1
|
Findley TO. ECI biocommentary: Tina O. Findley. Pediatr Res 2024; 96:1102. [PMID: 39256607 DOI: 10.1038/s41390-024-03556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 08/24/2024] [Indexed: 09/12/2024]
Affiliation(s)
- Tina O Findley
- McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
2
|
Zoghi S, Feili M, Mosayebi MA, Ansari A, Feili A, Masoudi MS, Taheri R. Surgical outcomes of myelomeningocele repair: A 20-year experience from a single center in a middle-income country. Clin Neurol Neurosurg 2024; 239:108214. [PMID: 38503112 DOI: 10.1016/j.clineuro.2024.108214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND AND PURPOSE Spina bifida is the second major cause of congenital disorders and the most common central nervous system congenital malformation compatible with life primarily. Herein, we describe the short-term outcome of post-natal Myelomeningocele (MMC) surgical management and predictors of its postoperative complications and mortality. METHODS This retrospective chart review studies the children who underwent post-natal surgical management for MMC in Namazi hospital, a tertiary referral center, in southern Iran from May 2001 to September 2020. RESULTS 248 patients were included in this study. The mean age at the operation was 8.47 ± 8.69 days. The most common site of involvement of MMC was Lumbosacral (86%, n = 204). At the evaluation conducted prior to the operation, cerebrospinal fluid leak was observed in 7% (n=16) of the patients. Postoperatively, 5.7% of the patients expired in the 30-day follow-up after the operation (n = 14), while 24% needed readmission (n = 47). The most common complications leading to readmission were wound dehiscence (n = 10, 42%) and wound purulence (n = 6, 25%). Only the site of the lesion (p-value = 0.035) was associated with postoperative complication. After controlling for potential confounders, the site of the lesion (adjusted odds ratio = 0.146, 95% confidence interval = 0.035-0.610, p-value = 0.008) and age at surgery (adjusted odds ratio = 1.048, 95% confidence interval = 1.002-1.096, p-value = 0.041) were significantly associated with mortality CONCLUSIONS: The age of the patients at the surgery and the site of the lesion are the two factors that were associated with mortality. However, further investigations into preoperative interventions and risk factors to mitigate the risk of complications and mortality are highly encouraged.
Collapse
Affiliation(s)
- Sina Zoghi
- Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Feili
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ali Ansari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afrooz Feili
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Reza Taheri
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
3
|
Ledet Iii LF, Plaisance CJ, Daniel CP, Wagner MJ, Alvarez I, Burroughs CR, Rieger R, Siddaiah H, Ahmadzadeh S, Shekoohi S, Kaye AD, Varrassi G. Spina Bifida Prevention: A Narrative Review of Folic Acid Supplements for Childbearing Age Women. Cureus 2024; 16:e53008. [PMID: 38406082 PMCID: PMC10894015 DOI: 10.7759/cureus.53008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Abstract
Neural tube defects (NTDs) are malformations that occur during embryonic development, and they account for most central nervous system birth anomalies. Genetic and environmental factors have been shown to play a role in the etiology of NTDs. The different types of NTDs are classified according to anatomic location and severity of the defect, with most of the neural axis anomalies occurring in the caudal spinal or cranial areas. Spina bifida is a type of NTD that is characterized by an opening in the vertebral arch, and the level of severity is determined by the extent to which the neural tissue protrudes through the opened arch(es). Prevention of NTDs by administration of folic acid has been studied and described in the literature, yet there are approximately 300,000 cases of NTDs that occur annually, with 88,000 deaths occurring per year worldwide. A daily intake of at least 400 μg of folic acid is recommended especially for women of childbearing age. To provide the benefits of folic acid, prenatal vitamins are recommended in pregnancy, and many countries have been fortifying foods such as cereal grain products with folic acid; however, not all countries have instituted folic acid fortification programs. The present investigation includes a description of the pharmacology of folic acid, neural tube formation, defects such as spina bifida, and the relevance of folic acid to developing spina bifida. Women's knowledge and awareness of folic acid regarding its importance in the prevention of spina bifida is a major factor in reducing incidence worldwide.
Collapse
Affiliation(s)
- Lloyd F Ledet Iii
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Connor J Plaisance
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Charles P Daniel
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Maxwell J Wagner
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Ivan Alvarez
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Caroline R Burroughs
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Ross Rieger
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Harish Siddaiah
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Shahab Ahmadzadeh
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | | |
Collapse
|
4
|
Alexandre NM, Cameron AC, Tian D, Chatla K, Kolora SRR, Whiteman NK, Turner TF, Reinthal PN. Chromosome-level reference genomes of two imperiled desert fishes: spikedace (Meda fulgida) and loach minnow (Tiaroga cobitis). G3 (BETHESDA, MD.) 2023; 13:jkad157. [PMID: 37466215 PMCID: PMC10542311 DOI: 10.1093/g3journal/jkad157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/20/2023]
Abstract
North American minnows (Cypriniformes: Leuciscidae) comprise a diverse taxonomic group, but many members, particularly those inhabiting deserts, face elevated extinction risks. Despite conservation concerns, leuciscids remain under sampled for reference assemblies relative to other groups of freshwater fishes. Here, we present 2 chromosome-scale reference genome assemblies spikedace (Meda fulgida) and loach minnow (Tiaroga cobitis) using PacBio, Illumina and Omni-C technologies. The complete assembly for spikedace was 882.1 Mb in total length comprised of 83 scaffolds with N50 = 34.8 Mb, L50 = 11, N75 = 32.3 Mb, and L75 = 18. The complete assembly for loach minnow was 1.3 Gb in total length comprised of 550 scaffolds with N50 = 48.6 Mb, L50 = 13, N75 = 42.3 Mb, and L75 = 20. Completeness assessed via Benchmarking Universal Single-Copy Orthologues (BUSCO) metrics using the Actinopterygii BUSCO database showed ∼97% for spikedace and ∼98% for loach minnow of complete BUSCO proportions. Annotation revealed approximately 32.58 and 29.04% of spikedace and loach minnow total genome lengths to be comprised of protein-coding genes, respectively. Comparative genomic analyses of these endangered and co-distributed fishes revealed widespread structural variants, gene family expansions, and evidence of positive selection in both genomes.
Collapse
Affiliation(s)
- Nicolas M Alexandre
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, Berkeley, CA 94720, USA
| | - Alexander C Cameron
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - David Tian
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, Berkeley, CA 94720, USA
| | - Kamalakar Chatla
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, Berkeley, CA 94720, USA
| | - Sree R R Kolora
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, Berkeley, CA 94720, USA
| | - Noah K Whiteman
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, Berkeley, CA 94720, USA
| | - Thomas F Turner
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Peter N Reinthal
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
5
|
Shen Y, Kim IM, Tang Y. Decoding the Gene Regulatory Network of Muscle Stem Cells in Mouse Duchenne Muscular Dystrophy: Revelations from Single-Nuclei RNA Sequencing Analysis. Int J Mol Sci 2023; 24:12463. [PMID: 37569835 PMCID: PMC10419276 DOI: 10.3390/ijms241512463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The gene dystrophin is responsible for Duchenne muscular dystrophy (DMD), a grave X-linked recessive ailment that results in respiratory and cardiac failure. As the expression of dystrophin in muscle stem cells (MuSCs) is a topic of debate, there exists a limited understanding of its influence on the gene network of MuSCs. This study was conducted with the objective of investigating the effects of dystrophin on the regulatory network of genes in MuSCs. To comprehend the function of dystrophin in MuSCs from DMD, this investigation employed single-nuclei RNA sequencing (snRNA-seq) to appraise the transcriptomic profile of MuSCs obtained from the skeletal muscles of dystrophin mutant mice (DMDmut) and wild-type control mice. The study revealed that the dystrophin mutation caused the disruption of several long non-coding RNAs (lncRNAs), leading to the inhibition of MEG3 and NEAT1 and the upregulation of GM48099, GM19951, and GM15564. The Gene Ontology (GO) enrichment analysis of biological processes (BP) indicated that the dystrophin mutation activated the cell adhesion pathway in MuSCs, inhibited the circulatory system process, and affected the regulation of binding. The study also revealed that the metabolic pathway activity of MuSCs was altered. The metabolic activities of oxidative phosphorylation (OXPHOS) and glycolysis were elevated in MuSCs from DMDmut. In summary, this research offers novel insights into the disrupted gene regulatory program in MuSCs due to dystrophin mutation at the single-cell level.
Collapse
Affiliation(s)
- Yan Shen
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Il-Man Kim
- Anatomy, Cell Biology, and Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA;
| | - Yaoliang Tang
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| |
Collapse
|
6
|
Cao R, Xie J, Zhang L. Abnormal methylation caused by folic acid deficiency in neural tube defects. Open Life Sci 2022; 17:1679-1688. [PMID: 36589786 PMCID: PMC9784971 DOI: 10.1515/biol-2022-0504] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 12/24/2022] Open
Abstract
Neural tube closure disorders, including anencephaly, spina bifida, and encephalocele, cause neural tube defects (NTDs). This congenital disability remained not only a major contributor to the prevalence of stillbirths and neonatal deaths but also a significant cause of lifelong physical disability in surviving infants. NTDs are complex diseases caused by multiple etiologies, levels, and mechanisms. Currently, the pathogenesis of NTDs is considered to be associated with both genetic and environmental factors. Here, we aimed to review the research progress on the etiology and mechanism of NTDs induced by methylation modification caused by folic acid deficiency. Folic acid supplementation in the diet is reported to be beneficial in preventing NTDs. Methylation modification is one of the most important epigenetic modifications crucial for brain neurodevelopment. Disturbances in folic acid metabolism and decreased S-adenosylmethionine levels lead to reduced methyl donors and methylation modification disorders. In this review, we summarized the relationship between NTDs, folic acid metabolism, and related methylation of DNA, imprinted genes, cytoskeletal protein, histone, RNA, and non-coding RNA, so as to clarify the role of folic acid and methylation in NTDs and to better understand the various pathogenesis mechanisms of NTDs and the effective prevention.
Collapse
Affiliation(s)
- Rui Cao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, Shanxi Province, China,Shanxi Key Laboratory of Pharmaceutical Biotechnology, Shanxi Biological Research Institute Co., Ltd, Taiyuan, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, Shanxi Province, China
| | - Li Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, Shanxi Province, China,Department of Hepatobiliary and Pancreatic Surgery and Liver Transplant Center, The First Hospital of Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, Shanxi Province, China
| |
Collapse
|
7
|
Scapoli C, Ziliotto N, Lunghi B, Menegatti E, Salvi F, Zamboni P, Baroni M, Mascoli F, Bernardi F, Marchetti G. Combination of Genomic and Transcriptomic Approaches Highlights Vascular and Circadian Clock Components in Multiple Sclerosis. Int J Mol Sci 2021; 23:ijms23010310. [PMID: 35008743 PMCID: PMC8745220 DOI: 10.3390/ijms23010310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 12/17/2022] Open
Abstract
Aiming at exploring vascular components in multiple sclerosis (MS) with brain outflow disturbance, we combined transcriptome analysis in MS internal jugular vein (IJV) wall with WES in MS families with vertical transmission of disease. Main results were the differential expression in IJV wall of 16 MS-GWAS genes and of seven genes (GRIN2A, GRIN2B, IL20RB, IL26, PER3, PITX2, and PPARGC1A) not previously indicated by GWAS but encoding for proteins functionally interacting with MS candidate gene products. Strikingly, 22/23 genes have been previously associated with vascular or neuronal traits/diseases, nine encoded for transcriptional factors/regulators and six (CAMK2G, GRIN2A, GRIN2B, N1RD1, PER3, PPARGC1A) for circadian entrainment/rhythm components. Among the WES low-frequency (MAF ≤ 0.04) SNPs (n = 7) filtered in the 16 genes, the NR1D1 rs17616365 showed significantly different MAF in the Network for Italian Genomes affected cohort than in the 1000 Genome Project Tuscany samples. This pattern was also detected in five nonintronic variants (GRIN2B rs1805482, PER3 rs2640909, PPARGC1A rs2970847, rs8192678, and rs3755863) in genes coding for functional partners. Overall, the study proposes specific markers and low-frequency variants that might help (i) to understand perturbed biological processes in vascular tissues contributing to MS disease, and (ii) to characterize MS susceptibility genes for functional association with disease-pathways.
Collapse
Affiliation(s)
- Chiara Scapoli
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.S.); (B.L.); (M.B.)
| | - Nicole Ziliotto
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
| | - Barbara Lunghi
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.S.); (B.L.); (M.B.)
| | - Erica Menegatti
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (E.M.); (P.Z.)
| | - Fabrizio Salvi
- Center for Immunological and Rare Neurological Diseases, IRCCS of Neurological Sciences, Bellaria Hospital, 40139 Bologna, Italy;
| | - Paolo Zamboni
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (E.M.); (P.Z.)
| | - Marcello Baroni
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.S.); (B.L.); (M.B.)
| | - Francesco Mascoli
- Unit of Vascular and Endovascular Surgery, S. Anna University-Hospital, 44124 Ferrara, Italy;
| | - Francesco Bernardi
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.S.); (B.L.); (M.B.)
- Correspondence: ; Tel.: +39-0532-974425
| | - Giovanna Marchetti
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| |
Collapse
|
8
|
Purohit MR, Saikrishna L, Verma H, Bhaskar LVKS, Hussain SA. Association Between MTHFD1 1958G > A Variant and non-Syndromic Cleft lip and Palate: An Updated Meta-Analysis. Cleft Palate Craniofac J 2021; 59:1422-1427. [PMID: 34904448 DOI: 10.1177/10556656211046486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Non-syndromic cleft lip and palate (NSCLP) is one of the most common and challenging congenital deformities worldwide. Previous research has linked the methylenetetrahydrofolate dehydrogenase1 (MTHFD1) gene to orofacial cleft (OFC) susceptibility via a complex metabolism. Studies analyzing the MTHFD1 1958G > A variant and NSCLP are contradictory. This study aims to evaluate the association between the MTHFD1 1958G > A variant and NSCLP by meta-analysis. METHODS PubMed, Web of Science, MEDLINE, and Google Scholar databases were searched to retrieve the eligible studies. A fixed- or random-effect model was used to calculate pooled odds ratio (OR) and 95% confidence interval (CI). All analyses were calculated by Metagenyo software. To detect heterogeneity, the Cochrane Q and I2 statistics were used. The publication bias was estimated using funnel plots and Egger's test. RESULTS Our study suggested that the MTHFD1 1958G > A variant allele "A" does not appear to increase the risk of NSCLP (A vs G random effect model: Overall P = .501, OR = 1.07, CI = 0.88-1.31; Asians P = .245, OR = 1.29, CI = 0.84-1.97; Caucasians P = .658, OR = 0.95, CI = 0.76-1.19). Similarly, mutant genotypes also did not exhibit increased risk for NSCLP in the overall populations as well in subgroup analysis by ethnicity (AA + AG vs GG: Overall P = .684, OR = 1.06, CI = 0.80-1.39; Asians P = .240, OR = 1.47, CI = 0.77-2.78; Caucasians P = .923, OR = 0.99, CI = 0.85-1.16). CONCLUSIONS Our data suggest no association between the MTHFD1 1958G > A variant and NSCLP. Additional well-designed studies are needed to better understand the role of MTHFD1 polymorphisms in the etiopathogenesis of NSCLP.
Collapse
Affiliation(s)
- Manas R Purohit
- Department of Zoology, 28718Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | | | - Henu Verma
- Department of Immunopathology, Institute of Lungs Biology and Disease, 518741Comprehensive Pneumology Center, Helmholtz Zentrum, 85764 Neuherberg, Munich, Germany
| | - L V K S Bhaskar
- Department of Zoology, 28718Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Syed A Hussain
- Department of Plastic Surgery, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
9
|
Wilson R, O'Connor D. Maternal folic acid and multivitamin supplementation: International clinical evidence with considerations for the prevention of folate-sensitive birth defects. Prev Med Rep 2021; 24:101617. [PMID: 34976673 PMCID: PMC8684027 DOI: 10.1016/j.pmedr.2021.101617] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
More evidence is available for maternal intake, absorption, distribution, tissue specific concentrations, and pregnancy outcomes with folic acid (fortification/supplementation) during preconception - first trimester. This Quality Improvement prevention review used expert guidelines/opinions, systematic reviews, randomized control trials/controlled clinical trials, and observational case control/case series studies, published in English, from 1990 to August 2021. Optimization for an oral maternal folic acid supplementation is difficult because it relies on folic acid dose, type of folate supplement, bio-availability of the folate from foods, timing of supplementation initiation, maternal metabolism/genetic factors, and many other factors. There is continued use of high dose pre-food fortification 'RCT evidenced-based' folic acid supplementation for NTD recurrence pregnancy prevention. Innovation requires preconception and pregnancy use of 'carbon one nutrient' supplements (folic acid, vitamin B12, B6, choline), using the appropriate evidence, need to be considered. The consideration and adoption of directed personalized approaches for maternal complex risk could use serum folate testing for supplementation dosing choice. Routine daily folic acid dosing for low-risk women should consider a multivitamin with 0.4 mg of folic acid starting 3 months prior to conception until completion of breastfeeding. Routine folic acid dosing or preconception measurement of maternal serum folate (after 4-6 weeks of folate supplementation) could be considered for maternal complex risk group with genetic/medical/surgical co-morbidities. These new approaches for folic acid oral supplementation are required to optimize benefit (decreasing folate sensitive congenital anomalies; childhood morbidity) and minimizing potential maternal and childhood risk.
Collapse
Affiliation(s)
- R.D. Wilson
- Cumming School of Medicine, Department of Obstetrics and Gynecology, University of Calgary, FMC NT 435, 1403 29 St NW, Calgary, Alberta, Canada
| | - D.L. O'Connor
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Kakebeen AD, Niswander L. Micronutrient imbalance and common phenotypes in neural tube defects. Genesis 2021; 59:e23455. [PMID: 34665506 PMCID: PMC8599664 DOI: 10.1002/dvg.23455] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/24/2022]
Abstract
Neural tube defects (NTDs) are among the most common birth defects, with a prevalence of close to 19 per 10,000 births worldwide. The etiology of NTDs is complex involving the interplay of genetic and environmental factors. Since nutrient deficiency is a risk factor and dietary changes are the major preventative measure to reduce the risk of NTDs, a more detailed understanding of how common micronutrient imbalances contribute to NTDs is crucial. While folic acid has been the most discussed environmental factor due to the success that population-wide fortification has had on prevention of NTDs, folic acid supplementation does not prevent all NTDs. The imbalance of several other micronutrients has been implicated as risks for NTDs by epidemiological studies and in vivo studies in animal models. In this review, we highlight recent literature deciphering the multifactorial mechanisms underlying NTDs with an emphasis on mouse and human data. Specifically, we focus on advances in our understanding of how too much or too little retinoic acid, zinc, and iron alter gene expression and cellular processes contributing to the pathobiology of NTDs. Synthesis of the discussed literature reveals common cellular phenotypes found in embryos with NTDs resulting from several micronutrient imbalances. The goal is to combine knowledge of these common cellular phenotypes with mechanisms underlying micronutrient imbalances to provide insights into possible new targets for preventative measures against NTDs.
Collapse
Affiliation(s)
- Anneke Dixie Kakebeen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Lee Niswander
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
11
|
Queally JT, Barnes MA, Castillo H, Castillo J, Fletcher JM. Neuropsychological care guidelines for people with spina bifida. J Pediatr Rehabil Med 2021; 13:663-673. [PMID: 33285647 PMCID: PMC7838972 DOI: 10.3233/prm-200761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
While the neuropsychological profile for individuals with Spina Bifida (SB) can vary, often certain patterns of strengths and weaknesses are evident across the lifespan. Understanding variability related to neural structure, genetics, ethnicity, and the environment is key to understanding individual differences in outcomes and can be vital in planning interventions and tracking progress. This article outlines the SB Guideline for the Neuropsychological Care of People with Spina Bifida from the 2018 Spina Bifida Association's Fourth Edition of the Guidelines for the Care of People with Spina Bifida and acknowledges that further research in SB neurocognitive profiles is warranted.
Collapse
Affiliation(s)
- Jennifer T. Queally
- Department of Psychiatry, Children’s Hospital Boston, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Marcia A. Barnes
- Department of Special Education, Peabody College, Vanderbilt University, Nashville, TN, USA
| | - Heidi Castillo
- The Meyer Center for Developmental Pediatrics, Texas Children’s Hospital, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
| | - Jonathan Castillo
- The Meyer Center for Developmental Pediatrics, Texas Children’s Hospital, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
| | - Jack M. Fletcher
- Department of Psychology, University of Houston, Houston, TX, USA
| |
Collapse
|
12
|
Barron K, Ogretmen B, Krupenko N. Ceramide synthase 6 mediates sex-specific metabolic response to dietary folic acid in mice. J Nutr Biochem 2021; 98:108832. [PMID: 34358645 DOI: 10.1016/j.jnutbio.2021.108832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/20/2021] [Accepted: 07/01/2021] [Indexed: 11/26/2022]
Abstract
Folic acid-fortified foods and multi-vitamin supplements containing folic acid (FA) are widely used around the world, but the exact mechanisms/metabolic effects of FA are not precisely identified. We have demonstrated that Ceramide Synthase 6 (CerS6) and C16:0-ceramide mediate response to folate stress in cultured cells. Here we investigated the dietary FA effects on mouse liver metabolome, with a specific focus on sphingolipids, CerS6 and C16:0-ceramide. Wild-type and CerS6-/- mice were fed FA-deficient, control, or FA over-supplemented diets for 4 weeks. After dietary treatment, liver concentrations of ceramides, sphingomyelins and hexosylceramides were measured by LC-MS/MS and complemented by untargeted metabolomic characterization of mouse livers. Our study shows that alterations in dietary FA elicit multiple sphingolipid responses mediated by CerS6 in mouse livers. Folic acid-deficient diet elevated C14:0-, C18:0- and C20:0- but not C16:0-ceramide in WT male and female mice. Additionally, FA over-supplementation increased multiple sphingomyelin species, including total sphingomyelins, in both sexes. Of note, concentrations of C14:0- and C16:0-ceramides and hexosylceramides were significantly higher in female livers than in male. The latter were increased by FD diet, with no difference between sexes in total pools of these sphingolipid classes. Untargeted liver metabolomic analysis concurred with the targeted measurements and showed broad effects of dietary FA and CerS6 status on multiple lipid classes including sex-specific effects on phosphatidylethanolamines and diacylglycerols. Our study demonstrates that both dietary FA and CerS6 status exhibit pleiotropic and sex-dependent effects on liver metabolism, including hepatic sphingolipids, diacylglycerols, long chain fatty acids, and phospholipids.
Collapse
Affiliation(s)
- Keri Barron
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina
| | - Besim Ogretmen
- Department of Biochemistry & Molecular Biology, Hollings Cancer center, Medical University of South Carolina, 173 Ashley Avenue, Charleston, South Carolina
| | - Natalia Krupenko
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina,; Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina,.
| |
Collapse
|
13
|
Jaffe E, Niswander L. Loss of Grhl3 is correlated with altered cellular protrusions in the non-neural ectoderm during neural tube closure. Dev Dyn 2021; 250:732-744. [PMID: 33378081 DOI: 10.1002/dvdy.292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The transcription factor Grainyhead-like 3 (GRHL3) has multiple roles in a variety of tissues during development including epithelial patterning and actin cytoskeletal regulation. During neural tube closure (NTC) in the mouse embryo, GRHL3 is expressed and functions in the non-neural ectoderm (NNE). Two important functions of GRHL3 are regulating the actin cytoskeleton during NTC and regulating the boundary between the NNE and neural ectoderm. However, an open question that remains is whether these functions explain the caudally restricted neural tube defect (NTD) of spina bifida observed in Grhl3 mutants. RESULTS Using scanning electron microscopy and immunofluorescence based imaging on Grhl3 mutants and wildtype controls, we show that GRHL3 is dispensable for NNE identity or epithelial maintenance in the caudal NNE but is needed for regulation of cellular protrusions during NTC. Grhl3 mutants have decreased lamellipodia relative to wildtype embryos during caudal NTC, first observed at the onset of delays when lamellipodia become prominent in wildtype embryos. At the axial level of NTD, half of the mutants show increased and disorganized filopodia and half lack cellular protrusions. CONCLUSION These data suggest that altered cellular protrusions during NTC contribute to the etiology of NTD in Grhl3 mutants.
Collapse
Affiliation(s)
- Eric Jaffe
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Lee Niswander
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
14
|
Effect of Harvest Age on Total Phenolic, Total Anthocyanin Content, Bioactive Antioxidant Capacity and Antiproliferation of Black and White Glutinous Rice Sprouts. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Black (cv. BGR) and white (cv. RD6) glutinous rice sprouts from fertilizer- and pesticide-free farm in Khon Kaen province, Thailand were investigated for antioxidation and antiproliferative activity. Three different ages of rice sprouts were collected and prepared as the extract. BGR exerted higher antioxidant capacity than RD6 based on total phenolic (TPC) and total anthocyanin contents (TAC), DPPH, and FRAP assays. BGR at 10–15 days contained the highest TPC (29.72 ± 1.42 mg gallic acid equivalent/g extract) and reducing power (2.22 ± 0.014 mmole FeSO4/g extract). BGR at 20–25 days contained the highest TAC (0.86 ± 0.096 equivalence of cyanidin-3-glucoside/g extract) and DPPH radical scavenging activity (IC50 = 231.09 ± 12.99 μg/mL). Antiproliferative activity of the extracts was evaluated in the human T-lymphocyte (Jurkat), hepatocellular carcinoma (HepG2), colorectal carcinoma (HCT116), melanoma (SK-MEL-2) and noncancerous cells (Vero) by neutral red assay. BGR showed the most selective antiproliferation against Jurkat cells, by inducing apoptosis, and caspase 3/7 activity. BGR at 200 μg/mL from all ages significantly decreased ROS using DCFH-DA and increased endogenous glutathione levels in Jurkat cells compared to the control (p < 0.05). The higher antiproliferation of BGR than RD6 was via its antioxidation capacity and attributed to its higher phenolic and anthocyanin contents. BGR sprout is a potential source of biologically active substances good for wellness and health benefits.
Collapse
|
15
|
de Leeuw VC, van Nieuwland M, Bokkers BGH, Piersma AH. Culture Conditions Affect Chemical-Induced Developmental Toxicity In Vitro: The Case of Folic Acid, Methionine and Methotrexate in the Neural Embryonic Stem Cell Test. Altern Lab Anim 2020; 48:173-183. [PMID: 33034509 DOI: 10.1177/0261192920961963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In vitro tests are increasingly applied in chemical hazard assessment. Basic culture conditions may affect the outcome of in vitro tests and should be optimised to reduce false predictions. The neural embryonic stem cell test (ESTn) can predict early neurodevelopmental effects of chemicals, as it mimics the differentiation of stem cells towards the neuroectodermal lineage. Normal early neural differentiation depends crucially on folic acid (FA) and methionine (MET), both elements of the one-carbon (1C) cycle. The aim of this study was to assess the concentration-dependent influence of FA and MET on neural differentiation in the ESTn, and its consequences for assay sensitivity to methotrexate (MTX), a compound that interferes with the 1C cycle. Neural differentiation was inhibited below 0.007 mM and above 0.22 mM FA, while both stem cell viability (< 0.097 mM, > 1.52 mM) and neural differentiation (< 0.181 mM, > 1.35 mM) were affected when changing MET concentrations. A 10-day exposure to 13 nM MTX inhibited neural differentiation, especially in FA- and MET-deficient conditions. However, a 24-hour exposure to 39 nM MTX decreased neural cell and neural crest cell differentiation markers only when the concentration of FA in the medium was three times the standard concentration, which was expected to have a protective effect against MTX. These results show the importance of nutrient concentrations, exposure scenarios and timing of read-outs for cell differentiation and compound sensitivity in the ESTn. Caution should be taken when interpreting results from a single in vitro test, especially when extrapolating to effects on complex morphogenetic processes, like neural tube development.
Collapse
Affiliation(s)
- Victoria C de Leeuw
- Centre for Health Protection, National Institute for Public Health and the Environment (10206RIVM), Bilthoven, the Netherlands.,Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Marieke van Nieuwland
- Centre for Health Protection, National Institute for Public Health and the Environment (10206RIVM), Bilthoven, the Netherlands.,Radboudumc, Medical Faculty, Nijmegen, the Netherlands
| | - Bas G H Bokkers
- Centre for Health Protection, National Institute for Public Health and the Environment (10206RIVM), Bilthoven, the Netherlands.,Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (10206RIVM), Bilthoven, the Netherlands
| | - Aldert H Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (10206RIVM), Bilthoven, the Netherlands.,Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
16
|
Hillman P, Baker C, Hebert L, Brown M, Hixson J, Ashley-Koch A, Morrison AC, Northrup H, Au KS. Identification of novel candidate risk genes for myelomeningocele within the glucose homeostasis/oxidative stress and folate/one-carbon metabolism networks. Mol Genet Genomic Med 2020; 8:e1495. [PMID: 32960507 PMCID: PMC7667334 DOI: 10.1002/mgg3.1495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/17/2020] [Accepted: 08/05/2020] [Indexed: 12/27/2022] Open
Abstract
Background Neural tube defects (NTDs) are the second most common complex birth defect, yet, our understanding of the genetic contribution to their development remains incomplete. Two environmental factors associated with NTDs are Folate and One Carbon Metabolism (FOCM) and Glucose Homeostasis and Oxidative Stress (GHOS). Utilizing next‐generation sequencing of a large patient cohort, we identify novel candidate genes in these two networks to provide insights into NTD mechanisms. Methods Exome sequencing (ES) was performed in 511 patients, born with myelomeningocele, divided between European American and Mexican American ethnicities. Healthy control data from the Genome Aggregation database were ethnically matched and used as controls. Rare, high fidelity, nonsynonymous predicted damaging missense, nonsense, or canonical splice site variants in independently generated candidate gene lists for FOCM and GHOS were identified. We used a gene‐based collapsing approach to quantify mutational burden in case and controls, with the control cohort estimated using cumulative allele frequencies assuming Hardy–Weinberg equilibrium. Results We identified 45 of 837 genes in the FOCM network and 22 of 568 genes in the GHOS network as possible NTD risk genes with p < 0.05. No nominally significant risk genes were shared between ethnicities. Using a novel approach to mutational burden we identify 55 novel NTD risk associations. Conclusions We provide a means of utilizing large publicly available sequencing datasets as controls for sequencing projects examining rare disease. This approach confirmed existing risk genes for myelomeningocele and identified possible novel risk genes. Lastly, it suggests possible distinct genetic etiologies for this malformation between different ethnicities.
Collapse
Affiliation(s)
- Paul Hillman
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Craig Baker
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Craig Baker is now affiliated with Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Luke Hebert
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Michael Brown
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - James Hixson
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Allison Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA.,Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Alanna C Morrison
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Hope Northrup
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Kit Sing Au
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| |
Collapse
|
17
|
Koseki K, Maekawa Y, Bito T, Yabuta Y, Watanabe F. High-dose folic acid supplementation results in significant accumulation of unmetabolized homocysteine, leading to severe oxidative stress in Caenorhabditis elegans. Redox Biol 2020; 37:101724. [PMID: 32961438 PMCID: PMC7509461 DOI: 10.1016/j.redox.2020.101724] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 11/30/2022] Open
Abstract
Using Caenorhabditis elegans as a model animal, we evaluated the effects of chronical supplementation with high-dose folic acid on physiological events such as life cycle and egg-laying capacity and folate metabolism. Supplementation of high-dose folic acid significantly reduced egg-laying capacity. The treated worms contained a substantial amount of unmetabolized folic acid and exhibited a significant downregulation of the mRNAs of cobalamin-dependent methionine synthase reductase and 5,10-methylenetetrahydrofolate reductase. In vitro experiments showed that folic acid significantly inhibited the activity of cobalamin-dependent methionine synthase involved in the metabolism of both folate and methionine. In turn, these metabolic disorders induced the accumulation of unmetabolized homocysteine, leading to severe oxidative stress in worms. These results were similar to the phenomena observed in mammals during folate deficiency. High-dose folic acid supplementation reduced egg-laying ability in worms. Substantial amounts of folic acid and homocysteine were accumulated in the worms. The mRNA expression of methylenetetrahydrofolate reductase was reduced in the treated worms. Folic acid was a potent inhibitor of cobalamin-dependent methionine synthase in in vitro tests. High-dose folic acid supplementation in worms resulted in severe oxidative stress.
Collapse
Affiliation(s)
- Kyohei Koseki
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori City, Tottori, 680-8553, Japan
| | - Yukina Maekawa
- Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori City, Tottori, 680-8553, Japan
| | - Tomohiro Bito
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori City, Tottori, 680-8553, Japan; Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori City, Tottori, 680-8553, Japan
| | - Yukinori Yabuta
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori City, Tottori, 680-8553, Japan; Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori City, Tottori, 680-8553, Japan
| | - Fumio Watanabe
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori City, Tottori, 680-8553, Japan; Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori City, Tottori, 680-8553, Japan.
| |
Collapse
|
18
|
Closing in on Mechanisms of Open Neural Tube Defects. Trends Neurosci 2020; 43:519-532. [PMID: 32423763 DOI: 10.1016/j.tins.2020.04.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/02/2020] [Accepted: 04/22/2020] [Indexed: 11/24/2022]
Abstract
Neural tube defects (NTDs) represent a failure of the neural plate to complete the developmental transition to a neural tube. NTDs are the most common birth anomaly of the CNS. Following mandatory folic acid fortification of dietary grains, a dramatic reduction in the incidence of NTDs was observed in areas where the policy was implemented, yet the genetic drivers of NTDs in humans, and the mechanisms by which folic acid prevents disease, remain disputed. Here, we discuss current understanding of human NTD genetics, recent advances regarding potential mechanisms by which folic acid might modify risk through effects on the epigenome and transcriptome, and new approaches to study refined phenotypes for a greater appreciation of the developmental and genetic causes of NTDs.
Collapse
|
19
|
Au PYB, Eaton A, Dyment DA. Genetic mechanisms of neurodevelopmental disorders. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:307-326. [PMID: 32958182 DOI: 10.1016/b978-0-444-64150-2.00024-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neurodevelopmental disorders encompass a broad range of conditions, which include autism, epilepsy, and intellectual disability. These disorders are relatively common and have associated clinical and genetic heterogeneity. Technology has driven much of our understanding of these diseases and their genetic underlying mechanisms, particularly highlighted by the study of large cohorts with comparative genomic hybridization and the more recent implementation of next-generation sequencing (NGS). The mapping of copy number variants throughout the genome has highlighted the recurrent, highly penetrant, de novo variation in syndromic forms of neurodevelopmental disease. NGS of affected individuals and their parents led to a dramatic shift in our understanding as these studies showed that a significant proportion of affected individuals carry rare, de novo variants within single genes that explain their disease presentation. Deep sequencing studies further implicate mosaicism as another mechanism of disease. However, it has also become clear that while rare variants explain a significant proportion of sporadic neurodevelopmental disease, rare variation still does not fully account for the familial clustering and high heritability observed. Common variants, including those within these known disease genes, are also shown to contribute significantly to overall risk. There is also increasing awareness of the important contribution of epigenetic factors and gene-environment interactions.
Collapse
Affiliation(s)
- P Y Billie Au
- Department of Medical Genetics, Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Alison Eaton
- Department of Medical Genetics, The Stollery Children's Hospital, Edmonton, AB, Canada
| | - David A Dyment
- Department of Genetics, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW An update is presented regarding neural tube defects (NTDs) including spina bifida and anencephaly, which are among the most common serious birth defects world-wide. Decades of research suggest that no single factor is responsible for neurulation failure, but rather NTDs arise from a complex interplay of disrupted gene regulatory networks, environmental influences and epigenetic regulation. A comprehensive understanding of these dynamics is critical to advance NTD research and prevention. RECENT FINDINGS Next-generation sequencing has ushered in a new era of genomic insight toward NTD pathophysiology, implicating novel gene associations with human NTD risk. Ongoing research is moving from a candidate gene approach toward genome-wide, systems-based investigations that are starting to uncover genetic and epigenetic complexities that underlie NTD manifestation. SUMMARY Neural tube closure is critical for the formation of the human brain and spinal cord. Broader, more all-inclusive perspectives are emerging to identify the genetic determinants of human NTDs.
Collapse
Affiliation(s)
- Paul Wolujewicz
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
21
|
Tu HC, Lin MY, Lin CY, Hsiao TH, Wen ZH, Chen BH, Fu TF. Supplementation with 5-formyltetrahydrofolate alleviates ultraviolet B-inflicted oxidative damage in folate-deficient zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109380. [PMID: 31279279 DOI: 10.1016/j.ecoenv.2019.109380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 06/09/2023]
Abstract
Ultraviolet (UV) is an omnipresent environmental carcinogen transmitted by sunlight. Excessive UV irradiation has been correlated to an increased risk of skin cancers. UVB, the most mutagenic component among the three UV constituents, causes damage mainly through inducing DNA damage and oxidative stress. Therefore, strategies or nutrients that strengthen an individual's resistance to UV-inflicted harmful effects shall be beneficial. Folate is a water-soluble B vitamin essential for nucleotides biosynthesis, and also a strong biological antioxidant, hence a micronutrient with potential of modulating individual's vulnerability to UV exposure. In this study, we investigated the impact of folate status on UV sensitivity and the protective activity of folate supplementation using a zebrafish model. Elevated reactive oxygen species (ROS) level and morphological injury were observed in the larvae exposed to UVB, which were readily rescued by supplementing with folic acid, 5-formyltetrahydrofolate (5-CHO-THF) and N-acetyl-L-cysteine (NAC). The UVB-inflicted abnormalities and mortality were worsened in Tg(hsp:EGFP-γGH) larvae displaying folate deficiency. Intriguingly, only supplementation with 5-CHO-THF, as opposed to folic acid, offered significant and consistent protection against UVB-inflicted oxidative damage in the folate-deficient larvae. We concluded that the intrinsic folate status correlates with the vulnerability to UVB-induced damage in zebrafish larvae. In addition, 5-CHO-THF surpassed both folic acid and NAC in preventing UVB-inflicted oxidative stress and injury in our current experimental zebrafish model.
Collapse
Affiliation(s)
- Hung-Chi Tu
- The Institute of Basic Medical Sciences, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Meng-Yun Lin
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Chia-Yang Lin
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Tsun-Hsien Hsiao
- The Institute of Basic Medical Sciences, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Bing-Hung Chen
- Department of Biotechnology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Centers for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Tzu-Fun Fu
- The Institute of Basic Medical Sciences, National Cheng Kung University, College of Medicine, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, College of Medicine, Tainan, Taiwan.
| |
Collapse
|
22
|
Shin M, Vaughn A, Momb J, Appling DR. Deletion of neural tube defect-associated gene Mthfd1l causes reduced cranial mesenchyme density. Birth Defects Res 2019; 111:1520-1534. [PMID: 31518072 DOI: 10.1002/bdr2.1591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/17/2019] [Accepted: 08/26/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Periconceptional intake of supplemental folic acid can reduce the incidence of neural tube defects by as much as 70%, but the mechanisms by which folic acid supports cellular processes during neural tube closure are unknown. The mitochondrial 10-formyl-tetrahydrofolate synthetase MTHFD1L catalyzes production of formate, thus generating one-carbon units for cytoplasmic processes. Deletion of Mthfd1l causes embryonic lethality, developmental delay, and neural tube defects in mice. METHODS To investigate the role of mitochondrial one-carbon metabolism during cranial neural tube closure, we have analyzed cellular morphology and function in neural tissues in Mthfd1l knockout embryos. RESULTS The head mesenchyme showed significantly lower cellular density in Mthfd1l nullizygous embryos compared to wildtype embryos during the process of neural tube closure. Apoptosis and neural crest cell specification were not affected by deletion of Mthfd1l. Sections from the cranial region of Mthfd1l knockout embryos exhibited decreased cellular proliferation, but only after completion of neural tube closure. Supplementation of pregnant dams with formate improved mesenchymal density and corrected cell proliferation in the nullizygous embryos. CONCLUSIONS Deletion of Mthfd1l causes decreased density in the cranial mesenchyme and this defect is improved with formate supplementation. This study reveals a mechanistic link between folate-dependent mitochondrially produced formate, head mesenchyme formation and neural tube defects.
Collapse
Affiliation(s)
- Minhye Shin
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Amanda Vaughn
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Jessica Momb
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Dean R Appling
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
23
|
Mohanraj PS, Rahat B, Mahajan A, Bagga R, Kaur J. Temporal expression of genes involved in folate metabolism and transport during placental development, preeclampsia and neural tube defects. Mol Biol Rep 2019; 46:3193-3201. [PMID: 30941645 DOI: 10.1007/s11033-019-04776-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/20/2019] [Indexed: 02/02/2023]
|
24
|
Saha S, Saha T, Sinha S, Rajamma U, Mukhopadhyay K. Autistic traits and components of the folate metabolic system: an explorative analysis in the eastern Indian ASD subjects. Nutr Neurosci 2019; 23:860-867. [PMID: 30676283 DOI: 10.1080/1028415x.2019.1570442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objectives: Proper metabolism of the folate is crucial for maintaining DNA integrity, chromosome structure, methylation, as well as gene expression, and thus, folate is speculated to contribute to the etiology of different disorders. Since the etiology of autism spectrum disorder (ASD) is believed to be influenced by both genetic and environmental factors, we hypothesized that functional single nucleotide polymorphisms (SNPs) affecting folate metabolic pathway may have a causal role in the etiology of ASD. Methods: We analyzed three SNPs, rs2071010, rs2298444 and rs1801198 (in the folate receptor 1, folate receptor 2 and transcobalamin 2, respectively), in 867 ethnically matched subjects including 206 ASD probands and 286 controls. Plasma vitamin B6 and folate were measured in age-matched probands and controls. Results: ASD probands showed a higher frequency of rs2298444 'A' allele (P = 0.01) and genotypes with 'A' allele (P = 0.03) when compared with the controls. rs1801198 'C' allele and 'CG' genotype also showed higher occurrence in the probands (P = 0.009 and 0.005, respectively). Gender-based stratified analysis revealed a significant higher frequency of rs2298444 'A' allele (P = 0.003), genotypes with rs2298444 'A' allele (P = 0.003) and rs1801198 CG (P = 0.001) in the male probands. Studied variants also showed statistically significant associations with ASD-associated traits measured by the Childhood Autism Rating Scale. ASD subjects exhibited gross deficiency in vitamin B6 level when compared with age-matched controls (P < 0.001), which correlated with risk genetic variants. Discussion: We infer from this pioneering study on eastern Indian subjects that vitamin B6 deficiency, along with risk gene variants, may affect ASD-associated symptoms, warranting further investigation in large cohorts.
Collapse
Affiliation(s)
- Sharmistha Saha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, Kolkata, West Bengal, India
| | - Tanusree Saha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, Kolkata, West Bengal, India.,Indian Institute of Science Education and Research, Mohanpur, West Bengal, India
| | - Swagata Sinha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, Kolkata, West Bengal, India
| | - Usha Rajamma
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, Kolkata, West Bengal, India
| | - Kanchan Mukhopadhyay
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, Kolkata, West Bengal, India
| |
Collapse
|
25
|
Lintas C. Linking genetics to epigenetics: The role of folate and folate-related pathways in neurodevelopmental disorders. Clin Genet 2018; 95:241-252. [PMID: 30047142 DOI: 10.1111/cge.13421] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/09/2018] [Accepted: 07/21/2018] [Indexed: 12/12/2022]
Abstract
There is growing evidence that epigenetic dysregulation plays a role in neurodevelopmental disorders. In humans, folate is one of the main donors of the methyl group required for the synthesis of S-adenosylmethionine, which in turn is needed for DNA and histone methylation as key neurodevelopment processes. Folate deficiency during pregnancy has been correlated with neural tube defects and with a higher incidence of neurocognitive and/or neurobehavioral deficits. A similar outcome may be exerted by gene polymorphisms in folate or folate-related pathways. This has been documented by numerous case/control association studies performed on neurodevelopmental disorders such as autism spectrum disorder and attention deficit hyperactivity disorder. In this regard, the folate cycle represents a "perfect model" of how genetics influences epigenetics. Gene variants in folate and folate-related pathways can be considered risk factors for neurodevelopmental disorders and should therefore be assessed by genetic testing in pregnant women. High-risk women should be considered for folate supplementation during pregnancy. Here, we review all published case/control association studies on gene polymorphisms in folate and folate-related pathways performed on neurodevelopmental disorders, provide an overview of neurodevelopment and DNA methylation changes occurring at this time, and describe the biological basis of neurodevelopmental disorders and recent evidence of their epigenetic dysregulation.
Collapse
Affiliation(s)
- C Lintas
- Service for Neurodevelopmental Disorders, Laboratory of Molecular Psychiatry and Neurogenetics, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
26
|
Insights into the Etiology of Mammalian Neural Tube Closure Defects from Developmental, Genetic and Evolutionary Studies. J Dev Biol 2018; 6:jdb6030022. [PMID: 30134561 PMCID: PMC6162505 DOI: 10.3390/jdb6030022] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023] Open
Abstract
The human neural tube defects (NTD), anencephaly, spina bifida and craniorachischisis, originate from a failure of the embryonic neural tube to close. Human NTD are relatively common and both complex and heterogeneous in genetic origin, but the genetic variants and developmental mechanisms are largely unknown. Here we review the numerous studies, mainly in mice, of normal neural tube closure, the mechanisms of failure caused by specific gene mutations, and the evolution of the vertebrate cranial neural tube and its genetic processes, seeking insights into the etiology of human NTD. We find evidence of many regions along the anterior–posterior axis each differing in some aspect of neural tube closure—morphology, cell behavior, specific genes required—and conclude that the etiology of NTD is likely to be partly specific to the anterior–posterior location of the defect and also genetically heterogeneous. We revisit the hypotheses explaining the excess of females among cranial NTD cases in mice and humans and new developments in understanding the role of the folate pathway in NTD. Finally, we demonstrate that evidence from mouse mutants strongly supports the search for digenic or oligogenic etiology in human NTD of all types.
Collapse
|
27
|
Gao X, Finnell RH, Wang H, Zheng Y. Network correlation analysis revealed potential new mechanisms for neural tube defects beyond folic acid. Birth Defects Res 2018; 110:982-993. [PMID: 29732722 DOI: 10.1002/bdr2.1336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Neural tube defects (NTDs) are clinically significant congenital malformations which are known to be folic acid (FA) responsive, such that supplementation significantly reduces the prevalence of NTDs. Nonetheless, some individuals fail to respond to FA supplementation; hence NTDs remain a significant public health concern. The mechanisms that underlie the beneficial effects of FA supplementation remain poorly understood. Mouse models have been used extensively to study the mechanisms driving neural tube closure (NTC). METHODS Microarray data of GSE51285 was downloaded from the NCBI GEO database, which contains the RNA expression profiles of livers from five NTD mouse mutants (heterozygous females) and their corresponding wildtype (WT) controls. Those five NTD mutants have different responsiveness to FA supplementation. The differentially expressed genes (DEGs) between NTD heterozygous and WT mice, as well as the DEGs between FA-responsive and FA-resistant mutants were carefully examined. Weighted gene correlation network analysis (WGCNA) was performed in order to identify genes with high correlations to either FA responsiveness or NTDs, respectively. RESULTS In total, we identified 18 genes related to the pathogenesis of NTDs, as well as 55 genes related to FA responsiveness. Eight more candidate genes (Abcc3, Gsr, Gclc, Mthfd1, Gart, Bche, Slc25a32, and Slc44a2) were identified by examining the DEGs of those genes involved in the extended folate metabolic pathway between FA-responsive and FA-resistant mutants. CONCLUSIONS Those genes are involved in mitochondrial choline metabolism, de novo purine synthesis, and glutathione generation, suggesting that formate, choline, and manipulating antioxidant levels may be effective interventions in FA-resistant NTDs.
Collapse
Affiliation(s)
- Xiaoya Gao
- Institute of Developmental Biology & Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Richard H Finnell
- Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas.,Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Hongyan Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yufang Zheng
- Institute of Developmental Biology & Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Fang Y, Zhang R, Zhi X, Zhao L, Cao L, Wang Y, Cai C. Association of main folate metabolic pathway gene polymorphisms with neural tube defects in Han population of Northern China. Childs Nerv Syst 2018; 34:725-729. [PMID: 29392422 DOI: 10.1007/s00381-018-3730-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/16/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE Neural tube defects (NTDs) are one of the most prevalent and the most severe congenital malformations worldwide. Studies have confirmed that folic acid supplementation could effectively reduce NTDs risk, but the genetic mechanism remains unclear. In this study, we explored association of single nucleotide polymorphisms (SNP) within folate metabolic pathway genes with NTDs in Han population of Northern China. METHODS We performed a case-control study to compare genotype and allele distributions of SNPs in 152 patients with NTDs and 169 controls. A total of 16 SNPs within five genes were genotyped by the Sequenom MassARRAY assay. RESULTS Our results indicated that three SNPs associated significantly with NTDs (P<0.05). For rs2236225 within MTHFD1, children with allele A or genotype AA had a high NTDs risk (OR=1.500, 95%CI=1.061~2.120; OR=2.862, 95%CI=1.022~8.015, respectively). For rs1801133 within MTHFR, NTDs risk markedly increased in patients with allele T or genotype TT (OR=1.552, 95%CI=1.130~2.131; OR=2.344, 95%CI=1.233~4.457, respectively). For rs1801394 within MTRR, children carrying allele G and genotype GG had a higher NTDs risk (OR=1.533, 95%CI=1.102~2.188; OR=2.355, 95%CI=1.044~5.312, respectively). CONCLUSIONS Our results suggest that rs2236225 of MTHFD1 gene, rs1801133 of MTHFR gene and rs1801394 of MTRR gene were associated with NTDs in Han population of Northern China.
Collapse
Affiliation(s)
- Yulian Fang
- Institute of Pediatrics, Tianjin Children's Hospital, Beichen District, Tianjin, China
| | - Ruiping Zhang
- Graduate College of Tianjin Medical University, Heping District, Tianjin, China
| | - Xiufang Zhi
- Graduate College of Tianjin Medical University, Heping District, Tianjin, China
| | - Linsheng Zhao
- Department of Pathology, Tianjin Children's Hospital, Beichen District, Tianjin, China
| | - Lirong Cao
- Graduate College of Tianjin Medical University, Heping District, Tianjin, China
| | - Yizheng Wang
- Graduate College of Tianjin Medical University, Heping District, Tianjin, China
| | - Chunquan Cai
- Department of Neurosurgery, Tianjin Children's Hospital, Beichen District, Tianjin, China.
| |
Collapse
|
29
|
Bryant JD, Sweeney SR, Sentandreu E, Shin M, Ipas H, Xhemalce B, Momb J, Tiziani S, Appling DR. Deletion of the neural tube defect-associated gene Mthfd1l disrupts one-carbon and central energy metabolism in mouse embryos. J Biol Chem 2018; 293:5821-5833. [PMID: 29483189 DOI: 10.1074/jbc.ra118.002180] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/23/2018] [Indexed: 11/06/2022] Open
Abstract
One-carbon (1C) metabolism is a universal folate-dependent pathway essential for de novo purine and thymidylate synthesis, amino acid interconversion, universal methyl-donor production, and regeneration of redox cofactors. Homozygous deletion of the 1C pathway gene Mthfd1l encoding methylenetetrahydrofolate dehydrogenase (NADP+-dependent) 1-like, which catalyzes mitochondrial formate production from 10-formyltetrahydrofolate, results in 100% penetrant embryonic neural tube defects (NTDs), underscoring the central role of mitochondrially derived formate in embryonic development and providing a mechanistic link between folate and NTDs. However, the specific metabolic processes that are perturbed by Mthfd1l deletion are not known. Here, we performed untargeted metabolomics on whole Mthfd1l-null and wildtype mouse embryos in combination with isotope tracer analysis in mouse embryonic fibroblast (MEF) cell lines to identify Mthfd1l deletion-induced disruptions in 1C metabolism, glycolysis, and the TCA cycle. We found that maternal formate supplementation largely corrects these disruptions in Mthfd1l-null embryos. Serine tracer experiments revealed that Mthfd1l-null MEFs have altered methionine synthesis, indicating that Mthfd1l deletion impairs the methyl cycle. Supplementation of Mthfd1l-null MEFs with formate, hypoxanthine, or combined hypoxanthine and thymidine restored their growth to wildtype levels. Thymidine addition alone was ineffective, suggesting a purine synthesis defect in Mthfd1l-null MEFs. Tracer experiments also revealed lower proportions of labeled hypoxanthine and inosine monophosphate in Mthfd1l-null than in wildtype MEFs, suggesting that Mthfd1l deletion results in increased reliance on the purine salvage pathway. These results indicate that disruptions of mitochondrial 1C metabolism have wide-ranging consequences for many metabolic processes, including those that may not directly interact with 1C metabolism.
Collapse
Affiliation(s)
| | - Shannon R Sweeney
- Nutritional Sciences and the Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas 78712
| | - Enrique Sentandreu
- Nutritional Sciences and the Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas 78712
| | - Minhye Shin
- From the Departments of Molecular Biosciences and
| | - Hélène Ipas
- From the Departments of Molecular Biosciences and
| | | | - Jessica Momb
- From the Departments of Molecular Biosciences and
| | - Stefano Tiziani
- Nutritional Sciences and the Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas 78712
| | | |
Collapse
|