis
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - J K Simpson
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - C McDonald
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - T T M Nguyen
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, Canada
| | - P M Campeau
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, Canada
| | - M A Simpson
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, UK
| | - A E Martinez
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - J A McGrath
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| |
Collapse
|
28
|
Krenn M, Knaus A, Westphal DS, Wortmann SB, Polster T, Woermann FG, Karenfort M, Mayatepek E, Meitinger T, Wagner M, Distelmaier F. Biallelic mutations in PIGP cause developmental and epileptic encephalopathy. Ann Clin Transl Neurol 2019; 6:968-973. [PMID: 31139695 PMCID: PMC6530525 DOI: 10.1002/acn3.768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/29/2022] Open
Abstract
Developmental and epileptic encephalopathies are characterized by infantile seizures and psychomotor delay. Glycosylphosphatidylinositol biosynthesis defects, resulting in impaired tethering of various proteins to the cell surface, represent the underlying pathology in some patients. One of the genes involved, PIGP, has recently been associated with infantile seizures and developmental delay in two siblings. Here, we report the second family with a markedly overlapping phenotype due to a homozygous frameshift mutation (c.456delA;p.Glu153Asnfs*34) in PIGP. Flow cytometry of patient granulocytes confirmed reduced expression of glycosylphosphatidylinositol-anchored proteins as functional consequence. Our findings corroborate PIGP as a monogenic disease gene for developmental and epileptic encephalopathy.
Collapse
Affiliation(s)
- Martin Krenn
- Department of NeurologyMedical University of ViennaViennaAustria
- Institute of Human GeneticsTechnical University MunichMunichGermany
| | - Alexej Knaus
- Institute for Genomic Statistics and BioinformaticsRheinische Friedrich‐Wilhelms UniversitätBonnGermany
| | - Dominik S. Westphal
- Institute of Human GeneticsTechnical University MunichMunichGermany
- Institute of Human GeneticsHelmholtz Zentrum MünchenNeuherbergGermany
| | - Saskia B. Wortmann
- Institute of Human GeneticsTechnical University MunichMunichGermany
- Institute of Human GeneticsHelmholtz Zentrum MünchenNeuherbergGermany
- University Children's HospitalParacelsus Medical UniversitySalzburgAustria
| | | | | | - Michael Karenfort
- Department of General Pediatrics, Neonatology and Pediatric CardiologyUniversity Children's HospitalMedical FacultyHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric CardiologyUniversity Children's HospitalMedical FacultyHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Thomas Meitinger
- Institute of Human GeneticsTechnical University MunichMunichGermany
- Institute of Human GeneticsHelmholtz Zentrum MünchenNeuherbergGermany
| | - Matias Wagner
- Institute of Human GeneticsTechnical University MunichMunichGermany
- Institute of Human GeneticsHelmholtz Zentrum MünchenNeuherbergGermany
- Institute of NeurogenomicsHelmholtz Zentrum MünchenNeuherbergGermany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric CardiologyUniversity Children's HospitalMedical FacultyHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| |
Collapse
|
29
|
Corvino V, Apisa P, Malesci R, Laria C, Auletta G, Franzé A. X-Linked Sensorineural Hearing Loss: A Literature Review. Curr Genomics 2018; 19:327-338. [PMID: 30065609 PMCID: PMC6030855 DOI: 10.2174/1389202919666171218163046] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 11/10/2017] [Accepted: 12/04/2017] [Indexed: 01/01/2023] Open
Abstract
Sensorineural hearing loss is a very diffuse pathology (about 1/1000 born) with several types of transmission. X-linked hearing loss accounts for approximately 1% - 2% of cases of non-syndromic forms, as well as for many syndromic forms. To date, six loci (DFNX1-6) and five genes (PRPS1 for DFNX1, POU3F4 for DFNX2, SMPX for DFNX4, AIFM1 for DFNX5 and COL4A6 for DFNX6) have been identified for X-linked non-syndromic hearing loss. For the syndromic forms, at least 15 genes have been identified, some of which are also implicated in non-syndromic forms. Moreover, some syndromic forms, presenting large chromosomal deletions, are associated with mental retardation too. This review presents an overview of the currently known genes related to X-linked hearing loss with the support of the most recent literature. It summarizes the genetics and clinical features of X-linked hearing loss to give information useful to realize a clear genetic counseling and an early diagnosis. It is important to get an early diagnosis of these diseases to decide the investigations to predict the evolution of the disease and the onset of any other future symptoms. This information will be clearly useful for choosing the best therapeutic strategy. In particular, regarding audiological aspects, this review highlights risks and benefits currently known in some cases for specific therapeutic intervention.
Collapse
Affiliation(s)
- Virginia Corvino
- Unit of Audiology, Department of Neurosciences, Reproductives and Odontostomatologic Sciences, University of Naples “Federico II”, Naples, Italy
| | - Pasqualina Apisa
- Unit of Audiology, Department of Neurosciences, Reproductives and Odontostomatologic Sciences, University of Naples “Federico II”, Naples, Italy
| | - Rita Malesci
- Unit of Audiology, Department of Neurosciences, Reproductives and Odontostomatologic Sciences, University of Naples “Federico II”, Naples, Italy
| | - Carla Laria
- Unit of Audiology, Department of Neurosciences, Reproductives and Odontostomatologic Sciences, University of Naples “Federico II”, Naples, Italy
| | - Gennaro Auletta
- Unit of Audiology, Department of Neurosciences, Reproductives and Odontostomatologic Sciences, University of Naples “Federico II”, Naples, Italy
| | - Annamaria Franzé
- Unit of Audiology, Department of Neurosciences, Reproductives and Odontostomatologic Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
30
|
A novel germline PIGA mutation causes early-onset epileptic encephalopathies in Chinese monozygotic twins. Brain Dev 2018; 40:596-600. [PMID: 29502866 DOI: 10.1016/j.braindev.2018.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 11/24/2022]
Abstract
We report a case of 14-month-old male monozygotic twins showing early-onset intractable epilepsy, delayed psychomotor development, hypotonia, opisthotonus, and dysmorphism. They presented with refractory partial and secondary generalized tonic-clonic or myoclonic seizures since age of 6 months. Electroencephalograms mainly revealed fast activity in left occipital region and generalized high amplitude polyspikes and wave. Brain MRI was normal. A de novo germline hemizygous mutation, C.110 T > C (p.37 M > T), in exon 2 of PIGA was confirmed, which indicated that a novel germline mutation in PIGA leads to early-onset epileptic encephalopathies.
Collapse
|
31
|
Yang J, Wang Q, Zhuo Q, Tian H, Li W, Luo F, Zhang J, Bi D, Peng J, Zhou D, Xin H. A likely pathogenic variant putatively affecting splicing of PIGA identified in a multiple congenital anomalies hypotonia-seizures syndrome 2 (MCAHS2) family pedigree via whole-exome sequencing. Mol Genet Genomic Med 2018; 6:739-748. [PMID: 29974678 PMCID: PMC6160699 DOI: 10.1002/mgg3.428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/25/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022] Open
Abstract
Background Glycosylphosphatidylinositol (GPI) anchoring is a special type of protein posttranslational modification, by which proteins with diverse function are attached to cell membrane through a covalent linkage between the protein and the glycolipid. Phosphatidylinositol glycan anchor biosynthesis class A (PIGA) is a key enzyme in GPI anchor biosynthesis, somatic mutations or genetic variants of which have been associated with paroxysmal nocturnal hemoglobinuria (PNH), or PIGA deficiency, respectively. More than 10 PIGA pathogenic or likely pathogenic variants have been reported in a wide spectrum of clinical syndromes of PIGA deficiency, including multiple congenital anomalies hypotonia‐seizures syndrome 2 (MCAHS2). Methods Whole‐exome sequencing (WES) was performed on two trios, that is., the proband's family and his affected maternal cousin's family, from a nonconsanguineous Chinese family pedigree with hypotonia‐encephalopathy‐seizures disease history and putative X‐linked recessive inheritance. Sanger sequencing for PIGA variant was performed on affected members as well as unaffected members in the family pedigree to verify its familial segregation. Results A novel likely pathogenic variant in PIGA was identified through comparative WES analysis of the two affected families. The single‐nucleotide substitution (NC_000023.9:g.15343279T>C) is located in intron 3 of the PIGA gene and within the splice acceptor consensus sequence (NM_002641.3:c.849‐5A>G). Even though we have not performed RNA studies, in silico tools predict that this intronic variant may alter normal splicing, causing a four base pair insertion which creates a frameshift and a premature stop codon at position 297 (NP_002632.1:p.(Arg283Serfs*15)). Sanger sequencing analysis of the extended family members confirmed the presence of the variant and its X‐linked inheritance. Conclusion WES data analysis along with familial segregation of a rare intronic variant are suggestive of a diagnosis of X‐liked PIGA deficiency with clinical features of MCAHS2.
Collapse
Affiliation(s)
- Junli Yang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Qiong Wang
- Institute for Biology and Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Qingcui Zhuo
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Huiling Tian
- Children Rehabilitation Center of Linyi Women and Children's Hospital, Linyi, China
| | - Wen Li
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Fang Luo
- MyGenostics Inc., Beijing, China
| | - Jinghui Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Dan Bi
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Jing Peng
- Institute for Biology and Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Dong Zhou
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Huawei Xin
- Institute for Biology and Medicine, Wuhan University of Science and Technology, Wuhan, China.,School of Pharmacy, Linyi University, Linyi, China
| |
Collapse
|
32
|
Lin WD, Chou IC, Tsai FJ, Hong SY. A novel PIGA mutation in a Taiwanese family with early-onset epileptic encephalopathy. Seizure 2018; 58:52-54. [PMID: 29656098 DOI: 10.1016/j.seizure.2018.03.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/13/2017] [Accepted: 03/28/2018] [Indexed: 11/28/2022] Open
Abstract
PURPOSE We report the first family with PIGA-associated epileptic encephalopathy in Taiwan and hope to elucidate its special phenotype and inheritance pattern. METHOD We found a Taiwanese family with several members suffered from severe epileptic encephalopathy (ZY07, ZY01, ZY04). To determine the underlying etiology, whole exome sequencing was conducted. RESULTS A single novel variant, NM_002641: c.356G > A, p.Arg119Gln, was identified in the X chromosome PIGA gene in our proband patient (ZY07). The patient's mother (ZY02) and aunt (ZY03) were confirmed as carriers of the hemizygous variant. CONCLUSIONS This paper highlights the highly transmitted features of PIGA and other X-linked EIEEs, raising awareness of rare forms of epileptic encephalopathy.
Collapse
Affiliation(s)
- Wei-De Lin
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - I-Ching Chou
- Division of Pediatrics Neurology, China Medical University, Children's Hospital, Taichung, Taiwan; Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; Division of Pediatrics Genetics, China Medical University Children's Hospital, Taichung, Taiwan
| | - Syuan-Yu Hong
- Division of Pediatrics Neurology, China Medical University, Children's Hospital, Taichung, Taiwan.
| |
Collapse
|
33
|
Pagnamenta AT, Murakami Y, Anzilotti C, Titheradge H, Oates AJ, Morton J, Kinoshita T, Kini U, Taylor JC. A homozygous variant disrupting the PIGH start-codon is associated with developmental delay, epilepsy, and microcephaly. Hum Mutat 2018; 39:822-826. [PMID: 29573052 PMCID: PMC6001798 DOI: 10.1002/humu.23420] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/09/2018] [Accepted: 03/02/2018] [Indexed: 01/12/2023]
Abstract
Defective glycosylphosphatidylinositol (GPI)‐anchor biogenesis can cause a spectrum of predominantly neurological problems. For eight genes critical to this biological process, disease associations are not yet reported. Scanning exomes from 7,833 parent–child trios and 1,792 singletons from the DDD study for biallelic variants in this gene‐set uncovered a rare PIGH variant in a boy with epilepsy, microcephaly, and behavioral difficulties. Although only 2/2 reads harbored this c.1A > T transversion, the presence of ∼25 Mb autozygosity at this locus implied homozygosity, which was confirmed using Sanger sequencing. A similarly‐affected sister was also homozygous. FACS analysis of PIGH‐deficient CHO cells indicated that cDNAs with c.1A > T could not efficiently restore expression of GPI‐APs. Truncation of PIGH protein was consistent with the utilization of an in‐frame start‐site at codon 63. In summary, we describe siblings harboring a homozygous c.1A > T variant resulting in defective GPI‐anchor biogenesis and highlight the importance of exploring low‐coverage variants within autozygous regions.
Collapse
Affiliation(s)
- Alistair T Pagnamenta
- National Institute for Health Research Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, UK
| | - Yoshiko Murakami
- Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Consuelo Anzilotti
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hannah Titheradge
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's NHS Foundation Trust, Birmingham Women's Hospital, Mindelsohn Way, Edgbaston, Birmingham, UK
| | - Adam J Oates
- Radiology Department, Birmingham Children's Hospital, Birmingham, UK
| | - Jenny Morton
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's NHS Foundation Trust, Birmingham Women's Hospital, Mindelsohn Way, Edgbaston, Birmingham, UK
| | -
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Taroh Kinoshita
- Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Usha Kini
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jenny C Taylor
- National Institute for Health Research Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, UK
| |
Collapse
|
34
|
Knaus A, Pantel JT, Pendziwiat M, Hajjir N, Zhao M, Hsieh TC, Schubach M, Gurovich Y, Fleischer N, Jäger M, Köhler S, Muhle H, Korff C, Møller RS, Bayat A, Calvas P, Chassaing N, Warren H, Skinner S, Louie R, Evers C, Bohn M, Christen HJ, van den Born M, Obersztyn E, Charzewska A, Endziniene M, Kortüm F, Brown N, Robinson PN, Schelhaas HJ, Weber Y, Helbig I, Mundlos S, Horn D, Krawitz PM. Characterization of glycosylphosphatidylinositol biosynthesis defects by clinical features, flow cytometry, and automated image analysis. Genome Med 2018; 10:3. [PMID: 29310717 PMCID: PMC5759841 DOI: 10.1186/s13073-017-0510-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/11/2017] [Indexed: 12/17/2022] Open
Abstract
Background Glycosylphosphatidylinositol biosynthesis defects (GPIBDs) cause a group of phenotypically overlapping recessive syndromes with intellectual disability, for which pathogenic mutations have been described in 16 genes of the corresponding molecular pathway. An elevated serum activity of alkaline phosphatase (AP), a GPI-linked enzyme, has been used to assign GPIBDs to the phenotypic series of hyperphosphatasia with mental retardation syndrome (HPMRS) and to distinguish them from another subset of GPIBDs, termed multiple congenital anomalies hypotonia seizures syndrome (MCAHS). However, the increasing number of individuals with a GPIBD shows that hyperphosphatasia is a variable feature that is not ideal for a clinical classification. Methods We studied the discriminatory power of multiple GPI-linked substrates that were assessed by flow cytometry in blood cells and fibroblasts of 39 and 14 individuals with a GPIBD, respectively. On the phenotypic level, we evaluated the frequency of occurrence of clinical symptoms and analyzed the performance of computer-assisted image analysis of the facial gestalt in 91 individuals. Results We found that certain malformations such as Morbus Hirschsprung and diaphragmatic defects are more likely to be associated with particular gene defects (PIGV, PGAP3, PIGN). However, especially at the severe end of the clinical spectrum of HPMRS, there is a high phenotypic overlap with MCAHS. Elevation of AP has also been documented in some of the individuals with MCAHS, namely those with PIGA mutations. Although the impairment of GPI-linked substrates is supposed to play the key role in the pathophysiology of GPIBDs, we could not observe gene-specific profiles for flow cytometric markers or a correlation between their cell surface levels and the severity of the phenotype. In contrast, it was facial recognition software that achieved the highest accuracy in predicting the disease-causing gene in a GPIBD. Conclusions Due to the overlapping clinical spectrum of both HPMRS and MCAHS in the majority of affected individuals, the elevation of AP and the reduced surface levels of GPI-linked markers in both groups, a common classification as GPIBDs is recommended. The effectiveness of computer-assisted gestalt analysis for the correct gene inference in a GPIBD and probably beyond is remarkable and illustrates how the information contained in human faces is pivotal in the delineation of genetic entities. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0510-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexej Knaus
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany.,Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany.,Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Jean Tori Pantel
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Manuela Pendziwiat
- Department of Neuropediatrics, University Medical Center Schleswig Holstein, 24105, Kiel, Germany
| | - Nurulhuda Hajjir
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Max Zhao
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Tzung-Chien Hsieh
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany.,Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Max Schubach
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany.,Berlin Institute of Health (BIH), 10178, Berlin, Germany
| | | | | | - Marten Jäger
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany.,Berlin Institute of Health (BIH), 10178, Berlin, Germany
| | - Sebastian Köhler
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Hiltrud Muhle
- Department of Neuropediatrics, University Medical Center Schleswig Holstein, 24105, Kiel, Germany
| | - Christian Korff
- Unité de Neuropédiatrie, Université de Genève, CH-1211, Genève, Switzerland
| | - Rikke S Møller
- Danish Epilepsy Centre, DK-4293, Dianalund, Denmark.,Institute for Regional Health Services Research, University of Southern Denmark, DK-5000, Odense, Denmark
| | - Allan Bayat
- Department of Pediatrics, University Hospital of Hvidovre, 2650, Hvicovre, Denmark
| | - Patrick Calvas
- Service de Génétique Médicale, Hôpital Purpan, CHU, 31059, Toulouse, France
| | - Nicolas Chassaing
- Service de Génétique Médicale, Hôpital Purpan, CHU, 31059, Toulouse, France
| | | | | | | | - Christina Evers
- Genetische Poliklinik, Universitätsklinik Heidelberg, 69120, Heidelberg, Germany
| | - Marc Bohn
- St. Bernward Krankenhaus, 31134, Hildesheim, Germany
| | - Hans-Jürgen Christen
- Kinderkrankenhaus auf der Bult, Hannoversche Kinderheilanstalt, 30173, Hannover, Germany
| | | | - Ewa Obersztyn
- Institute of Mother and Child Department of Molecular Genetics, 01-211, Warsaw, Poland
| | - Agnieszka Charzewska
- Institute of Mother and Child Department of Molecular Genetics, 01-211, Warsaw, Poland
| | - Milda Endziniene
- Neurology Department, Lithuanian University of Health Sciences, 50009, Kaunas, Lithuania
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Natasha Brown
- Victorian Clinical Genetics Services, Royal Children's Hospital, MCRI, Parkville, Australia.,Department of Clinical Genetics, Austin Health, Heidelberg, Australia
| | - Peter N Robinson
- The Jackson Laboratory for Genomic Medicine, 06032, Farmington, USA
| | - Helenius J Schelhaas
- Departement of Neurology, Academic Center for Epileptology, 5590, Heeze, The Netherlands
| | - Yvonne Weber
- Department of Neurology and Epileptology and Hertie Institute for Clinical Brain Research, University Tübingen, 72076, Tübingen, Germany
| | - Ingo Helbig
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany.,Pediatric Neurology, Children's Hospital of Philadelphia, 3401, Philadelphia, USA
| | - Stefan Mundlos
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany.,Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Denise Horn
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany.
| | - Peter M Krawitz
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany. .,Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany. .,Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany.
| |
Collapse
|
35
|
Mutations in GPAA1, Encoding a GPI Transamidase Complex Protein, Cause Developmental Delay, Epilepsy, Cerebellar Atrophy, and Osteopenia. Am J Hum Genet 2017; 101:856-865. [PMID: 29100095 DOI: 10.1016/j.ajhg.2017.09.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/21/2017] [Indexed: 11/21/2022] Open
Abstract
Approximately one in every 200 mammalian proteins is anchored to the cell membrane through a glycosylphosphatidylinositol (GPI) anchor. These proteins play important roles notably in neurological development and function. To date, more than 20 genes have been implicated in the biogenesis of GPI-anchored proteins. GPAA1 (glycosylphosphatidylinositol anchor attachment 1) is an essential component of the transamidase complex along with PIGK, PIGS, PIGT, and PIGU (phosphatidylinositol-glycan biosynthesis classes K, S, T, and U, respectively). This complex orchestrates the attachment of the GPI anchor to the C terminus of precursor proteins in the endoplasmic reticulum. Here, we report bi-allelic mutations in GPAA1 in ten individuals from five families. Using whole-exome sequencing, we identified two frameshift mutations (c.981_993del [p.Gln327Hisfs∗102] and c.920delG [p.Gly307Alafs∗11]), one intronic splicing mutation (c.1164+5C>T), and six missense mutations (c.152C>T [p.Ser51Leu], c.160_161delinsAA [p.Ala54Asn], c.527G>C [p.Trp176Ser], c.869T>C [p.Leu290Pro], c.872T>C [p.Leu291Pro], and c.1165G>C [p.Ala389Pro]). Most individuals presented with global developmental delay, hypotonia, early-onset seizures, cerebellar atrophy, and osteopenia. The splicing mutation was found to decrease GPAA1 mRNA. Moreover, flow-cytometry analysis of five available individual samples showed that several GPI-anchored proteins had decreased cell-surface abundance in leukocytes (FLAER, CD16, and CD59) or fibroblasts (CD73 and CD109). Transduction of fibroblasts with a lentivirus encoding the wild-type protein partially rescued the deficiency of GPI-anchored proteins. These findings highlight the role of the transamidase complex in the development and function of the cerebellum and the skeletal system.
Collapse
|
36
|
PIGO deficiency: palmoplantar keratoderma and novel mutations. Orphanet J Rare Dis 2017; 12:101. [PMID: 28545593 PMCID: PMC5445308 DOI: 10.1186/s13023-017-0654-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 05/15/2017] [Indexed: 01/19/2023] Open
Abstract
Background Several genetic defects have been identified in the glycosylphosphatidylinositol (GPI) anchor synthesis, including mutations in PIGO encoding phosphatidylinositol glycan anchor biosynthesis class O protein. These defects constitute a subgroup of the congenital disorders of glycosylation (CDG). Seven patients from five families have been reported carrying variants in PIGO that cause an autosomal recessive syndrome characterised by dysmorphism, psychomotor disability, epilepsy and hyperphosphatasemia. Methods Whole exome sequencing was performed in a boy with dysmorphism, psychomotor disability, epilepsy, palmoplantar keratoderma, hyperphosphatasemia and platelet dysfunction without a clinical bleeding phenotype. Results Two novel variants in PIGO were detected. The missense variant encoding p. His871Pro was inherited from the boy’s father while the frameshift variant encoding p. Arg604ProfsTer40 was maternally inherited. Conclusion A boy with two novel PIGO variants is reported. The skin phenotype and platelet dysfunction in this patient have not been described in previously reported patients with PIGO deficiency but it is of course uncertain whether these are caused by this disorder. The literature on PIGO deficiency is reviewed. Electronic supplementary material The online version of this article (doi:10.1186/s13023-017-0654-9) contains supplementary material, which is available to authorized users.
Collapse
|
37
|
A hypomorphic PIGA gene mutation causes severe defects in neuron development and susceptibility to complement-mediated toxicity in a human iPSC model. PLoS One 2017; 12:e0174074. [PMID: 28441409 PMCID: PMC5404867 DOI: 10.1371/journal.pone.0174074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/02/2017] [Indexed: 12/11/2022] Open
Abstract
Mutations in genes involved in glycosylphosphatidylinositol (GPI) anchor biosynthesis underlie a group of congenital syndromes characterized by severe neurodevelopmental defects. GPI anchored proteins have diverse roles in cell adhesion, signaling, metabolism and complement regulation. Over 30 enzymes are required for GPI anchor biosynthesis and PIGA is involved in the first step of this process. A hypomorphic mutation in the X-linked PIGA gene (c.1234C>T) causes multiple congenital anomalies hypotonia seizure syndrome 2 (MCAHS2), indicating that even partial reduction of GPI anchored proteins dramatically impairs central nervous system development, but the mechanism is unclear. Here, we established a human induced pluripotent stem cell (hiPSC) model containing the PIGAc.1234C>T mutation to study the effects of a hypomorphic allele of PIGA on neuronal development. Neuronal differentiation from neural progenitor cells generated by EB formation in PIGAc.1234C>T is significantly impaired with decreased proliferation, aberrant synapse formation and abnormal membrane depolarization. The results provide direct evidence for a critical role of GPI anchor proteins in early neurodevelopment. Furthermore, neural progenitors derived from PIGAc.1234C>T hiPSCs demonstrate increased susceptibility to complement-mediated cytotoxicity, suggesting that defective complement regulation may contribute to neurodevelopmental disorders.
Collapse
|
38
|
Tanigawa J, Mimatsu H, Mizuno S, Okamoto N, Fukushi D, Tominaga K, Kidokoro H, Muramatsu Y, Nishi E, Nakamura S, Motooka D, Nomura N, Hayasaka K, Niihori T, Aoki Y, Nabatame S, Hayakawa M, Natsume J, Ozono K, Kinoshita T, Wakamatsu N, Murakami Y. Phenotype-genotype correlations of PIGO deficiency with variable phenotypes from infantile lethality to mild learning difficulties. Hum Mutat 2017; 38:805-815. [PMID: 28337824 DOI: 10.1002/humu.23219] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/15/2017] [Accepted: 03/19/2017] [Indexed: 01/23/2023]
Abstract
Inherited GPI (glycosylphosphatidylinositol) deficiencies (IGDs), a recently defined group of diseases, show a broad spectrum of symptoms. Hyperphosphatasia mental retardation syndrome, also known as Mabry syndrome, is a type of IGDs. There are at least 26 genes involved in the biosynthesis and transport of GPI-anchored proteins; however, IGDs constitute a rare group of diseases, and correlations between the spectrum of symptoms and affected genes or the type of mutations have not been shown. Here, we report four newly identified and five previously described Japanese families with PIGO (phosphatidylinositol glycan anchor biosynthesis class O) deficiency. We show how the clinical severity of IGDs correlates with flow cytometric analysis of blood, functional analysis using a PIGO-deficient cell line, and the degree of hyperphosphatasia. The flow cytometric analysis and hyperphosphatasia are useful for IGD diagnosis, but the expression level of GPI-anchored proteins and the degree of hyperphosphatasia do not correlate, although functional studies do, with clinical severity. Compared with PIGA (phosphatidylinositol glycan anchor biosynthesis class A) deficiency, PIGO deficiency shows characteristic features, such as Hirschsprung disease, brachytelephalangy, and hyperphosphatasia. This report shows the precise spectrum of symptoms according to the severity of mutations and compares symptoms between different types of IGD.
Collapse
Affiliation(s)
- Junpei Tanigawa
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Haruka Mimatsu
- Division of Neonatology Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Seiji Mizuno
- Department of Pediatrics, Central Hospital, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Osaka, Japan
| | - Daisuke Fukushi
- Department of Genetics, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - Koji Tominaga
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Department of Child Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Hiroyuki Kidokoro
- Department of Pediatrics, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Yukako Muramatsu
- Division of Neonatology Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Eriko Nishi
- Department of Pediatrics, Central Hospital, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Noriko Nomura
- Department of Genetics, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - Kiyoshi Hayasaka
- Department of Pediatrics, Yamagata University School of Medicine, Yamagata, Yamagata, Japan
| | - Tetsuya Niihori
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Shin Nabatame
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masahiro Hayakawa
- Division of Neonatology Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Jun Natsume
- Department of Developmental Disability Medicine and Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Taroh Kinoshita
- Department of Immunoregulation, Research Institute for Microbial Diseases Osaka University, Suita, Osaka, Japan
| | - Nobuaki Wakamatsu
- Department of Genetics, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - Yoshiko Murakami
- Department of Immunoregulation, Research Institute for Microbial Diseases Osaka University, Suita, Osaka, Japan
| |
Collapse
|
39
|
Analysis of exome data for 4293 trios suggests GPI-anchor biogenesis defects are a rare cause of developmental disorders. Eur J Hum Genet 2017; 25:669-679. [PMID: 28327575 PMCID: PMC5477361 DOI: 10.1038/ejhg.2017.32] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 12/15/2016] [Accepted: 12/24/2016] [Indexed: 01/12/2023] Open
Abstract
Over 150 different proteins attach to the plasma membrane using glycosylphosphatidylinositol (GPI) anchors. Mutations in 18 genes that encode components of GPI-anchor biogenesis result in a phenotypic spectrum that includes learning disability, epilepsy, microcephaly, congenital malformations and mild dysmorphic features. To determine the incidence of GPI-anchor defects, we analysed the exome data from 4293 parent–child trios recruited to the Deciphering Developmental Disorders (DDD) study. All probands recruited had a neurodevelopmental disorder. We searched for variants in 31 genes linked to GPI-anchor biogenesis and detected rare biallelic variants in PGAP3, PIGN, PIGT (n=2), PIGO and PIGL, providing a likely diagnosis for six families. In five families, the variants were in a compound heterozygous configuration while in a consanguineous Afghani kindred, a homozygous c.709G>C; p.(E237Q) variant in PIGT was identified within 10–12 Mb of autozygosity. Validation and segregation analysis was performed using Sanger sequencing. Across the six families, five siblings were available for testing and in all cases variants co-segregated consistent with them being causative. In four families, abnormal alkaline phosphatase results were observed in the direction expected. FACS analysis of knockout HEK293 cells that had been transfected with wild-type or mutant cDNA constructs demonstrated that the variants in PIGN, PIGT and PIGO all led to reduced activity. Splicing assays, performed using leucocyte RNA, showed that a c.336-2A>G variant in PIGL resulted in exon skipping and p.D113fs*2. Our results strengthen recently reported disease associations, suggest that defective GPI-anchor biogenesis may explain ~0.15% of individuals with developmental disorders and highlight the benefits of data sharing.
Collapse
|
40
|
Kim YO, Yang JH, Park C, Kim SK, Kim MK, Shin MG, Woo YJ. A novel PIGA mutation in a family with X-linked, early-onset epileptic encephalopathy. Brain Dev 2016; 38:750-4. [PMID: 26923721 DOI: 10.1016/j.braindev.2016.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 11/26/2022]
Abstract
Early-onset epileptic encephalopathies (EOEEs) are severe and intractable infantile-onset epilepsies with progressive intellectual disability and other associated neurologic comorbidities. Whole-exome sequencing (WES) was recently used to determine the causative gene mutations in individuals with unclassified EOEEs. The present study used WES to determine the causative variant in a family with X-linked, EOEE. One potential variant (c. 427A>G, NM_002641.3; p.Lys143Glu, NP_002632.1) of the gene encoding phosphatidylinositol glycan biosynthesis class A protein (PIGA; PIGA) was found, which was verified by Sanger sequencing. The functional effect of this PIGA mutation was assessed by the surface expression levels of glycosylphosphatidylinositol-anchored proteins on blood cells: CD16 on red blood cells was significantly decreased in the proband (by 11.0%) and his mother (by 15.6%). This is the second report of a less-severe form of PIGA deficiency.
Collapse
Affiliation(s)
- Young Ok Kim
- Department of Pediatrics, Chonnam National University Medical School, Gwangju, Republic of Korea.
| | - Jae Hyuk Yang
- Department of Pediatrics, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Seul Kee Kim
- Department of Radiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Myeong-Kyu Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Myung-Geun Shin
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Young Jong Woo
- Department of Pediatrics, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
41
|
Makrythanasis P, Kato M, Zaki MS, Saitsu H, Nakamura K, Santoni FA, Miyatake S, Nakashima M, Issa MY, Guipponi M, Letourneau A, Logan CV, Roberts N, Parry DA, Johnson CA, Matsumoto N, Hamamy H, Sheridan E, Kinoshita T, Antonarakis SE, Murakami Y. Pathogenic Variants in PIGG Cause Intellectual Disability with Seizures and Hypotonia. Am J Hum Genet 2016; 98:615-26. [PMID: 26996948 PMCID: PMC4833197 DOI: 10.1016/j.ajhg.2016.02.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 02/09/2016] [Indexed: 12/16/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI) is a glycolipid that anchors >150 various proteins to the cell surface. At least 27 genes are involved in biosynthesis and transport of GPI-anchored proteins (GPI-APs). To date, mutations in 13 of these genes are known to cause inherited GPI deficiencies (IGDs), and all are inherited as recessive traits. IGDs mainly manifest as intellectual disability, epilepsy, coarse facial features, and multiple organ anomalies. These symptoms are caused by the decreased surface expression of GPI-APs or by structural abnormalities of GPI. Here, we present five affected individuals (from two consanguineous families from Egypt and Pakistan and one non-consanguineous family from Japan) who show intellectual disability, hypotonia, and early-onset seizures. We identified pathogenic variants in PIGG, a gene in the GPI pathway. In the consanguineous families, homozygous variants c.928C>T (p.Gln310(∗)) and c.2261+1G>C were found, whereas the Japanese individual was compound heterozygous for c.2005C>T (p.Arg669Cys) and a 2.4 Mb deletion involving PIGG. PIGG is the enzyme that modifies the second mannose with ethanolamine phosphate, which is removed soon after GPI is attached to the protein. Physiological significance of this transient modification has been unclear. Using B lymphoblasts from affected individuals of the Egyptian and Japanese families, we revealed that PIGG activity was almost completely abolished; however, the GPI-APs had normal surface levels and normal structure, indicating that the pathogenesis of PIGG deficiency is not yet fully understood. The discovery of pathogenic variants in PIGG expands the spectrum of IGDs and further enhances our understanding of this etiopathogenic class of intellectual disability.
Collapse
Affiliation(s)
- Periklis Makrythanasis
- Department of Genetic Medicine and Development, University of Geneva, Geneva 1211, Switzerland; Service of Genetic Medicine, University Hospitals of Geneva, Geneva 1211, Switzerland
| | - Mitsuhiro Kato
- Department of Pediatrics, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; Department of Pediatrics, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Maha S Zaki
- Department of Clinical Genetics, National Research Centre, Cairo 12311, Egypt
| | - Hirotomo Saitsu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Kazuyuki Nakamura
- Department of Pediatrics, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| | - Federico A Santoni
- Department of Genetic Medicine and Development, University of Geneva, Geneva 1211, Switzerland; Service of Genetic Medicine, University Hospitals of Geneva, Geneva 1211, Switzerland
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Mitsuko Nakashima
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Mahmoud Y Issa
- Department of Clinical Genetics, National Research Centre, Cairo 12311, Egypt
| | - Michel Guipponi
- Service of Genetic Medicine, University Hospitals of Geneva, Geneva 1211, Switzerland
| | - Audrey Letourneau
- Department of Genetic Medicine and Development, University of Geneva, Geneva 1211, Switzerland
| | - Clare V Logan
- School of Medicine, University of Leeds, Leeds LS2 9NL, UK
| | - Nicola Roberts
- School of Medicine, University of Leeds, Leeds LS2 9NL, UK
| | - David A Parry
- School of Medicine, University of Leeds, Leeds LS2 9NL, UK
| | | | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Hanan Hamamy
- Department of Genetic Medicine and Development, University of Geneva, Geneva 1211, Switzerland
| | | | - Taroh Kinoshita
- Department of Immunoregulation, Research Institute for Microbial Diseases, and World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva, Geneva 1211, Switzerland; Service of Genetic Medicine, University Hospitals of Geneva, Geneva 1211, Switzerland; Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva 1211, Switzerland.
| | - Yoshiko Murakami
- Department of Immunoregulation, Research Institute for Microbial Diseases, and World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
42
|
Yang L, Gao Z, Hu L, Wu G, Yang X, Zhang L, Zhu Y, Wong BS, Xin W, Sy MS, Li C. Glycosylphosphatidylinositol Anchor Modification Machinery Deficiency Is Responsible for the Formation of Pro-Prion Protein (PrP) in BxPC-3 Protein and Increases Cancer Cell Motility. J Biol Chem 2015; 291:3905-17. [PMID: 26683373 DOI: 10.1074/jbc.m115.705830] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Indexed: 11/06/2022] Open
Abstract
The normal cellular prion protein (PrP) is a glycosylphosphatidylinositol (GPI)-anchored cell surface glycoprotein. However, in pancreatic ductal adenocarcinoma cell lines, such as BxPC-3, PrP exists as a pro-PrP retaining its glycosylphosphatidylinositol (GPI) peptide signaling sequence. Here, we report the identification of another pancreatic ductal adenocarcinoma cell line, AsPC-1, which expresses a mature GPI-anchored PrP. Comparison of the 24 genes involved in the GPI anchor modification pathway between AsPC-1 and BxPC-3 revealed 15 of the 24 genes, including PGAP1 and PIG-F, were down-regulated in the latter cells. We also identified six missense mutations in DPM2, PIG-C, PIG-N, and PIG-P alongside eight silent mutations. When BxPC-3 cells were fused with Chinese hamster ovary (CHO) cells, which lack endogenous PrP, pro-PrP was successfully converted into mature GPI-anchored PrP. Expression of the individual gene, such as PGAP1, PIG-F, or PIG-C, into BxPC-3 cells does not result in phosphoinositide-specific phospholipase C sensitivity of PrP. However, when PIG-F but not PIG-P is expressed in PGAP1-expressing BxPC-3 cells, PrP on the surface of the cells becomes phosphoinositide-specific phospholipase C-sensitive. Thus, low expression of PIG-F and PGAP1 is the major factor contributing to the accumulation of pro-PrP. More importantly, BxPC-3 cells expressing GPI-anchored PrP migrate much slower than BxPC-3 cells bearing pro-PrP. In addition, GPI-anchored PrP-bearing AsPC-1 cells also migrate slower than pro-PrP bearing BxPC-3 cells, although both cells express filamin A. "Knocking out" PRNP in BxPC-3 cell drastically reduces its migration. Collectively, these results show that multiple gene irregularity in BxPC-3 cells is responsible for the formation of pro-PrP, and binding of pro-PrP to filamin A contributes to enhanced tumor cell motility.
Collapse
Affiliation(s)
- Liheng Yang
- From the Wuhan Institute of Virology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 44 Xiao Hong Shan Zhong Qu, Wuhan, 430071, China, the Department of Virology, School of Life Sciences, Wuhan University, State Key Laboratory of Virology, Wuhan, 430071, China
| | - Zhenxing Gao
- From the Wuhan Institute of Virology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 44 Xiao Hong Shan Zhong Qu, Wuhan, 430071, China, the Department of Virology, School of Life Sciences, Wuhan University, State Key Laboratory of Virology, Wuhan, 430071, China
| | - Lipeng Hu
- From the Wuhan Institute of Virology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 44 Xiao Hong Shan Zhong Qu, Wuhan, 430071, China
| | - Guiru Wu
- From the Wuhan Institute of Virology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 44 Xiao Hong Shan Zhong Qu, Wuhan, 430071, China
| | - Xiaowen Yang
- the Department of the First Abdominal Surgery, Jiangxi Tumor Hospital, Nanchang 330029, China
| | - Lihua Zhang
- the Department of Pathology, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Ying Zhu
- the Department of Virology, School of Life Sciences, Wuhan University, State Key Laboratory of Virology, Wuhan, 430071, China
| | - Boon-Seng Wong
- the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei Xin
- the Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44102, and
| | - Man-Sun Sy
- the Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44102, and
| | - Chaoyang Li
- the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Hubei Collaborative Innovation Center for Industrial Fermentation, 44 Xiao Hong Shan Zhong Qu, Wuhan 430071, China
| |
Collapse
|
43
|
Fauth C, Steindl K, Toutain A, Farrell S, Witsch-Baumgartner M, Karall D, Joset P, Böhm S, Baumer A, Maier O, Zschocke J, Weksberg R, Marshall CR, Rauch A. A recurrent germline mutation in the PIGA gene causes Simpson-Golabi-Behmel syndrome type 2. Am J Med Genet A 2015; 170A:392-402. [PMID: 26545172 DOI: 10.1002/ajmg.a.37452] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/15/2015] [Indexed: 11/10/2022]
Abstract
Hypomorphic germline mutations in the PIGA (phosphatidylinositol glycan class A) gene recently were recognized as the cause of a clinically heterogeneous spectrum of X-linked disorders including (i) early onset epileptic encephalopathy with severe muscular hypotonia, dysmorphism, multiple congenital anomalies, and early death ("MCAHS2"), (ii) neurodegenerative encephalopathy with systemic iron overload (ferro-cerebro-cutaneous syndrome, "FCCS"), and (iii) intellectual disability and seizures without dysmorphism. Previous studies showed that the recurrent PIGA germline mutation c.1234C>T (p.Arg412*) leads to a clinical phenotype at the most severe end of the spectrum associated with early infantile lethality. We identified three additional individuals from two unrelated families with the same PIGA mutation. Major clinical findings include early onset intractable epileptic encephalopathy with a burst-suppression pattern on EEG, generalized muscular hypotonia, structural brain abnormalities, macrocephaly and increased birth weight, joint contractures, coarse facial features, widely spaced eyes, a short nose with anteverted nares, gingival overgrowth, a wide mouth, short limbs with short distal phalanges, and a small penis. Based on the phenotypic overlap with Simpson-Golabi-Behmel syndrome type 2 (SGBS2), we hypothesized that both disorders might have the same underlying cause. We were able to confirm the same c.1234C>T (p.Arg412*) mutation in the DNA sample from an affected fetus of the original family affected with SGBS2. We conclude that the recurrent PIGA germline mutation c.1234C>T leads to a recognizable clinical phenotype with a poor prognosis and is the cause of SGBS2.
Collapse
Affiliation(s)
- Christine Fauth
- Division of Human Genetics, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zürich, Schlieren-Zürich, Switzerland
| | - Annick Toutain
- Department of Genetics, Tours University Hospital, Tours, France
| | - Sandra Farrell
- Department of Laboratory Medicine and Genetics, Trillium Health Partners, Credit Valley Hospital, Mississauga, Ontario, Canada
| | - Martina Witsch-Baumgartner
- Division of Human Genetics, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Karall
- Clinic for Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Pascal Joset
- Institute of Medical Genetics, University of Zürich, Schlieren-Zürich, Switzerland
| | - Sebastian Böhm
- Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Alessandra Baumer
- Institute of Medical Genetics, University of Zürich, Schlieren-Zürich, Switzerland
| | - Oliver Maier
- Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Johannes Zschocke
- Division of Human Genetics, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science and Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Christian R Marshall
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anita Rauch
- Institute of Medical Genetics, University of Zürich, Schlieren-Zürich, Switzerland
| |
Collapse
|
44
|
Bosch DGM, Boonstra FN, de Leeuw N, Pfundt R, Nillesen WM, de Ligt J, Gilissen C, Jhangiani S, Lupski JR, Cremers FPM, de Vries BBA. Novel genetic causes for cerebral visual impairment. Eur J Hum Genet 2015; 24:660-5. [PMID: 26350515 DOI: 10.1038/ejhg.2015.186] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/26/2015] [Accepted: 07/12/2015] [Indexed: 12/14/2022] Open
Abstract
Cerebral visual impairment (CVI) is a major cause of low vision in children due to impairment in projection and/or interpretation of the visual input in the brain. Although acquired causes for CVI are well known, genetic causes underlying CVI are largely unidentified. DNAs of 25 patients with CVI and intellectual disability, but without acquired (eg, perinatal) damage, were investigated by whole-exome sequencing. The data were analyzed for de novo, autosomal-recessive, and X-linked variants, and subsequently classified into known, candidate, or unlikely to be associated with CVI. This classification was based on the Online Mendelian Inheritance in Man database, literature reports, variant characteristics, and functional relevance of the gene. After classification, variants in four genes known to be associated with CVI (AHDC1, NGLY1, NR2F1, PGAP1) in 5 patients (20%) were identified, establishing a conclusive genetic diagnosis for CVI. In addition, in 11 patients (44%) with CVI, variants in one or more candidate genes were identified (ACP6, AMOT, ARHGEF10L, ATP6V1A, DCAF6, DLG4, GABRB2, GRIN1, GRIN2B, KCNQ3, KCTD19, RERE, SLC1A1, SLC25A16, SLC35A2, SOX5, UFSP2, UHMK1, ZFP30). Our findings show that diverse genetic causes underlie CVI, some of which will provide insight into the biology underlying this disease process.
Collapse
Affiliation(s)
- Daniëlle G M Bosch
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Bartiméus Institute for the Visually Impaired, Zeist, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - F Nienke Boonstra
- Bartiméus Institute for the Visually Impaired, Zeist, The Netherlands.,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicole de Leeuw
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willy M Nillesen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joep de Ligt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Hubrecht Institute-KNAW, University Medical Centre Utrecht, CancerGenomics.nl, Utrecht, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Shalini Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - James R Lupski
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
45
|
Opitz JM. An inner god: BEN E. KATZ (1921-2015) as geneticist. Am J Med Genet A 2015; 167A:2516-9. [PMID: 26177732 DOI: 10.1002/ajmg.a.37216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 11/07/2022]
Affiliation(s)
- John M Opitz
- Pediatrics (Medical Genetics), Pediatric Pathology, Human Genetics, Obstetrics and Gynecology, School of Medicine, University of Utah, Salt Lake City, Utah
| |
Collapse
|
46
|
Abstract
This review presents principles of glycosylation, describes the relevant glycosylation pathways and their related disorders, and highlights some of the neurological aspects and issues that continue to challenge researchers. More than 100 rare human genetic disorders that result from deficiencies in the different glycosylation pathways are known today. Most of these disorders impact the central and/or peripheral nervous systems. Patients typically have developmental delays/intellectual disabilities, hypotonia, seizures, neuropathy, and metabolic abnormalities in multiple organ systems. Among these disorders there is great clinical diversity because all cell types differentially glycosylate proteins and lipids. The patients have hundreds of misglycosylated products, which afflict a myriad of processes, including cell signaling, cell-cell interaction, and cell migration. This vast complexity in glycan composition and function, along with the limited availability of analytic tools, has impeded the identification of key glycosylated molecules that cause pathologies. To date, few critical target proteins have been pinpointed.
Collapse
|
47
|
Lam C, Golas GA, Davids M, Huizing M, Kane MS, Krasnewich DM, Malicdan MCV, Adams DR, Markello TC, Zein WM, Gropman AL, Lodish MB, Stratakis CA, Maric I, Rosenzweig SD, Baker EH, Ferreira CR, Danylchuk NR, Kahler S, Garnica AD, Bradley Schaefer G, Boerkoel CF, Gahl WA, Wolfe LA. Expanding the clinical and molecular characteristics of PIGT-CDG, a disorder of glycosylphosphatidylinositol anchors. Mol Genet Metab 2015; 115:128-140. [PMID: 25943031 PMCID: PMC6341466 DOI: 10.1016/j.ymgme.2015.04.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 11/28/2022]
Abstract
PIGT-CDG, an autosomal recessive syndromic intellectual disability disorder of glycosylphosphatidylinositol (GPI) anchors, was recently described in two independent kindreds [Multiple Congenital Anomalies-Hypotonia-Seizures Syndrome 3 (OMIM, #615398)]. PIGT encodes phosphatidylinositol-glycan biosynthesis class T, a subunit of the heteropentameric transamidase complex that facilitates the transfer of GPI to proteins. GPI facilitates attachment (anchoring) of proteins to cell membranes. We describe, at ages 7 and 6 years, two children of non-consanguineous parents; they had hypotonia, severe global developmental delay, and intractable seizures along with endocrine, ophthalmologic, skeletal, hearing, and cardiac anomalies. Exome sequencing revealed that both siblings had compound heterozygous variants in PIGT (NM_015937.5), i.e., c.918dupC, a novel duplication leading to a frameshift, and c.1342C > T encoding a previously described missense variant. Flow cytometry studies showed decreased surface expression of GPI-anchored proteins on granulocytes, consistent with findings in previous cases. These siblings further delineate the clinical spectrum of PIGT-CDG, reemphasize the neuro-ophthalmologic presentation, clarify the endocrine features, and add hypermobility, low CSF albumin quotient, and hearing loss to the phenotypic spectrum. Our results emphasize that GPI anchor-related congenital disorders of glycosylation (CDGs) should be considered in subjects with early onset severe seizure disorders and dysmorphic facial features, even in the presence of a normal carbohydrate-deficient transferrin pattern and N-glycan profiling. Currently available screening for CDGs will not reliably detect this family of disorders, and our case reaffirms that the use of flow cytometry and genetic testing is essential for diagnosis in this group of disorders.
Collapse
Affiliation(s)
- Christina Lam
- Medical Genetics and Genomic Medicine Training Program, Office of the Clinical Director, NHGRI, NIH, Bethesda, MD, USA.
| | - Gretchen A Golas
- Office of the Clinical Director, NHGRI, NIH, Bethesda, MD, USA; NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA
| | - Mariska Davids
- Office of the Clinical Director, NHGRI, NIH, Bethesda, MD, USA; NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA
| | - Marjan Huizing
- Human Biochemical Genetics Section, Medical Genetics Branch, NHGRI, NIH, Bethesda, MD, USA
| | - Megan S Kane
- Office of the Clinical Director, NHGRI, NIH, Bethesda, MD, USA; NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA
| | - Donna M Krasnewich
- Division of Genetics and Developmental Biology, NIGMS, NIH, Bethesda, MD, USA
| | - May Christine V Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA; Human Biochemical Genetics Section, Medical Genetics Branch, NHGRI, NIH, Bethesda, MD, USA
| | - David R Adams
- Office of the Clinical Director, NHGRI, NIH, Bethesda, MD, USA; NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA; Human Biochemical Genetics Section, Medical Genetics Branch, NHGRI, NIH, Bethesda, MD, USA
| | - Thomas C Markello
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA; Human Biochemical Genetics Section, Medical Genetics Branch, NHGRI, NIH, Bethesda, MD, USA
| | - Wadih M Zein
- Ophthalmic Genetics and Visual Function Branch, NEI, NIH, Bethesda, MD, USA
| | | | - Maya B Lodish
- Heritable Disorders Branch, NICHD, NIH, Bethesda, MD, USA
| | | | - Irina Maric
- Hematology Service, Clinical Center, NIH, Bethesda, MD, USA
| | | | - Eva H Baker
- Department of Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, USA
| | - Carlos R Ferreira
- Medical Genetics and Genomic Medicine Training Program, Office of the Clinical Director, NHGRI, NIH, Bethesda, MD, USA
| | - Noelle R Danylchuk
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, AR, USA
| | - Stephen Kahler
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, AR, USA
| | - Adolfo D Garnica
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, AR, USA
| | - G Bradley Schaefer
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, AR, USA
| | - Cornelius F Boerkoel
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA
| | - William A Gahl
- Office of the Clinical Director, NHGRI, NIH, Bethesda, MD, USA; NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA; Human Biochemical Genetics Section, Medical Genetics Branch, NHGRI, NIH, Bethesda, MD, USA
| | - Lynne A Wolfe
- Office of the Clinical Director, NHGRI, NIH, Bethesda, MD, USA; NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA
| |
Collapse
|
48
|
Lesca G, Depienne C. Epilepsy genetics: the ongoing revolution. Rev Neurol (Paris) 2015; 171:539-57. [PMID: 26003806 DOI: 10.1016/j.neurol.2015.01.569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/24/2014] [Accepted: 01/20/2015] [Indexed: 01/04/2023]
Abstract
Epilepsies have long remained refractory to gene identification due to several obstacles, including a highly variable inter- and intrafamilial expressivity of the phenotypes, a high frequency of phenocopies, and a huge genetic heterogeneity. Recent technological breakthroughs, such as array comparative genomic hybridization and next generation sequencing, have been leading, in the past few years, to the identification of an increasing number of genomic regions and genes in which mutations or copy-number variations cause various epileptic disorders, revealing an enormous diversity of pathophysiological mechanisms. The field that has undergone the most striking revolution is that of epileptic encephalopathies, for which most of causing genes have been discovered since the year 2012. Some examples are the continuous spike-and-waves during slow-wave sleep and Landau-Kleffner syndromes for which the recent discovery of the role of GRIN2A mutations has finally confirmed the genetic bases. These new technologies begin to be used for diagnostic applications, and the main challenge now resides in the interpretation of the huge mass of variants detected by these methods. The identification of causative mutations in epilepsies provides definitive confirmation of the clinical diagnosis, allows accurate genetic counselling, and sometimes permits the development of new appropriate and specific antiepileptic therapies. Future challenges include the identification of the genetic or environmental factors that modify the epileptic phenotypes caused by mutations in a given gene and the understanding of the role of somatic mutations in sporadic epilepsies.
Collapse
Affiliation(s)
- G Lesca
- Service de génétique, groupement hospitalier Est, hospices civils de Lyon, 59, boulevard Pinel, 69677 Bron, France; Université Claude-Bernard Lyon 1, 43, boulevard du 11-Novembre-1918, 69100 Villeurbanne, France; CRNL, CNRS UMR 5292, Inserm U1028, bâtiment IMBL, 11, avenue Jean-Capelle, 69621 Villeurbanne cedex, France.
| | - C Depienne
- Département de génétique et cytogénétique, hôpital Pitié-Salpêtrière, AP-HP, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France; Sorbonne universités, UPMC université Paris 06, 4, place Jussieu, 75005 Paris, France; ICM, CNRS UMR 7225, Inserm U1127, 47, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| |
Collapse
|
49
|
Abstract
The severe clinical symptoms of inherited CD59 deficiency confirm the importance of CD59 as essential complement regulatory protein for protection of cells against complement attack, in particular protection of hematopoietic cells and human neuronal tissue. Targeted complement inhibition might become a treatment option as suggested by a case report. The easy diagnostic approach by flow cytometry and the advent of a new treatment option should increase the awareness of this rare differential diagnosis and lead to further studies on their pathophysiology.
Collapse
|
50
|
Bosch DGM, Boonstra FN, Kinoshita T, Jhangiani S, de Ligt J, Cremers FPM, Lupski JR, Murakami Y, de Vries BBA. Cerebral visual impairment and intellectual disability caused by PGAP1 variants. Eur J Hum Genet 2015; 23:1689-93. [PMID: 25804403 DOI: 10.1038/ejhg.2015.42] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/05/2014] [Accepted: 02/06/2015] [Indexed: 11/09/2022] Open
Abstract
Homozygous variants in PGAP1 (post-GPI attachment to proteins 1) have recently been identified in two families with developmental delay, seizures and/or spasticity. PGAP1 is a member of the glycosylphosphatidylinositol anchor biosynthesis and remodeling pathway and defects in this pathway are a subclass of congenital disorders of glycosylation. Here we performed whole-exome sequencing in an individual with cerebral visual impairment (CVI), intellectual disability (ID), and factor XII deficiency and revealed compound heterozygous variants in PGAP1, c.274_276del (p.(Pro92del)) and c.921_925del (p.(Lys308Asnfs*25)). Subsequently, PGAP1-deficient Chinese hamster ovary (CHO)-cell lines were transfected with either mutant or wild-type constructs and their sensitivity to phosphatidylinositol-specific phospholipase C (PI-PLC) treatment was measured. The mutant constructs could not rescue the PGAP1-deficient CHO cell lines resistance to PI-PLC treatment. In addition, lymphoblastoid cell lines (LCLs) of the affected individual showed no sensitivity to PI-PLC treatment, whereas the LCLs of the heterozygous carrier parents were partially resistant. In conclusion, we report novel PGAP1 variants in a boy with CVI and ID and a proven functional loss of PGAP1 and show, to our knowledge, for the first time this genetic association with CVI.
Collapse
Affiliation(s)
- Daniëlle G M Bosch
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Bartiméus, Institute for the Visually Impaired, Zeist, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - F Nienke Boonstra
- Bartiméus, Institute for the Visually Impaired, Zeist, The Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Taroh Kinoshita
- Research Institute for Microbial Diseases and WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Shalini Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Joep de Ligt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - James R Lupski
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yoshiko Murakami
- Research Institute for Microbial Diseases and WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|