1
|
Jurgens JA, Barry BJ, Chan WM, MacKinnon S, Whitman MC, Matos Ruiz PM, Pratt BM, England EM, Pais L, Lemire G, Groopman E, Glaze C, Russell KA, Singer-Berk M, Di Gioia SA, Lee AS, Andrews C, Shaaban S, Wirth MM, Bekele S, Toffoloni M, Bradford VR, Foster EE, Berube L, Rivera-Quiles C, Mensching FM, Sanchis-Juan A, Fu JM, Wong I, Zhao X, Wilson MW, Weisburd B, Lek M, Brand H, Talkowski ME, MacArthur DG, O'Donnell-Luria A, Robson CD, Hunter DG, Engle EC. Expanding the genetics and phenotypes of ocular congenital cranial dysinnervation disorders. Genet Med 2025; 27:101216. [PMID: 39033378 PMCID: PMC11739428 DOI: 10.1016/j.gim.2024.101216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
PURPOSE This study aimed to identify genetic etiologies and genotype/phenotype associations for unsolved ocular congenital cranial dysinnervation disorders (oCCDDs). METHODS We coupled phenotyping with exome or genome sequencing of 467 probands (550 affected and 1108 total individuals) with genetically unsolved oCCDDs, integrating analyses of pedigrees, human and animal model phenotypes, and de novo variants to identify rare candidate single-nucleotide variants, insertion/deletions, and structural variants disrupting protein-coding regions. Prioritized variants were classified for pathogenicity and evaluated for genotype/phenotype correlations. RESULTS Analyses elucidated phenotypic subgroups, identified pathogenic/likely pathogenic variant(s) in 43 of 467 probands (9.2%), and prioritized variants of uncertain significance in 70 of 467 additional probands (15.0%). These included known and novel variants in established oCCDD genes, genes associated with syndromes that sometimes include oCCDDs (eg, MYH10 [HGNC:7568], KIF21B [HGNC:29442], TGFBR2 [HGNC:11773], and TUBB6 [HGNC:20776]), genes that fit the syndromic component of the phenotype but had no prior oCCDD association (eg, CDK13 [HGNC:1733], TGFB2 [HGNC:11768]), genes with no reported association with oCCDDs or the syndromic phenotypes (eg, TUBA4A [HGNC:12407], KIF5C [HGNC:6325], CTNNA1 [HGNC:2509], KLB [HGNC:15527], FGF21 [HGNC:3678]), and genes associated with oCCDD phenocopies that had resulted in misdiagnoses. CONCLUSION This study suggests that unsolved oCCDDs are clinically and genetically heterogeneous disorders often overlapping other Mendelian conditions and nominates many candidates for future replication and functional studies.
Collapse
Affiliation(s)
- Julie A Jurgens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA; Department of Neurology, Boston Children's Hospital, Boston, MA; Department of Neurology, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA
| | - Brenda J Barry
- Department of Neurology, Boston Children's Hospital, Boston, MA; Howard Hughes Medical Institute, Chevy Chase, MD
| | - Wai-Man Chan
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA; Department of Neurology, Boston Children's Hospital, Boston, MA; Department of Neurology, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA; Howard Hughes Medical Institute, Chevy Chase, MD
| | - Sarah MacKinnon
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA; Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Mary C Whitman
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA; Department of Ophthalmology, Boston Children's Hospital, Boston, MA; Department of Ophthalmology, Harvard Medical School, Boston, MA
| | | | - Brandon M Pratt
- Department of Neurology, Boston Children's Hospital, Boston, MA
| | - Eleina M England
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Lynn Pais
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Gabrielle Lemire
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Emily Groopman
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Carmen Glaze
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Kathryn A Russell
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Moriel Singer-Berk
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Silvio Alessandro Di Gioia
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA; Department of Neurology, Boston Children's Hospital, Boston, MA; Department of Neurology, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA; Regeneron Pharmaceuticals, Tarrytown, NY
| | - Arthur S Lee
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA; Department of Neurology, Boston Children's Hospital, Boston, MA; Department of Neurology, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA
| | | | - Sherin Shaaban
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA; Department of Neurology, Boston Children's Hospital, Boston, MA; Department of Neurology, Harvard Medical School, Boston, MA; Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Megan M Wirth
- Department of Neurology, Boston Children's Hospital, Boston, MA
| | - Sarah Bekele
- Department of Neurology, Boston Children's Hospital, Boston, MA
| | | | | | - Emma E Foster
- Department of Neurology, Boston Children's Hospital, Boston, MA
| | - Lindsay Berube
- Department of Neurology, Boston Children's Hospital, Boston, MA
| | | | | | - Alba Sanchis-Juan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Jack M Fu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Isaac Wong
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Xuefang Zhao
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Michael W Wilson
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Ben Weisburd
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Monkol Lek
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Harrison Brand
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA; Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA
| | - Michael E Talkowski
- Department of Neurology, Harvard Medical School, Boston, MA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Daniel G MacArthur
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Caroline D Robson
- Division of Neuroradiology, Department of Radiology, Boston Children's Hospital, Boston, MA; Department of Radiology, Harvard Medical School, Boston, MA
| | - David G Hunter
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA; Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Elizabeth C Engle
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA; Department of Neurology, Boston Children's Hospital, Boston, MA; Department of Neurology, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA; Howard Hughes Medical Institute, Chevy Chase, MD; Department of Ophthalmology, Boston Children's Hospital, Boston, MA; Department of Ophthalmology, Harvard Medical School, Boston, MA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
2
|
Hau A, Baxter A, Chandler K, Fennell A, Hsieh TC, Krawitz PM, Pinner J, Goel H. Seven Novel Variants of Weiss-Kruszka Syndrome and Phenotype Expansion. Am J Med Genet A 2025; 197:e63856. [PMID: 39287049 DOI: 10.1002/ajmg.a.63856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/19/2024]
Abstract
Weiss-Kruszka syndrome (WKS) is a rare genetic disorder characterized by metopic ridging, ptosis, arched eyebrows, down slanting palpebral fissures, abnormalities in the corpus callosum, cardiac malformations, and variable neurodevelopmental delay. To date, 32 individuals with a diagnosis of WKS have been reported in the literature. The syndrome is caused by a heterozygous pathogenic variant in the ZNF462 gene or a deletion of the 9p31.2 region involving ZNF462. There is significant phenotypic heterogeneity and intrafamilial variability among these patients. Our study reviewed nine patients from seven unrelated families and identified seven novel heterozygous ZNF462 variants through exome sequencing. GestaltMatcher analysis of our cohort's facial images, alongside previously published images of ZNF462 patients, demonstrated a high degree of facial similarity. Further longitudinal research is needed to delineate this rare condition's long-term health implications and adult-onset features.
Collapse
Affiliation(s)
- Anna Hau
- Hunter Genetics, Hunter New England Health Service, Newcastle, Australia
| | - Anne Baxter
- Hunter Genetics, Hunter New England Health Service, Newcastle, Australia
| | - Kate Chandler
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Saint Mary's Hospital, Manchester, UK
| | - Andrew Fennell
- Monash Genetics, Monash Health, Melbourne, Australia
- Department of Paediatrics, Monash University, Melbourne, Australia
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter M Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Jason Pinner
- Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
| | - Himanshu Goel
- Hunter Genetics, Hunter New England Health Service, Newcastle, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
3
|
Qiao L, Welch CL, Hernan R, Wynn J, Krishnan US, Zalieckas JM, Buchmiller T, Khlevner J, De A, Farkouh-Karoleski C, Wagner AJ, Heydweiller A, Mueller AC, de Klein A, Warner BW, Maj C, Chung D, McCulley DJ, Schindel D, Potoka D, Fialkowski E, Schulz F, Kipfmuller F, Lim FY, Magielsen F, Mychaliska GB, Aspelund G, Reutter HM, Needelman H, Schnater JM, Fisher JC, Azarow K, Elfiky M, Nöthen MM, Danko ME, Li M, Kosiński P, Wijnen RMH, Cusick RA, Soffer SZ, Cochius-Den Otter SCM, Schaible T, Crombleholme T, Duron VP, Donahoe PK, Sun X, High FA, Bendixen C, Brosens E, Shen Y, Chung WK. Common variants increase risk for congenital diaphragmatic hernia within the context of de novo variants. Am J Hum Genet 2024; 111:2362-2381. [PMID: 39332409 PMCID: PMC11568762 DOI: 10.1016/j.ajhg.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/29/2024] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a severe congenital anomaly often accompanied by other structural anomalies and/or neurobehavioral manifestations. Rare de novo protein-coding variants and copy-number variations contribute to CDH in the population. However, most individuals with CDH remain genetically undiagnosed. Here, we perform integrated de novo and common-variant analyses using 1,469 CDH individuals, including 1,064 child-parent trios and 6,133 ancestry-matched, unaffected controls for the genome-wide association study. We identify candidate CDH variants in 15 genes, including eight novel genes, through deleterious de novo variants. We further identify two genomic loci contributing to CDH risk through common variants with similar effect sizes among Europeans and Latinx. Both loci are in putative transcriptional regulatory regions of developmental patterning genes. Estimated heritability in common variants is ∼19%. Strikingly, there is no significant difference in estimated polygenic risk scores between isolated and complex CDH or between individuals harboring deleterious de novo variants and individuals without these variants. The data support a polygenic model as part of the CDH genetic architecture.
Collapse
Affiliation(s)
- Lu Qiao
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Carrie L Welch
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rebecca Hernan
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Julia Wynn
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Usha S Krishnan
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jill M Zalieckas
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Terry Buchmiller
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Julie Khlevner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aliva De
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Amy J Wagner
- Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Andreas Heydweiller
- Department of General, Visceral, Vascular, and Thoracic Surgery, Unit of Pediatric Surgery, University Hospital Bonn, Bonn, Germany
| | - Andreas C Mueller
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Brad W Warner
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carlo Maj
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Dai Chung
- Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN 37232, USA
| | - David J McCulley
- Department of Pediatrics, San Diego Medical School, University of California, San Diego, San Diego, CA 92092, USA
| | | | | | | | - Felicitas Schulz
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Florian Kipfmuller
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Foong-Yen Lim
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Frank Magielsen
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | | | - Gudrun Aspelund
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Heiko Martin Reutter
- Neonatology and Pediatric Intensive Care, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Howard Needelman
- University of Nebraska Medical Center College of Medicine, Omaha, NE 68114, USA
| | - J Marco Schnater
- Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Jason C Fisher
- New York University Grossman School of Medicine, Hassenfeld Children's Hospital at NYU Langone, New York, NY 10016, USA
| | - Kenneth Azarow
- Oregon Health and Science University, Portland, OR 97239, USA
| | | | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Melissa E Danko
- Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN 37232, USA
| | - Mindy Li
- Rush University Medical Center, Chicago, IL 60612, USA
| | - Przemyslaw Kosiński
- Department of Obstetrics, Perinatology and Gynecology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Rene M H Wijnen
- Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Robert A Cusick
- University of Nebraska Medical Center College of Medicine, Omaha, NE 68114, USA
| | | | - Suzan C M Cochius-Den Otter
- Department of Neonatology and Pediatric Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Thomas Schaible
- Department of Neonatology, University Children's Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Vincent P Duron
- Department of Surgery (Pediatrics), Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Patricia K Donahoe
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Xin Sun
- Department of Pediatrics, San Diego Medical School, University of California, San Diego, San Diego, CA 92092, USA
| | - Frances A High
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Charlotte Bendixen
- Department of General, Visceral, Vascular, and Thoracic Surgery, Unit of Pediatric Surgery, University Hospital Bonn, Bonn, Germany
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA; JP Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Han C, Chen C, Zhang Y, Li H. Analysis of clinical phenotypes and genetic variations in two pedigrees affected with Weiss-Kruszka syndrome. BMC Med Genomics 2024; 17:261. [PMID: 39501256 PMCID: PMC11536911 DOI: 10.1186/s12920-024-02035-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/21/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND Weiss-Kruszka syndrome (WSKA) is a rare autosomal dominant syndrome characterized by multiple congenital anomalies caused by variants in the zinc finger protein 462 gene (ZNF462). About 40 cases of Weiss-Kruszka syndrome have been reported worldwide, and the aim of this study was to investigate the genetic causes of three patients from two Weiss-Kruszka syndrome family pedigrees with the aim of accumulating more data on the disease. OBJECTIVE To explore the clinical and genetic characteristics of two pedigrees with Weiss-Kruszka syndrome. METHODS The clinical data and family history of patients and family members of two pedigrees with Weiss-Kruszka syndrome were collected, and the pathogenic genes of the patients were analysed by whole-exon sequencing. Suspicious variants were verified by Sanger sequencing verification and bioinformatics prediction. RESULTS Proband 1 has developmental delay, autistic behaviour, and abnormal electroencephalogram results. WES revealed a classical heterozygous c.6696-2 A > C splice variant of the ZNF462 gene, which was detected in neither parent. This position was conserved, and the variant was predicted to be deleterious. Minigene assays revealed that three types of aberrantly spliced mRNAs were produced. MRI of proband 2 suggested dysplasia of the corpus callosum with the formation of hemispheric cleft cysts, with a teardrop-like appearance in the lateral ventricle. WES revealed that a heterozygous c.4891 C > T:p. The Glu1631Ter nonsense variant of the ZNF462 gene was inherited from her mother. According to the guidelines of the American Society of Medical Genetics and combined with its clinical manifestations, c.6696-2 A > C and c.4891 C > T:p. Glu1631Ter was determined to be a possible pathogenic variant. CONCLUSION The c.6696-2 A>C and c.4891C > T:p.Glu1631Ter of the ZNF462 gene likely underlies Weiss-Kruszka syndrome in children (foetus), which enriches the variant spectrum of Chinese patients with Weiss-Kruszka syndrome and provides a basis for prenatal diagnosis and genetic counselling.
Collapse
Affiliation(s)
- Chunxiao Han
- The Central Laboratory for Birth Defects Prevention and Control, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, 315010, China
- Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, 315010, China
- Ningbo Key Laboratory of Genomic Medicine and Birth Defects Prevention, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, 315010, China
| | - Changshui Chen
- Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, 315010, China.
| | - Yuxin Zhang
- The Central Laboratory for Birth Defects Prevention and Control, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, 315010, China
- Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, 315010, China
- Ningbo Key Laboratory of Genomic Medicine and Birth Defects Prevention, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, 315010, China
| | - Haibo Li
- The Central Laboratory for Birth Defects Prevention and Control, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, 315010, China.
- Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, 315010, China.
- Ningbo Key Laboratory of Genomic Medicine and Birth Defects Prevention, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, 315010, China.
| |
Collapse
|
5
|
van der Laan L, Kleinendorst L, van Hagen JM, Waisfisz Q, van Haelst MM. Phenotypic spectrum in Weiss-Kruszka syndrome caused by ZNF462 variants: Three new patients and literature review. Eur J Med Genet 2024; 71:104964. [PMID: 39069253 DOI: 10.1016/j.ejmg.2024.104964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Weiss-Kruszka Syndrome (WSKA) is caused by pathogenic variants in ZNF462 representing a rare autosomal dominant congenital anomaly syndrome. It is characterized by global developmental delay, hypotonia, feeding difficulties, and craniofacial abnormalities, documented in fewer than 30 patients. ZNF462, located on chromosome 9p31.2, is a transcription factor and has an important role during embryonic development and chromatin remodelling. Here, we report three new patients with WSKA, Through whole exome sequencing (WES) analysis, we identified two novel variants in three patients, two of whom are siblings. These variants (c.3078dup, p.Val1027Cysfs5 and c.4792A > T p.Lys1598*) in the ZNF462 gene are likely resulting in haploinsufficiency. Our patients help to further delineate the phenotype, genotype and potential therapeutic management strategies for WSKA. Since we report a second WSKA patient with an autoimmune disease further clinical and functional studies are needed to elucidate the association between this chromatin remodelling disorder and the development of autoimmune problems. In the future, collaborative efforts are encouraged to develop an episignature for WSKA, given the gene's function and associated patient phenotypes. This new technology has the potential to provide valuable insights into the disorder.
Collapse
Affiliation(s)
- Liselot van der Laan
- Department of Human Genetics, Amsterdam UMC, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Lotte Kleinendorst
- Department of Human Genetics, Amsterdam UMC, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Johanna M van Hagen
- Department of Human Genetics, Amsterdam UMC, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Quinten Waisfisz
- Department of Human Genetics, Amsterdam UMC, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Mieke M van Haelst
- Department of Human Genetics, Amsterdam UMC, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Lee AS, Ayers LJ, Kosicki M, Chan WM, Fozo LN, Pratt BM, Collins TE, Zhao B, Rose MF, Sanchis-Juan A, Fu JM, Wong I, Zhao X, Tenney AP, Lee C, Laricchia KM, Barry BJ, Bradford VR, Jurgens JA, England EM, Lek M, MacArthur DG, Lee EA, Talkowski ME, Brand H, Pennacchio LA, Engle EC. A cell type-aware framework for nominating non-coding variants in Mendelian regulatory disorders. Nat Commun 2024; 15:8268. [PMID: 39333082 PMCID: PMC11436875 DOI: 10.1038/s41467-024-52463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 09/04/2024] [Indexed: 09/29/2024] Open
Abstract
Unsolved Mendelian cases often lack obvious pathogenic coding variants, suggesting potential non-coding etiologies. Here, we present a single cell multi-omic framework integrating embryonic mouse chromatin accessibility, histone modification, and gene expression assays to discover cranial motor neuron (cMN) cis-regulatory elements and subsequently nominate candidate non-coding variants in the congenital cranial dysinnervation disorders (CCDDs), a set of Mendelian disorders altering cMN development. We generate single cell epigenomic profiles for ~86,000 cMNs and related cell types, identifying ~250,000 accessible regulatory elements with cognate gene predictions for ~145,000 putative enhancers. We evaluate enhancer activity for 59 elements using an in vivo transgenic assay and validate 44 (75%), demonstrating that single cell accessibility can be a strong predictor of enhancer activity. Applying our cMN atlas to 899 whole genome sequences from 270 genetically unsolved CCDD pedigrees, we achieve significant reduction in our variant search space and nominate candidate variants predicted to regulate known CCDD disease genes MAFB, PHOX2A, CHN1, and EBF3 - as well as candidates in recurrently mutated enhancers through peak- and gene-centric allelic aggregation. This work delivers non-coding variant discoveries of relevance to CCDDs and a generalizable framework for nominating non-coding variants of potentially high functional impact in other Mendelian disorders.
Collapse
Affiliation(s)
- Arthur S Lee
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Lauren J Ayers
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael Kosicki
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Wai-Man Chan
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Lydia N Fozo
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Brandon M Pratt
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas E Collins
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Boxun Zhao
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Matthew F Rose
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Medical Genetics Training Program, Harvard Medical School, Boston, MA, USA
| | - Alba Sanchis-Juan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jack M Fu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Isaac Wong
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Xuefang Zhao
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alan P Tenney
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cassia Lee
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Harvard College, Cambridge, MA, USA
| | - Kristen M Laricchia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Brenda J Barry
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Victoria R Bradford
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Julie A Jurgens
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eleina M England
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Monkol Lek
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel G MacArthur
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, NSW, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Eunjung Alice Lee
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Michael E Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Harrison Brand
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Elizabeth C Engle
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
- Medical Genetics Training Program, Harvard Medical School, Boston, MA, USA.
- Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Jurgens JA, Barry BJ, Chan WM, MacKinnon S, Whitman MC, Matos Ruiz PM, Pratt BM, England EM, Pais L, Lemire G, Groopman E, Glaze C, Russell KA, Singer-Berk M, Di Gioia SA, Lee AS, Andrews C, Shaaban S, Wirth MM, Bekele S, Toffoloni M, Bradford VR, Foster EE, Berube L, Rivera-Quiles C, Mensching FM, Sanchis-Juan A, Fu JM, Wong I, Zhao X, Wilson MW, Weisburd B, Lek M, Brand H, Talkowski ME, MacArthur DG, O’Donnell-Luria A, Robson CD, Hunter DG, Engle EC. Expanding the genetics and phenotypes of ocular congenital cranial dysinnervation disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.22.24304594. [PMID: 38585811 PMCID: PMC10996726 DOI: 10.1101/2024.03.22.24304594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Purpose To identify genetic etiologies and genotype/phenotype associations for unsolved ocular congenital cranial dysinnervation disorders (oCCDDs). Methods We coupled phenotyping with exome or genome sequencing of 467 pedigrees with genetically unsolved oCCDDs, integrating analyses of pedigrees, human and animal model phenotypes, and de novo variants to identify rare candidate single nucleotide variants, insertion/deletions, and structural variants disrupting protein-coding regions. Prioritized variants were classified for pathogenicity and evaluated for genotype/phenotype correlations. Results Analyses elucidated phenotypic subgroups, identified pathogenic/likely pathogenic variant(s) in 43/467 probands (9.2%), and prioritized variants of uncertain significance in 70/467 additional probands (15.0%). These included known and novel variants in established oCCDD genes, genes associated with syndromes that sometimes include oCCDDs (e.g., MYH10, KIF21B, TGFBR2, TUBB6), genes that fit the syndromic component of the phenotype but had no prior oCCDD association (e.g., CDK13, TGFB2), genes with no reported association with oCCDDs or the syndromic phenotypes (e.g., TUBA4A, KIF5C, CTNNA1, KLB, FGF21), and genes associated with oCCDD phenocopies that had resulted in misdiagnoses. Conclusion This study suggests that unsolved oCCDDs are clinically and genetically heterogeneous disorders often overlapping other Mendelian conditions and nominates many candidates for future replication and functional studies.
Collapse
Affiliation(s)
- Julie A. Jurgens
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Brenda J. Barry
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Wai-Man Chan
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Sarah MacKinnon
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Mary C. Whitman
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | | | - Brandon M. Pratt
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Eleina M. England
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lynn Pais
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Gabrielle Lemire
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Emily Groopman
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Carmen Glaze
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kathryn A. Russell
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Moriel Singer-Berk
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Silvio Alessandro Di Gioia
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Regeneron Pharmaceuticals, Tarrytown, NY, 10591, USA
| | - Arthur S. Lee
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Caroline Andrews
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Sherin Shaaban
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Megan M. Wirth
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Sarah Bekele
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Melissa Toffoloni
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | | | - Emma E. Foster
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Lindsay Berube
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | | | | | - Alba Sanchis-Juan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jack M. Fu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Isaac Wong
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Xuefang Zhao
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Michael W. Wilson
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ben Weisburd
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Monkol Lek
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Harrison Brand
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA
| | - Michael E. Talkowski
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel G. MacArthur
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anne O’Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Caroline D. Robson
- Division of Neuroradiology, Department of Radiology, Boston Children’s Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - David G. Hunter
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Elizabeth C. Engle
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Reiter AMV, Pantel JT, Danyel M, Horn D, Ott CE, Mensah MA. Validation of 3 Computer-Aided Facial Phenotyping Tools (DeepGestalt, GestaltMatcher, and D-Score): Comparative Diagnostic Accuracy Study. J Med Internet Res 2024; 26:e42904. [PMID: 38477981 DOI: 10.2196/42904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/19/2023] [Accepted: 11/17/2023] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND While characteristic facial features provide important clues for finding the correct diagnosis in genetic syndromes, valid assessment can be challenging. The next-generation phenotyping algorithm DeepGestalt analyzes patient images and provides syndrome suggestions. GestaltMatcher matches patient images with similar facial features. The new D-Score provides a score for the degree of facial dysmorphism. OBJECTIVE We aimed to test state-of-the-art facial phenotyping tools by benchmarking GestaltMatcher and D-Score and comparing them to DeepGestalt. METHODS Using a retrospective sample of 4796 images of patients with 486 different genetic syndromes (London Medical Database, GestaltMatcher Database, and literature images) and 323 inconspicuous control images, we determined the clinical use of D-Score, GestaltMatcher, and DeepGestalt, evaluating sensitivity; specificity; accuracy; the number of supported diagnoses; and potential biases such as age, sex, and ethnicity. RESULTS DeepGestalt suggested 340 distinct syndromes and GestaltMatcher suggested 1128 syndromes. The top-30 sensitivity was higher for DeepGestalt (88%, SD 18%) than for GestaltMatcher (76%, SD 26%). DeepGestalt generally assigned lower scores but provided higher scores for patient images than for inconspicuous control images, thus allowing the 2 cohorts to be separated with an area under the receiver operating characteristic curve (AUROC) of 0.73. GestaltMatcher could not separate the 2 classes (AUROC 0.55). Trained for this purpose, D-Score achieved the highest discriminatory power (AUROC 0.86). D-Score's levels increased with the age of the depicted individuals. Male individuals yielded higher D-scores than female individuals. Ethnicity did not appear to influence D-scores. CONCLUSIONS If used with caution, algorithms such as D-score could help clinicians with constrained resources or limited experience in syndromology to decide whether a patient needs further genetic evaluation. Algorithms such as DeepGestalt could support diagnosing rather common genetic syndromes with facial abnormalities, whereas algorithms such as GestaltMatcher could suggest rare diagnoses that are unknown to the clinician in patients with a characteristic, dysmorphic face.
Collapse
Affiliation(s)
- Alisa Maria Vittoria Reiter
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jean Tori Pantel
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute for Digitalization and General Medicine, University Hospital Aachen, Aachen, Germany
- Center for Rare Diseases Aachen ZSEA, University Hospital Aachen, Aachen, Germany
| | - Magdalena Danyel
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- BIH Biomedical Innovation Academy, Clinician Scientist Program, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Center for Rare Diseases, Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Denise Horn
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claus-Eric Ott
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Atta Mensah
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- BIH Biomedical Innovation Academy, Digital Clinician Scientist Program, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
9
|
Ward SK, Wadley A, Tsai CHA, Benke PJ, Emrick L, Fisher K, Houck KM, Dai H, Guillen Sacoto MJ, Craigen W, Glaser K, Murdock DR, Rohena L, Diderich KEM, Bruggenwirth HT, Lee B, Bacino C, Burrage LC, Rosenfeld JA. De novo missense variants in ZBTB47 are associated with developmental delays, hypotonia, seizures, gait abnormalities, and variable movement abnormalities. Am J Med Genet A 2024; 194:17-30. [PMID: 37743782 PMCID: PMC11221546 DOI: 10.1002/ajmg.a.63399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023]
Abstract
The collection of known genetic etiologies of neurodevelopmental disorders continues to increase, including several syndromes associated with defects in zinc finger protein transcription factors (ZNFs) that vary in clinical severity from mild learning disabilities and developmental delay to refractory seizures and severe autism spectrum disorder. Here we describe a new neurodevelopmental disorder associated with variants in ZBTB47 (also known as ZNF651), which encodes zinc finger and BTB domain-containing protein 47. Exome sequencing (ES) was performed for five unrelated patients with neurodevelopmental disorders. All five patients are heterozygous for a de novo missense variant in ZBTB47, with p.(Glu680Gly) (c.2039A>G) detected in one patient and p.(Glu477Lys) (c.1429G>A) identified in the other four patients. Both variants impact conserved amino acid residues. Bioinformatic analysis of each variant is consistent with pathogenicity. We present five unrelated patients with de novo missense variants in ZBTB47 and a phenotype characterized by developmental delay with intellectual disability, seizures, hypotonia, gait abnormalities, and variable movement abnormalities. We propose that these variants in ZBTB47 are the basis of a new neurodevelopmental disorder.
Collapse
Affiliation(s)
- Scott K Ward
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, USA
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alexandrea Wadley
- Department of Pediatrics, Section of Genetics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Chun-Hui Anne Tsai
- Department of Pediatrics, Section of Genetics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Paul J Benke
- Joe DiMaggio Children's Hospital, Hollywood, Florida, USA
| | - Lisa Emrick
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Kristen Fisher
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Kimberly M Houck
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, USA
| | | | - William Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Kimberly Glaser
- Joe DiMaggio Children's Hospital, Hollywood, Florida, USA
- Invitae, San Francisco, California, USA
| | - David R Murdock
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, USA
- The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Luis Rohena
- Department of Pediatrics, Division of Medical Genetics, San Antonio Military Medical Center, San Antonio, Texas, USA
- Department of Pediatrics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Karin E M Diderich
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Hennie T Bruggenwirth
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Carlos Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, USA
| |
Collapse
|
10
|
Lee AS, Ayers LJ, Kosicki M, Chan WM, Fozo LN, Pratt BM, Collins TE, Zhao B, Rose MF, Sanchis-Juan A, Fu JM, Wong I, Zhao X, Tenney AP, Lee C, Laricchia KM, Barry BJ, Bradford VR, Lek M, MacArthur DG, Lee EA, Talkowski ME, Brand H, Pennacchio LA, Engle EC. A cell type-aware framework for nominating non-coding variants in Mendelian regulatory disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.22.23300468. [PMID: 38234731 PMCID: PMC10793524 DOI: 10.1101/2023.12.22.23300468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Unsolved Mendelian cases often lack obvious pathogenic coding variants, suggesting potential non-coding etiologies. Here, we present a single cell multi-omic framework integrating embryonic mouse chromatin accessibility, histone modification, and gene expression assays to discover cranial motor neuron (cMN) cis-regulatory elements and subsequently nominate candidate non-coding variants in the congenital cranial dysinnervation disorders (CCDDs), a set of Mendelian disorders altering cMN development. We generated single cell epigenomic profiles for ~86,000 cMNs and related cell types, identifying ~250,000 accessible regulatory elements with cognate gene predictions for ~145,000 putative enhancers. Seventy-five percent of elements (44 of 59) validated in an in vivo transgenic reporter assay, demonstrating that single cell accessibility is a strong predictor of enhancer activity. Applying our cMN atlas to 899 whole genome sequences from 270 genetically unsolved CCDD pedigrees, we achieved significant reduction in our variant search space and nominated candidate variants predicted to regulate known CCDD disease genes MAFB, PHOX2A, CHN1, and EBF3 - as well as new candidates in recurrently mutated enhancers through peak- and gene-centric allelic aggregation. This work provides novel non-coding variant discoveries of relevance to CCDDs and a generalizable framework for nominating non-coding variants of potentially high functional impact in other Mendelian disorders.
Collapse
Affiliation(s)
- Arthur S. Lee
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Lauren J. Ayers
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Michael Kosicki
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Wai-Man Chan
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Lydia N. Fozo
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Brandon M. Pratt
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Thomas E. Collins
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Boxun Zhao
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA
| | - Matthew F. Rose
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Pathology, Boston Children's Hospital, Boston, MA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Medical Genetics Training Program, Harvard Medical School, Boston, MA
| | - Alba Sanchis-Juan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Jack M. Fu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Isaac Wong
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Xuefang Zhao
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Alan P. Tenney
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Cassia Lee
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Harvard College, Cambridge, MA
| | - Kristen M. Laricchia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Brenda J. Barry
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Victoria R. Bradford
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Monkol Lek
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Daniel G. MacArthur
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, NSW, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Eunjung Alice Lee
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA
- Department of Genetics, Harvard Medical School, Boston, MA
| | - Michael E. Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Harrison Brand
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA
| | - Len A. Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Elizabeth C. Engle
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Howard Hughes Medical Institute, Chevy Chase, MD
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA
- Medical Genetics Training Program, Harvard Medical School, Boston, MA
- Department of Ophthalmology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
11
|
Brady L, Ballantyne M, Duck J, Fisker T, Kleefman R, Li C, Nfonsam L, Schultz LA, Tarnopolsky M, McCready E. Further characterization of the 9q31 microdeletion phenotype; delineation of a common region of overlap containing ZNF462. Mol Genet Genomic Med 2023; 11:e2116. [PMID: 36461789 PMCID: PMC10009906 DOI: 10.1002/mgg3.2116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Loss of function variants and whole gene deletions of ZNF462 has been associated with a novel phenotype of developmental delay/intellectual disability and distinctive facial features. Over two dozen cases have been reported to date and the condition is now known as Weiss-Kruszka syndrome (OMIM# 618619). There are several older reports in the literature and DECIPER detailing individuals with interstitial deletions of 9q31 involving the ZNF462 gene. Many of the characteristic facial features described in these microdeletion cases are similar to those who have been diagnosed with Weiss-Kruszka syndrome. METHODS We describe three additional patients with overlapping 9q31 deletions and compare the phenotypes of the microdeletion cases reported in the literature to Weiss-Kruszka syndrome. RESULTS Phenotypic overlap was observed between patients with 9q31 deletions and Weiss-Kruszka syndrome. Several additional features were noted in 9q31 deletion patients, including hearing loss, small head circumference, palate abnormalities and short stature. CONCLUSIONS The common region of overlap of microdeletion cases implicates ZNF462 as the main driver of the recognizable 9q31 microdeletion phenotype. The observation of additional features in patients with 9q31 microdeletions that are not reported in Weiss-Kruszka syndrome further suggests that other genes from the 9q31 region likely act synergistically with ZNF462 to affect phenotypic expression.
Collapse
Affiliation(s)
- Lauren Brady
- Hamilton Health Sciences Centre, Hamilton, Ontario, Canada.,Division of Neuromuscular & Neurometabolic Disorders, Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Mark Ballantyne
- Hamilton Regional Laboratory Medicine Program, Hamilton Health Sciences Centre, Hamilton, Ontario, Canada
| | - John Duck
- Hamilton Regional Laboratory Medicine Program, Hamilton Health Sciences Centre, Hamilton, Ontario, Canada
| | - Thomas Fisker
- Hamilton Regional Laboratory Medicine Program, Hamilton Health Sciences Centre, Hamilton, Ontario, Canada
| | - Ryan Kleefman
- Hamilton Regional Laboratory Medicine Program, Hamilton Health Sciences Centre, Hamilton, Ontario, Canada
| | - Chumei Li
- Hamilton Health Sciences Centre, Hamilton, Ontario, Canada.,Division of Genetics, Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Landry Nfonsam
- Hamilton Regional Laboratory Medicine Program, Hamilton Health Sciences Centre, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Lee-Anne Schultz
- Hamilton Health Sciences Centre, Hamilton, Ontario, Canada.,Division of Genetics, Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Mark Tarnopolsky
- Hamilton Health Sciences Centre, Hamilton, Ontario, Canada.,Division of Neuromuscular & Neurometabolic Disorders, Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Elizabeth McCready
- Hamilton Regional Laboratory Medicine Program, Hamilton Health Sciences Centre, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
12
|
Yelagandula R, Stecher K, Novatchkova M, Michetti L, Michlits G, Wang J, Hofbauer P, Vainorius G, Pribitzer C, Isbel L, Mendjan S, Schübeler D, Elling U, Brennecke J, Bell O. ZFP462 safeguards neural lineage specification by targeting G9A/GLP-mediated heterochromatin to silence enhancers. Nat Cell Biol 2023; 25:42-55. [PMID: 36604593 PMCID: PMC10038669 DOI: 10.1038/s41556-022-01051-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/10/2022] [Indexed: 01/07/2023]
Abstract
ZNF462 haploinsufficiency is linked to Weiss-Kruszka syndrome, a genetic disorder characterized by neurodevelopmental defects, including autism. Though conserved in vertebrates and essential for embryonic development, the molecular functions of ZNF462 remain unclear. We identified its murine homologue ZFP462 in a screen for mediators of epigenetic gene silencing. Here we show that ZFP462 safeguards neural lineage specification of mouse embryonic stem cells (ESCs) by targeting the H3K9-specific histone methyltransferase complex G9A/GLP to silence meso-endodermal genes. ZFP462 binds to transposable elements that are potential enhancers harbouring pluripotency and meso-endoderm transcription factor binding sites. Recruiting G9A/GLP, ZFP462 seeds heterochromatin, restricting transcription factor binding. Loss of ZFP462 in ESCs results in increased chromatin accessibility at target sites and ectopic expression of meso-endodermal genes. Taken together, ZFP462 confers lineage and locus specificity to the broadly expressed epigenetic regulator G9A/GLP. Our results suggest that aberrant activation of lineage non-specific genes in the neuronal lineage underlies ZNF462-associated neurodevelopmental pathology.
Collapse
Affiliation(s)
- Ramesh Yelagandula
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
- Department of Biochemistry and Molecular Medicine and Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| | - Karin Stecher
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Vienna, Austria
| | - Maria Novatchkova
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Luca Michetti
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Georg Michlits
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Jingkui Wang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Pablo Hofbauer
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Gintautas Vainorius
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Carina Pribitzer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Luke Isbel
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Sasha Mendjan
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Oliver Bell
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
- Department of Biochemistry and Molecular Medicine and Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
13
|
The presence of clear cell glands around the ovarian endometrioid cyst has an association with clear cell carcinoma. Virchows Arch 2022:10.1007/s00428-022-03479-1. [PMID: 36580137 DOI: 10.1007/s00428-022-03479-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022]
Abstract
We found some clear cell glands appeared in the endometrioid cysts (ECs) of the ovary (EC-CCG). To explore the clinicopathological features, molecular biological changes, and prognosis in EC-CCG and analyze the association with ovarian clear cell borderline tumors (CCBT) and clear cell carcinoma (CCC). We retrospectively examined 35 cases of EC-CCG, compared them to 13 cases of clear cell cystadenomas, 14 cases of CCBT, and 49 cases of CCC. We analyzed the differences in clinicopathological features and prognosis between the four groups. Data on clinicopathology and survival were gathered. Immunohistochemistry (IHC) was performed in all cases, and we analyzed the molecular changes of 2 cases of EC-CCG and 1 case of CCC by whole-exome sequencing (WES). EC-CCG shared some common clinicopathological features with CCBT: they occurred before menopause, had an elevated serum CA125 level in some cases, had an ovarian cystic mass on B-ultrasound, and had a risk of recurrence. Microscopically, both diseases were based on typical EC, and clear cell glands in the EC cyst wall were seen in varying numbers. Some cases of EC-CCG had IHC results similar to those of CCBT and CCC, with positive expression of HNF1β and NapsinA; decreased expression of ER, PR, and ARID1A; and increased expression of Ki67 (> 5%). WES results revealed that EC-CCG had mutations in TP53BP1, ZNF462, FN1, and FTL (which was also mutated in CCC). In summary, we found that clear cell glands appearing around EC in the ovary have an association with CCC.
Collapse
|
14
|
Chen J, Zhang P, Peng M, Liu B, Wang X, Du S, Lu Y, Mu X, Lu Y, Wang S, Wu Y. An additional whole-exome sequencing study in 102 panel-undiagnosed patients: A retrospective study in a Chinese craniosynostosis cohort. Front Genet 2022; 13:967688. [PMID: 36118902 PMCID: PMC9481236 DOI: 10.3389/fgene.2022.967688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Craniosynostosis (CRS) is a disease with prematurely fused cranial sutures. In the last decade, the whole-exome sequencing (WES) was widely used in Caucasian populations. The WES largely contributed in genetic diagnosis and exploration on new genetic mechanisms of CRS. In this study, we enrolled 264 CRS patients in China. After a 17-gene-panel sequencing designed in the previous study, 139 patients were identified with pathogenic/likely pathogenic (P/LP) variants according to the ACMG guideline as positive genetic diagnosis. WES was then performed on 102 patients with negative genetic diagnosis by panel. Ten P/LP variants were additionally identified in ten patients, increasing the genetic diagnostic yield by 3.8% (10/264). The novel variants in ANKH, H1-4, EIF5A, SOX6, and ARID1B expanded the mutation spectra of CRS. Then we designed a compatible research pipeline (RP) for further exploration. The RP could detect all seven P/LP SNVs and InDels identified above, in addition to 15 candidate variants found in 13 patients with worthy of further study. In sum, the 17-gene panel and WES identified positive genetic diagnosis for 56.4% patients (149/264) in 16 genes. At last, in our estimation, the genetic testing strategy of “Panel-first” saves 24.3% of the cost compared with “WES only”, suggesting the “Panel-first” is an economical strategy.
Collapse
Affiliation(s)
- Jieyi Chen
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ping Zhang
- Center for Molecular Medicine, Pediatrics Research Institute, Children’s Hospital of Fudan University, Shanghai, China
| | - Meifang Peng
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Liu
- Center for Molecular Medicine, Pediatrics Research Institute, Children’s Hospital of Fudan University, Shanghai, China
| | - Xiao Wang
- Center for Molecular Medicine, Pediatrics Research Institute, Children’s Hospital of Fudan University, Shanghai, China
| | - Siyuan Du
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yao Lu
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiongzheng Mu
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yulan Lu
- Center for Molecular Medicine, Pediatrics Research Institute, Children’s Hospital of Fudan University, Shanghai, China
- *Correspondence: Yingzhi Wu, ; Sijia Wang, ; Yulan Lu,
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Yingzhi Wu, ; Sijia Wang, ; Yulan Lu,
| | - Yingzhi Wu
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Yingzhi Wu, ; Sijia Wang, ; Yulan Lu,
| |
Collapse
|
15
|
Zhao S, Miao C, Wang X, Lu Y, Liu H, Zhang X. A Nonsense Variant of ZNF462 Gene Associated With Weiss-Kruszka Syndrome-Like Manifestations: A Case Study and Literature Review. Front Genet 2022; 13:781832. [PMID: 35198003 PMCID: PMC8860098 DOI: 10.3389/fgene.2022.781832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/10/2022] [Indexed: 11/21/2022] Open
Abstract
Objective: This study aims to explore the clinical characteristics and genetic basis of a patient with unilateral ptosis and unilateral hearing impairment in pedigree analysis. Methods: The clinical data of the child and his father were collected. The genomic DNA of the patient and his relatives were extracted from their peripheral blood samples and subjected to trio-whole-exome sequencing (trio-WES) and copy number variation analysis. Sanger sequencing was used to verify the potential variant. Results: The sequencing analysis identified a heterozygous nonsense variant c.6431C > A (p.Ser2144*) in the ZNF462 gene (NM_021224.6) in the child and his father, whereas the locus in his asymptomatic mother, brother, and grandparents was found to be the wild type, which is an autosomal dominant inheritance. The new genetic variant has not been previously reported in the ClinVar and HGMD databases and the Genome Aggregation Database (gnomAD). Conclusion: This is the first incidence of Weiss–Kruszka syndrome relating to the nonsense variant in the ZNF462 gene in China. The finding from this study is novel in its expansion of the variant spectrum of the ZNF462 gene and clarifies the genetic etiology of the patient and his father.
Collapse
Affiliation(s)
- Shaozhi Zhao
- Center of Medical Genetics, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Chen Miao
- Center of Medical Genetics, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Xiaolei Wang
- Center of Medical Genetics, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Yitong Lu
- Center of Medical Genetics, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Hongwei Liu
- Center of Medical Genetics, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Xinwen Zhang
- Center of Medical Genetics, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| |
Collapse
|
16
|
Pellino G, Chiasso L, Fiori G, Mazzone S, Zama D, Cordelli DM, Russo A. Acute lymphoblastic leukemia in a child with Weiss-Kruszka syndrome: Casual or causal association? Eur J Med Genet 2022; 65:104457. [PMID: 35182807 DOI: 10.1016/j.ejmg.2022.104457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 11/15/2022]
Abstract
Weiss-Kruszka syndrome is a recently described genetic disorder characterized by craniofacial features, ptosis, dysgenesis of the corpus callosum, and neurodevelopmental impairment. It is caused by heterozygous loss-of-function variants
in ZNF462 gene. During the time, the original phenotype was expanded, including several complications, sensorineural hearing loss, congenital hypogonadotropic hypogonadism with anosmia and complete growth hormone deficiency associated with empty sella syndrome. Here we report the first case of Weiss-Kruszka syndrome, associated to a de novo 9q31.1q31.3 microdeletion showing an acute lymphoblastic leukemia. A speculation on the contribution of our case to the phenotypic expansion of WSKA is here discussed. More clinical and functional studies are needed to elucidate this association. A possible expansion of the WSKA phenotype is discussed.
Collapse
Affiliation(s)
- Giuditta Pellino
- Pediatric Unit, Azienda USL Ferrara - Sant'Anna University Hospital of Ferrara, Ferrara, Italy
| | - Lucia Chiasso
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'età pediatrica, Bologna, Italy
| | - Giulia Fiori
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'età pediatrica, Bologna, Italy
| | - Serena Mazzone
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'età pediatrica, Bologna, Italy
| | - Daniele Zama
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Duccio Maria Cordelli
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'età pediatrica, Bologna, Italy
| | - Angelo Russo
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'età pediatrica, Bologna, Italy.
| |
Collapse
|
17
|
González-Tarancón R, Salvador-Rupérez E, Miramar Gallart MD, Barroso E, Díez García-Prieto I, Pérez Delgado R, López Pisón J, García Jiménez MC. A novel mutation in the ZNF462 gene c.3306dup; p.(Gln1103Thrfs*10) is associated to Weiss-Kruszka syndrome. A case report. Acta Clin Belg 2022; 77:118-121. [PMID: 32543299 DOI: 10.1080/17843286.2020.1780391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Weiss-Kruszka syndrome (WSKA) is a rare disorder caused by mutations in the ZNF462 gene or deletion of 9p31.2 chromosome region, involving ZNF462. The prevalence of WSKA is unknown as only 24 affected individuals have been described. This syndrome should be suspected in individuals presenting mild global developmental delay and common craniofacial abnormalities. CASE PRESENTATION We presented a case of an infant, 3 years and 4-month life who presented pondostatural and psychomotor retardation, generalized hypotonia with hypermobility, bilateral palpebral ptosis, epicanthal folds, and poorly expressive facies as the main clinical features. These characteristics lead to the realization of genetics studies that resulted in the identification of a novel mutation c.3306dup; p.(Gln1103Thrfs*10) in ZNF462. CONCLUSIONS WSKA should be suspected in individuals presenting mild global developmental delay, ptosis, downslanting palpebral fissures, exaggerated Cupid's Bow, arched eyebrows, epicanthal folds and short upturned nose with a bulbous tip. Hypertrophy of the ventricular septum and severe OSA were described in our patient and should be considered in future reviews of the disease. This case is added to the reduced number of publications previously reported regarding WSKA and contributes to understanding the genetic characteristics, clinical features, and diagnosis of this syndrome.Abbreviations: WSKA: Weiss-Kruszka syndrome; CP: craniofacial perimeter; WES: whole-exome sequencing; RSV: respiratory syncytial virus; OSA: obstructive sleep apnoea; ACMG: American College of Medical Genetics and Genomics.
Collapse
Affiliation(s)
- R. González-Tarancón
- Dept. of Clinical Biochemistry, Clinical Genetic Laboratory, University Hospital Miguel Servet, Zaragoza, Spain
| | - E. Salvador-Rupérez
- Dept. of Clinical Biochemistry, Clinical Genetic Laboratory, University Hospital Miguel Servet, Zaragoza, Spain
| | - MD Miramar Gallart
- Dept. of Clinical Biochemistry, Clinical Genetic Laboratory, University Hospital Miguel Servet, Zaragoza, Spain
| | | | | | - R. Pérez Delgado
- Dept. of Pediatrics, Neurometabolism Unit, University Hospital Miguel Servet, Zaragoza, Spain
| | - J. López Pisón
- Dept. of Pediatrics, Neurometabolism Unit, University Hospital Miguel Servet, Zaragoza, Spain
| | - MC García Jiménez
- Dept. of Pediatrics, Neurometabolism Unit, University Hospital Miguel Servet, Zaragoza, Spain
| |
Collapse
|
18
|
Bu S, Lv Y, Liu Y, Qiao S, Wang H. Zinc Finger Proteins in Neuro-Related Diseases Progression. Front Neurosci 2021; 15:760567. [PMID: 34867169 PMCID: PMC8637543 DOI: 10.3389/fnins.2021.760567] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/11/2021] [Indexed: 01/02/2023] Open
Abstract
Zinc finger proteins (ZNF) are among the most abundant proteins in eukaryotic genomes. It contains several zinc finger domains that can selectively bind to certain DNA or RNA and associate with proteins, therefore, ZNF can regulate gene expression at the transcriptional and translational levels. In terms of neurological diseases, numerous studies have shown that many ZNF are associated with neurological diseases. The purpose of this review is to summarize the types and roles of ZNF in neuropsychiatric disorders. We will describe the structure and classification of ZNF, then focus on the pathophysiological role of ZNF in neuro-related diseases and summarize the mechanism of action of ZNF in neuro-related diseases.
Collapse
Affiliation(s)
- Siyuan Bu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Yihan Lv
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Yusheng Liu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Sen Qiao
- Department of Pharmacology, Center for Molecular Signaling (PZMS), School of Medicine, Saarland University, Homburg, Germany
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
19
|
Cloney T, Gallacher L, Pais LS, Tan NB, Yeung A, Stark Z, Brown NJ, McGillivray G, Delatycki MB, de Silva MG, Downie L, Stutterd CA, Elliott J, Compton AG, Lovgren A, Oertel R, Francis D, Bell KM, Sadedin S, Lim SC, Helman G, Simons C, Macarthur DG, Thorburn DR, O'Donnell-Luria AH, Christodoulou J, White SM, Tan TY. Lessons learnt from multifaceted diagnostic approaches to the first 150 families in Victoria's Undiagnosed Diseases Program. J Med Genet 2021; 59:748-758. [PMID: 34740920 DOI: 10.1136/jmedgenet-2021-107902] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/14/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Clinical exome sequencing typically achieves diagnostic yields of 30%-57.5% in individuals with monogenic rare diseases. Undiagnosed diseases programmes implement strategies to improve diagnostic outcomes for these individuals. AIM We share the lessons learnt from the first 3 years of the Undiagnosed Diseases Program-Victoria, an Australian programme embedded within a clinical genetics service in the state of Victoria with a focus on paediatric rare diseases. METHODS We enrolled families who remained without a diagnosis after clinical genomic (panel, exome or genome) sequencing between 2016 and 2018. We used family-based exome sequencing (family ES), family-based genome sequencing (family GS), RNA sequencing (RNA-seq) and high-resolution chromosomal microarray (CMA) with research-based analysis. RESULTS In 150 families, we achieved a diagnosis or strong candidate in 64 (42.7%) (37 in known genes with a consistent phenotype, 3 in known genes with a novel phenotype and 24 in novel disease genes). Fifty-four diagnoses or strong candidates were made by family ES, six by family GS with RNA-seq, two by high-resolution CMA and two by data reanalysis. CONCLUSION We share our lessons learnt from the programme. Flexible implementation of multiple strategies allowed for scalability and response to the availability of new technologies. Broad implementation of family ES with research-based analysis showed promising yields post a negative clinical singleton ES. RNA-seq offered multiple benefits in family ES-negative populations. International data sharing strategies were critical in facilitating collaborations to establish novel disease-gene associations. Finally, the integrated approach of a multiskilled, multidisciplinary team was fundamental to having diverse perspectives and strategic decision-making.
Collapse
Affiliation(s)
- Thomas Cloney
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lyndon Gallacher
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lynn S Pais
- Center for Mendelian Genomics, Eli and Edythe L Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Natalie B Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Alison Yeung
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Natasha J Brown
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - George McGillivray
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Martin B Delatycki
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michelle G de Silva
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Lilian Downie
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Chloe A Stutterd
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Justine Elliott
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Alison G Compton
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia.,Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Alysia Lovgren
- Center for Mendelian Genomics, Eli and Edythe L Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Analytic and Translational Genomics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | - Ralph Oertel
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - David Francis
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Katrina M Bell
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Bioinformatics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Simon Sadedin
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sze Chern Lim
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Guy Helman
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Cas Simons
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Translational Bioinformatics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Daniel G Macarthur
- Center for Mendelian Genomics, Eli and Edythe L Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Centre for Population Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - David R Thorburn
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia.,Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Anne H O'Donnell-Luria
- Center for Mendelian Genomics, Eli and Edythe L Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - John Christodoulou
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia.,Neurodevelopmental Genomics Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia .,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
20
|
Iivonen AP, Kärkinen J, Yellapragada V, Sidoroff V, Almusa H, Vaaralahti K, Raivio T. Kallmann syndrome in a patient with Weiss-Kruszka syndrome and a de novo deletion in 9q31.2. Eur J Endocrinol 2021; 185:57-66. [PMID: 33909591 PMCID: PMC8183635 DOI: 10.1530/eje-20-1387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/28/2021] [Indexed: 12/21/2022]
Abstract
Patients with deletions on chromosome 9q31.2 may exhibit delayed puberty, craniofacial phenotype including cleft lip/palate, and olfactory bulb hypoplasia. We report a patient with congenital HH with anosmia (Kallmann syndrome, KS) and a de novo 2.38 Mb heterozygous deletion in 9q31.2. The deletion breakpoints (determined with whole-genome linked-read sequencing) were in the FKTN gene (9:108,331,353) and in a non-coding area (9:110,707,332) (hg19). The deletion encompassed six protein-coding genes (FKTN, ZNF462, TAL2, TMEM38B, RAD23B, and KLF4). ZNF462 haploinsufficiency was consistent with the patient's Weiss-Kruszka syndrome (craniofacial phenotype, developmental delay, and sensorineural hearing loss), but did not explain his KS. In further analyses, he did not carry rare sequence variants in 32 known KS genes in whole-exome sequencing and displayed no aberrant splicing of 15 KS genes that were expressed in peripheral blood leukocyte transcriptome. The deletion was 1.8 Mb upstream of a KS candidate gene locus (PALM2AKAP2) but did not suppress its expression. In conclusion, this is the first report of a patient with Weiss-Kruszka syndrome and KS. We suggest that patients carrying a microdeletion in 9q31.2 should be evaluated for the presence of KS and KS-related features.
Collapse
Affiliation(s)
- Anna-Pauliina Iivonen
- Department of Physiology, Stem Cells and Metabolism Research Program, Faculty of Medicine, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Juho Kärkinen
- Pediatric Research Center, New Children’s Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Venkatram Yellapragada
- Department of Physiology, Stem Cells and Metabolism Research Program, Faculty of Medicine, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | | | - Henrikki Almusa
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Kirsi Vaaralahti
- Department of Physiology, Stem Cells and Metabolism Research Program, Faculty of Medicine, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Taneli Raivio
- Department of Physiology, Stem Cells and Metabolism Research Program, Faculty of Medicine, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Pediatric Research Center, New Children’s Hospital, Helsinki University Hospital, Helsinki, Finland
- Correspondence should be addressed to T Raivio;
| |
Collapse
|
21
|
Park J, Ha DJ, Seo GH, Maeng S, Kang SM, Kim S, Lee JE. Empty Sella Syndrome Associated with Growth Hormone Deficiency: the First Case Report of Weiss-Kruszka Syndrome. J Korean Med Sci 2021; 36:e133. [PMID: 33975400 PMCID: PMC8111047 DOI: 10.3346/jkms.2021.36.e133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/11/2021] [Indexed: 11/20/2022] Open
Abstract
Weiss-Kruszka syndrome (WSKA), caused by heterozygous loss-of-function variants in ZNF462 gene, is a recently described and extremely rare genetic disorder. The main phenotypes include characteristic craniofacial features, ptosis, dysgenesis of the corpus callosum, and neurodevelopmental impairment. We report the first Korean boy with molecularly confirmed WSKA presenting with an atypical manifestation. A 16-year-old boy with a history of bilateral ptosis surgery presented with short stature (-3.49 standard deviation score) and delayed puberty. The patient showed characteristic craniofacial features including an inverted triangular-shaped head, exaggerated Cupid's bow, arched eyebrows, down-slanting palpebral fissures, and poorly expressive face. He had a mild degree of intellectual disability and mild hypotonia. Endocrine studies in the patient demonstrated complete growth hormone deficiency (GHD) associated with empty sella syndrome (ESS), based on a magnetic resonance imaging study for the brain that showed a flattened pituitary gland and cerebrospinal fluid space herniated into the sella turcica. To identify the genetic cause, we performed whole exome sequencing (WES). Through WES, a novel de novo heterozygous nonsense variant, c.4185del; p.(Met1396Ter) in ZNF462 was identified. This is the first case of WSKA accompanied by primary ESS associated with GHD. More clinical and functional studies are needed to elucidate this association.
Collapse
Affiliation(s)
- Jisun Park
- Department of Pediatrics, Inha University Hospital, Inha University College of Medicine, Incheon, Korea
- Northwest Gyeonggi Regional Center for Rare Disease, Inha University Hospital, Incheon, Korea
| | - Dong Jun Ha
- Department of Pediatrics, Inha University Hospital, Inha University College of Medicine, Incheon, Korea
| | | | - Seri Maeng
- Northwest Gyeonggi Regional Center for Rare Disease, Inha University Hospital, Incheon, Korea
- Department of Psychiatry, Inha University Hospital, Inha University College of Medicine, Incheon, Korea
| | - Sung Mo Kang
- Northwest Gyeonggi Regional Center for Rare Disease, Inha University Hospital, Incheon, Korea
- Department of Ophthalmology, Inha University Hospital, Inha University College of Medicine, Incheon, Korea
| | - Sujin Kim
- Department of Pediatrics, Inha University Hospital, Inha University College of Medicine, Incheon, Korea
- Northwest Gyeonggi Regional Center for Rare Disease, Inha University Hospital, Incheon, Korea.
| | - Ji Eun Lee
- Department of Pediatrics, Inha University Hospital, Inha University College of Medicine, Incheon, Korea
- Northwest Gyeonggi Regional Center for Rare Disease, Inha University Hospital, Incheon, Korea.
| |
Collapse
|
22
|
Identification of Novel Candidate Genes and Variants for Hearing Loss and Temporal Bone Anomalies. Genes (Basel) 2021; 12:genes12040566. [PMID: 33924653 PMCID: PMC8069784 DOI: 10.3390/genes12040566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Hearing loss remains an important global health problem that is potentially addressed through early identification of a genetic etiology, which helps to predict outcomes of hearing rehabilitation such as cochlear implantation and also to mitigate the long-term effects of comorbidities. The identification of variants for hearing loss and detailed descriptions of clinical phenotypes in patients from various populations are needed to improve the utility of clinical genetic screening for hearing loss. Methods: Clinical and exome data from 15 children with hearing loss were reviewed. Standard tools for annotating variants were used and rare, putatively deleterious variants were selected from the exome data. Results: In 15 children, 21 rare damaging variants in 17 genes were identified, including: 14 known hearing loss or neurodevelopmental genes, 11 of which had novel variants; and three candidate genes IST1, CBLN3 and GDPD5, two of which were identified in children with both hearing loss and enlarged vestibular aqueducts. Patients with variants within IST1 and MYO18B had poorer outcomes after cochlear implantation. Conclusion: Our findings highlight the importance of identifying novel variants and genes in ethnic groups that are understudied for hearing loss.
Collapse
|
23
|
Pantel JT, Hajjir N, Danyel M, Elsner J, Abad-Perez AT, Hansen P, Mundlos S, Spielmann M, Horn D, Ott CE, Mensah MA. Efficiency of Computer-Aided Facial Phenotyping (DeepGestalt) in Individuals With and Without a Genetic Syndrome: Diagnostic Accuracy Study. J Med Internet Res 2020; 22:e19263. [PMID: 33090109 PMCID: PMC7644377 DOI: 10.2196/19263] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/26/2020] [Accepted: 07/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background Collectively, an estimated 5% of the population have a genetic disease. Many of them feature characteristics that can be detected by facial phenotyping. Face2Gene CLINIC is an online app for facial phenotyping of patients with genetic syndromes. DeepGestalt, the neural network driving Face2Gene, automatically prioritizes syndrome suggestions based on ordinary patient photographs, potentially improving the diagnostic process. Hitherto, studies on DeepGestalt’s quality highlighted its sensitivity in syndromic patients. However, determining the accuracy of a diagnostic methodology also requires testing of negative controls. Objective The aim of this study was to evaluate DeepGestalt's accuracy with photos of individuals with and without a genetic syndrome. Moreover, we aimed to propose a machine learning–based framework for the automated differentiation of DeepGestalt’s output on such images. Methods Frontal facial images of individuals with a diagnosis of a genetic syndrome (established clinically or molecularly) from a convenience sample were reanalyzed. Each photo was matched by age, sex, and ethnicity to a picture featuring an individual without a genetic syndrome. Absence of a facial gestalt suggestive of a genetic syndrome was determined by physicians working in medical genetics. Photos were selected from online reports or were taken by us for the purpose of this study. Facial phenotype was analyzed by DeepGestalt version 19.1.7, accessed via Face2Gene CLINIC. Furthermore, we designed linear support vector machines (SVMs) using Python 3.7 to automatically differentiate between the 2 classes of photographs based on DeepGestalt's result lists. Results We included photos of 323 patients diagnosed with 17 different genetic syndromes and matched those with an equal number of facial images without a genetic syndrome, analyzing a total of 646 pictures. We confirm DeepGestalt’s high sensitivity (top 10 sensitivity: 295/323, 91%). DeepGestalt’s syndrome suggestions in individuals without a craniofacially dysmorphic syndrome followed a nonrandom distribution. A total of 17 syndromes appeared in the top 30 suggestions of more than 50% of nondysmorphic images. DeepGestalt’s top scores differed between the syndromic and control images (area under the receiver operating characteristic [AUROC] curve 0.72, 95% CI 0.68-0.76; P<.001). A linear SVM running on DeepGestalt’s result vectors showed stronger differences (AUROC 0.89, 95% CI 0.87-0.92; P<.001). Conclusions DeepGestalt fairly separates images of individuals with and without a genetic syndrome. This separation can be significantly improved by SVMs running on top of DeepGestalt, thus supporting the diagnostic process of patients with a genetic syndrome. Our findings facilitate the critical interpretation of DeepGestalt’s results and may help enhance it and similar computer-aided facial phenotyping tools.
Collapse
Affiliation(s)
- Jean Tori Pantel
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Nurulhuda Hajjir
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Klinik für Pädiatrie mit Schwerpunkt Gastroenterologie, Nephrologie und Stoffwechselmedizin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Magdalena Danyel
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Berlin Center for Rare Diseases, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Jonas Elsner
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Angela Teresa Abad-Perez
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Peter Hansen
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Stefan Mundlos
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Malte Spielmann
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Denise Horn
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Claus-Eric Ott
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Martin Atta Mensah
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
24
|
Tekendo-Ngongang C, Owosela B, Fleischer N, Addissie YA, Malonga B, Badoe E, Gupta N, Moresco A, Huckstadt V, Ashaat EA, Hussen DF, Luk HM, Lo IFM, Hon-Yin Chung B, Fung JLF, Moretti-Ferreira D, Batista LC, Lotz-Esquivel S, Saborio-Rocafort M, Badilla-Porras R, Penon Portmann M, Jones KL, Abdul-Rahman OA, Uwineza A, Prijoles EJ, Ifeorah IK, Llamos Paneque A, Sirisena ND, Dowsett L, Lee S, Cappuccio G, Kitchin CS, Diaz-Kuan A, Thong MK, Obregon MG, Mutesa L, Dissanayake VHW, El Ruby MO, Brunetti-Pierri N, Ekure EN, Stevenson RE, Muenke M, Kruszka P. Rubinstein-Taybi syndrome in diverse populations. Am J Med Genet A 2020; 182:2939-2950. [PMID: 32985117 DOI: 10.1002/ajmg.a.61888] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/18/2020] [Accepted: 09/05/2020] [Indexed: 01/14/2023]
Abstract
Rubinstein-Taybi syndrome (RSTS) is an autosomal dominant disorder, caused by loss-of-function variants in CREBBP or EP300. Affected individuals present with distinctive craniofacial features, broad thumbs and/or halluces, and intellectual disability. RSTS phenotype has been well characterized in individuals of European descent but not in other populations. In this study, individuals from diverse populations with RSTS were assessed by clinical examination and facial analysis technology. Clinical data of 38 individuals from 14 different countries were analyzed. The median age was 7 years (age range: 7 months to 47 years), and 63% were females. The most common phenotypic features in all population groups included broad thumbs and/or halluces in 97%, convex nasal ridge in 94%, and arched eyebrows in 92%. Face images of 87 individuals with RSTS (age range: 2 months to 47 years) were collected for evaluation using facial analysis technology. We compared images from 82 individuals with RSTS against 82 age- and sex-matched controls and obtained an area under the receiver operating characteristic curve (AUC) of 0.99 (p < .001), demonstrating excellent discrimination efficacy. The discrimination was, however, poor in the African group (AUC: 0.79; p = .145). Individuals with EP300 variants were more effectively discriminated (AUC: 0.95) compared with those with CREBBP variants (AUC: 0.93). This study shows that clinical examination combined with facial analysis technology may enable earlier and improved diagnosis of RSTS in diverse populations.
Collapse
Affiliation(s)
- Cedrik Tekendo-Ngongang
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland, USA
| | - Babajide Owosela
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland, USA
| | | | - Yonit A Addissie
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland, USA
| | - Bryan Malonga
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland, USA
| | - Ebenezer Badoe
- Department of Child Health, School of Medicine and Dentistry, College of Health Sciences, Accra, Ghana
| | - Neerja Gupta
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Angélica Moresco
- Servicio de Genética, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Victoria Huckstadt
- Servicio de Genética, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Engy A Ashaat
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Dalia Farouk Hussen
- Cytogenetic Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Ho-Ming Luk
- Department of Health, Clinical Genetic Service, Hong Kong Special Administrative Region, Hong Kong, China
| | - Ivan F M Lo
- Department of Health, Clinical Genetic Service, Hong Kong Special Administrative Region, Hong Kong, China
| | - Brian Hon-Yin Chung
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Jasmine L F Fung
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Danilo Moretti-Ferreira
- Department of Genetics, Institute of Biosciences, Sao Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - Letícia Cassimiro Batista
- Department of Genetics, Institute of Biosciences, Sao Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - Stephanie Lotz-Esquivel
- Rare and Orphan Disease Multidisciplinary Clinic, Hospital San Juan de Dios (CCSS), San José, Costa Rica
| | - Manuel Saborio-Rocafort
- Medical Genetics and Metabolism Department, National Children's Hospital "Dr. Carlos Sáenz Herrera" (CCSS), San José, Costa Rica
| | - Ramses Badilla-Porras
- Medical Genetics and Metabolism Department, National Children's Hospital "Dr. Carlos Sáenz Herrera" (CCSS), San José, Costa Rica
| | - Monica Penon Portmann
- Medical Genetics and Metabolism Department, National Children's Hospital "Dr. Carlos Sáenz Herrera" (CCSS), San José, Costa Rica.,Division of Medical Genetics, Department of Pediatrics & Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| | - Kelly L Jones
- Division of Medical Genetics and Metabolism, Children's Hospital of The King's Daughters, Norfolk, Virginia, USA
| | - Omar A Abdul-Rahman
- Munroe-Meyer institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Annette Uwineza
- Centre for Human Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | | | | | - Arianne Llamos Paneque
- Medical Genetics Service, Specialty Hospital of the Armed Forces No. 1, International University of Ecuador, Sciences of Life Faculty, School of Dentistry, Quito, Ecuador
| | - Nirmala D Sirisena
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Leah Dowsett
- Kapi'olani Medical Center and University of Hawai'i, Honolulu, Hawaii, USA
| | - Sansan Lee
- Kapi'olani Medical Center and University of Hawai'i, Honolulu, Hawaii, USA
| | - Gerarda Cappuccio
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy.,Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Carolyn Sian Kitchin
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Meow-Keong Thong
- Department of Paediatrics, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Leon Mutesa
- Centre for Human Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | | | - Mona O El Ruby
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples, Italy.,Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Ekanem Nsikak Ekure
- Department of Paediatrics, College of Medicine, University of Lagos, Lagos, Nigeria
| | | | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland, USA
| | - Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Kruszka P, Addissie YA, Tekendo-Ngongang C, Jones KL, Savage SK, Gupta N, Sirisena ND, Cerda TEA, Nampoothiri S, Girisha KM, Patil SJ, Jamuar SS, Utari A, Sihombing N, Mishra R, Chitrakar NS, Iriele B, Lulseged E, Megarbane A, Uwineza A, Roque MMD, Thong MK, Moresco A, Obregon MG, Ling TY, Mok GTK, Fleischer N, Rwegerera G, de Herreros MB, Watts J, Fieggen K, Farouk D, Ashaat NA, Chung BH, Badoe E, Faradz SMH, El-Ruby M, Shotelersuk V, Wonkam A, Ekure EN, Richieri-Costa A, Muenke M. Turner syndrome in diverse populations. Am J Med Genet A 2020; 182:303-313. [PMID: 31854143 PMCID: PMC8141514 DOI: 10.1002/ajmg.a.61461] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022]
Abstract
Turner syndrome (TS) is a common multiple congenital anomaly syndrome resulting from complete or partial absence of the second X chromosome. In this study, we explore the phenotype of TS in diverse populations using clinical examination and facial analysis technology. Clinical data from 78 individuals and images from 108 individuals with TS from 19 different countries were analyzed. Individuals were grouped into categories of African descent (African), Asian, Latin American, Caucasian (European descent), and Middle Eastern. The most common phenotype features across all population groups were short stature (86%), cubitus valgus (76%), and low posterior hairline 70%. Two facial analysis technology experiments were conducted: TS versus general population and TS versus Noonan syndrome. Across all ethnicities, facial analysis was accurate in diagnosing TS from frontal facial images as measured by the area under the curve (AUC). An AUC of 0.903 (p < .001) was found for TS versus general population controls and 0.925 (p < .001) for TS versus individuals with Noonan syndrome. In summary, we present consistent clinical findings from global populations with TS and additionally demonstrate that facial analysis technology can accurately distinguish TS from the general population and Noonan syndrome.
Collapse
Affiliation(s)
- Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland
| | - Yonit A. Addissie
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland
| | - Cedrik Tekendo-Ngongang
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland
| | - Kelly L. Jones
- Department of Pediatrics, Children’s Hospital of The King’s Daughter, Norfolk, VA
| | | | - Neerja Gupta
- Department of Paediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Nirmala D. Sirisena
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | | | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, Kerala, India
| | - Katta M. Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal University, Manipal, India
| | | | | | - Agustini Utari
- Center for Biomedical Research, Diponegoro University, Semarang, Indonesia
| | - Nydia Sihombing
- Center for Biomedical Research, Diponegoro University, Semarang, Indonesia
| | - Rupesh Mishra
- Division of Human Genetics, Civil Service Hospital, Kathmandu, Nepal
| | | | - Brenda Iriele
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland
| | - Ezana Lulseged
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland
| | | | - Annette Uwineza
- University of Rwanda, College of Medicine and Pharmacy, School of Medicine and Pharmacy, Center of Human Genetics, Kigali, Rwanda
| | | | - Meow-Keong Thong
- Department of Paediatrics, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Angélica Moresco
- Servicio de Genética, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | | | - Tung Yuet Ling
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Gary TK Mok
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | | | | | - María Beatriz de Herreros
- National Secretariat for the Rights of People with Disabilities (SENADIS), Fernando de la Mora, Paraguay
| | - Jonathan Watts
- Division of Human Genetics, Faculty of Helath Sciences, University of Cape Town, Cape Town, South Africa
| | - Karen Fieggen
- Division of Human Genetics, Faculty of Helath Sciences, University of Cape Town, Cape Town, South Africa
| | - Dalia Farouk
- Human Genetics and Genome Research Division, Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| | - Neveen A. Ashaat
- Human Genetics and Genome Research Division, Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| | - Brian H.Y. Chung
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Eden Badoe
- Department of Child Health, College of Health Sciences, School of Medicine and Dentistry, Accra, Ghana
| | - Sultana MH Faradz
- Center for Biomedical Research, Diponegoro University, Semarang, Indonesia
| | - Mona El-Ruby
- Human Genetics and Genome Research Division, Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ambroise Wonkam
- Division of Human Genetics, Faculty of Helath Sciences, University of Cape Town, Cape Town, South Africa
| | - Ekanem Nsikak Ekure
- Department of Paediatrics College of Medicine, University of Lagos, Lagos University Teaching Hospital, Lagos, Nigeria
| | - Antonio Richieri-Costa
- Hospital for the Rehabilitation of Craniofacial Anomalies, São Paulo University, Bauru, Brazil
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
26
|
Jerves T, Beaton A, Kruszka P. The genetic workup for structural congenital heart disease. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 184:178-186. [PMID: 31833661 DOI: 10.1002/ajmg.c.31759] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022]
Abstract
Congenital heart disease (CHD) is the most prevalent birth defect and is the result of multiple etiologies including genetic and environmental causes. This article reviews the genetic workup for structural CHD in the clinical setting, beginning with CHD epidemiology and etiology and then moving to genetic testing, clinical evaluation, and genetic counseling. An algorithm is presented as a guide to genetic test selection, and available tests are explained with their respective advantages and limitations. Finally, future advances are discussed. As this review focuses on structural heart disease, isolated cardiomyopathies, inherited primary arrhythmia syndromes and aortopathies are not discussed.
Collapse
Affiliation(s)
- Teodoro Jerves
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Andrea Beaton
- Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|