1
|
Sheth J, Nair A, Sheth F, Ajagekar M, Dhondekar T, Panigrahi I, Bavdekar A, Nampoothiri S, Datar C, Gandhi A, Muranjan M, Kaur A, Desai M, Mistri M, Patel C, Naik P, Shah M, Godbole K, Kapoor S, Gupta N, Bijarnia-Mahay S, Kadam S, Solanki D, Desai S, Iyer A, Patel K, Patel H, Shah RC, Mehta S, Shah R, Bhavsar R, Shah J, Pandya M, Patel B, Shah S, Shah H, Shah S, Bajaj S, Shah S, Thaker N, Kalane U, Kamate M, Kn VR, Tayade N, Jagadeesan S, Jain D, Chandarana M, Singh J, Mehta S, Suresh B, Sheth H. Burden of rare genetic disorders in India: twenty-two years' experience of a tertiary centre. Orphanet J Rare Dis 2024; 19:295. [PMID: 39138584 PMCID: PMC11323464 DOI: 10.1186/s13023-024-03300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Rare disorders comprise of ~ 7500 different conditions affecting multiple systems. Diagnosis of rare diseases is complex due to dearth of specialized medical professionals, testing labs and limited therapeutic options. There is scarcity of data on the prevalence of rare diseases in different populations. India being home to a large population comprising of 4600 population groups, of which several thousand are endogamous, is likely to have a high burden of rare diseases. The present study provides a retrospective overview of a cohort of patients with rare genetic diseases identified at a tertiary genetic test centre in India. RESULTS Overall, 3294 patients with 305 rare diseases were identified in the present study cohort. These were categorized into 14 disease groups based on the major organ/ organ system affected. Highest number of rare diseases (D = 149/305, 48.9%) were identified in the neuromuscular and neurodevelopmental (NMND) group followed by inborn errors of metabolism (IEM) (D = 47/305; 15.4%). Majority patients in the present cohort (N = 1992, 61%) were diagnosed under IEM group, of which Gaucher disease constituted maximum cases (N = 224, 11.2%). Under the NMND group, Duchenne muscular dystrophy (N = 291/885, 32.9%), trinucleotide repeat expansion disorders (N = 242/885; 27.3%) and spinal muscular atrophy (N = 141/885, 15.9%) were the most common. Majority cases of β-thalassemia (N = 120/149, 80.5%) and cystic fibrosis (N = 74/75, 98.7%) under the haematological and pulmonary groups were observed, respectively. Founder variants were identified for Tay-Sachs disease and mucopolysaccharidosis IVA diseases. Recurrent variants for Gaucher disease (GBA:c.1448T > C), β-thalassemia (HBB:c.92.+5G > C), non-syndromic hearing loss (GJB2:c.71G > A), albinism (TYR:c.832 C > T), congenital adrenal hyperplasia (CYP21A2:c.29-13 C > G) and progressive pseudo rheumatoid dysplasia (CCN6:c.298T > A) were observed in the present study. CONCLUSION The present retrospective study of rare disease patients diagnosed at a tertiary genetic test centre provides first insight into the distribution of rare genetic diseases across the country. This information will likely aid in drafting future health policies, including newborn screening programs, development of target specific panel for affordable diagnosis of rare diseases and eventually build a platform for devising novel treatment strategies for rare diseases.
Collapse
Affiliation(s)
- Jayesh Sheth
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India.
| | - Aadhira Nair
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Frenny Sheth
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Manali Ajagekar
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | | | - Inusha Panigrahi
- Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | | | | | - Chaitanya Datar
- Bharati Hospital and Research Centre, Dhankawadi, Pune, India
| | | | - Mamta Muranjan
- Department of Pediatrics, KEM Hospital, Parel, Mumbai, India
| | - Anupriya Kaur
- Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | - Manisha Desai
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Mehul Mistri
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Chitra Patel
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Premal Naik
- Rainbow Super speciality Hospital, Ahmedabad, India
| | | | - Koumudi Godbole
- Deenanath Mangeshkar Hospital & Research Centre, Pune, India
| | - Seema Kapoor
- Division of Genetics & Metabolism Department of Pediatrics, Lok Nayak Hospital and Maulana Azad Medical College, New Delhi, India
| | - Neerja Gupta
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sunita Bijarnia-Mahay
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Sandeep Kadam
- Department of Pediatrics, K.E.M Hospital, Pune, India
| | | | - Soham Desai
- Shree Krishna Hospital, Karamsad, Anand, India
| | | | - Ketan Patel
- Himalaya Arcade, Homeopathy Clinic, Vastrapur, Ahmedabad, India
| | - Harsh Patel
- Zydus Hospital & Healthcare Research Pvt Ltd, Ahmedabad, India
| | - Raju C Shah
- Ankur Neonatal Hospital, Ashram Road, Ahmedabad, India
| | | | | | - Riddhi Bhavsar
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Jhanvi Shah
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Mili Pandya
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | | | | | - Heli Shah
- Ansa Clinic, S. G. Highway, Ahmedabad, India
| | - Shalin Shah
- Ansa Clinic, S. G. Highway, Ahmedabad, India
| | - Shruti Bajaj
- The Purple Gene Clinic, Simplex Khushaangan, SV Road, Malad West, Mumbai, India
| | | | | | - Umesh Kalane
- Deenanath Mangeshkar Hospital & Research Centre, Pune, India
| | | | - Vykunta Raju Kn
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Naresh Tayade
- Department of Paediatrics, Dr. Panjabrao Deshmukh Memorial Medical College, Amravati, India
| | - Sujatha Jagadeesan
- Department of Clinical Genetics & Genetic Counselling, Mediscan Systems, Chennai, India
| | - Deepika Jain
- Shishu Child Development and Early Intervention Centre, Ahmedabad, India
| | - Mitesh Chandarana
- Medisquare Superspeciality Hospital and Research Institute, Ahmedabad, India
| | - Jitendra Singh
- Neurology Clinic, Shivranjini Cross Road, Satellite, Ahmedabad, India
| | | | - Beena Suresh
- Department of Clinical Genetics & Genetic Counselling, Mediscan Systems, Chennai, India
| | - Harsh Sheth
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India.
| |
Collapse
|
2
|
Iyer GR, Kumar R, Poornima S, Kamireddy AP, Juturu KK, Bhatnagar L, Arora S, Suresh V, Utage PR, Bailur S, Pujar AN, Hasan Q. Utility of next-generation sequencing in genetic testing and counseling of disorders involving the musculoskeletal system—trends observed from a single genetic unit. J Orthop Surg Res 2022; 17:76. [PMID: 35123515 PMCID: PMC8818190 DOI: 10.1186/s13018-022-02969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 01/25/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Disorders involving the musculoskeletal system are often identified with short stature and a range of orthopedic problems. The clinical and genetic heterogeneity of these diseases along with several characteristic overlaps makes definitive diagnosis difficult for clinicians. Hence, using molecular testing in addition to conventional tests becomes essential for appropriate diagnosis and management.
Methods
Comprehensive clinical examination, detailed pretest and posttest counseling, molecular diagnosis with next-generation sequencing (NGS), genotype–phenotype correlation and Sanger sequencing for targeted variant analysis.
Results
This manuscript reports a molecular spectrum of variants in 34 orthopedic cases referred to a single genetic unit attached to a tertiary care hospital. The diagnostic yield of NGS-based tests coupled with genetic counseling and segregation analysis was 79% which included 7 novel variants. In about 53% (i.e. 18/34 cases), molecular testing outcome was actionable since 8 of the 18 underwent prenatal diagnosis, as they were either in their early gestation or had planned a pregnancy subsequent to molecular testing, while ten cases were premaritally/prenatally counseled for the families to take informed decisions as they were in the reproductive age.
Conclusions
The report highlights the importance of NGS-based tests even in a low resource setting as it helps patients, families and healthcare providers in reducing the economic, social and emotional burden of these disorders.
Collapse
|
3
|
Gowda VK, Srinivasan VM, Reddy VM, Vamyanmane DK, Shivappa SK, Ramesh RH, Vishwanathan GB. Compressive Myelopathy Secondary to TRPV4 Skeletal Dysplasia: Spondylometaphyseal Dysplasia, Kozlowski Type. J Pediatr Genet 2022. [DOI: 10.1055/s-0041-1741424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractTransient receptor potential vanilloid 4 channel (TRPV4) gene mutations have been described in skeletal system and peripheral nervous system pathology. The case described here is a 9-year-old male child patient, born to a nonconsanguineous marriage with normal birth history who had difficulty in walking and stiffness of joints for the last 7 years, and progressive weakness of all four limbs and urine incontinence for 1 year following falls. Physical examination showed below-average weight and height and short trunk. Musculoskeletal examination revealed bony prominence bilaterally in the knee joints and contractures in knee and elbow joints with brachydactyly; muscle tone was increased, with brisk deep tendon reflexes. Skeletal survey showed platyspondyly with anterior beaking with metaphyseal dysplasia. Magnetic resonance imaging of the spine revealed atlantoaxial instability with hyperintense signal changes at a cervicomedullary junction and upper cervical cord with thinning and spinal canal stenosis suggestive of compressive myelopathy with platyspondyly and anterior beaking of the spine at cervical, thoracic and lumbar vertebrae. Exome sequencing revealed a heterozygous de novo variant c.2389G > A in exon 15 of TRPV4, which results in the amino acid substitution p.Glu797Lys in the encoded protein. The characteristics observed indicated spondylometaphyseal dysplasia, Kozlowski type (SMD-K). The child underwent surgical intervention for compressive myelopathy by reduction of atlantoaxial dislocation with C1 lateral mass and C2 pars fusion using rib graft and fixation using screws and rods. To conclude, for any child presenting with progressive kyphoscoliosis, short stature, platyspondyly, and metaphyseal changes, a diagnosis of SMD-K should be considered and the patient and family should be advised to avoid spinal injuries.
Collapse
Affiliation(s)
- Vykuntaraju K. Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bengaluru, Karnataka, India
| | - Varunvenkat M. Srinivasan
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bengaluru, Karnataka, India
| | - Varsha M. Reddy
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bengaluru, Karnataka, India
| | - Dhananjaya K. Vamyanmane
- Department of Pediatric Radiology, Indira Gandhi Institute of Child Health, Bengaluru, Karnataka, India
| | - Sanjay K. Shivappa
- Department of Pediatric Medicine, Indira Gandhi Institute of Child Health, Bengaluru, Karnataka, India
| | - Rohih H. Ramesh
- Deparment of Pediatrics, BGS Global Institute of Medical Sciences, Bengaluru, India
| | | |
Collapse
|
4
|
Uttarilli A, Shah H, Shukla A, Girisha KM. A review of skeletal dysplasia research in India. J Postgrad Med 2019; 64:98-103. [PMID: 29692401 PMCID: PMC5954821 DOI: 10.4103/jpgm.jpgm_527_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
We aimed to review the contributions by Indian researchers to the subspecialty of skeletal dysplasias (SDs). Literature search using specific keywords in PubMed was performed to retrieve all the published literature on SDs as on July 6, 2017. All published literature on SDs wherein at least one author was from an Indian institute was included. Publications were grouped into different categories based on the major emphasis of the research paper. Five hundred and forty publications in English language were retrieved and categorized into five different groups. The publications were categorized as reports based on: (i) phenotypes (n = 437), (ii) mutations (n = 51), (iii) novel genes (n = 9), (iv) therapeutic interventions (n = 31), and (v) reviews (n = 12). Most of the publications were single-patient case reports describing the clinical and radiological features of the patients affected with SDs (n = 352). We enlisted all the significant Indian contributions. We have also highlighted the reports in which Indians have contributed to discovery of new genes and phenotypes. This review highlights the substantial Indian contributions to SD research, which is poised to reach even greater heights given the size and structure of our population, technological advances, and expanding national and international collaborations.
Collapse
Affiliation(s)
- A Uttarilli
- Department of Medical Genetics, Kasturba Medical College, Manipal University, Manipal, Karnataka, India
| | - H Shah
- Department of Orthopedics, Kasturba Medical College, Manipal University, Manipal, Karnataka, India
| | - A Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal University, Manipal, Karnataka, India
| | - K M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal University, Manipal, Karnataka, India
| |
Collapse
|
5
|
Evaluating the Utility of Next Generation Sequencing Technology in the Diagnosis and Prevention of Genetic Disorders in India, the Early Experiences. JOURNAL OF FETAL MEDICINE 2019. [DOI: 10.1007/s40556-019-00204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Velho RV, Harms FL, Danyukova T, Ludwig NF, Friez MJ, Cathey SS, Filocamo M, Tappino B, Güneş N, Tüysüz B, Tylee KL, Brammeier KL, Heptinstall L, Oussoren E, van der Ploeg AT, Petersen C, Alves S, Saavedra GD, Schwartz IV, Muschol N, Kutsche K, Pohl S. The lysosomal storage disorders mucolipidosis type II, type III alpha/beta, and type III gamma: Update on GNPTAB and GNPTG mutations. Hum Mutat 2019; 40:842-864. [PMID: 30882951 DOI: 10.1002/humu.23748] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/19/2019] [Accepted: 03/14/2019] [Indexed: 01/04/2023]
Abstract
Mutations in the GNPTAB and GNPTG genes cause mucolipidosis (ML) type II, type III alpha/beta, and type III gamma, which are autosomal recessively inherited lysosomal storage disorders. GNPTAB and GNPTG encode the α/β-precursor and the γ-subunit of N-acetylglucosamine (GlcNAc)-1-phosphotransferase, respectively, the key enzyme for the generation of mannose 6-phosphate targeting signals on lysosomal enzymes. Defective GlcNAc-1-phosphotransferase results in missorting of lysosomal enzymes and accumulation of non-degradable macromolecules in lysosomes, strongly impairing cellular function. MLII-affected patients have coarse facial features, cessation of statural growth and neuromotor development, severe skeletal abnormalities, organomegaly, and cardiorespiratory insufficiency leading to death in early childhood. MLIII alpha/beta and MLIII gamma are attenuated forms of the disease. Since the identification of the GNPTAB and GNPTG genes, 564 individuals affected by MLII or MLIII have been described in the literature. In this report, we provide an overview on 258 and 50 mutations in GNPTAB and GNPTG, respectively, including 58 novel GNPTAB and seven novel GNPTG variants. Comprehensive functional studies of GNPTAB missense mutations did not only gain insights into the composition and function of the GlcNAc-1-phosphotransferase, but also helped to define genotype-phenotype correlations to predict the clinical outcome in patients.
Collapse
Affiliation(s)
- Renata Voltolini Velho
- Section Cell Biology of Rare Diseases, Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frederike L Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tatyana Danyukova
- Section Cell Biology of Rare Diseases, Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nataniel F Ludwig
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Post-Graduation Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Mirella Filocamo
- Laboratorio di Genetica Molecolare e Biobanche, Istituto Giannina Gaslini, Genova, Italy
| | - Barbara Tappino
- Laboratorio di Genetica Molecolare e Biobanche, Istituto Giannina Gaslini, Genova, Italy
| | - Nilay Güneş
- Department of Pediatric Genetics, Istanbul University Cerrahpasa, Medicine School, Istanbul, Turkey
| | - Beyhan Tüysüz
- Department of Pediatric Genetics, Istanbul University Cerrahpasa, Medicine School, Istanbul, Turkey
| | - Karen L Tylee
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Saint Mary's Hospital, Manchester, UK
| | - Kathryn L Brammeier
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Saint Mary's Hospital, Manchester, UK
| | - Lesley Heptinstall
- Genomic Diagnostics Laboratory, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Saint Mary's Hospital, Manchester, UK
| | - Esmee Oussoren
- Department of Pediatrics, Center for LyMannose phosphorylation in health and diseasesosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ans T van der Ploeg
- Department of Pediatrics, Center for LyMannose phosphorylation in health and diseasesosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Christine Petersen
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Alves
- Department of Human Genetics, INSA, National Health Institute Doutor Ricardo Jorge, Porto, Portugal
| | - Gloria Durán Saavedra
- División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ida V Schwartz
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Post-Graduation Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Nicole Muschol
- International Center for Lysosomal Disorders, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Pohl
- Section Cell Biology of Rare Diseases, Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Semler O, Rehberg M, Mehdiani N, Jackels M, Hoyer-Kuhn H. Current and Emerging Therapeutic Options for the Management of Rare Skeletal Diseases. Paediatr Drugs 2019; 21:95-106. [PMID: 30941653 DOI: 10.1007/s40272-019-00330-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increasing knowledge in the field of rare diseases has led to new therapeutic approaches in the last decade. Treatment strategies have been developed after elucidation of the underlying genetic alterations and pathophysiology of certain diseases (e.g., in osteogenesis imperfecta, achondroplasia, hypophosphatemic rickets, hypophosphatasia and fibrodysplasia ossificans progressiva). Most of the drugs developed are specifically designed agents interacting with the disease-specific cascade of enzymes and proteins involved. While some are approved (asfotase alfa, burosumab), others are currently being investigated in phase III trials (denosumab, vosoritide, palovarotene). To offer a multi-disciplinary therapeutic approach, it is recommended that patients with rare skeletal disorders are treated and monitored in highly specialized centers. This guarantees the greatest safety for the individual patient and offers the possibility of collecting data to further improve treatment strategies for these rare conditions. Additionally, new therapeutic options could be achieved through increased awareness, not only in the field of pediatrics but also in prenatal and obstetric specialties. Presenting new therapeutic options might influence families in their decision of whether or not to terminate a pregnancy with a child with a skeletal disease.
Collapse
Affiliation(s)
- Oliver Semler
- Centre for Rare Skeletal Diseases in childhood, Children's Hospital, University of Cologne, Kerpenerstr. 62, 50937, Cologne, Germany. .,Children's and Adolescent's Hospital, University of Cologne, Cologne, Germany.
| | - Mirko Rehberg
- Children's and Adolescent's Hospital, University of Cologne, Cologne, Germany
| | - Nava Mehdiani
- Children's and Adolescent's Hospital, University of Cologne, Cologne, Germany
| | - Miriam Jackels
- Children's and Adolescent's Hospital, University of Cologne, Cologne, Germany.,Centre for Prevention and Rehabilitation, Unireha, University of Cologne, Cologne, Germany
| | - Heike Hoyer-Kuhn
- Children's and Adolescent's Hospital, University of Cologne, Cologne, Germany
| |
Collapse
|
8
|
Does the clinical phenotype of mucolipidosis-IIIγ differ from its αβ counterpart?: supporting facts in a cohort of 18 patients. Clin Dysmorphol 2019; 28:7-16. [PMID: 30507725 DOI: 10.1097/mcd.0000000000000249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mucolipidosis-IIIγ (ML-IIIγ) is a recessively inherited slowly progressive skeletal dysplasia caused by mutations in GNPTG. We report the genetic and clinical findings in the largest cohort with ML-IIIγ so far: 18 affected individuals from 12 families including 12 patients from India, five from Turkey, and one from the USA. With consanguinity confirmed in eight of 12 families, molecular characterization showed that all affected patients had homozygous pathogenic GNPTG genotypes, underscoring the rarity of the disorder. Unlike ML-IIIαβ, which present with a broader spectrum of severity, the ML-III γ phenotype is milder, with onset in early school age, but nonetheless thus far considered phenotypically not differentiable from ML-IIIαβ. Evaluation of this cohort has yielded phenotypic findings including hypertrophy of the forearms and restricted supination as clues for ML-IIIγ, facilitating an earlier correct choice of genotype screening. Early identification of this disorder may help in offering a timely intervention for the relief of carpal tunnel syndrome, monitoring and surgery for cardiac valve involvement, and evaluation of the need for joint replacement. As this condition may be confused with rheumatoid arthritis, confirmation of diagnosis will prevent inappropriate use of immunosuppressants and disease-modifying agents.
Collapse
|
9
|
Uttarilli A, Shah H, Bhavani GS, Upadhyai P, Shukla A, Girisha KM. Phenotyping and genotyping of skeletal dysplasias: Evolution of a center and a decade of experience in India. Bone 2019; 120:204-211. [PMID: 30408610 DOI: 10.1016/j.bone.2018.10.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/16/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022]
Abstract
Genetic heterogeneity, high burden and the paucity of genetic testing for rare diseases challenge genomic healthcare for these disorders in India. Here we report our experience over the past decade, of establishing the genomic evaluation of skeletal dysplasia at a tertiary university hospital in India. Research or clinical genomic testing was carried out by Sanger sequencing and next-generation sequencing. Close national and international collaborations aided phenotyping and genotyping. We report 508 families (557 affected individuals) with the definitive molecular diagnosis of skeletal dysplasia. Dysostoses multiplex (n = 196), genetic inflammatory/rheumatoid-like osteoarthropathies (n = 114) and osteogenesis imperfecta and decreased bone density (n = 58) were the most common diagnoses. We enumerate the processes, clinical diagnoses and causal variants in the cohort with 48 novel variants in 21 genes. We summarize scientific contributions of the center to the description of clinical and mutation profiles and discovery of new phenotypes and genetic etiology. Our study illustrates the establishment and application of genomic testing tools for genetic disorders of skeleton in a large cohort. We believe this could be a model to emulate for other developing genetic centers.
Collapse
Affiliation(s)
- Anusha Uttarilli
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Hitesh Shah
- Pediatric Orthopedics Services, Department of Orthopedics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Gandham SriLakshmi Bhavani
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Priyanka Upadhyai
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
10
|
Shaikh S, Shettigar SKG, Kumar S, Kantharia S, Kurva J, Cherian S. Novel mutation in Cul7 gene in a family diagnosed with 3M syndrome. J Genet 2019. [DOI: 10.1007/s12041-019-1057-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Alawbathani S, Kawalia A, Karakaya M, Altmüller J, Nürnberg P, Cirak S. Late diagnosis of a truncating WISP3 mutation entails a severe phenotype of progressive pseudorheumatoid dysplasia. Cold Spring Harb Mol Case Stud 2018; 4:a002139. [PMID: 29258992 PMCID: PMC5793772 DOI: 10.1101/mcs.a002139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 11/20/2017] [Indexed: 11/25/2022] Open
Abstract
Rare diseases are often misdiagnosed or receive a delayed diagnosis; thus, unfortunately, affected individuals may not receive optimal medical management. Here, we report a case of two siblings with a severe phenotype of progressive pseudorheumatoid dysplasia (PPD). Their onset of symptoms began at the age of 3 yr. Both were neglected in the past, and the patients presented with a very severe phenotype and unmitigated natural history. PPD is a rare autosomal recessive skeletal dysplasia characterized by progressive joint stiffness, swelling, and pain. Because of observed muscle wasting, weakness, and the lack of laboratory testing, the case had been initially misdiagnosed by the local physicians. We aimed to provide diagnostic support by a targeted next-generation sequencing gene panel (Illumina TruSight One) for Mendelian diseases (Mendeliome), and we identified a homozygous frameshift mutation in the gene WISP3 (c.868_869delAG, p.Ser290Leufs*12). Thus, early diagnosis and intervention may have decreased the severity and complication of the disease.
Collapse
Affiliation(s)
- Salem Alawbathani
- Cologne Center for Genomics (CCG), 50931 Cologne, Germany
- Institute of Biochemistry I, University of Cologne, 50931 Cologne, Germany
| | - Amit Kawalia
- Cologne Center for Genomics (CCG), 50931 Cologne, Germany
| | - Mert Karakaya
- Center for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany
- University Children's Hospital of Cologne, 50931 Cologne, Germany
| | | | - Peter Nürnberg
- Cologne Center for Genomics (CCG), 50931 Cologne, Germany
| | - Sebahattin Cirak
- Center for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany
- University Children's Hospital of Cologne, 50931 Cologne, Germany
| |
Collapse
|
12
|
Spectrum of Disproportionate Short Stature at a Tertiary-care Center in Northern India. Indian Pediatr 2017; 54:971-972. [PMID: 29217808 DOI: 10.1007/s13312-017-1195-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Forty cases with disproportionate short stature (median age 3.1 y; 24 males) from genetic clinic of Lok Nayak Hospital, Delhi were assessed in this study. Achondroplasia was the commonest (n=9) skeletal dysplasia; conclusive diagnosis was not possible in six children. Molecular confirmation of clinicoradiological phenotype was done in 18 of 40 cases. Genetic study of all achondroplasia cases revealed c. 1138 G>A, p. Gly380Arg mutation in hot spot.
Collapse
|
13
|
I Cell Disease (Mucolipidosis II Alpha/Beta): From Screening to Molecular Diagnosis. Indian J Pediatr 2017; 84:144-146. [PMID: 27785713 DOI: 10.1007/s12098-016-2243-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 10/07/2016] [Indexed: 10/20/2022]
Abstract
Mucopolysaccharidosis (MPS) and Mucolipidosis (ML) share common phenotypes (coarse facial features, organomegaly, dysostosis multiplex) despite having different molecular basis. Thus, they pose great diagnostic challenge to treating clinicians. Differentiating between the two conditions requires a battery of tests from screening to molecular diagnosis. Besides discussing differential diagnosis of MPS like features with negative urinary Glycosaminoglycans (GAG), the authors also discuss the utility of p-nitrocatechol sulphate based chemical test as an important screening tool, besides establishing molecular basis in index case.
Collapse
|
14
|
Abstract
Orthopedic surgeons frequently encounter short statured patients. A systematic approach is needed for proper evaluation of these children. The differential diagnosis includes both proportionate and disproportionate short stature types. A proper history and physical examination and judicious use of plain film radiography will establish the diagnosis in most cases. In addition to the orthopedic surgeon, most of these patients will also be evaluated by other specialists, including endocrinologists and geneticists. This article provides an overview of the evaluation of the child with short stature and offers several illustrative examples.
Collapse
Affiliation(s)
- Charles T Mehlman
- Division of Pediatric Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, MLC 2017, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | - Michael C Ain
- Department of Orthopaedic Surgery, The Johns Hopkins University, 1800 Orleans street, Baltimore, MD 21287, USA
| |
Collapse
|
15
|
Zhang H, Yang R, Wang Y, Ye J, Han L, Qiu W, Gu X. A pilot study of gene testing of genetic bone dysplasia using targeted next-generation sequencing. J Hum Genet 2015; 60:769-76. [PMID: 26377240 DOI: 10.1038/jhg.2015.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/13/2015] [Accepted: 08/21/2015] [Indexed: 02/07/2023]
Abstract
Molecular diagnosis of genetic bone dysplasia is challenging for non-expert. A targeted next-generation sequencing technology was applied to identify the underlying molecular mechanism of bone dysplasia and evaluate the contribution of these genes to patients with bone dysplasia encountered in pediatric endocrinology. A group of unrelated patients (n=82), characterized by short stature, dysmorphology and X-ray abnormalities, of which mucopolysacharidoses, GM1 gangliosidosis, mucolipidosis type II/III and achondroplasia owing to FGFR3 G380R mutation had been excluded, were recruited in this study. Probes were designed to 61 genes selected according to the nosology and classification of genetic skeletal disorders of 2010 by Illumina's online DesignStudio software. DNA was hybridized with probes and then a library was established following the standard Illumina protocols. Amplicon library was sequenced on a MiSeq sequencing system and the data were analyzed by MiSeq Reporter. Mutations of 13 different genes were found in 44 of the 82 patients (54%). Mutations of COL2A1 gene and PHEX gene were found in nine patients, respectively (9/44=20%), followed by COMP gene in 8 (18%), TRPV4 gene in 4 (9%), FBN1 gene in 4 (9%), COL1A1 gene in 3 (6%) and COL11A1, TRAPPC2, MATN3, ARSE, TRPS1, SMARCAL1, ENPP1 gene mutations in one patient each (2% each). In conclusion, mutations of COL2A1, PHEX and COMP gene are common for short stature due to bone dysplasia in outpatient clinics in pediatric endocrinology. Targeted next-generation sequencing is an efficient way to identify the underlying molecular mechanism of genetic bone dysplasia.
Collapse
Affiliation(s)
- Huiwen Zhang
- Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Yang
- Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ye
- Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianshu Han
- Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjuan Qiu
- Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefan Gu
- Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Kurt-Sukur ED, Simsek-Kiper PO, Utine GE, Boduroglu K, Alanay Y. Experience of a skeletal dysplasia registry in Turkey: A five-years retrospective analysis. Am J Med Genet A 2015; 167A:2065-74. [DOI: 10.1002/ajmg.a.37122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/04/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Eda Didem Kurt-Sukur
- Pediatric Genetics Unit, Department of Pediatrics; Ihsan Doğramacı Children's Hospital, Hacettepe School of Medicine; Ankara Turkey
| | - Pelin Ozlem Simsek-Kiper
- Pediatric Genetics Unit, Department of Pediatrics; Ihsan Doğramacı Children's Hospital, Hacettepe School of Medicine; Ankara Turkey
| | - Gülen Eda Utine
- Pediatric Genetics Unit, Department of Pediatrics; Ihsan Doğramacı Children's Hospital, Hacettepe School of Medicine; Ankara Turkey
| | - Koray Boduroglu
- Pediatric Genetics Unit, Department of Pediatrics; Ihsan Doğramacı Children's Hospital, Hacettepe School of Medicine; Ankara Turkey
| | - Yasemin Alanay
- Pediatric Genetics Unit, Department of Pediatrics; Ihsan Doğramacı Children's Hospital, Hacettepe School of Medicine; Ankara Turkey
- Pediatric Genetics, Department of Pediatrics; Acibadem University School of Medicine; İstanbul Turkey
| |
Collapse
|
17
|
Toru HS, Nur BG, Sanhal CY, Mihci E, Mendilcioğlu İ, Yilmaz E, Yilmaz GT, Ozbudak IH, Karaali K, Alper OM, Karaveli FŞ. Perinatal Diagnostic Approach to Fetal Skeletal Dysplasias: Six Years Experience of a Tertiary Center. Fetal Pediatr Pathol 2015; 34:287-306. [PMID: 26376227 DOI: 10.3109/15513815.2015.1068414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Skeletal dysplasias (SDs) constitute a group of heterogeneous disorders affecting growth morphology of the chondro-osseous tissues. Prenatal diagnosis of SD is a considerable clinical challenge due to phenotypic variability. We performed a retrospective analysis of the fetal autopsies series conducted between January 2006 and December 2012 at our center. SD was detected in 54 (10%) out of 542 fetal autopsy cases which included; 11.1% thanatophoric dysplasia (n = 6), 7.4% achondroplasia (n = 4), 3.7% osteogenesis imperfect (n = 2), 1.9% Jarcho-Levin Syndrome (n = 1), 1.9% arthrogryposis (n = 1), 1.9% Dyggve-Melchior-Clausen syndrome (n = 1), 72.1% of dysostosis cases (n = 39). All SD cases were diagnosed by ultrasonography. In 20 of the cases, amniocentesis was performed, 4 cases underwent molecular genetic analyses. Antenatal identification of dysplasia is important in the management of pregnancy and in genetic counseling. Our data analysis showed that SD is usually detected clinically after the 20th gestational week. Genetic analyses for SD may provide early diagnosis and management.
Collapse
Affiliation(s)
- Havva Serap Toru
- a School of Medicine, Department of Pathology , Akdeniz University , Antalya , Turkey
| | - Banu Guzel Nur
- b School of Medicine, Department of Pediatric Genetics , Akdeniz University , Antalya , Turkey
| | - Cem Yasar Sanhal
- c School of Medicine, Department of Gynecology and Obstetrics , Akdeniz University , Antalya , Turkey
| | - Ercan Mihci
- b School of Medicine, Department of Pediatric Genetics , Akdeniz University , Antalya , Turkey
| | - İnanç Mendilcioğlu
- c School of Medicine, Department of Gynecology and Obstetrics , Akdeniz University , Antalya , Turkey
| | - Elanur Yilmaz
- d School of Medicine, Department of Medical Biology and Genetics , Akdeniz University , Antalya , Turkey
| | - Gulden Tasova Yilmaz
- a School of Medicine, Department of Pathology , Akdeniz University , Antalya , Turkey
| | - Irem Hicran Ozbudak
- a School of Medicine, Department of Pathology , Akdeniz University , Antalya , Turkey
| | - Kamil Karaali
- e School of Medicine, Department of Radiology , Akdeniz University , Antalya , Turkey
| | - Ozgul M Alper
- d School of Medicine, Department of Medical Biology and Genetics , Akdeniz University , Antalya , Turkey
| | - Fatma Şeyda Karaveli
- a School of Medicine, Department of Pathology , Akdeniz University , Antalya , Turkey
| |
Collapse
|