1
|
Castilho NL, Resende KKM, dos Santos JA, Machado RA, Coletta RD, Guerra ENS, Acevedo AC, Martelli-Junior H. Oligodontia in the Clinical Spectrum of Syndromes: A Systematic Review. Dent J (Basel) 2023; 11:279. [PMID: 38132417 PMCID: PMC10742796 DOI: 10.3390/dj11120279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
The aim of this systematic review was to describe the clinical and genetic features of syndromes showing oligodontia as a sign. The review was performed according to the PRISMA 2020 checklist guidelines, and the search was conducted using PubMed, Scopus, Lilacs, Web of science, Livivo, and EMBASE and supplemented by a gray literature search on Google Scholar and ProQuest, applying key terms relevant to the research questions. The systematic review identified 47 types of syndromes in 83 studies, and the most common was hypohidrotic ectodermal dysplasia, which was reported in 24 patients in 22 studies. Other common syndromes that reported oligodontia included Axenfeld-Rieger syndrome, Witkop's syndrome, Ellis-van Creveld syndrome, blepharocheilodontic syndrome, and oculofaciocardiodental syndrome. The X-linked mode of inheritance was the most reported (n = 13 studies), followed by the autosomal dominant (n = 13 studies). The review describes the main syndromes that may have oligodontia as a clinical sign and reinforces the need for orodental-facial examining for adequate diagnosis and treatment of the affected patients. Molecular analysis in order to better understand the occurrence of oligodontia is imperative.
Collapse
Affiliation(s)
- Natália Lopes Castilho
- Health Science Postgraduate Program, State University of Montes Claros, Montes Claros 39400-000, Brazil;
| | - Kêmelly Karolliny Moreira Resende
- Laboratory of Oral Histopathology, Oral Care Center for Inherited Diseases, Health Sciences Faculty, University of Brasilia, Brasilia 70040-010, Brazil; (K.K.M.R.); (E.N.S.G.); (A.C.A.)
| | - Juliana Amorim dos Santos
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasilia, Brasilia 70040-010, Brazil;
| | - Renato Assis Machado
- Department of Oral Diagnosis and Graduate Program in Oral Biology, School of Dentistry, University of Campinas, Piracicaba 13414-018, Brazil; (R.A.M.); (R.D.C.)
| | - Ricardo D. Coletta
- Department of Oral Diagnosis and Graduate Program in Oral Biology, School of Dentistry, University of Campinas, Piracicaba 13414-018, Brazil; (R.A.M.); (R.D.C.)
| | - Eliete Neves Silva Guerra
- Laboratory of Oral Histopathology, Oral Care Center for Inherited Diseases, Health Sciences Faculty, University of Brasilia, Brasilia 70040-010, Brazil; (K.K.M.R.); (E.N.S.G.); (A.C.A.)
| | - Ana Carolina Acevedo
- Laboratory of Oral Histopathology, Oral Care Center for Inherited Diseases, Health Sciences Faculty, University of Brasilia, Brasilia 70040-010, Brazil; (K.K.M.R.); (E.N.S.G.); (A.C.A.)
| | - Hercílio Martelli-Junior
- Health Science Postgraduate Program, State University of Montes Claros, Montes Claros 39400-000, Brazil;
- Oral Medicine and Oral Pathology, School of Dentistry, State University of Montes Claros, Unimontes, Montes Claros 39400-000, Brazil
| |
Collapse
|
2
|
Perry JL, Williams JL, Snodgrass TD, Sitzman TJ. VPI Management in SATB2 Syndrome: Use of MRI to Evaluate Anatomy and Physiology in Non-Cleft VPI. Cleft Palate Craniofac J 2023; 60:1499-1504. [PMID: 35695193 PMCID: PMC10183239 DOI: 10.1177/10556656221106888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This clinical case study describes the velopharyngeal anatomy and physiology in a patient who presented with SATB2-associated syndrome (SAS) and velopharyngeal insufficiency (VPI) in the absence of an overt cleft palate. The clinical presentation, treatment, outcome, and the contribution of anatomical findings from MRI to surgical treatment planning for this rare genetic disorder, SAS, are described. This case study contributes to our current understanding of the anatomy and physiology of the velopharyngeal mechanism in an individual born with SAS and non-cleft VPI. It also details the changes following bilateral buccal myomucosal flaps in this patient.
Collapse
Affiliation(s)
- Jamie L Perry
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, USA
| | - Jessica L Williams
- Barrow Cleft and Craniofacial Center, Phoenix, AZ, USA
- Department of Speech and Hearing Science, Arizona State University, Tempe, AZ, USA
| | - Taylor D Snodgrass
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, USA
| | - Thomas J Sitzman
- Barrow Cleft and Craniofacial Center, Phoenix, AZ, USA
- Division of Plastic Surgery, Phoenix Children's Hospital, Phoenix, AZ, USA
- Division of Plastic Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| |
Collapse
|
3
|
Leyva-Díaz E. CUT homeobox genes: transcriptional regulation of neuronal specification and beyond. Front Cell Neurosci 2023; 17:1233830. [PMID: 37744879 PMCID: PMC10515288 DOI: 10.3389/fncel.2023.1233830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
CUT homeobox genes represent a captivating gene class fulfilling critical functions in the development and maintenance of multiple cell types across a wide range of organisms. They belong to the larger group of homeobox genes, which encode transcription factors responsible for regulating gene expression patterns during development. CUT homeobox genes exhibit two distinct and conserved DNA binding domains, a homeodomain accompanied by one or more CUT domains. Numerous studies have shown the involvement of CUT homeobox genes in diverse developmental processes such as body axis formation, organogenesis, tissue patterning and neuronal specification. They govern these processes by exerting control over gene expression through their transcriptional regulatory activities, which they accomplish by a combination of classic and unconventional interactions with the DNA. Intriguingly, apart from their roles as transcriptional regulators, they also serve as accessory factors in DNA repair pathways through protein-protein interactions. They are highly conserved across species, highlighting their fundamental importance in developmental biology. Remarkably, evolutionary analysis has revealed that CUT homeobox genes have experienced an extraordinary degree of rearrangements and diversification compared to other classes of homeobox genes, including the emergence of a novel gene family in vertebrates. Investigating the functions and regulatory networks of CUT homeobox genes provides significant understanding into the molecular mechanisms underlying embryonic development and tissue homeostasis. Furthermore, aberrant expression or mutations in CUT homeobox genes have been associated with various human diseases, highlighting their relevance beyond developmental processes. This review will overview the well known roles of CUT homeobox genes in nervous system development, as well as their functions in other tissues across phylogeny.
Collapse
|
4
|
Bone Tissue and the Nervous System: What Do They Have in Common? Cells 2022; 12:cells12010051. [PMID: 36611845 PMCID: PMC9818711 DOI: 10.3390/cells12010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022] Open
Abstract
Degenerative diseases affecting bone tissues and the brain represent important problems with high socio-economic impact. Certain bone diseases, such as osteoporosis, are considered risk factors for the progression of neurological disorders. Often, patients with neurodegenerative diseases have bone fractures or reduced mobility linked to osteoarthritis. The bone is a dynamic tissue involved not only in movement but also in the maintenance of mineral metabolism. Bone is also associated with the generation of both hematopoietic stem cells (HSCs), and thus the generation of the immune system, and mesenchymal stem cells (MSCs). Bone marrow is a lymphoid organ and contains MSCs and HSCs, both of which are involved in brain health via the production of cytokines with endocrine functions. Hence, it seems clear that bone is involved in the regulation of the neuronal system and vice versa. This review summarizes the recent knowledge on the interactions between the nervous system and bone and highlights the importance of the interaction between nerve and bone cells. In addition, experimental models that study the interaction between nerve and skeletal cells are discussed, and innovative models are suggested to better evaluate the molecular interactions between these two cell types.
Collapse
|
5
|
Lin GW, Liang YC, Wu P, Chen CK, Lai YC, Jiang TX, Haung YH, Chuong CM. Regional specific differentiation of integumentary organs: SATB2 is involved in α- and β-keratin gene cluster switching in the chicken. Dev Dyn 2022; 251:1490-1508. [PMID: 34240503 PMCID: PMC8742846 DOI: 10.1002/dvdy.396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Animals develop skin regional specificities to best adapt to their environments. Birds are excellent models in which to study the epigenetic mechanisms that facilitate these adaptions. Patients suffering from SATB2 mutations exhibit multiple defects including ectodermal dysplasia-like changes. The preferential expression of SATB2, a chromatin regulator, in feather-forming compared to scale-forming regions, suggests it functions in regional specification of chicken skin appendages by acting on either differentiation or morphogenesis. RESULTS Retrovirus mediated SATB2 misexpression in developing feathers, beaks, and claws causes epidermal differentiation abnormalities (e.g. knobs, plaques) with few organ morphology alterations. Chicken β-keratins are encoded in 5 sub-clusters (Claw, Feather, Feather-like, Scale, and Keratinocyte) on Chromosome 25 and a large Feather keratin cluster on Chromosome 27. Type I and II α-keratin clusters are located on Chromosomes 27 and 33, respectively. Transcriptome analyses showed these keratins (1) are often tuned up or down collectively as a sub-cluster, and (2) these changes occur in a temporo-spatial specific manner. CONCLUSIONS These results suggest an organizing role of SATB2 in cluster-level gene co-regulation during skin regional specification.
Collapse
Affiliation(s)
- Gee-Way Lin
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Ya-Chen Liang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Integrative Stem Cell Center, China Medical University and Hospital, China Medical University, Taichung 40447, Taiwan
| | - Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Chih-Kuan Chen
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- The IEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402204, Taiwan
| | - Yung-Chih Lai
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Integrative Stem Cell Center, China Medical University and Hospital, China Medical University, Taichung 40447, Taiwan
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
| | - Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yen-Hua Haung
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
6
|
Lo H, Ng W, Fong N, Lui CD, Lam C. Novel finding of lissencephaly and severe osteopenia in a Chinese patient with
SATB2
‐associated syndrome and a brief review of literature. Am J Med Genet A 2022; 188:2168-2172. [DOI: 10.1002/ajmg.a.62732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Hui‐Yin Lo
- Department of Pathology Princess Margaret Hospital Kowloon Hong Kong
| | - Wai‐Fu Ng
- Department of Pathology Hong Kong Children's Hospital Kowloon Hong Kong
| | - Nai‐Chung Fong
- Department of Paediatrics and Adolescent Medicine Princess Margaret Hospital Kowloon Hong Kong
| | - Choi‐Yu Dilys Lui
- Department of Radiology Princess Margaret Hospital Kowloon Hong Kong
| | - Ching‐Wan Lam
- Department of Pathology The University of Hong Kong, Queen Mary Hospital Pok Fu Lam Hong Kong
| |
Collapse
|
7
|
He CH, Zhang L, Song NN, Mei WY, Chen JY, Hu L, Zhang Q, Wang YB, Ding YQ. Satb2 Regulates EphA7 to Control Soma Spacing and Self-Avoidance of Cortical Pyramidal Neurons. Cereb Cortex 2021; 32:2321-2331. [PMID: 34546353 DOI: 10.1093/cercor/bhab321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Soma spacing and dendritic arborization during brain development are key events for the establishment of proper neural circuitry and function. Transcription factor Satb2 is a molecular node in regulating the development of the cerebral cortex, as shown by the facts that Satb2 is required for the regionalization of retrosplenial cortex, the determination of callosal neuron fate, and the regulation of soma spacing and dendritic self-avoidance of cortical pyramidal neurons. In this study, we explored downstream effectors that mediate the Satb2-implicated soma spacing and dendritic self-avoidance. First, RNA-seq analysis of the cortex revealed differentially expressed genes between control and Satb2 CKO mice. Among them, EphA7 transcription was dramatically increased in layers II/III of Satb2 CKO cortex. Overexpression of EphA7 in the late-born cortical neurons of wild-type mice via in utero electroporation resulted in soma clumping and impaired self-avoidance of affected pyramidal neurons, which resembles the phenotypes caused by knockdown of Satb2 expression. Importantly, the phenotypes by Satb2 knockdown was rescued by reducing EphA7 expression in the cortex. Finally, ChIP and luciferase reporter assays indicated a direct suppression of EphA7 expression by Satb2. These findings provide new insights into the complexity of transcriptional regulation of the morphogenesis of cerebral cortex.
Collapse
Affiliation(s)
- Chun-Hui He
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Lei Zhang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Ning-Ning Song
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Wan-Ying Mei
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Jia-Yin Chen
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ling Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Qiong Zhang
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yu-Bing Wang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Yu-Qiang Ding
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, China.,Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
8
|
Zhu YY, Sun GL, Yang ZL. SATB2-associated syndrome caused by a novel SATB2 mutation in a Chinese boy: A case report and literature review. World J Clin Cases 2021; 9:6081-6090. [PMID: 34368330 PMCID: PMC8316932 DOI: 10.12998/wjcc.v9.i21.6081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/04/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Special AT-rich sequence binding protein 2 (SATB2)-associated syndrome (SAS; OMIM 612313) is an autosomal dominant disorder. Alterations in the SATB2 gene have been identified as causative.
CASE SUMMARY We report a case of a 13-year-old Chinese boy with lifelong global developmental delay, speech and language delay, and intellectual disabilities. He had short stature and irregular dentition, but no other abnormal clinical findings. A de novo heterozygous nonsense point mutation was detected by genetic analysis in exon 6 of SATB2, c.687C>A (p.Y229X) (NCBI reference sequence: NM_001172509.2), and neither of his parents had the mutation. This mutation is the first reported and was evaluated as pathogenic according to the guidelines from the American College of Medical Genetics and Genomics. SAS was diagnosed, and special education performed. Our report of a SAS case in China caused by a SATB2 mutation expanded the genotype options for the disease. The heterogeneous manifestations can be induced by complicated pathogenic involvements and functions of SATB2 from reviewed literatures: (1) SATB2 haploinsufficiency; (2) the interference of truncated SATB2 protein to wild-type SATB2; and (3) different numerous genes regulated by SATB2 in brain and skeletal development in different developmental stages.
CONCLUSION Global developmental delays are usually the initial presentations, and the diagnosis was challenging before other presentations occurred. Regular follow-up and genetic analysis can help to diagnose SAS early. Verification for genes affected by SATB2 mutations for heterogeneous manifestations may help to clarify the possible pathogenesis of SAS in the future.
Collapse
Affiliation(s)
- Yan-Yan Zhu
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Gui-Lian Sun
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Zhi-Liang Yang
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
9
|
Zarate YA, Bosanko KA, Caffrey AR. SATB2-associated syndrome in adolescents and adults. Am J Med Genet A 2021; 185:2391-2398. [PMID: 33969926 DOI: 10.1002/ajmg.a.62258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 12/20/2022]
Abstract
The goal of this study was to investigate the medical, communication, activities of daily living (ADLs), and mental health concerns affecting adolescents and adults with SATB2-associated syndrome (SAS). A comprehensive questionnaire was administered to the caregivers of 49 individuals 12 years or older with SAS (mean age was 19.4 years, range 12-37 years). For all individuals, medical records, including laboratory results, were reviewed. Most individuals required some degree of assistance for ADLs and none of the adults were able to live independently. Health status was qualified as excellent or very good in 61% of individuals. The most common medical problems were dental anomalies, with a significantly higher frequency of hypotonia and gastroesophageal reflux in younger individuals. Medical and surgical interventions were often required. Sixty-nine percent (n = 33) of individuals spoke 10 or fewer words. Autism (41%), anxiety (37%), and attention deficit disorder (37%) were common with one third of individuals receiving medical treatments for these diagnoses. While medical and developmental problems in individuals with SAS were similar to those previously reported, many of these are persistent into adolescence and adulthood. This study provides better guidance for the challenges facing adults with SAS and their families.
Collapse
Affiliation(s)
- Yuri A Zarate
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Katherine A Bosanko
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Aisling R Caffrey
- Health Outcomes, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
10
|
Zhang L, Song NN, Zhang Q, Mei WY, He CH, Ma P, Huang Y, Chen JY, Mao B, Lang B, Ding YQ. Satb2 is required for the regionalization of retrosplenial cortex. Cell Death Differ 2020; 27:1604-1617. [PMID: 31666685 PMCID: PMC7206047 DOI: 10.1038/s41418-019-0443-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 02/08/2023] Open
Abstract
The retrosplenial cortex (Rsp) is a transitional cortex located between the neocortex and archicortex, but the molecular mechanism specifying Rsp from the archicortex remains elusive. We here report that the transcription factor Satb2 is required for specifying Rsp identity during its morphogenesis. In Satb2 CKO mice, the boundary between the Rsp and archicortex [i.e., subiculum (SubC)] disappears as early as E17.5, and Rsp efferent projection is aberrant. Rsp-specific genes are lost, whereas SubC-specific genes are ectopically expressed in Rsp of Satb2 CKO mice. Furthermore, cell-autonomous role of Satb2 in maintaining Rsp neuron identity is revealed by inactivation of Satb2 in Rsp neurons. Finally, Satb2 represses the transcription of Nr4a2. The misexpression of Nr4a2 together with Ctip2 induces expression of SubC-specific genes in wild-type Rsp, and simultaneous knockdown of these two genes in Rsp Satb2-mutant cells prevents their fate transition to SubC identity. Thus, Satb2 serves as a determinant gene in the Rsp regionalization by repressing Nr4a2 and Ctip2 during cortical development.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Ning-Ning Song
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Qiong Zhang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Wan-Ying Mei
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China
| | - Chun-Hui He
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China
| | - Pengcheng Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Ying Huang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jia-Yin Chen
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Bing Lang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China
- Mental Health Institute of the Second Xiangya Hospital, National Clinical Research Center on Mental Disorders, National Technology Institute on Mental Disorders, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, 410011, Hunan, China
| | - Yu-Qiang Ding
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
11
|
SATB2-associated syndrome: first report of a gonadal and somatic mosaicism for an intragenic copy number variation. Clin Dysmorphol 2020; 28:205-210. [PMID: 31425298 DOI: 10.1097/mcd.0000000000000293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gonadal mosaicism has been reported in a variety of dominant or X-linked conditions and should be considered in all cases of apparent de-novo variation. Recently, some cases of supposed parental germline mosaicism have been shown to result from low-level somatic mosaicism. In most of the cases, mosaicism has been reported for pathogenic single nucleotide variants with only a few cases of copy number variation mosaicism described so far. Herein, we present the first case of parental somatic and gonadal copy number variation mosaicism in the SATB2 gene. We report three brothers presenting with the SATB2-associated syndrome. They all carry the same 121-kb heterozygous intragenic deletion of SATB2. Parental somatic mosaicism was detected by array-comparative genomic hybridization on a maternal blood sample and confirmed by Fluorescence in situ hybridization analysis on blood and buccal cells. This clinical report highlights the importance of investigating for parental somatic mosaicism to estimate the proper recurrence risk for subsequent pregnancy.
Collapse
|
12
|
Lindstrand A, Eisfeldt J, Pettersson M, Carvalho CMB, Kvarnung M, Grigelioniene G, Anderlid BM, Bjerin O, Gustavsson P, Hammarsjö A, Georgii-Hemming P, Iwarsson E, Johansson-Soller M, Lagerstedt-Robinson K, Lieden A, Magnusson M, Martin M, Malmgren H, Nordenskjöld M, Norling A, Sahlin E, Stranneheim H, Tham E, Wincent J, Ygberg S, Wedell A, Wirta V, Nordgren A, Lundin J, Nilsson D. From cytogenetics to cytogenomics: whole-genome sequencing as a first-line test comprehensively captures the diverse spectrum of disease-causing genetic variation underlying intellectual disability. Genome Med 2019; 11:68. [PMID: 31694722 PMCID: PMC6836550 DOI: 10.1186/s13073-019-0675-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/09/2019] [Indexed: 12/30/2022] Open
Abstract
Background Since different types of genetic variants, from single nucleotide variants (SNVs) to large chromosomal rearrangements, underlie intellectual disability, we evaluated the use of whole-genome sequencing (WGS) rather than chromosomal microarray analysis (CMA) as a first-line genetic diagnostic test. Methods We analyzed three cohorts with short-read WGS: (i) a retrospective cohort with validated copy number variants (CNVs) (cohort 1, n = 68), (ii) individuals referred for monogenic multi-gene panels (cohort 2, n = 156), and (iii) 100 prospective, consecutive cases referred to our center for CMA (cohort 3). Bioinformatic tools developed include FindSV, SVDB, Rhocall, Rhoviz, and vcf2cytosure. Results First, we validated our structural variant (SV)-calling pipeline on cohort 1, consisting of three trisomies and 79 deletions and duplications with a median size of 850 kb (min 500 bp, max 155 Mb). All variants were detected. Second, we utilized the same pipeline in cohort 2 and analyzed with monogenic WGS panels, increasing the diagnostic yield to 8%. Next, cohort 3 was analyzed by both CMA and WGS. The WGS data was processed for large (> 10 kb) SVs genome-wide and for exonic SVs and SNVs in a panel of 887 genes linked to intellectual disability as well as genes matched to patient-specific Human Phenotype Ontology (HPO) phenotypes. This yielded a total of 25 pathogenic variants (SNVs or SVs), of which 12 were detected by CMA as well. We also applied short tandem repeat (STR) expansion detection and discovered one pathologic expansion in ATXN7. Finally, a case of Prader-Willi syndrome with uniparental disomy (UPD) was validated in the WGS data. Important positional information was obtained in all cohorts. Remarkably, 7% of the analyzed cases harbored complex structural variants, as exemplified by a ring chromosome and two duplications found to be an insertional translocation and part of a cryptic unbalanced translocation, respectively. Conclusion The overall diagnostic rate of 27% was more than doubled compared to clinical microarray (12%). Using WGS, we detected a wide range of SVs with high accuracy. Since the WGS data also allowed for analysis of SNVs, UPD, and STRs, it represents a powerful comprehensive genetic test in a clinical diagnostic laboratory setting.
Collapse
Affiliation(s)
- Anna Lindstrand
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden. .,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden. .,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Jesper Eisfeldt
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Maria Pettersson
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Malin Kvarnung
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Giedre Grigelioniene
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Britt-Marie Anderlid
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Olof Bjerin
- The Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Peter Gustavsson
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Hammarsjö
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Erik Iwarsson
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Johansson-Soller
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Lagerstedt-Robinson
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Agne Lieden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Måns Magnusson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Marcel Martin
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Helena Malmgren
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Nordenskjöld
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ameli Norling
- The Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Ellika Sahlin
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Stranneheim
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Emma Tham
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josephine Wincent
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sofia Ygberg
- The Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Valtteri Wirta
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.,Science for Life Laboratory, Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Ann Nordgren
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Lundin
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Daniel Nilsson
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Common variants in SATB2 are associated with schizophrenia in Uygur Chinese population. Psychiatr Genet 2019; 29:120-126. [PMID: 31162297 DOI: 10.1097/ypg.0000000000000229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Schizophrenia is one of the most severe mental disorders and its etiology is supposed to be an interaction between genes and environmental factors. Previous genome-wide association studies of schizophrenia have reported multiple susceptibility loci including rs6704641 in the SATB2 gene. Recently, this locus was further confirmed as a genome-wide significant locus for association with schizophrenia by trans-ancestry meta-analysis of Han Chinese and Caucasian samples. However, there is no report of genetic analysis in Uygur Chinese population, which is considered to have a combined genetic background between eastern Asia and Caucasian. This study is aimed to explore whether SATB2 gene is significantly associated with schizophrenia in Uygur Chinese population, thus providing additional evidence for elucidating the role of SATB2 gene in schizophrenia. PARTICIPANTS AND METHODS In this study, we performed a case-control analysis focusing on seven tag single nucleotide polymorphisms located in SATB2 gene among 985 patients with schizophrenia and 1218 healthy controls recruited from the Xinjiang Province of China. RESULTS We found that rs6704641 was significantly associated with schizophrenia in both allelic and genotypic distributions (Pallele = 0.008, Pgenotype = 0.028 after correction). In addition, rs16831466 is significantly associated with schizophrenia in allelic distributions (corrected Pallele = 0.041). Besides, several haplotypes of single nucleotide polymorphism are significantly associated with schizophrenia too. CONCLUSION Our results suggest that SATB2 is also a susceptibility gene for schizophrenia in Uygur Chinese population, and subsequent functional experiments are necessary to reveal its role in the pathogenesis.
Collapse
|
14
|
Luo N, Tian L, Calhoun VD, Chen J, Lin D, Vergara VM, Rao S, Yang J, Zhuo C, Xu Y, Turner JA, Zhang F, Sui J. Brain function, structure and genomic data are linked but show different sensitivity to duration of illness and disease stage in schizophrenia. Neuroimage Clin 2019; 23:101887. [PMID: 31176952 PMCID: PMC6558215 DOI: 10.1016/j.nicl.2019.101887] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 01/05/2023]
Abstract
The progress of schizophrenia at various stages is an intriguing question, which has been explored to some degree using single-modality brain imaging data, e.g. gray matter (GM) or functional connectivity (FC). However it remains unclear how those changes from different modalities are correlated with each other and if the sensitivity to duration of illness and disease stages across modalities is different. In this work, we jointly analyzed FC, GM volume and single nucleotide polymorphisms (SNPs) data of 159 individuals including healthy controls (HC), drug-naïve first-episode schizophrenia (FESZ) and chronic schizophrenia patients (CSZ), aiming to evaluate the links among SNP, FC and GM patterns, and their sensitivity to duration of illness and disease stages in schizophrenia. Our results suggested: 1) both GM and FC highlighted impairments in hippocampal, temporal gyrus and cerebellum in schizophrenia, which were significantly correlated with genes like SATB2, GABBR2, PDE4B, CACNA1C etc. 2) GM and FC presented gradually decrease trend (HC > FESZ>CSZ), while SNP indicated a non-gradual variation trend with un-significant group difference observed between FESZ and CSZ; 3) Group difference between HC and FESZ of FC was more remarkable than GM, and FC presented a stronger negative correlation with duration of illness than GM (p = 0.0006). Collectively, these results highlight the benefit of leveraging multimodal data and provide additional clues regarding the impact of mental illness at various disease stages.
Collapse
Affiliation(s)
- Na Luo
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Tian
- Wuxi Mental Health Center, Wuxi 214000, China
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): {Georgia State University, Georgia Institute of Technology, and Emory University}, Atlanta, GA 30303, USA; The Mind Research Network, Albuquerque, NM 87106, USA
| | - Jiayu Chen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): {Georgia State University, Georgia Institute of Technology, and Emory University}, Atlanta, GA 30303, USA
| | - Dongdong Lin
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): {Georgia State University, Georgia Institute of Technology, and Emory University}, Atlanta, GA 30303, USA
| | - Victor M Vergara
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): {Georgia State University, Georgia Institute of Technology, and Emory University}, Atlanta, GA 30303, USA
| | - Shuquan Rao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jian Yang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Electronics, Beijing Institute of Technology, Beijing, China
| | - Chuanjun Zhuo
- Department of Psychiatric-Neuroimaging-Genetics and Morbidity Laboratory (PNGC-Lab), Tianjin Mental Health Center, Nankai University Affiliated Anding Hospital, Tianjin 300222, China
| | - Yong Xu
- Department of Psychiatry, First Clinical Medical College, First Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Jessica A Turner
- Department of Psychology, Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | - Jing Sui
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
15
|
Salehi Karlslätt K, Pettersson M, Jäntti N, Szafranski P, Wester T, Husberg B, Ullberg U, Stankiewicz P, Nordgren A, Lundin J, Lindstrand A, Nordenskjöld A. Rare copy number variants contribute pathogenic alleles in patients with intestinal malrotation. Mol Genet Genomic Med 2019; 7:e549. [PMID: 30632303 PMCID: PMC6418355 DOI: 10.1002/mgg3.549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Intestinal malrotation is a potentially life-threatening congenital anomaly due to the risk of developing midgut volvulus. The reported incidence is 0.2%-1% and both apparently hereditary and sporadic cases have been reported. Intestinal malrotation is associated with a few syndromes with known genotype but the genetic contribution in isolated intestinal malrotation has not yet been reported. Rare copy number variants (CNVs) have been implicated in many congenital anomalies, and hence we sought to investigate the potential contribution of rare CNVs in intestinal malrotation. METHODS Analysis of array comparative genomic hybridization (aCGH) data from 47 patients with symptomatic intestinal malrotation was performed. RESULTS We identified six rare CNVs in five patients. Five CNVs involved syndrome loci: 7q11.23 microduplication, 16p13.11 microduplication, 18q terminal deletion, HDAC8 (Cornelia de Lange syndrome type 5 and FOXF1) as well as one intragenic deletion in GALNT14, not previously implicated in human disease. CONCLUSION In the present study, we identified rare CNVs contributing pathogenic or potentially pathogenic alleles in five patients with syndromic intestinal malrotation, suggesting that CNV screening is indicated in intestinal malrotation with associated malformations or neurological involvements. In addition, we identified intestinal malrotation in two known syndromes (Cornelia de Lange type 5 and 18q terminal deletion syndrome) that has not previously been associated with gastrointestinal malformations.
Collapse
Affiliation(s)
- Karin Salehi Karlslätt
- Department of Women's and Children's Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Pediatrics, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nina Jäntti
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Tomas Wester
- Department of Pediatric Surgery, Karolinska University Hospital, Stockholm, Sweden.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Britt Husberg
- Department of General Surgery, Ersta Hospital, Stockholm, Sweden
| | - Ulla Ullberg
- Department of Pediatric Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Lundin
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Agneta Nordenskjöld
- Department of Women's and Children's Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Pediatric Surgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
16
|
Pettersson M, Eisfeldt J, Syk Lundberg E, Lundin J, Lindstrand A. Flanking complex copy number variants in the same family formed through unequal crossing-over during meiosis. Mutat Res 2018; 812:1-4. [PMID: 30384002 DOI: 10.1016/j.mrfmmm.2018.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/08/2018] [Indexed: 05/22/2023]
Abstract
Two phenomena that have been described in germline complex genomic rearrangements (CGRs) formation are chromothripsis and chromoanasynthesis, characterized by distinct features such as the orientation and copy number of the involved fragments. Herein we present different CGRs on chromosome 5p in a mother and her daughter that through unequal crossing-over during meiosis has evolved from a chromothriptic rearrangement in the mother into another complex rearrangement in her daughter involving both deletions and duplications. Initially, both rearrangements were classified as simple copy number variants, but follow-up studies using whole-genome sequencing revealed a much more complex nature of both rearrangements and enabled us to decipher the biological process involved in the formation of the rearrangement found in the daughter. In conclusion, these two cases highlight the need of analyzing the inheritance patterns of CGRs, and provide an example of a disease-causing CGR formed through multiple genetic events.
Collapse
Affiliation(s)
- Maria Pettersson
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm and Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Elisabeth Syk Lundberg
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm and Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Lundin
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm and Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm and Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
17
|
Pettersson M, Vaz R, Hammarsjö A, Eisfeldt J, Carvalho CMB, Hofmeister W, Tham E, Horemuzova E, Voss U, Nishimura G, Klintberg B, Nordgren A, Nilsson D, Grigelioniene G, Lindstrand A. Alu-Alu mediated intragenic duplications in IFT81 and MATN3 are associated with skeletal dysplasias. Hum Mutat 2018; 39:1456-1467. [PMID: 30080953 DOI: 10.1002/humu.23605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/09/2018] [Accepted: 08/02/2018] [Indexed: 01/22/2023]
Abstract
Skeletal dysplasias are a diverse group of rare Mendelian disorders with clinical and genetic heterogeneity. Here, we used targeted copy number variant (CNV) screening and identified intragenic exonic duplications, formed through Alu-Alu fusion events, in two individuals with skeletal dysplasia and negative exome sequencing results. First, we detected a homozygous tandem duplication of exon 9 and 10 in IFT81 in a boy with Jeune syndrome, or short-rib thoracic dysplasia (SRTD) (MIM# 208500). Western blot analysis did not detect any wild-type IFT81 protein in fibroblasts from the patient with the IFT81 duplication, but only a shorter isoform of IFT81 that was also present in the normal control samples. Complementary zebrafish studies suggested that loss of full-length IFT81 protein but expression of a shorter form of IFT81 protein affects the phenotype while being compatible with life. Second, a de novo tandem duplication of exons 2 to 5 in MATN3 was identified in a girl with multiple epiphyseal dysplasia (MED) type 5 (MIM# 607078). Our data highlights the importance of detection and careful characterization of intragenic duplication CNVs, presenting them as a novel and very rare genetic mechanism in IFT81-related Jeune syndrome and MATN3-related MED.
Collapse
Affiliation(s)
- Maria Pettersson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet and Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Raquel Vaz
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Hammarsjö
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet and Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Wolfgang Hofmeister
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet and Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Eva Horemuzova
- Department of Women's and Children's Health, Karolinska Institutet and Paediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Ulrika Voss
- Department of Pediatric Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Gen Nishimura
- Intractable Disease Center, Saitama University Hospital, Saitama, Japan
| | - Bo Klintberg
- Department of Pediatrics, Visby Hospital, Visby, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet and Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet and Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Giedre Grigelioniene
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet and Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet and Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
18
|
Gupta A, Yo J, Huang G, Soong L, Dong J. Developmental Defects Associated With DNA Copy Number Gain of Chromosome 2q33.1: A Case Report and Review of Literature. Lab Med 2018; 49:160-164. [PMID: 29301000 DOI: 10.1093/labmed/lmx086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Caspases play a vital role during apoptosis. In addition to apoptosis, caspases play a role in cytokine gene induction and work to inhibit apoptosis. In order for individuals to thrive with useful tissue growth, the rate of cell growth and division must surpass the rate of cell division. It is well established that excessive cell death of embryonic cells is a vital process occurring before structural abnormalities, regardless of their nature. Here we describe a 13-month-old male patient with a 4.7Mb interstitial duplication of chromosome 2q33.1. This duplication was identified by chromosomal microarray (CMA) which is the first-tier clinical diagnostic test to identify copy number variants (CNVs) for patients with unexplained developmental delay or intellectual disability. This patient presents with global developmental delay, especially in speech, language, hypotonia, and bilateral simian creases. The duplicated region contains several disease-causing genes. We believe that the phenotype in this patient's case was likely related to the gain of caspase 8 and 10 genes.
Collapse
Affiliation(s)
- Akshaya Gupta
- School of Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Jacob Yo
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Gengming Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Lynn Soong
- Departments of Microbiology & Immunology and Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jianli Dong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
19
|
Tran AN, Taylan F, Zachariadis V, Ivanov Öfverholm I, Lindstrand A, Vezzi F, Lötstedt B, Nordenskjöld M, Nordgren A, Nilsson D, Barbany G. High-resolution detection of chromosomal rearrangements in leukemias through mate pair whole genome sequencing. PLoS One 2018. [PMID: 29529047 PMCID: PMC5846771 DOI: 10.1371/journal.pone.0193928] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The detection of recurrent somatic chromosomal rearrangements is standard of care for most leukemia types. Even though karyotype analysis-a low-resolution genome-wide chromosome analysis-is still the gold standard, it often needs to be complemented with other methods to increase resolution. To evaluate the feasibility and applicability of mate pair whole genome sequencing (MP-WGS) to detect structural chromosomal rearrangements in the diagnostic setting, we sequenced ten bone marrow samples from leukemia patients with recurrent rearrangements. Samples were selected based on cytogenetic and FISH results at leukemia diagnosis to include common rearrangements of prognostic relevance. Using MP-WGS and in-house bioinformatic analysis all sought rearrangements were successfully detected. In addition, unexpected complexity or additional, previously undetected rearrangements was unraveled in three samples. Finally, the MP-WGS analysis pinpointed the location of chromosome junctions at high resolution and we were able to identify the exact exons involved in the resulting fusion genes in all samples and the specific junction at the nucleotide level in half of the samples. The results show that our approach combines the screening character from karyotype analysis with the specificity and resolution of cytogenetic and molecular methods. As a result of the straightforward analysis and high-resolution detection of clinically relevant rearrangements, we conclude that MP-WGS is a feasible method for routine leukemia diagnostics of structural chromosomal rearrangements.
Collapse
Affiliation(s)
- Anh Nhi Tran
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Laboratory Division Karolinska University Hospital, Clinical Genetics, Stockholm, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vasilios Zachariadis
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ingegerd Ivanov Öfverholm
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Laboratory Division Karolinska University Hospital, Clinical Genetics, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Laboratory Division Karolinska University Hospital, Clinical Genetics, Stockholm, Sweden
| | - Francesco Vezzi
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Britta Lötstedt
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Laboratory Division Karolinska University Hospital, Clinical Genetics, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Laboratory Division Karolinska University Hospital, Clinical Genetics, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Gisela Barbany
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Laboratory Division Karolinska University Hospital, Clinical Genetics, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
20
|
Abstract
This article offers a succinct overview of the hypothesis that the evolution of cognition could benefit from a close examination of brain changes reflected in the shape of the neurocranium. I provide both neurological and genetic evidence in support of this hypothesis, and conclude that the study of language evolution need not be regarded as a mystery.
Collapse
|
21
|
Chatron N, Thibault L, Lespinasse J, Labalme A, Schluth-Bolard C, Till M, Edery P, Touraine R, des Portes V, Lesca G, Sanlaville D. Genetic Counselling Pitfall: Co-Occurrence of an 11.8-Mb Xp22 Duplication and an Xp21.2 Duplication Disrupting IL1RAPL1. Mol Syndromol 2017; 8:325-330. [PMID: 29230163 DOI: 10.1159/000479455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2017] [Indexed: 01/19/2023] Open
Abstract
We report a 3-generation family in which 2 Xp copy number variations (CNVs) co-segregate. The proband presented with syndromic intellectual disability. The CNV had been revealed by conventional karyotyping, identifying a large Xp22 duplication causing an Xp functional disomy. Family studies found that this duplication was inherited from the proband's mother and was also present in one of his sisters. This sister had conventional karyotyping performed during pregnancy with a normal result. Postnatally, her child, the proband's nephew, presented with autism spectrum disorders. aCGH revealed a 339-kb IL1RAPL1 duplication. Overall, the proband, his mother, and one of his sisters all harboured both CNVs, while his other sister and the 2 sons of each sister only carried the IL1RAPL1 intragenic duplication. As seen in this family, we emphasise the importance of small CNV detection, the pathogenicity of IL1RAPL1 exonic duplications in male carriers, and the difficulties for genetic counselling with the risk of double diagnosis in a single patient.
Collapse
Affiliation(s)
- Nicolas Chatron
- Hospices Civils de Lyon, Service de Génétique, CHU de Lyon, Lyon, France.,Equipe GENDEV INSERM U1028, CNRS, UMR5292, Lyon, France.,Université de Lyon, Lyon, France
| | - Lucie Thibault
- Hospices Civils de Lyon, Service de Génétique, CHU de Lyon, Lyon, France
| | | | - Audrey Labalme
- Hospices Civils de Lyon, Service de Génétique, CHU de Lyon, Lyon, France
| | - Caroline Schluth-Bolard
- Hospices Civils de Lyon, Service de Génétique, CHU de Lyon, Lyon, France.,Equipe GENDEV INSERM U1028, CNRS, UMR5292, Lyon, France.,Université de Lyon, Lyon, France
| | - Marianne Till
- Hospices Civils de Lyon, Service de Génétique, CHU de Lyon, Lyon, France
| | - Patrick Edery
- Hospices Civils de Lyon, Service de Génétique, CHU de Lyon, Lyon, France.,Equipe GENDEV INSERM U1028, CNRS, UMR5292, Lyon, France.,Université de Lyon, Lyon, France
| | - Renaud Touraine
- Service de Génétique, CHU de Saint Etienne, Saint Etienne, HFME, Bron, France
| | - Vincent des Portes
- Université de Lyon, Lyon, France.,Hospices Civils de Lyon, Centre de Référence National "Déficiences Intellectuelles de Causes Rares", HFME, Bron, France.,CNRS UMR 5304, ISC, Bron, France
| | - Gaetan Lesca
- Hospices Civils de Lyon, Service de Génétique, CHU de Lyon, Lyon, France.,Equipe GENDEV INSERM U1028, CNRS, UMR5292, Lyon, France.,Université de Lyon, Lyon, France
| | - Damien Sanlaville
- Hospices Civils de Lyon, Service de Génétique, CHU de Lyon, Lyon, France.,Equipe GENDEV INSERM U1028, CNRS, UMR5292, Lyon, France.,Université de Lyon, Lyon, France
| |
Collapse
|
22
|
Bengani H, Handley M, Alvi M, Ibitoye R, Lees M, Lynch SA, Lam W, Fannemel M, Nordgren A, Malmgren H, Kvarnung M, Mehta S, McKee S, Whiteford M, Stewart F, Connell F, Clayton-Smith J, Mansour S, Mohammed S, Fryer A, Morton J, Grozeva D, Asam T, Moore D, Sifrim A, McRae J, Hurles ME, Firth HV, Raymond FL, Kini U, Nellåker C, Ddd Study, FitzPatrick DR. Clinical and molecular consequences of disease-associated de novo mutations in SATB2. Genet Med 2017; 19:900-908. [PMID: 28151491 PMCID: PMC5548934 DOI: 10.1038/gim.2016.211] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/01/2016] [Indexed: 02/03/2023] Open
Abstract
PURPOSE To characterize features associated with de novo mutations affecting SATB2 function in individuals ascertained on the basis of intellectual disability. METHODS Twenty previously unreported individuals with 19 different SATB2 mutations (11 loss-of-function and 8 missense variants) were studied. Fibroblasts were used to measure mutant protein production. Subcellular localization and mobility of wild-type and mutant SATB2 were assessed using fluorescently tagged protein. RESULTS Recurrent clinical features included neurodevelopmental impairment (19/19), absent/near absent speech (16/19), normal somatic growth (17/19), cleft palate (9/19), drooling (12/19), and dental anomalies (8/19). Six of eight missense variants clustered in the first CUT domain. Sibling recurrence due to gonadal mosaicism was seen in one family. A nonsense mutation in the last exon resulted in production of a truncated protein retaining all three DNA-binding domains. SATB2 nuclear mobility was mutation-dependent; p.Arg389Cys in CUT1 increased mobility and both p.Gly515Ser in CUT2 and p.Gln566Lys between CUT2 and HOX reduced mobility. The clinical features in individuals with missense variants were indistinguishable from those with loss of function. CONCLUSION SATB2 haploinsufficiency is a common cause of syndromic intellectual disability. When mutant SATB2 protein is produced, the protein appears functionally inactive with a disrupted pattern of chromatin or matrix association.Genet Med advance online publication 02 February 2017.
Collapse
Affiliation(s)
- Hemant Bengani
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Mark Handley
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Mohsan Alvi
- Avdeling for Medisinsk Genetikk, Oslo Universitetssykehus, Oslo, Norway
| | - Rita Ibitoye
- Department of Clinical Genetics, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Melissa Lees
- North East Regional Genetics Service, Great Ormond Street Hospital, London, UK
| | - Sally Ann Lynch
- National Centre for Medical Genetics, Our Lady's Children's Hospital, Dublin, Ireland
| | - Wayne Lam
- South East Scotland Genetic Service, Western General Hospital, Edinburgh, UK
| | | | - Ann Nordgren
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - H Malmgren
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - M Kvarnung
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Sarju Mehta
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation, Cambridge, UK
| | - Shane McKee
- Northern Ireland Regional Genetics Centre, Belfast City Hospital, Belfast, UK
| | - Margo Whiteford
- West of Scotland Genetic Services, Queen Elizabeth University Hospital, Glasgow, UK
| | - Fiona Stewart
- Northern Ireland Regional Genetics Centre, Belfast City Hospital, Belfast, UK
| | - Fiona Connell
- South East Thames Regional Genetics Service, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Sahar Mansour
- Department of Clinical Genetics, St Georges Hospital, Tooting, UK
| | - Shehla Mohammed
- South East Thames Regional Genetics Service, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Alan Fryer
- Cheshire &Merseyside Regional Genetics Service, Liverpool Women's NHS foundation Trust, Liverpool, UK
| | - Jenny Morton
- West Midlands Regional Genetics Service, Birmingham Women's NHS Foundation Trust, Birmingham, UK
| | | | - Detelina Grozeva
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Tara Asam
- South-East Scotland Regional Genetics Laboratories, Western General Hospital, Edinburgh, UK
| | - David Moore
- South-East Scotland Regional Genetics Laboratories, Western General Hospital, Edinburgh, UK
| | - Alejandro Sifrim
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Jeremy McRae
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Matthew E Hurles
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Helen V Firth
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation, Cambridge, UK
| | - F Lucy Raymond
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Usha Kini
- Department of Clinical Genetics, Oxford University Hospitals NHS Trust, Oxford, UK.,Spires Cleft Centre, John Radcliffe Hospital, Oxford, UK
| | - Christoffer Nellåker
- Nuffield Department of Obstetrics &Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, UK.,Department of Engineering Science, University of Oxford, Institute of Biomedical Engineering, Oxford, UK.,Big Data Institute, University of Oxford, Oxford, UK
| | - Ddd Study
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - David R FitzPatrick
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh, UK
| |
Collapse
|
23
|
Nilsson D, Pettersson M, Gustavsson P, Förster A, Hofmeister W, Wincent J, Zachariadis V, Anderlid BM, Nordgren A, Mäkitie O, Wirta V, Käller M, Vezzi F, Lupski JR, Nordenskjöld M, Lundberg ES, Carvalho CMB, Lindstrand A. Whole-Genome Sequencing of Cytogenetically Balanced Chromosome Translocations Identifies Potentially Pathological Gene Disruptions and Highlights the Importance of Microhomology in the Mechanism of Formation. Hum Mutat 2017; 38:180-192. [PMID: 27862604 PMCID: PMC5225243 DOI: 10.1002/humu.23146] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 11/01/2016] [Indexed: 11/07/2022]
Abstract
Most balanced translocations are thought to result mechanistically from nonhomologous end joining or, in rare cases of recurrent events, by nonallelic homologous recombination. Here, we use low-coverage mate pair whole-genome sequencing to fine map rearrangement breakpoint junctions in both phenotypically normal and affected translocation carriers. In total, 46 junctions from 22 carriers of balanced translocations were characterized. Genes were disrupted in 48% of the breakpoints; recessive genes in four normal carriers and known dominant intellectual disability genes in three affected carriers. Finally, seven candidate disease genes were disrupted in five carriers with neurocognitive disabilities (SVOPL, SUSD1, TOX, NCALD, SLC4A10) and one XX-male carrier with Tourette syndrome (LYPD6, GPC5). Breakpoint junction analyses revealed microhomology and small templated insertions in a substantive fraction of the analyzed translocations (17.4%; n = 4); an observation that was substantiated by reanalysis of 37 previously published translocation junctions. Microhomology associated with templated insertions is a characteristic seen in the breakpoint junctions of rearrangements mediated by error-prone replication-based repair mechanisms. Our data implicate that a mechanism involving template switching might contribute to the formation of at least 15% of the interchromosomal translocation events.
Collapse
Affiliation(s)
- Daniel Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, 171 21 Solna, Sweden
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Peter Gustavsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Alisa Förster
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Wolfgang Hofmeister
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Josephine Wincent
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Vasilios Zachariadis
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Children's Hospital, Helsinki University Central Hospital and University of Helsinki, 00290 Helsinki, Finland
- Folkhälsan Institute of Genetics, 00290 Helsinki, Finland
| | - Valtteri Wirta
- SciLifeLab, School of Biotechnology, KTH Royal Institute of Technology, 171 71 Stockholm, Sweden
| | - Max Käller
- SciLifeLab, School of Biotechnology, KTH Royal Institute of Technology, 171 71 Stockholm, Sweden
| | - Francesco Vezzi
- SciLifeLab, Department of Biochemistry and Biophysics, Stockholm University, 171 21 Stockholm, Sweden
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, 77030 Houston TX, USA
- Texas Children’s Hospital, 77030 Houston TX, USA
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Elisabeth Syk Lundberg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Claudia M. B. Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, 77030 Houston TX, USA
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
24
|
Jaitner C, Reddy C, Abentung A, Whittle N, Rieder D, Delekate A, Korte M, Jain G, Fischer A, Sananbenesi F, Cera I, Singewald N, Dechant G, Apostolova G. Satb2 determines miRNA expression and long-term memory in the adult central nervous system. eLife 2016; 5. [PMID: 27897969 PMCID: PMC5207769 DOI: 10.7554/elife.17361] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 11/28/2016] [Indexed: 01/09/2023] Open
Abstract
SATB2 is a risk locus for schizophrenia and encodes a DNA-binding protein that regulates higher-order chromatin configuration. In the adult brain Satb2 is almost exclusively expressed in pyramidal neurons of two brain regions important for memory formation, the cerebral cortex and the CA1-hippocampal field. Here we show that Satb2 is required for key hippocampal functions since deletion of Satb2 from the adult mouse forebrain prevents the stabilization of synaptic long-term potentiation and markedly impairs long-term fear and object discrimination memory. At the molecular level, we find that synaptic activity and BDNF up-regulate Satb2, which itself binds to the promoters of coding and non-coding genes. Satb2 controls the hippocampal levels of a large cohort of miRNAs, many of which are implicated in synaptic plasticity and memory formation. Together, our findings demonstrate that Satb2 is critically involved in long-term plasticity processes in the adult forebrain that underlie the consolidation and stabilization of context-linked memory. DOI:http://dx.doi.org/10.7554/eLife.17361.001
Collapse
Affiliation(s)
- Clemens Jaitner
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Chethan Reddy
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Abentung
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Nigel Whittle
- Department of Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria
| | - Dietmar Rieder
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea Delekate
- Zoological Institute, Technical University Braunschweig, Braunschweig, Germany
| | - Martin Korte
- Zoological Institute, Technical University Braunschweig, Braunschweig, Germany.,AG Neuroinflammation and Neurodegeneration (NIND), Braunschweig, Germany
| | - Gaurav Jain
- Research Group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany.,Research Group for Complex Neurodegenerative Disorders, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Andre Fischer
- Research Group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Farahnaz Sananbenesi
- Research Group for Complex Neurodegenerative Disorders, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Isabella Cera
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria
| | - Georg Dechant
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Galina Apostolova
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
25
|
Zarate YA, Fish JL. SATB2-associated syndrome: Mechanisms, phenotype, and practical recommendations. Am J Med Genet A 2016; 173:327-337. [PMID: 27774744 PMCID: PMC5297989 DOI: 10.1002/ajmg.a.38022] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/29/2016] [Indexed: 12/11/2022]
Abstract
The SATB2‐associated syndrome is a recently described syndrome characterized by developmental delay/intellectual disability with absent or limited speech development, craniofacial abnormalities, behavioral problems, dysmorphic features, and palatal and dental abnormalities. Alterations of the SATB2 gene can result from a variety of different mechanisms that include contiguous deletions, intragenic deletions and duplications, translocations with secondary gene disruption, and point mutations. The multisystemic nature of this syndrome demands a multisystemic approach and we propose evaluation and management guidelines. The SATB2‐associated syndrome registry has now been started and that will allow gathering further clinical information and refining the provided surveillance recommendations. © 2016 The Authors. American Journal of Medical Genetics Part A Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuri A Zarate
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jennifer L Fish
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts
| |
Collapse
|
26
|
Tooth agenesis and orofacial clefting: genetic brothers in arms? Hum Genet 2016; 135:1299-1327. [PMID: 27699475 PMCID: PMC5065589 DOI: 10.1007/s00439-016-1733-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/21/2016] [Indexed: 12/16/2022]
Abstract
Tooth agenesis and orofacial clefts represent the most common developmental anomalies and their co-occurrence is often reported in patients as well in animal models. The aim of the present systematic review is to thoroughly investigate the current literature (PubMed, EMBASE) to identify the genes and genomic loci contributing to syndromic or non-syndromic co-occurrence of tooth agenesis and orofacial clefts, to gain insight into the molecular mechanisms underlying their dual involvement in the development of teeth and facial primordia. Altogether, 84 articles including phenotype and genotype description provided 9 genomic loci and 26 gene candidates underlying the co-occurrence of the two congenital defects: MSX1, PAX9, IRF6, TP63, KMT2D, KDM6A, SATB2, TBX22, TGFα, TGFβ3, TGFβR1, TGFβR2, FGF8, FGFR1, KISS1R, WNT3, WNT5A, CDH1, CHD7, AXIN2, TWIST1, BCOR, OFD1, PTCH1, PITX2, and PVRL1. The molecular pathways, cellular functions, tissue-specific expression and disease association were investigated using publicly accessible databases (EntrezGene, UniProt, OMIM). The Gene Ontology terms of the biological processes mediated by the candidate genes were used to cluster them using the GOTermMapper (Lewis-Sigler Institute, Princeton University), speculating on six super-clusters: (a) anatomical development, (b) cell division, growth and motility, (c) cell metabolism and catabolism, (d) cell transport, (e) cell structure organization and (f) organ/system-specific processes. This review aims to increase the knowledge on the mechanisms underlying the co-occurrence of tooth agenesis and orofacial clefts, to pave the way for improving targeted (prenatal) molecular diagnosis and finally to reflect on therapeutic or ultimately preventive strategies for these disabling conditions in the future.
Collapse
|
27
|
Boone PM, Chan YM, Hunter JV, Pottkotter LE, Davino NA, Yang Y, Beuten J, Bacino CA. Increased bone turnover, osteoporosis, progressive tibial bowing, fractures, and scoliosis in a patient with a final-exon SATB2 frameshift mutation. Am J Med Genet A 2016; 170:3028-3032. [PMID: 27409069 PMCID: PMC10080586 DOI: 10.1002/ajmg.a.37847] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 07/01/2016] [Indexed: 12/31/2022]
Abstract
Haploinsufficiency of SATB2 causes cleft palate, intellectual disability with deficient speech, facial and dental abnormalities, and other variable features known collectively as SATB2-associated syndrome. This phenotype was accompanied by osteoporosis, fractures, and tibial bowing in two previously reported adult patients; each possessed SATB2 mutations either predicted or demonstrated to escape nonsense-mediated decay, suggesting that the additional bone defects result from a dominant negative effect and/or age-dependent penetrance. These hypotheses remain to be confirmed, as do the specific downstream defects causing bone abnormalities. We report a SATB2 mutation (c.2018dupA; p.(H673fs)) in a 15-year-old patient whose SATB2-associated syndrome phenotype is accompanied by osteoporosis, fractures, progressive tibial bowing, and scoliosis. As this homeodomain-disrupting and predicted truncating mutation resides within the final exon of SATB2, escape from nonsense-mediated decay is likely. Thus, we provide further evidence of bone phenotypes beyond those typically associated with SATB2-associated syndrome in individuals with potential dominant-negative SATB2 alleles, as well as evidence for age-dependence of bone features. Elevations in alkaline phosphatase, urinary N-telopeptide/creatinine ratio, and osteocalcin in the patient indicate increased bone turnover. We propose surveillance and treatment with osteoclast inhibitors to prevent fractures and to slow progressive bone deformities. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Philip M Boone
- Department of Molecular and Human Genetics, Baylor College of Medicine
| | - Yiu Man Chan
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | | | - Nelson A Davino
- Department of Orthopedic Surgery, UT Health Science Center at Houston, Houston, Texas
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine.,Medical Genetics Laboratories, Baylor College of Medicine, Houston, Texas
| | - Joke Beuten
- Department of Molecular and Human Genetics, Baylor College of Medicine.,Medical Genetics Laboratories, Baylor College of Medicine, Houston, Texas
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine. .,Texas Children's Hospital, Houston, Texas. .,Medical Genetics Laboratories, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
28
|
Lee JS, Yoo Y, Lim BC, Kim KJ, Choi M, Chae JH. SATB2-associated syndrome presenting with Rett-like phenotypes. Clin Genet 2016; 89:728-32. [PMID: 26596517 DOI: 10.1111/cge.12698] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 11/30/2022]
Abstract
The SATB2-associated syndrome (SAS) was proposed recently, after the SATB2 gene was initially discovered to be associated with isolated cleft palate. This syndrome is characterized by intellectual disability with delayed speech development, facial dysmorphism, cleft or high-arched palate, and dentition problems. Here, we describe two novel SATB2 sequence variants in two unrelated patients presenting with Rett-like phenotypes. We performed trio-based whole-exome sequencing in a 17-month-old girl presenting with severe retardation and Rett-like phenotypes, which revealed a de novo missense variant in SATB2 (p.Glu396Gln). Moreover, targeted sequencing of the SATB2 gene was performed in a 2-year-old girl with severe psychomotor retardation, facial hypotonia, and cleft palate who also exhibited some features of Rett syndrome. A nonsense variant in SATB2 was identified in this patient (p.Arg459*). This study expanded the clinical and genetic spectrum of SAS. SATB2 variants should be considered in cases with psychomotor retardation alone or in any cases with Rett-like phenotypes, regardless of the typical features of SAS such as cleft palate.
Collapse
Affiliation(s)
- J S Lee
- Department of Pediatrics, Gachon University Gil Medical Center, Incheon, South Korea
| | - Y Yoo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - B C Lim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - K J Kim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - M Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - J-H Chae
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
29
|
Boeckx C, Benítez-Burraco A. Osteogenesis and neurogenesis: a robust link also for language evolution. Front Cell Neurosci 2015; 9:291. [PMID: 26283924 PMCID: PMC4516893 DOI: 10.3389/fncel.2015.00291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/15/2015] [Indexed: 12/30/2022] Open
Affiliation(s)
- Cedric Boeckx
- Catalan Institute for Advanced Studies and Research Barcelona, Spain ; Linguistics, Universitat de Barcelona Barcelona, Spain
| | | |
Collapse
|
30
|
Benítez-Burraco A, Boeckx C. Possible functional links among brain- and skull-related genes selected in modern humans. Front Psychol 2015; 6:794. [PMID: 26136701 PMCID: PMC4468360 DOI: 10.3389/fpsyg.2015.00794] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/26/2015] [Indexed: 12/12/2022] Open
Abstract
The sequencing of the genomes from extinct hominins has revealed that changes in some brain-related genes have been selected after the split between anatomically-modern humans and Neanderthals/Denisovans. To date, no coherent view of these changes has been provided. Following a line of research we initiated in Boeckx and Benítez-Burraco (2014a), we hypothesize functional links among most of these genes and their products, based on the existing literature for each of the gene discussed. The genes we focus on are found mutated in different cognitive disorders affecting modern populations and their products are involved in skull and brain morphology, and neural connectivity. If our hypothesis turns out to be on the right track, it means that the changes affecting most of these proteins resulted in a more globular brain and ultimately brought about modern cognition, with its characteristic generativity and capacity to form and exploit cross-modular concepts, properties most clearly manifested in language.
Collapse
Affiliation(s)
| | - Cedric Boeckx
- Catalan Institute for Research and Advanced Studies , Barcelona, Spain ; Department of Linguistics, Universitat de Barcelona , Barcelona, Spain
| |
Collapse
|
31
|
Hofmeister W, Nilsson D, Topa A, Anderlid BM, Darki F, Matsson H, Tapia Páez I, Klingberg T, Samuelsson L, Wirta V, Vezzi F, Kere J, Nordenskjöld M, Syk Lundberg E, Lindstrand A. CTNND2-a candidate gene for reading problems and mild intellectual disability. J Med Genet 2014; 52:111-22. [PMID: 25473103 DOI: 10.1136/jmedgenet-2014-102757] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Cytogenetically visible chromosomal translocations are highly informative as they can pinpoint strong effect genes even in complex genetic disorders. METHODS AND RESULTS Here, we report a mother and daughter, both with borderline intelligence and learning problems within the dyslexia spectrum, and two apparently balanced reciprocal translocations: t(1;8)(p22;q24) and t(5;18)(p15;q11). By low coverage mate-pair whole-genome sequencing, we were able to pinpoint the genomic breakpoints to 2 kb intervals. By direct sequencing, we then located the chromosome 5p breakpoint to intron 9 of CTNND2. An additional case with a 163 kb microdeletion exclusively involving CTNND2 was identified with genome-wide array comparative genomic hybridisation. This microdeletion at 5p15.2 is also present in mosaic state in the patient's mother but absent from the healthy siblings. We then investigated the effect of CTNND2 polymorphisms on normal variability and identified a polymorphism (rs2561622) with significant effect on phonological ability and white matter volume in the left frontal lobe, close to cortical regions previously associated with phonological processing. Finally, given the potential role of CTNND2 in neuron motility, we used morpholino knockdown in zebrafish embryos to assess its effects on neuronal migration in vivo. Analysis of the zebrafish forebrain revealed a subpopulation of neurons misplaced between the diencephalon and telencephalon. CONCLUSIONS Taken together, our human genetic and in vivo data suggest that defective migration of subpopulations of neuronal cells due to haploinsufficiency of CTNND2 contribute to the cognitive dysfunction in our patients.
Collapse
Affiliation(s)
- Wolfgang Hofmeister
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Alexandra Topa
- Department of Clinical Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Fahimeh Darki
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Hans Matsson
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Isabel Tapia Páez
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Torkel Klingberg
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lena Samuelsson
- Department of Clinical Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Valtteri Wirta
- SciLifeLab, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Francesco Vezzi
- SciLifeLab, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden Molecular Neurology Research Program, University of Helsinki, and Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Elisabeth Syk Lundberg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|