1
|
Goncharova IA, Shipulina SA, Sleptcov AA, Zarubin AA, Valiakhmetov NR, Panfilov DS, Lelik EV, Saushkin VV, Kozlov BN, Nazarenko LP, Nazarenko MS. Identification of Variants of Uncertain Significance in the Genes Associated with Thoracic Aortic Disease in Russian Patients with Nonsyndromic Sporadic Subtypes of the Disorder. Int J Mol Sci 2024; 25:8315. [PMID: 39125885 PMCID: PMC11312146 DOI: 10.3390/ijms25158315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Nonsyndromic sporadic thoracic aortic aneurysm (nssTAA) is characterized by diverse genetic variants that may vary in different populations. Our aim was to identify clinically relevant variants in genes implicated in hereditary aneurysms in Russian patients with nssTAA. Forty-one patients with nssTAA without dissection were analyzed. Using massive parallel sequencing, we searched for variants in exons of 53 known disease-causing genes. Patients were found to have no (likely) pathogenic variants in the genes of hereditary TAA. Six variants of uncertain significance (VUSs) were identified in four (9.8%) patients. Three VUSs [FBN1 c.7841C>T (p.Ala2614Val), COL3A1 c.2498A>T (p.Lys833Ile), and MYH11 c.4993C>T (p.Arg1665Cys)] are located in genes with "definitive" disease association (ClinGen). The remaining variants are in "potentially diagnostic" genes or genes with experimental evidence of disease association [NOTCH1 c.964G>A (p.Val322Met), COL4A5 c.953C>G (p.Pro318Arg), and PLOD3 c.833G>A (p.Gly278Asp)]. Russian patients with nssTAA without dissection examined in this study have ≥1 VUSs in six known genes of hereditary TAA (FBN1, COL3A1, MYH11, NOTCH1, COL4A5, or PLOD3). Experimental studies expanded genetic testing, and clinical examination of patients and first/second-degree relatives may shift VUSs to the pathogenic (benign) category or to a new class of rare "predisposing" low-penetrance variants causing the pathology if combined with other risk factors.
Collapse
Affiliation(s)
- Irina A. Goncharova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Ushaika Str., Tomsk 634050, Russia; (I.A.G.); (S.A.S.); (A.A.S.); (A.A.Z.); (N.R.V.); (L.P.N.)
| | - Sofia A. Shipulina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Ushaika Str., Tomsk 634050, Russia; (I.A.G.); (S.A.S.); (A.A.S.); (A.A.Z.); (N.R.V.); (L.P.N.)
| | - Aleksei A. Sleptcov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Ushaika Str., Tomsk 634050, Russia; (I.A.G.); (S.A.S.); (A.A.S.); (A.A.Z.); (N.R.V.); (L.P.N.)
| | - Aleksei A. Zarubin
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Ushaika Str., Tomsk 634050, Russia; (I.A.G.); (S.A.S.); (A.A.S.); (A.A.Z.); (N.R.V.); (L.P.N.)
| | - Nail R. Valiakhmetov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Ushaika Str., Tomsk 634050, Russia; (I.A.G.); (S.A.S.); (A.A.S.); (A.A.Z.); (N.R.V.); (L.P.N.)
| | - Dmitry S. Panfilov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya Str., Tomsk 634012, Russia; (D.S.P.); (E.V.L.); (V.V.S.); (B.N.K.)
| | - Evgeniya V. Lelik
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya Str., Tomsk 634012, Russia; (D.S.P.); (E.V.L.); (V.V.S.); (B.N.K.)
| | - Viktor V. Saushkin
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya Str., Tomsk 634012, Russia; (D.S.P.); (E.V.L.); (V.V.S.); (B.N.K.)
| | - Boris N. Kozlov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya Str., Tomsk 634012, Russia; (D.S.P.); (E.V.L.); (V.V.S.); (B.N.K.)
| | - Ludmila P. Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Ushaika Str., Tomsk 634050, Russia; (I.A.G.); (S.A.S.); (A.A.S.); (A.A.Z.); (N.R.V.); (L.P.N.)
| | - Maria S. Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 10 Ushaika Str., Tomsk 634050, Russia; (I.A.G.); (S.A.S.); (A.A.S.); (A.A.Z.); (N.R.V.); (L.P.N.)
| |
Collapse
|
2
|
Tracking an Elusive Killer: State of the Art of Molecular-Genetic Knowledge and Laboratory Role in Diagnosis and Risk Stratification of Thoracic Aortic Aneurysm and Dissection. Diagnostics (Basel) 2022; 12:diagnostics12081785. [PMID: 35892496 PMCID: PMC9329974 DOI: 10.3390/diagnostics12081785] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 02/08/2023] Open
Abstract
The main challenge in diagnosing and managing thoracic aortic aneurysm and dissection (TAA/D) is represented by the early detection of a disease that is both deadly and “elusive”, as it generally grows asymptomatically prior to rupture, leading to death in the majority of cases. Gender differences exist in aortic dissection in terms of incidence and treatment options. Efforts have been made to identify biomarkers that may help in early diagnosis and in detecting those patients at a higher risk of developing life-threatening complications. As soon as the hereditability of the TAA/D was demonstrated, several genetic factors were found to be associated with both the syndromic and non-syndromic forms of the disease, and they currently play a role in patient diagnosis/prognosis and management-guidance purposes. Likewise, circulating biomarker could represent a valuable resource in assisting the diagnosis, and several studies have attempted to identify specific molecules that may help with risk stratification outside the emergency department. Even if promising, those data lack specificity/sensitivity, and, in most cases, they need more testing before entering the “clinical arena”. This review summarizes the state of the art of the laboratory in TAA/D diagnostics, with particular reference to the current and future role of molecular-genetic testing.
Collapse
|
3
|
Vujakovich CE, Landis BJ. A Novel Human Biospecimen Repository for Clinical and Molecular Investigation of Thoracic Aortopathy. CARDIOGENETICS 2021; 11:148-163. [PMID: 34912529 PMCID: PMC8670059 DOI: 10.3390/cardiogenetics11030017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Thoracic aortic aneurysm (TAA) is a heritable aortopathy with significant morbidity and mortality, affecting children and adults. Genetic causes, pathobiological mechanisms, and prognostic markers are incompletely understood. In 2015, the Collaborative Human Aortopathy Repository (CHAR) was created to address these fundamental gaps. Patients with thoracic aortopathy, associated genetic diagnoses, or aortic valve disease are eligible for prospective enrollment. Family members and controls are also enrolled. Detailed clinical and family data are collected, and blood and aortic tissue biospecimens are processed for broad usage. A total of 1047 participants were enrolled. The mean age in 834 affected participants was 47 ± 22 (range <1 to 88) years and 580 were male (70%). A total of 156 (19%) were under the age of 21 years. Connective tissue diagnoses such as Marfan syndrome were present in 123 (15%). Unaffected participants included relatives (N = 176) and healthy aorta tissue controls (N = 37). Aortic or aortic valve biospecimens were acquired from over 290 and 110 participants, respectively. RNA and protein were extracted from cultured aortic smooth muscle cells (SMCs) for 90 participants. Over 1000 aliquots of aortic SMCs were cryopreserved. The CHAR’s breadth, robust biospecimen processing, and phenotyping create a unique, multipronged resource to accelerate our understanding of human aortopathy.
Collapse
Affiliation(s)
- Courtney E. Vujakovich
- Riley Hospital for Children, Department of Pediatrics, Division of Cardiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Benjamin J. Landis
- Riley Hospital for Children, Department of Pediatrics, Division of Cardiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence:
| |
Collapse
|
4
|
Meng X, Han J, Wang L, Wu Q. Aortic dissection during pregnancy and postpartum. J Card Surg 2021; 36:2510-2517. [PMID: 33928681 DOI: 10.1111/jocs.15575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/21/2021] [Accepted: 03/26/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Patients with aortic dissection during pregnancy and postpartum period exhibit a high mortality. At present, a complete overview of aortic dissection during pregnancy and postpartum period is lacking. Methods: This systematic review included 80 reports published from 2000 to 2020, comprising a total study population of 103 patients with aortic dissection. Results: We found that Stanford Type A aortic dissection was more common in prepartum cases, especially in the third trimester, while postpartum cases of aortic dissection were more common in Stanford Type B. The most common risk factor was connective tissue disease, with no other known risk factors. The mode of delivery had no significant effect on the type of postpartum aortic dissection. Reduced maternal and fetal mortality was observed when patients with Stanford Type A aortic dissection occurring after 28 gestational weeks underwent cesarean section followed by aortic replacement. Patients with Stanford Type B aortic dissection were treated mainly with medication and/or endovascular repair. Conclusion: Contemporary management of patients during pregnancy and within 12 weeks postpartum requires multidisciplinary cooperation and includes serial, noninvasive imaging, biomarker testing, and genetic risk profiling for aortopathy. Early diagnosis and accurate treatment are essential to reduce maternal and fetal mortality.
Collapse
Affiliation(s)
- Xiangli Meng
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Jijing Han
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Li Wang
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Qingqing Wu
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Mathur R, Sharma L, Dhabhai B, Menon AM, Sharma A, Sharma NK, Dakal TC. Predicting the functional consequences of genetic variants in co-stimulatory ligand B7-1 using in-silico approaches. Hum Immunol 2020; 82:103-120. [PMID: 33358455 DOI: 10.1016/j.humimm.2020.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022]
Abstract
The purpose of this research is to identify and characterize deleterious genetic variants in the co-stimulatory ligand B7-1, also known as the human cluster of differentiation CD80 marker. The B7-1 ligand and the major histocompatibility complex class II (MHC II) molecules are the main determinants that provide B-cells the required competency to act as antigen presenting cells. For this, participation of both MHC class II molecules and CD80 is required. The interaction of the CD80 ligand with CD28 on the surface 7 of TH cells plays a key role in the activation of TH cells and progression of B cells through the S phase, hence, leading to their proliferation in mitosis. A set of 2313 genetic variants in the B7-1 ligand have been mapped and retrieved from dbSNP database. Subsequently, 150 non-synonymous single nucleotide polymorphisms (nsSNPs) were mapped and subjected to the sequence and structural homology based predictions, which were further analyzed for protein stability and the disease phenotypes. Finally, we identified 7 potentially damaging nsSNPs in the B7-1 ligand that may affect its interaction with the cognitive receptor CD28, hence, may also interfere with TH cell activation and B cell proliferation. We propose that subsequent experimental analyses (stability, expression and interactions) on these proteins can provide a deep understanding about the effect of these variants on the structure and function of CD80.
Collapse
Affiliation(s)
- Riya Mathur
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Loveena Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Bhanupriya Dhabhai
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Athira M Menon
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Amit Sharma
- Department of Integrated Oncology, University Hospital Bonn, Bonn, Germany; Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Narendra Kumar Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Raj., India
| | - Tikam Chand Dakal
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India; Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India.
| |
Collapse
|
6
|
Richer J, Hill HL, Wang Y, Yang ML, Hunker KL, Lane J, Blackburn S, Coleman DM, Eliason J, Sillon G, D’Agostino MD, Jetty P, Mongeon FP, Laberge AM, Ryan SE, Fendrikova-Mahlay N, Coutinho T, Mathis MR, Zawistowski M, Hazen SL, Katz AE, Gornik HL, Brummett CM, Abecasis G, Bergin IL, Stanley JC, Li JZ, Ganesh SK. A Novel Recurrent COL5A1 Genetic Variant Is Associated With a Dysplasia-Associated Arterial Disease Exhibiting Dissections and Fibromuscular Dysplasia. Arterioscler Thromb Vasc Biol 2020; 40:2686-2699. [PMID: 32938213 PMCID: PMC7953329 DOI: 10.1161/atvbaha.119.313885] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 09/01/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE While rare variants in the COL5A1 gene have been associated with classical Ehlers-Danlos syndrome and rarely with arterial dissections, recurrent variants in COL5A1 underlying a systemic arteriopathy have not been described. Monogenic forms of multifocal fibromuscular dysplasia (mFMD) have not been previously defined. Approach and Results: We studied 4 independent probands with the COL5A1 pathogenic variant c.1540G>A, p.(Gly514Ser) who presented with arterial aneurysms, dissections, tortuosity, and mFMD affecting multiple arteries. Arterial medial fibroplasia and smooth muscle cell disorganization were confirmed histologically. The COL5A1 c.1540G>A variant is predicted to be pathogenic in silico and absent in gnomAD. The c.1540G>A variant is on a shared 160.1 kb haplotype with 0.4% frequency in Europeans. Furthermore, exome sequencing data from a cohort of 264 individuals with mFMD were examined for COL5A1 variants. In this mFMD cohort, COL5A1 c.1540G>A and 6 additional relatively rare COL5A1 variants predicted to be deleterious in silico were identified and were associated with arterial dissections (P=0.005). CONCLUSIONS COL5A1 c.1540G>A is the first recurring variant recognized to be associated with arterial dissections and mFMD. This variant presents with a phenotype reminiscent of vascular Ehlers-Danlos syndrome. A shared haplotype among probands supports the existence of a common founder. Relatively rare COL5A1 genetic variants predicted to be deleterious by in silico analysis were identified in ≈2.7% of mFMD cases, and as they were enriched in patients with arterial dissections, may act as disease modifiers. Molecular testing for COL5A1 should be considered in patients with a phenotype overlapping with vascular Ehlers-Danlos syndrome and mFMD.
Collapse
Affiliation(s)
- Julie Richer
- Department of Medical Genetics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- These authors contributed equally to this work
| | - Hannah L. Hill
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
- These authors contributed equally to this work
| | - Yu Wang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
- These authors contributed equally to this work
| | - Min-Lee Yang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kristina L. Hunker
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jamie Lane
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Susan Blackburn
- Clinical Trials Unit -Heart Vessel, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dawn M. Coleman
- Section of Vascular Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jonathan Eliason
- Section of Vascular Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Guillaume Sillon
- Division of Medical Genetics, Departments of Specialized Medicine and Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Maria-Daniela D’Agostino
- Division of Medical Genetics, Departments of Specialized Medicine and Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Prasad Jetty
- Division of Vascular Surgery, University of Ottawa, Ottawa, Ontario, Canada
| | - François-Pierre Mongeon
- Division of Non Invasive Cardiology, Department of Specialized Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Anne-Marie Laberge
- Medical Genetics, Department of Pediatrics, CHU Ste-Justine, Quebec, Canada
| | - Stephen E. Ryan
- Department of Radiology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Thais Coutinho
- Division of Cardiology and Division of Cardiac Prevention and Rehabilitation, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Michael R. Mathis
- Department of Anesthesiology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Matthew Zawistowski
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Stanley L. Hazen
- Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Alex E. Katz
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Heather L. Gornik
- Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Chad M. Brummett
- Department of Anesthesiology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Goncalo Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Ingrid L. Bergin
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James C. Stanley
- Section of Vascular Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jun Z. Li
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Santhi K. Ganesh
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Recurrent germline mutations as genetic markers for aortic root dilatation in bicuspid aortic valve patients. Heart Vessels 2020; 36:530-540. [PMID: 33064175 DOI: 10.1007/s00380-020-01710-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/02/2020] [Indexed: 10/23/2022]
Abstract
Bicuspid aortic valve (BAV) is characterized by elevated risk of aortic dilatation and aneurysm. Although genetic susceptibility is suspected to influence on the development of BAV aortopathy, clinical application of genetic markers still needs validation in BAV entities with strictly defined phenotypic features. The 'root phenotype' represents a young, male predominant, and severely aortic regurgitant BAV population prone to aortic root dilatation. The present study launched a two-step genetic survey to evaluate the clinical significance of germline genetic markers in BAV patients. The whole-exome sequencing (WES) cohort consisted of 13 BAV patients with 'root phenotype' under the age of 40 years. We identified 28 different heterozygous missense mutations in 19 genes from the WES cohort, among which six variants (COL1A2 R882C, COL5A1 I1161F, ACVRL1 R218W, NOTCH1 P1227S, MYLK S243W, MYLK D717Y) were identified as pathogenic variants via unanimous agreement of in silico prediction tool analysis, and three variants (C1R I345L, TGFBR2 V216I, FBN2 G475V) were identified as recurrent variants. The panel of nine genetic markers was tested in an independent validation cohort of 154 BAV patients consecutively included from January to May 2018 in our institution. The validation cohort demonstrated 71.4% male predominance and the average age of 57 ± 13 years, among which 26.6% showed aortic root dilatation and 66.9% ascending aortic dilatation. Genetic markers were found in 32 patients, including 18 with C1R I345L, 11 with TGFBR2 V216I, 2 with FBN2 G475V, and 1 with both TGFBR2 V216I and MYLK D717Y. BAV patients carrying these genetic markers demonstrated younger age [(51 ± 12) vs. (58 ± 13) years, P = 0.014], more moderate to severe aortic regurgitation (56.2% vs. 33.6%, P = 0.019), elevated prevalence of mitral valve prolapse (9.4% vs. 0.8%, P = 0.028) and aortic root dilatation (62.5% vs. 17.2%, P < 0.001) but not ascending aortic dilatation than those without these markers. The early-onset 'root phenotype' entities displayed great value for BAV genetic surveys. As one of the promising complements of the current risk stratification system, recurrent germline mutations in TGFBR2, C1R, FBN2 genes could be identified and applied as genetic markers of elevated susceptibility for aortic root but not ascending aortic dilatation among BAV patients.
Collapse
|
8
|
Zhao L, Xu L, Hemmerich A, Ferguson NL, Guy CD, McCall SJ, Cardona DM, Westerhoff M, Pai RK, Xiao SY, Liu B, Green CL, Hart J, Zhang X. Reduced MFAP5 expression in stroma of gallbladder adenocarcinoma and its potential diagnostic utility. Virchows Arch 2020; 478:427-434. [PMID: 32895766 DOI: 10.1007/s00428-020-02925-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/04/2020] [Accepted: 09/02/2020] [Indexed: 11/28/2022]
Abstract
The diagnosis of invasive adenocarcinoma of the gallbladder can sometimes be challenging. The presence of true desmoplastic reaction facilitates the diagnosis of invasion. However, desmoplasia-like changes can be observed in benign gallbladder conditions, and recognition of desmoplasia may be challenging based on morphology. In this study, we tested the expression pattern of microfibril-associated protein 5 (MFAP5), a promising immunohistochemical marker for desmoplasia, in benign gallbladders with desmoplasia-like reaction and gallbladders with invasive adenocarcinoma. We also evaluated the diagnostic utility of MFAP5 in challenging cases with an interobserver agreement study. The results showed that all benign cases retained intact/positive MFAP5 staining pattern in periglandular connective tissue, whereas 79.3% (23 out of 29) of cases of adenocarcinomas demonstrated diffuse and complete loss of MFAP5 staining in the tumor stroma. Interobserver agreement was improved by 2.66 times when images of MFAP5 immunohistochemistry were provided. In conclusion, MFAP5 expression is downregulated in the desmoplastic stroma of gallbladder adenocarcinoma and may provide a useful diagnostic marker in difficult cases.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Liyan Xu
- Department of Pathology, St. Luke's University Health Network, Bethlehem, PA, USA
| | - Amanda Hemmerich
- Department of Pathology, Foundation Medicine, Inc., Morrisville, NC, USA
| | - N Lynn Ferguson
- Department of Pathology, Foundation Medicine, Inc., Morrisville, NC, USA
| | - Cynthia D Guy
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Shannon J McCall
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Diana M Cardona
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Maria Westerhoff
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rish K Pai
- Department of Pathology, Mayo Clinic, Scottsdale, AZ, USA
| | - Shu-Yuan Xiao
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Beiyu Liu
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Cynthia L Green
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - John Hart
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Xuefeng Zhang
- Department of Pathology, Duke University Medical Center, Durham, NC, USA. .,Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
9
|
Rohde S, Zafar MA, Ziganshin BA, Elefteriades JA. Thoracic aortic aneurysm gene dictionary. Asian Cardiovasc Thorac Ann 2020; 29:682-696. [PMID: 32689806 DOI: 10.1177/0218492320943800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Thoracic aortic aneurysm is typically clinically silent, with a natural history of progressive enlargement until a potentially lethal complication such as rupture or dissection occurs. Underlying genetic predisposition strongly influences the risk of thoracic aortic aneurysm and dissection. Familial cases are more virulent, have a higher rate of aneurysm growth, and occur earlier in life. To date, over 30 genes have been associated with syndromic and non-syndromic thoracic aortic aneurysm and dissection. The causative genes and their specific variants help to predict the disease phenotype, including age at presentation, risk of dissection at small aortic sizes, and risk of other cardiovascular and systemic manifestations. This genetic "dictionary" is already a clinical reality, allowing us to personalize care based on specific causative mutations for a substantial proportion of these patients. Widespread genetic sequencing of thoracic aortic aneurysm and dissection patients has been and continues to be crucial to the rapid expansion of this dictionary and ultimately, the delivery of truly personalized care to every patient.
Collapse
Affiliation(s)
- Stefanie Rohde
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT, USA
| | - Mohammad A Zafar
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT, USA
| | - Bulat A Ziganshin
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT, USA.,Department of Cardiovascular and Endovascular Surgery, Kazan State Medical University, Kazan, Russia
| | - John A Elefteriades
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
10
|
Keravnou A, Bashiardes E, Barberis V, Michailidou K, Soteriou M, Tanteles GA, Cariolou MA. Identification of novel splice mutation in SMAD3 in two Cypriot families with nonsyndromic thoracic aortic aneurysm. Two case reports. Mol Genet Genomic Med 2020; 8:e1378. [PMID: 32597575 PMCID: PMC7507478 DOI: 10.1002/mgg3.1378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Thoracic aortic aneurysm and dissection (TAA/D) represents a potentially lethal disease group characterized by an increased risk of dissection or rupture. Only a small percentage (approximately 30%) of individuals with nonsyndromic familial TAA/D have a pathogenic variant in one of the genes that have been found to be associated with the disease. METHODS A targeted sequencing panel and direct sequencing approach were used to identify causative mutations in the index patients and other family members. RESULTS In this study we report two apparently unrelated Cypriot families with nonsyndromic familial TAA/D. The proband A is a female patient diagnosed with TAA/D and intracranial aneurysm and opted for an elective intervention. The proband B is a male patient who was diagnosed with TAA/D and underwent cardiac surgery. Sequencing analysis identified a novel splice site variant (c.871+1G>A) in SMAD3 which is shown to be associated with the disease. Analysis of mRNA from the patient's tissue confirmed aberrant splicing and exon 6 skipping. CONCLUSION Our findings expand the mutation spectrum of variants that have been shown to be associated with nonsyndromic familial TAA/D. This study demonstrates the importance of a comprehensive clinical and genetic evaluation aiming at early diagnosis and intervention.
Collapse
Affiliation(s)
- Anna Keravnou
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Evy Bashiardes
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Vassilis Barberis
- Department of Cardiology and Cardiovascular Surgery, American Medical Center, Nicosia, Cyprus
| | - Kyriaki Michailidou
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Marinos Soteriou
- Department of Cardiology and Cardiovascular Surgery, American Medical Center, Nicosia, Cyprus
| | - George A Tanteles
- Clinical Genetics Clinic, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Marios A Cariolou
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
11
|
Loss of microfibril-associated protein 5 (MFAP5) expression in colon cancer stroma. Virchows Arch 2019; 476:383-390. [DOI: 10.1007/s00428-019-02649-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/31/2019] [Accepted: 08/13/2019] [Indexed: 11/26/2022]
|
12
|
Overwater E, Marsili L, Baars MJH, Baas AF, van de Beek I, Dulfer E, van Hagen JM, Hilhorst-Hofstee Y, Kempers M, Krapels IP, Menke LA, Verhagen JMA, Yeung KK, Zwijnenburg PJG, Groenink M, van Rijn P, Weiss MM, Voorhoeve E, van Tintelen JP, Houweling AC, Maugeri A. Results of next-generation sequencing gene panel diagnostics including copy-number variation analysis in 810 patients suspected of heritable thoracic aortic disorders. Hum Mutat 2018; 39:1173-1192. [PMID: 29907982 PMCID: PMC6175145 DOI: 10.1002/humu.23565] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 01/02/2023]
Abstract
Simultaneous analysis of multiple genes using next-generation sequencing (NGS) technology has become widely available. Copy-number variations (CNVs) in disease-associated genes have emerged as a cause for several hereditary disorders. CNVs are, however, not routinely detected using NGS analysis. The aim of this study was to assess the diagnostic yield and the prevalence of CNVs using our panel of Hereditary Thoracic Aortic Disease (H-TAD)-associated genes. Eight hundred ten patients suspected of H-TAD were analyzed by targeted NGS analysis of 21 H-TAD associated genes. In addition, the eXome hidden Markov model (XHMM; an algorithm to identify CNVs in targeted NGS data) was used to detect CNVs in these genes. A pathogenic or likely pathogenic variant was found in 66 of 810 patients (8.1%). Of these 66 pathogenic or likely pathogenic variants, six (9.1%) were CNVs not detectable by routine NGS analysis. These CNVs were four intragenic (multi-)exon deletions in MYLK, TGFB2, SMAD3, and PRKG1, respectively. In addition, a large duplication including NOTCH1 and a large deletion encompassing SCARF2 were detected. As confirmed by additional analyses, both CNVs indicated larger chromosomal abnormalities, which could explain the phenotype in both patients. Given the clinical relevance of the identification of a genetic cause, CNV analysis using a method such as XHMM should be incorporated into the clinical diagnostic care for H-TAD patients.
Collapse
Affiliation(s)
- Eline Overwater
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands.,Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Luisa Marsili
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands.,Medical Genetics Unit, Tor Vergata University Hospital, Rome, Italy
| | - Marieke J H Baars
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Annette F Baas
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Irma van de Beek
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands.,Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Eelco Dulfer
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Johanna M van Hagen
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | | | - Marlies Kempers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ingrid P Krapels
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Leonie A Menke
- Department of Pediatrics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Judith M A Verhagen
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Kak K Yeung
- Department of Surgery, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, the Netherlands.,Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, the Netherlands
| | - Petra J G Zwijnenburg
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Maarten Groenink
- Department of Cardiology and Radiology, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter van Rijn
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Marjan M Weiss
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Els Voorhoeve
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - J Peter van Tintelen
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands.,Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Arjan C Houweling
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Alessandra Maugeri
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
13
|
hsa-miR-320d and hsa-miR-582, miRNA Biomarkers of Aortic Dissection, Regulate Apoptosis of Vascular Smooth Muscle Cells. J Cardiovasc Pharmacol 2018. [DOI: 10.1097/fjc.0000000000000568] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Brownstein AJ, Ziganshin BA, Elefteriades JA. Human aortic aneurysm genomic dictionary: is it possible? Indian J Thorac Cardiovasc Surg 2018; 35:57-66. [PMID: 33061067 DOI: 10.1007/s12055-018-0659-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 12/27/2022] Open
Abstract
Thoracic aortic aneurysm (TAA), a typically silent but frequently lethal disease, is strongly influenced by underlying genetics. Approximately 30 genes have been associated with syndromic and non-syndromic familial thoracic aortic aneurysm and dissection (TAAD) to date. An estimated 30% of patients with non-syndromic familial TAAD, which is typically inherited in an autosomal dominant manner, have a mutation in one of these genes. The underlying genetic mutation helps predict patients' clinical presentation, risk of aortic dissection at small aortic sizes (< 5.0 cm), and risk of other cardiovascular disease. As a result, a TAAD genomic dictionary based on these genes is necessary to provide optimal patient care, but is not on its own sufficient as this disease is typically inherited with reduced penetrance and has widely variable expressivity. Next-generation sequencing has been and will continue to be critical for identifying novel genes and variants associated with TAAD as well as genotype-phenotype correlations that will allow for management to be targeted to not only the underlying gene harboring the pathogenic variant but also the specific mutation identified. The aortic dictionary, to which a clinician can turn to obtain information on clinical consequences of a specific genetic variants, is not only possible, but has been substantially written already. As additional entries to the dictionary are made, truly personalized, genetically based, aneurysm care can be delivered.
Collapse
Affiliation(s)
- Adam Joseph Brownstein
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, 789 Howard Avenue, Clinic Building-CB317, New Haven, CT 06519 USA
| | - Bulat Ayratovich Ziganshin
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, 789 Howard Avenue, Clinic Building-CB317, New Haven, CT 06519 USA
| | - John Alex Elefteriades
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, 789 Howard Avenue, Clinic Building-CB317, New Haven, CT 06519 USA
| |
Collapse
|
15
|
Schepers D, Tortora G, Morisaki H, MacCarrick G, Lindsay M, Liang D, Mehta SG, Hague J, Verhagen J, van de Laar I, Wessels M, Detisch Y, van Haelst M, Baas A, Lichtenbelt K, Braun K, van der Linde D, Roos-Hesselink J, McGillivray G, Meester J, Maystadt I, Coucke P, El-Khoury E, Parkash S, Diness B, Risom L, Scurr I, Hilhorst-Hofstee Y, Morisaki T, Richer J, Désir J, Kempers M, Rideout AL, Horne G, Bennett C, Rahikkala E, Vandeweyer G, Alaerts M, Verstraeten A, Dietz H, Van Laer L, Loeys B. A mutation update on the LDS-associated genes TGFB2/3 and SMAD2/3. Hum Mutat 2018; 39:621-634. [PMID: 29392890 PMCID: PMC5947146 DOI: 10.1002/humu.23407] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/28/2017] [Accepted: 01/23/2018] [Indexed: 02/03/2023]
Abstract
The Loeys–Dietz syndrome (LDS) is a connective tissue disorder affecting the cardiovascular, skeletal, and ocular system. Most typically, LDS patients present with aortic aneurysms and arterial tortuosity, hypertelorism, and bifid/broad uvula or cleft palate. Initially, mutations in transforming growth factor‐β (TGF‐β) receptors (TGFBR1 and TGFBR2) were described to cause LDS, hereby leading to impaired TGF‐β signaling. More recently, TGF‐β ligands, TGFB2 and TGFB3, as well as intracellular downstream effectors of the TGF‐β pathway, SMAD2 and SMAD3, were shown to be involved in LDS. This emphasizes the role of disturbed TGF‐β signaling in LDS pathogenesis. Since most literature so far has focused on TGFBR1/2, we provide a comprehensive review on the known and some novel TGFB2/3 and SMAD2/3 mutations. For TGFB2 and SMAD3, the clinical manifestations, both of the patients previously described in the literature and our newly reported patients, are summarized in detail. This clearly indicates that LDS concerns a disorder with a broad phenotypical spectrum that is still emerging as more patients will be identified. All mutations described here are present in the corresponding Leiden Open Variant Database.
Collapse
Affiliation(s)
- Dorien Schepers
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Giada Tortora
- Medical Genetics Unit, Department of Medical and Surgical Sciences, University of Bologna, Policlinico Sant'Orsola-Malpighi, Bologna, Italy.,Department of Molecular and Clinical Sciences, Marche Polytechnic University, Ancona, Italy
| | - Hiroko Morisaki
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.,Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan.,Department of Medical Genetics, Sakakibara Heart Institute, Tokyo, Japan
| | - Gretchen MacCarrick
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mark Lindsay
- Thoracic Aortic Center, Departments of Medicine and Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston
| | - David Liang
- Cardiovascular Medicine, Stanford University Medical Center, Stanford, California
| | - Sarju G Mehta
- East Anglian Regional Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | - Jennifer Hague
- East Anglian Regional Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | - Judith Verhagen
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ingrid van de Laar
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marja Wessels
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yvonne Detisch
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mieke van Haelst
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Annette Baas
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Klaske Lichtenbelt
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kees Braun
- Department of Child Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - George McGillivray
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Josephina Meester
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Isabelle Maystadt
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique (IPG), Gosselies (Charleroi), Belgium
| | - Paul Coucke
- Center for Medical Genetics, Ghent University Hospital and Ghent University, Ghent, Belgium
| | - Elie El-Khoury
- Department of Diagnostic Cardiology, Clinique St Luc, Bouge (Namur), Belgium
| | - Sandhya Parkash
- Department of Pediatrics, Maritime Medical Genetics Service, IWK Health Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Birgitte Diness
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lotte Risom
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ingrid Scurr
- Department of Clinical Genetics, St. Michael's Hospital, Bristol, UK
| | | | - Takayuki Morisaki
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.,Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan
| | - Julie Richer
- Department of Medical Genetics, Children's Hospital of Eastern Ontario, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Julie Désir
- Centre de Génétique Humaine, Hôpital Erasme, Université Libre de Bruxelles, Belgium
| | - Marlies Kempers
- Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Andrea L Rideout
- Maritime Medical Genetics Service, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Gabrielle Horne
- Department of Medicine (Cardiology) and School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Chris Bennett
- Department of Clinical Genetics, Chapel Allerton Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Elisa Rahikkala
- Department of Clinical Genetics, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Geert Vandeweyer
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Maaike Alaerts
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Aline Verstraeten
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Hal Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lut Van Laer
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Bart Loeys
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.,Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Exome Sequencing Identifies Candidate Genetic Modifiers of Syndromic and Familial Thoracic Aortic Aneurysm Severity. J Cardiovasc Transl Res 2017; 10:423-432. [PMID: 28550590 DOI: 10.1007/s12265-017-9753-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/16/2017] [Indexed: 01/09/2023]
Abstract
Thoracic aortic aneurysm (TAA) is a genetic disease predisposing to aortic dissection. It is important to identify the genetic modifiers controlling penetrance and expressivity to improve clinical prognostication. Exome sequencing was performed in 27 subjects with syndromic or familial TAA presenting with extreme phenotypes (15 with severe TAA; 12 with mild or absent TAA). Family-based analysis of a subset of the cohort identified variants, genes, and pathways segregating with TAA severity among three families. A rare missense variant in ADCK4 (p.Arg63Trp) segregated with mild TAA in each family. Genes and pathways identified in families were further investigated in the entire cohort using the optimal unified sequence kernel association test, finding significance for the gene COL15A1 (p = 0.025) and the retina homeostasis pathway (p = 0.035). Thus, we identified candidate genetic modifiers of TAA severity by exome-based study of extreme phenotypes, which may lead to improved risk stratification and development of new medical therapies.
Collapse
|
17
|
Abstract
Aortic dissection is a life-threatening condition caused by a tear in the intimal layer of the aorta or bleeding within the aortic wall, resulting in the separation (dissection) of the layers of the aortic wall. Aortic dissection is most common in those 65-75 years of age, with an incidence of 35 cases per 100,000 people per year in this population. Other risk factors include hypertension, dyslipidaemia and genetic disorders that involve the connective tissue, such as Marfan syndrome. Swift diagnostic confirmation and adequate treatment are crucial in managing affected patients. Contemporary management is multidisciplinary and includes serial non-invasive imaging, biomarker testing and genetic risk profiling for aortopathy. The choice of approach for repairing or replacing the damaged region of the aorta depends on the severity and the location of the dissection and the risks of complication from surgery. Open surgical repair is most commonly used for dissections involving the ascending aorta and the aortic arch, whereas minimally invasive endovascular intervention is appropriate for descending aorta dissections that are complicated by rupture, malperfusion, ongoing pain, hypotension or imaging features of high risk. Recent advances in the understanding of the underlying pathophysiology of aortic dissection have led to more patients being considered at substantial risk of complications and, therefore, in need of endovascular intervention rather than only medical or surgical intervention.
Collapse
|
18
|
Martín M, Barriales V, Rozado J, Fidalgo A, Iglesias DG, Solache-Berrocal G, Morís C, Cabo RA, Rodríguez I. Nonsyndromic thoracic aortic aneurysm and dissection: Finally answers. Int J Cardiol 2016; 214:133. [PMID: 27060273 DOI: 10.1016/j.ijcard.2016.03.182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 03/20/2016] [Indexed: 10/22/2022]
Affiliation(s)
- María Martín
- Area del Corazón del Hospital Universitario Central de Asturias, Avda Roma s/n, Oviedo, Spain.
| | - Vicente Barriales
- Area del Corazón del Hospital Universitario Central de Asturias, Avda Roma s/n, Oviedo, Spain
| | - José Rozado
- Area del Corazón del Hospital Universitario Central de Asturias, Avda Roma s/n, Oviedo, Spain
| | - Ana Fidalgo
- Area del Corazón del Hospital Universitario Central de Asturias, Avda Roma s/n, Oviedo, Spain
| | - Daniel García Iglesias
- Area del Corazón del Hospital Universitario Central de Asturias, Avda Roma s/n, Oviedo, Spain
| | - Guillermo Solache-Berrocal
- Bone and Mineral Research Unit, IRSIN, Hospital Universitario Central de Asturias, REDinREN from ISCIII, Area del Corazón Hospital Universitario Central de Asturias, Avda Roma s/n, Oviedo, Spain
| | - César Morís
- Area del Corazón del Hospital Universitario Central de Asturias, Avda Roma s/n, Oviedo, Spain
| | - Rubén Alvarez Cabo
- Cardiac Surgery, Hospital Universitario Central de Asturias, Area del Corazón Hospital Universitario Central de Asturias, Avda Roma s/n, Oviedo, Spain
| | - Isabel Rodríguez
- Bone and Mineral Research Unit, IRSIN, Hospital Universitario Central de Asturias, REDinREN from ISCIII, Area del Corazón Hospital Universitario Central de Asturias, Avda Roma s/n, Oviedo, Spain
| |
Collapse
|