1
|
McRae AM, Duncan J, Drackley A, Ing A, Allegretti V, Raski CR, Mercier A, Prada CE, Jurgensmeyer S. Further Delineation of the Proximal 16p11.2 Microdeletion Syndrome: Novel Findings Among 22 New Individuals. Am J Med Genet A 2025; 197:e63873. [PMID: 39257254 DOI: 10.1002/ajmg.a.63873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024]
Abstract
The recurrent chromosome 16p11.2 BP4-BP5 microdeletion (MIM #611913) predisposes to a neurodevelopmental disorder with variable associated congenital anomalies and susceptibility to early-onset obesity. We identified 22 new individuals with proximal 16p11.2 deletions through retrospective data analysis at our institution and performed phenotyping through in-depth chart review. Our cohort exhibited a spectrum of neurodevelopmental abnormalities largely consistent with other publications, however they also were found to have a higher rate than expected of congenital anomalies, some of which have not yet been reported in association with 16p11.2 microdeletions to our knowledge. This series contributes to the body of data on this population, which we anticipate will continue to evolve along with increased uptake of genetic testing.
Collapse
Affiliation(s)
- Anne M McRae
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Jaime Duncan
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Andy Drackley
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Alexander Ing
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Valerie Allegretti
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Carolyn R Raski
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Angelique Mercier
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Carlos E Prada
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sarah Jurgensmeyer
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
2
|
Budisteanu M, Papuc SM, Erbescu A, Glangher A, Andrei E, Rad F, Hinescu ME, Arghir A. Review of structural neuroimaging and genetic findings in autism spectrum disorder - a clinical perspective. Rev Neurosci 2024:revneuro-2024-0106. [PMID: 39566028 DOI: 10.1515/revneuro-2024-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/03/2024] [Indexed: 11/22/2024]
Abstract
Autism spectrum disorders (ASDs) are neurodevelopmental conditions characterized by deficits in social relationships and communication and restrictive, repetitive behaviors and interests. ASDs form a heterogeneous group from a clinical and genetic perspective. Currently, ASDs diagnosis is based on the clinical observation of the individual's behavior. The subjective nature of behavioral diagnoses, in the context of ASDs heterogeneity, contributes to significant variation in the age at ASD diagnosis. Early detection has been proved to be critical in ASDs, as early start of appropriate therapeutic interventions greatly improve the outcome for some children. Structural magnetic resonance imaging (MRI) is widely used in the diagnostic work-up of neurodevelopmental conditions, including ASDs, mostly for brain malformations detection. Recently, the focus of brain imaging shifted towards quantitative MRI parameters, aiming to identify subtle changes that may establish early detection biomarkers. ASDs have a strong genetic component; deletions and duplications of several genomic loci have been strongly associated with ASDs risk. Consequently, a multitude of neuroimaging and genetic findings emerged in ASDs in the recent years. The association of gross or subtle changes in brain morphometry and volumes with different genetic defects has the potential to bring new insights regarding normal development and pathomechanisms of various disorders affecting the brain. Still, the clinical implications of these discoveries and the impact of genetic abnormalities on brain structure and function are unclear. Here we review the literature on brain imaging correlated with the most prevalent genomic imbalances in ASD, and discuss the potential clinical impact.
Collapse
Affiliation(s)
- Magdalena Budisteanu
- Alexandru Obregia Clinical Hospital of Psychiatry, 041914, Soseaua Berceni 10, Bucharest, Romania
- Victor Babes National Institute of Pathology, 050096, Splaiul Independentei 99-101, Bucharest, Romania
- Faculty of Medicine, Titu Maiorescu University, 031593, Calea Vacaresti 187, Bucharest, Romania
| | - Sorina Mihaela Papuc
- Victor Babes National Institute of Pathology, 050096, Splaiul Independentei 99-101, Bucharest, Romania
| | - Alina Erbescu
- Victor Babes National Institute of Pathology, 050096, Splaiul Independentei 99-101, Bucharest, Romania
| | - Adelina Glangher
- Alexandru Obregia Clinical Hospital of Psychiatry, 041914, Soseaua Berceni 10, Bucharest, Romania
| | - Emanuela Andrei
- Alexandru Obregia Clinical Hospital of Psychiatry, 041914, Soseaua Berceni 10, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, 050474, Bulevardul Eroii Sanitari 8, Bucharest, Romania
| | - Florina Rad
- Alexandru Obregia Clinical Hospital of Psychiatry, 041914, Soseaua Berceni 10, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, 050474, Bulevardul Eroii Sanitari 8, Bucharest, Romania
| | - Mihail Eugen Hinescu
- Victor Babes National Institute of Pathology, 050096, Splaiul Independentei 99-101, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, 050474, Bulevardul Eroii Sanitari 8, Bucharest, Romania
| | - Aurora Arghir
- Victor Babes National Institute of Pathology, 050096, Splaiul Independentei 99-101, Bucharest, Romania
| |
Collapse
|
3
|
Auwerx C, Kutalik Z, Reymond A. The pleiotropic spectrum of proximal 16p11.2 CNVs. Am J Hum Genet 2024; 111:2309-2346. [PMID: 39332410 PMCID: PMC11568765 DOI: 10.1016/j.ajhg.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/29/2024] Open
Abstract
Recurrent genomic rearrangements at 16p11.2 BP4-5 represent one of the most common causes of genomic disorders. Originally associated with increased risk for autism spectrum disorder, schizophrenia, and intellectual disability, as well as adiposity and head circumference, these CNVs have since been associated with a plethora of phenotypic alterations, albeit with high variability in expressivity and incomplete penetrance. Here, we comprehensively review the pleiotropy associated with 16p11.2 BP4-5 rearrangements to shine light on its full phenotypic spectrum. Illustrating this phenotypic heterogeneity, we expose many parallels between findings gathered from clinical versus population-based cohorts, which often point to the same physiological systems, and emphasize the role of the CNV beyond neuropsychiatric and anthropometric traits. Revealing the complex and variable clinical manifestations of this CNV is crucial for accurate diagnosis and personalized treatment strategies for carrier individuals. Furthermore, we discuss areas of research that will be key to identifying factors contributing to phenotypic heterogeneity and gaining mechanistic insights into the molecular pathways underlying observed associations, while demonstrating how diversity in affected individuals, cohorts, experimental models, and analytical approaches can catalyze discoveries.
Collapse
Affiliation(s)
- Chiara Auwerx
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland; Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Zoltán Kutalik
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
4
|
Parra A, Tenorio-Castano J, Nevado J, Cazalla M, Miranda-Alcaraz L, Gallego-Zazo N, Silván C, Arias P, Pozo-Román J, Ballesta-Martínez MJ, Guillén-Navarro E, Arroyo I, Lotersztein V, Cosentino V, González-Meneses A, Galán E, Rosell J, Ramos F, Lapunzina P. Identification of copy-number variants in patients with overgrowth disorders. Clin Genet 2024; 106:614-624. [PMID: 39091142 DOI: 10.1111/cge.14596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 08/04/2024]
Abstract
Overgrowth syndromes (OGS) comprise a heterogeneous group of disorders whose main characteristic is that the weight, height or the head circumference are above the 97th centile or 2-3 standard deviations above the mean for age, gender, and ethnic group. Several copy-number variants (CNVs) have been associated with the development of OGS, such as the 5q35 microdeletion or the duplication of the 15q26.1-qter, among many others. In this study, we have applied 850K SNP-arrays to 112 patients and relatives with OGS from the Spanish OverGrowth Registry Initiative. We have identified CNVs associated with the disorder in nine individuals (8%). Subsequently, whole genome sequencing (WGS) analysis was performed in these nine samples in order to better understand these genomic imbalances. All the CNVs were detected by both techniques, settling that WGS is a useful tool for CNV detection. We have found six patients with genomic abnormalities associated with previously well-established disorders and three patients with CNVs of unknown significance, which may be related to OGS, based on scientific literature. In this report, we describe these findings and comment on genes associated with OGS that are located within the CNV regions.
Collapse
Affiliation(s)
- Alejandro Parra
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Hospital Universitario La Paz, Madrid, Spain
| | - Jair Tenorio-Castano
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Hospital Universitario La Paz, Madrid, Spain
| | - Julián Nevado
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Hospital Universitario La Paz, Madrid, Spain
| | - Mario Cazalla
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Hospital Universitario La Paz, Madrid, Spain
| | - Lucía Miranda-Alcaraz
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Hospital Universitario La Paz, Madrid, Spain
| | - Natalia Gallego-Zazo
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Hospital Universitario La Paz, Madrid, Spain
| | - Cristina Silván
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
| | - Pedro Arias
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Hospital Universitario La Paz, Madrid, Spain
| | - Jesús Pozo-Román
- Unit of Pediatric Endocrinology, Department of Pediatrics, Hospital Universitario Infantil Niño Jesús, Madrid, Spain
- Department of Pediatrics, Medical School, Autonomous University of Madrid, Madrid, Spain
| | - María Juliana Ballesta-Martínez
- Sección de Genética Médica, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Encarna Guillén-Navarro
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Ignacio Arroyo
- Pediatrics Department, San Pedro de Alcántara Hospital, Cáceres, Spain
| | - Vanesa Lotersztein
- Department of Genetics, Centro Nacional de Genética, Buenos Aires, Argentina
| | | | | | - Enrique Galán
- Pediatrics Department, Hospital Materno-Infantil, Badajoz, Spain
| | - Jordi Rosell
- Department of Genetics, Hospital Son Espases, Palma de Mallorca, Spain
| | - Feliciano Ramos
- Pediatrics Department, Hospital Lozano Blesa, Zaragoza, Spain
| | - Pablo Lapunzina
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Hospital Universitario La Paz, Madrid, Spain
- Spanish OverGrowth Registry Initiative, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
5
|
Ouellette J, Lacoste B. Rock2 heterozygosity improves recognition memory and endothelial function in a mouse model of 16p11.2 deletion autism syndrome. Neurosci Lett 2024; 837:137904. [PMID: 39029613 DOI: 10.1016/j.neulet.2024.137904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Rho-associated protein kinase-2 (ROCK2) is a critical player in many cellular processes and was incriminated in cardiovascular and neurological disorders. Recent evidence has shown that non-selective pharmacological blockage of ROCKs ameliorates behavioral alterations in a mouse model of 16p11.2 haploinsufficiency. We had revealed that 16p11.2-deficient mice also display cerebrovascular abnormalities, including endothelial dysfunction. To investigate whether genetic blockage of ROCK2 also exerts beneficial effects on cognition and angiogenesis, we generated mice with both 16p11.2 and Rock2 haploinsufficiency (16p11.2df/+;Rock2+/-). We find that Rock2 heterozygosity on a 16p11.2df/+ background significantly improved recognition memory. Furthermore, brain endothelial cells from 16p11.2df/+;Rock2+/- mice display improved angiogenic capacity compared to cells from 16p11.2df/+ littermates. Overall, this study implicates Rock2 gene as a modulator of 16p11.2-associated alterations, highlighting its potential as a target for treatment of autism spectrum disorders.
Collapse
Affiliation(s)
- Julie Ouellette
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada; Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada; Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
6
|
Cheng J, Wang Z, Tang M, Zhang W, Li G, Tan S, Mu C, Hu M, Zhang D, Jia X, Wen Y, Guo H, Xu D, Liu L, Li J, Xia K, Li F, Duan R, Xu Z, Yuan L. KCTD10 regulates brain development by destabilizing brain disorder-associated protein KCTD13. Proc Natl Acad Sci U S A 2024; 121:e2315707121. [PMID: 38489388 PMCID: PMC10963008 DOI: 10.1073/pnas.2315707121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/02/2024] [Indexed: 03/17/2024] Open
Abstract
KCTD10 belongs to the KCTD (potassiumchannel tetramerization domain) family, many members of which are associated with neuropsychiatric disorders. However, the biological function underlying the association with brain disorders remains to be explored. Here, we reveal that Kctd10 is highly expressed in neuronal progenitors and layer V neurons throughout brain development. Kctd10 deficiency triggers abnormal proliferation and differentiation of neuronal progenitors, reduced deep-layer (especially layer V) neurons, increased upper-layer neurons, and lowered brain size. Mechanistically, we screened and identified a unique KCTD10-interacting protein, KCTD13, associated with neurodevelopmental disorders. KCTD10 mediated the ubiquitination-dependent degradation of KCTD13 and KCTD10 ablation resulted in a considerable increase of KCTD13 expression in the developing cortex. KCTD13 overexpression in neuronal progenitors led to reduced proliferation and abnormal cell distribution, mirroring KCTD10 deficiency. Notably, mice with brain-specific Kctd10 knockout exhibited obvious motor deficits. This study uncovers the physiological function of KCTD10 and provides unique insights into the pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jianbo Cheng
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Zhen Wang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Manpei Tang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Wen Zhang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Guozhong Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Senwei Tan
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Chenjun Mu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Mengyuan Hu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Dan Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100101, China
| | - Xiangbin Jia
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Yangxuan Wen
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Hui Guo
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan410078, China
| | - Dan Xu
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou350005, China
| | - Liang Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing100053, China
| | - Jiada Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan410078, China
| | - Kun Xia
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan410078, China
| | - Faxiang Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan410078, China
| | - Ranhui Duan
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan410078, China
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100101, China
| | - Ling Yuan
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan410078, China
| |
Collapse
|
7
|
Kretz PF, Wagner C, Mikhaleva A, Montillot C, Hugel S, Morella I, Kannan M, Fischer MC, Milhau M, Yalcin I, Brambilla R, Selloum M, Herault Y, Reymond A, Collins SC, Yalcin B. Dissecting the autism-associated 16p11.2 locus identifies multiple drivers in neuroanatomical phenotypes and unveils a male-specific role for the major vault protein. Genome Biol 2023; 24:261. [PMID: 37968726 PMCID: PMC10647150 DOI: 10.1186/s13059-023-03092-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 10/18/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Using mouse genetic studies and systematic assessments of brain neuroanatomical phenotypes, we set out to identify which of the 30 genes causes brain defects at the autism-associated 16p11.2 locus. RESULTS We show that multiple genes mapping to this region interact to regulate brain anatomy, with female mice exhibiting far fewer brain neuroanatomical phenotypes. In male mice, among the 13 genes associated with neuroanatomical defects (Mvp, Ppp4c, Zg16, Taok2, Slx1b, Maz, Fam57b, Bola2, Tbx6, Qprt, Spn, Hirip3, and Doc2a), Mvp is the top driver implicated in phenotypes pertaining to brain, cortex, hippocampus, ventricles, and corpus callosum sizes. The major vault protein (MVP), the main component of the vault organelle, is a conserved protein found in eukaryotic cells, yet its function is not understood. Here, we find MVP expression highly specific to the limbic system and show that Mvp regulates neuronal morphology, postnatally and specifically in males. We also recapitulate a previously reported genetic interaction and show that Mvp+/-;Mapk3+/- mice exhibit behavioral deficits, notably decreased anxiety-like traits detected in the elevated plus maze and open field paradigms. CONCLUSIONS Our study highlights multiple gene drivers in neuroanatomical phenotypes, interacting with each other through complex relationships. It also provides the first evidence for the involvement of the major vault protein in the regulation of brain size and neuroanatomy, specifically in male mice.
Collapse
Affiliation(s)
- Perrine F Kretz
- Institute of Genetics and Molecular and Cellular Biology, UMR7104, University of Strasbourg, CNRS, INSERM, IGBMC, U964, 67400, Illkirch, France
| | - Christel Wagner
- Institute of Genetics and Molecular and Cellular Biology, UMR7104, University of Strasbourg, CNRS, INSERM, IGBMC, U964, 67400, Illkirch, France
| | - Anna Mikhaleva
- Center for Integrative Genomics, University of Lausanne, CH-1015, Lausanne, Switzerland
| | | | - Sylvain Hugel
- Institute of Cellular and Integrative neuroscience, CNRS, UPR321267000, Strasbourg, France
| | - Ilaria Morella
- School of Biosciences, Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Meghna Kannan
- Institute of Genetics and Molecular and Cellular Biology, UMR7104, University of Strasbourg, CNRS, INSERM, IGBMC, U964, 67400, Illkirch, France
| | - Marie-Christine Fischer
- Institute of Genetics and Molecular and Cellular Biology, UMR7104, University of Strasbourg, CNRS, INSERM, IGBMC, U964, 67400, Illkirch, France
| | - Maxence Milhau
- Inserm UMR1231, Université de Bourgogne, 21000, Dijon, France
| | - Ipek Yalcin
- Institute of Cellular and Integrative neuroscience, CNRS, UPR321267000, Strasbourg, France
| | - Riccardo Brambilla
- School of Biosciences, Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, CF24 4HQ, UK
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, Pavia, Italy
| | - Mohammed Selloum
- Institute of Genetics and Molecular and Cellular Biology, UMR7104, University of Strasbourg, CNRS, INSERM, IGBMC, U964, 67400, Illkirch, France
- University of Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, ICS, 67400, Illkirch, France
| | - Yann Herault
- Institute of Genetics and Molecular and Cellular Biology, UMR7104, University of Strasbourg, CNRS, INSERM, IGBMC, U964, 67400, Illkirch, France
- University of Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, ICS, 67400, Illkirch, France
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Stephan C Collins
- Institute of Genetics and Molecular and Cellular Biology, UMR7104, University of Strasbourg, CNRS, INSERM, IGBMC, U964, 67400, Illkirch, France
- Current address: Université de Bourgogne, Inserm UMR1231, 21000, Dijon, France
| | - Binnaz Yalcin
- Institute of Genetics and Molecular and Cellular Biology, UMR7104, University of Strasbourg, CNRS, INSERM, IGBMC, U964, 67400, Illkirch, France.
- Current address: Université de Bourgogne, Inserm UMR1231, 21000, Dijon, France.
| |
Collapse
|
8
|
Huang P, Wu L, Zhu N, Zhao H, Du J. The polymerase δ-interacting protein family and their emerging roles in diseases. Front Med (Lausanne) 2022; 9:1026931. [PMID: 36425112 PMCID: PMC9679015 DOI: 10.3389/fmed.2022.1026931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/24/2022] [Indexed: 10/08/2023] Open
Abstract
The polymerase δ-interacting protein (POLDIP) family is a new family that can interact with DNA polymerase δ (delta). The members of the POLDIP family include POLDIP1, POLDIP2, and POLDIP3. Screened by the two-hybrid method, POLDIP1, POLDIP2, and POLDIP3 were initially discovered and named for their ability to bind to the p50 subunit of DNA polymerase δ. Recent studies have confirmed that POLDIPs are involved in the regulation of signal transduction pathways in neurodevelopment, neuropsychiatric diseases, cardiovascular diseases, tumors, and other diseases. However, each protein participates in different signaling pathways. In this review, we elucidate upon the family in terms of their genes and protein structures, their biological functions, in addition to the pathways that they are involved in during the development of diverse diseases. Finally, to provide new insights to the scientific community, we used the TCGA database to analyze and summarize the gene expressions of POLDIP family members in various tumors, as well as the correlations between their expressions and the overall survival times of tumor patients. Our data summary will give researchers working on cancer new concepts.
Collapse
Affiliation(s)
- Peiluo Huang
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin, China
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Lei Wu
- College of Continuing Education, Guilin Medical University, Guilin, China
| | - Ningxia Zhu
- Department of Pathophysiology, College of Basic Medicine, Guilin Medical University, Guilin, China
| | - Hongtao Zhao
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin, China
| | - Juan Du
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin, China
| |
Collapse
|
9
|
Tai DJC, Razaz P, Erdin S, Gao D, Wang J, Nuttle X, de Esch CE, Collins RL, Currall BB, O'Keefe K, Burt ND, Yadav R, Wang L, Mohajeri K, Aneichyk T, Ragavendran A, Stortchevoi A, Morini E, Ma W, Lucente D, Hastie A, Kelleher RJ, Perlis RH, Talkowski ME, Gusella JF. Tissue- and cell-type-specific molecular and functional signatures of 16p11.2 reciprocal genomic disorder across mouse brain and human neuronal models. Am J Hum Genet 2022; 109:1789-1813. [PMID: 36152629 PMCID: PMC9606388 DOI: 10.1016/j.ajhg.2022.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/23/2022] [Indexed: 01/29/2023] Open
Abstract
Chromosome 16p11.2 reciprocal genomic disorder, resulting from recurrent copy-number variants (CNVs), involves intellectual disability, autism spectrum disorder (ASD), and schizophrenia, but the responsible mechanisms are not known. To systemically dissect molecular effects, we performed transcriptome profiling of 350 libraries from six tissues (cortex, cerebellum, striatum, liver, brown fat, and white fat) in mouse models harboring CNVs of the syntenic 7qF3 region, as well as cellular, transcriptional, and single-cell analyses in 54 isogenic neural stem cell, induced neuron, and cerebral organoid models of CRISPR-engineered 16p11.2 CNVs. Transcriptome-wide differentially expressed genes were largely tissue-, cell-type-, and dosage-specific, although more effects were shared between deletion and duplication and across tissue than expected by chance. The broadest effects were observed in the cerebellum (2,163 differentially expressed genes), and the greatest enrichments were associated with synaptic pathways in mouse cerebellum and human induced neurons. Pathway and co-expression analyses identified energy and RNA metabolism as shared processes and enrichment for ASD-associated, loss-of-function constraint, and fragile X messenger ribonucleoprotein target gene sets. Intriguingly, reciprocal 16p11.2 dosage changes resulted in consistent decrements in neurite and electrophysiological features, and single-cell profiling of organoids showed reciprocal alterations to the proportions of excitatory and inhibitory GABAergic neurons. Changes both in neuronal ratios and in gene expression in our organoid analyses point most directly to calretinin GABAergic inhibitory neurons and the excitatory/inhibitory balance as targets of disruption that might contribute to changes in neurodevelopmental and cognitive function in 16p11.2 carriers. Collectively, our data indicate the genomic disorder involves disruption of multiple contributing biological processes and that this disruption has relative impacts that are context specific.
Collapse
Affiliation(s)
- Derek J C Tai
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Parisa Razaz
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Serkan Erdin
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dadi Gao
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jennifer Wang
- Center for Quantitative Health, Division of Clinical Research, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Xander Nuttle
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Celine E de Esch
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ryan L Collins
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Benjamin B Currall
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kathryn O'Keefe
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nicholas D Burt
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rachita Yadav
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lily Wang
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kiana Mohajeri
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tatsiana Aneichyk
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ashok Ragavendran
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexei Stortchevoi
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elisabetta Morini
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Weiyuan Ma
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Diane Lucente
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | - Raymond J Kelleher
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Roy H Perlis
- Center for Quantitative Health, Division of Clinical Research, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Michael E Talkowski
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - James F Gusella
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
10
|
Vysotskiy M, Zhong X, Miller-Fleming TW, Zhou D, Cox NJ, Weiss LA. Integration of genetic, transcriptomic, and clinical data provides insight into 16p11.2 and 22q11.2 CNV genes. Genome Med 2021; 13:172. [PMID: 34715901 PMCID: PMC8557010 DOI: 10.1186/s13073-021-00972-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 09/16/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Deletions and duplications of the multigenic 16p11.2 and 22q11.2 copy number variant (CNV) regions are associated with brain-related disorders including schizophrenia, intellectual disability, obesity, bipolar disorder, and autism spectrum disorder (ASD). The contribution of individual CNV genes to each of these identified phenotypes is unknown, as well as the contribution of these CNV genes to other potentially subtler health implications for carriers. Hypothesizing that DNA copy number exerts most effects via impacts on RNA expression, we attempted a novel in silico fine-mapping approach in non-CNV carriers using both GWAS and biobank data. METHODS We first asked whether gene expression level in any individual gene in the CNV region alters risk for a known CNV-associated behavioral phenotype(s). Using transcriptomic imputation, we performed association testing for CNV genes within large genotyped cohorts for schizophrenia, IQ, BMI, bipolar disorder, and ASD. Second, we used a biobank containing electronic health data to compare the medical phenome of CNV carriers to controls within 700,000 individuals in order to investigate the full spectrum of health effects of the CNVs. Third, we used genotypes for over 48,000 individuals within the biobank to perform phenome-wide association studies between imputed expressions of individual 16p11.2 and 22q11.2 genes and over 1500 health traits. RESULTS Using large genotyped cohorts, we found individual genes within 16p11.2 associated with schizophrenia (TMEM219, INO80E, YPEL3), BMI (TMEM219, SPN, TAOK2, INO80E), and IQ (SPN), using conditional analysis to identify upregulation of INO80E as the driver of schizophrenia, and downregulation of SPN and INO80E as increasing BMI. We identified both novel and previously observed over-represented traits within the electronic health records of 16p11.2 and 22q11.2 CNV carriers. In the phenome-wide association study, we found seventeen significant gene-trait pairs, including psychosis (NPIPB11, SLX1B) and mood disorders (SCARF2), and overall enrichment of mental traits. CONCLUSIONS Our results demonstrate how integration of genetic and clinical data aids in understanding CNV gene function and implicates pleiotropy and multigenicity in CNV biology.
Collapse
Affiliation(s)
- Mikhail Vysotskiy
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, 513 Parnassus Ave., Health Sciences East 9th floor HSE901E, San Francisco, CA, 94143, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94143, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, 94143, USA
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Xue Zhong
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Genetics Institute, Nashville, TN, 37232, USA
| | - Tyne W Miller-Fleming
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Genetics Institute, Nashville, TN, 37232, USA
| | - Dan Zhou
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Genetics Institute, Nashville, TN, 37232, USA
| | - Nancy J Cox
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Genetics Institute, Nashville, TN, 37232, USA
| | - Lauren A Weiss
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, 513 Parnassus Ave., Health Sciences East 9th floor HSE901E, San Francisco, CA, 94143, USA.
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94143, USA.
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
11
|
Ebstein F, Küry S, Papendorf JJ, Krüger E. Neurodevelopmental Disorders (NDD) Caused by Genomic Alterations of the Ubiquitin-Proteasome System (UPS): the Possible Contribution of Immune Dysregulation to Disease Pathogenesis. Front Mol Neurosci 2021; 14:733012. [PMID: 34566579 PMCID: PMC8455891 DOI: 10.3389/fnmol.2021.733012] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Over thirty years have passed since the first description of ubiquitin-positive structures in the brain of patients suffering from Alzheimer’s disease. Meanwhile, the intracellular accumulation of ubiquitin-modified insoluble protein aggregates has become an indisputable hallmark of neurodegeneration. However, the role of ubiquitin and a fortiori the ubiquitin-proteasome system (UPS) in the pathogenesis of neurodevelopmental disorders (NDD) is much less described. In this article, we review all reported monogenic forms of NDD caused by lesions in genes coding for any component of the UPS including ubiquitin-activating (E1), -conjugating (E2) enzymes, ubiquitin ligases (E3), ubiquitin hydrolases, and ubiquitin-like modifiers as well as proteasome subunits. Strikingly, our analysis revealed that a vast majority of these proteins have a described function in the negative regulation of the innate immune response. In this work, we hypothesize a possible involvement of autoinflammation in NDD pathogenesis. Herein, we discuss the parallels between immune dysregulation and neurodevelopment with the aim at improving our understanding the biology of NDD and providing knowledge required for the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Frédéric Ebstein
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Sébastien Küry
- CHU Nantes, Service de Génétique Médicale, Nantes, France.,l'Institut du Thorax, CNRS, INSERM, CHU Nantes, Université de Nantes, Nantes, France
| | - Jonas Johannes Papendorf
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
12
|
Chu C, Wu H, Xu F, Ray JW, Britt A, Robinson SS, Lupo PJ, Murphy CRC, Dreyer CF, Lee PDK, Hu PC, Dong J. Phenotypes Associated with 16p11.2 Copy Number Gains and Losses at a Single Institution. Lab Med 2021; 51:642-648. [PMID: 32537635 DOI: 10.1093/labmed/lmaa026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chromosome 16p11.2 is one of the susceptible sites for recurrent copy number variations (CNVs) due to flanking near-identical segmental duplications. Five segmental duplications, named breakpoints 1 to 5 (BP1-BP5), have been defined as recombination hotspots within 16p11.2. Common CNVs on 16p11.2 include a proximal ~593 kb between BP4 and BP5, and a distal ~220 kb between BP2 and BP3. We performed a search for patients carrying 16p11.2 CNVs, as detected using chromosome microarray (CMA), in the Molecular Diagnostic Laboratory at the University of Texas Medical Branch (UTMB), in Galveston. From March 2013 through April 2018, a total of 1200 CMA results were generated for germline testing, and 14 patients tested positive for 16p11.2 CNVs, of whom 7 had proximal deletion, 2 had distal deletion, 4 had proximal duplication, and 1 had distal duplication. Herein, we provide detailed phenotype data for these patients. Our study results show that developmental delay, abnormal body weight, behavioral problems, and hypotonia are common phenotypes associated with 16p11.2 CNVs.
Collapse
Affiliation(s)
- Caleb Chu
- School of Health Professions, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Haotian Wu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Fangling Xu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Joseph W Ray
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas
| | - Allison Britt
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas
| | - Sally S Robinson
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas
| | - Pamela J Lupo
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas
| | | | - Charles F Dreyer
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas
| | - Phillip D K Lee
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas
| | - Peter C Hu
- School of Health Professions, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianli Dong
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
13
|
Chung WK, Roberts TP, Sherr EH, Snyder LG, Spiro JE. 16p11.2 deletion syndrome. Curr Opin Genet Dev 2021; 68:49-56. [PMID: 33667823 DOI: 10.1016/j.gde.2021.01.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/09/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
The 16p11.2 BP4 and BP5 region, is a recurrent ∼600kb copy number variant (CNV), and deletions are one of the most frequent etiologies of neurodevelopmental disorders and autism spectrum disorder with an incidence of approximately 1/2000. Deletion carriers have delays in early neurodevelopment that most specifically impair speech, phonology and language in 70%. Intelligence quotient is shifted 1.8 standard deviations lower than family controls without the deletion. Other common neurobehavioral conditions include motor coordination difficulties (60%) and autism (20-25%). Unprovoked seizures are common (24%) and readily treated and resolve with age in many. Obesity evolves throughout childhood and by adulthood 75% are obese. Congenital anomalies are more common than the general population. The deletion is associated with an increase in brain volumes across all areas of the brain, changes in the white matter microstructural properties, and early electrophysiological cortical responses from auditory cortex. Studies of genetically defined conditions, particularly CNVs that are not associated with profound disabilities, provide homogeneity to study genetic impact on brain development, structure, and function to better understand complex neurobehavioral phenotypes such as autism.
Collapse
Affiliation(s)
- Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, Simons Foundation, New York, NY, United States.
| | - Timothy Pl Roberts
- Lurie Family Foundations MEG Imaging Center, Dept. of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Elliott H Sherr
- Department of Neurology, Weill Institute of Neurosciences, University of California, San Francisco, United States
| | | | - John E Spiro
- Simons Foundation, 160 Fifth Avenue, New York, NY 10010, United States
| |
Collapse
|
14
|
Dissecting the complexity of CNV pathogenicity: insights from Drosophila and zebrafish models. Curr Opin Genet Dev 2021; 68:79-87. [PMID: 33812298 DOI: 10.1016/j.gde.2021.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 11/20/2022]
Abstract
Genetic architecture predisposes regions of the human genome to copy-number variants, which confer substantial disease risk, most prominently towards neurodevelopmental disorders. These variants typically contain multiple genes and are often associated with extensive pleiotropy and variable phenotypic expressivity. Despite the expansion of the fidelity of CNV detection, and the study of such lesions at the population level, understanding causal mechanisms for CNV phenotypes will require biological testing of constituent genes and their interactions. In this regard, model systems amenable to high-throughput phenotypic analysis of dosage-sensitive genes (and combinations thereof) are beginning to offer improved granularity of CNV-driven pathology. Here, we review the utility of Drosophila and zebrafish models for pathogenic CNV regions, highlight the advances made in discovery of single gene drivers and genetic interactions that determine specific CNV phenotypes, and argue for their validity in dissecting conserved developmental mechanisms associated with CNVs.
Collapse
|
15
|
Targeting the RHOA pathway improves learning and memory in adult Kctd13 and 16p11.2 deletion mouse models. Mol Autism 2021; 12:1. [PMID: 33436060 PMCID: PMC7805198 DOI: 10.1186/s13229-020-00405-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/15/2020] [Indexed: 11/12/2022] Open
Abstract
Background Gene copy number variants play an important role in the occurrence of neurodevelopmental disorders. Particularly, the deletion of the 16p11.2 locus is associated with autism spectrum disorder, intellectual disability, and several other features. Earlier studies highlighted the implication of Kctd13 genetic imbalance in 16p11.2 deletion through the regulation of the RHOA pathway. Methods Here, we generated a new mouse model with a small deletion of two key exons in Kctd13. Then, we targeted the RHOA pathway to rescue the cognitive phenotypes of the Kctd13 and 16p11.2 deletion mouse models in a pure genetic background. We used a chronic administration of fasudil (HA1077), an inhibitor of the Rho-associated protein kinase, for six weeks in mouse models carrying a heterozygous inactivation of Kctd13, or the deletion of the entire 16p11.2 BP4-BP5 homologous region. Results We found that the small Kctd13 heterozygous deletion induced a cognitive phenotype similar to the whole deletion of the 16p11.2 homologous region, in the Del/+ mice. We then showed that chronic fasudil treatment can restore object recognition memory in adult heterozygous mutant mice for Kctd13 and for 16p11.2 deletion. In addition, learning and memory improvement occurred in parallel to change in the RHOA pathway. Limitations The Kcdt13 mutant line does not recapitulate all the phenotypes found in the 16p11.2 Del/+ model. In particular, the locomotor activity was not altered at 12 and 18 weeks of age and the object location memory was not defective in 18-week old mutants. Similarly, the increase in locomotor activity was not modified by the treatment in the 16p11.2 Del/+ mouse model, suggesting that other loci were involved in such defects. Rescue was observed only after four weeks of treatment but no long-term experiment has been carried out so far. Finally, we did not check the social behaviour, which requires working in another hybrid genetic background. Conclusion These findings confirm KCTD13 as one target gene causing cognitive deficits in 16p11.2 deletion patients, and the relevance of the RHOA pathway as a therapeutic path for 16p11.2 deletion. In addition, they reinforce the contribution of other gene(s) involved in cognitive defects found in the 16p11.2 models in older mice.
Collapse
|
16
|
Lengyel A, Pinti É, Pikó H, Jávorszky E, David D, Tihanyi M, Gönczi É, Kiss E, Tóth Z, Tory K, Fekete G, Haltrich I. Clinical and genetic findings in Hungarian pediatric patients carrying chromosome 16p copy number variants and a review of the literature. Eur J Med Genet 2020; 63:104027. [PMID: 32758661 DOI: 10.1016/j.ejmg.2020.104027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/10/2020] [Accepted: 07/25/2020] [Indexed: 11/27/2022]
Abstract
The short arm of chromosome 16 (16p) is enriched for segmental duplications, making it susceptible to recurrent, reciprocal rearrangements implicated in the etiology of several phenotypes, including intellectual disability, speech disorders, developmental coordination disorder, autism spectrum disorders, attention deficit hyperactivity disorders, obesity and congenital skeletal disorders. In our clinical study 73 patients were analyzed by chromosomal microarray, and results were confirmed by fluorescence in situ hybridization or polymerase chain reaction. All patients underwent detailed clinical evaluation, with special emphasis on behavioral symptoms. 16p rearrangements were identified in 10 individuals. We found six pathogenic deletions and duplications of the recurrent regions within 16p11.2: one patient had a deletion of the distal 16p11.2 region associated with obesity, while four individuals had duplications, and one patient a deletion of the proximal 16p11.2 region. The other four patients carried 16p variations as second-site genomic alterations, acting as possible modifying genetic factors. We present the phenotypic and genotypic results of our patients and discuss our findings in relation to the available literature.
Collapse
Affiliation(s)
- Anna Lengyel
- II Department of Pediatrics, Semmelweis University, Budapest, Hungary.
| | - Éva Pinti
- II Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Henriett Pikó
- I Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Eszter Jávorszky
- I Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Dezső David
- Department of Human Genetics, National Health Institute Dr. Ricardo Jorge, Lisbon, Portugal
| | - Mariann Tihanyi
- Department of Genetics, Zala County Hospital, Zalaegerszeg, Hungary
| | - Éva Gönczi
- II Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Eszter Kiss
- II Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Zsuzsa Tóth
- II Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Kálmán Tory
- I Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - György Fekete
- II Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Irén Haltrich
- II Department of Pediatrics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
17
|
Horder J, Andersson M, Mendez MA, Singh N, Tangen Ä, Lundberg J, Gee A, Halldin C, Veronese M, Bölte S, Farde L, Sementa T, Cash D, Higgins K, Spain D, Turkheimer F, Mick I, Selvaraj S, Nutt DJ, Lingford-Hughes A, Howes OD, Murphy DG, Borg J. GABA A receptor availability is not altered in adults with autism spectrum disorder or in mouse models. Sci Transl Med 2019; 10:10/461/eaam8434. [PMID: 30282698 DOI: 10.1126/scitranslmed.aam8434] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 08/15/2017] [Accepted: 12/15/2017] [Indexed: 01/16/2023]
Abstract
Preliminary studies have suggested that γ-aminobutyric acid type A (GABAA) receptors, and potentially the GABAA α5 subtype, are deficient in autism spectrum disorder (ASD). However, prior studies have been confounded by the effects of medications, and these studies did not compare findings across different species. We measured both total GABAA and GABAA α5 receptor availability in two positron emission tomography imaging studies. We used the tracer [11C]flumazenil in 15 adults with ASD and in 15 control individuals without ASD and the tracer [11C]Ro15-4513 in 12 adults with ASD and in 16 control individuals without ASD. All participants were free of medications. We also performed autoradiography, using the same tracers, in three mouse models of ASD: the Cntnap2 knockout mouse, the Shank3 knockout mouse, and mice carrying a 16p11.2 deletion. We found no differences in GABAA receptor or GABAA α5 subunit availability in any brain region of adults with ASD compared to those without ASD. There were no differences in GABAA receptor or GABAA α5 subunit availability in any of the three mouse models. However, adults with ASD did display altered performance on a GABA-sensitive perceptual task. Our data suggest that GABAA receptor availability may be normal in adults with ASD, although GABA signaling may be functionally impaired.
Collapse
Affiliation(s)
- Jamie Horder
- Department of Forensic and Neurodevelopmental Sciences and Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Max Andersson
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Maria A Mendez
- Department of Forensic and Neurodevelopmental Sciences and Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Nisha Singh
- Department of Neuroimaging, Institute of Psychiatry Psychology, and Neuroscience, King's College London, London, UK.,Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Ämma Tangen
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Johan Lundberg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Antony Gee
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Christer Halldin
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry Psychology, and Neuroscience, King's College London, London, UK
| | - Sven Bölte
- Center of Neurodevelopmental Disorders at Karolinska Institutet (KIND), Pediatric Neuropsychiatry Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Child and Adolescent Psychiatry, Center for Psychiatry Research, Stockholm County Council, Stockholm, Sweden
| | - Lars Farde
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden.,Personalised Healthcare and Biomarkers, AstraZeneca, PET Science Centre, Karolinska Institutet, Stockholm, Sweden
| | - Teresa Sementa
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry Psychology, and Neuroscience, King's College London, London, UK
| | - Karen Higgins
- Department of Neuroimaging, Institute of Psychiatry Psychology, and Neuroscience, King's College London, London, UK
| | - Debbie Spain
- Department of Forensic and Neurodevelopmental Sciences and Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federico Turkheimer
- Neuropsychopharmacology Unit, Centre for Psychiatry, Division of Brain Sciences, Imperial College London, London, UK
| | - Inge Mick
- Neuropsychopharmacology Unit, Centre for Psychiatry, Division of Brain Sciences, Imperial College London, London, UK
| | - Sudhakar Selvaraj
- Neuropsychopharmacology Unit, Centre for Psychiatry, Division of Brain Sciences, Imperial College London, London, UK
| | - David J Nutt
- Neuropsychopharmacology Unit, Centre for Psychiatry, Division of Brain Sciences, Imperial College London, London, UK
| | - Anne Lingford-Hughes
- Neuropsychopharmacology Unit, Centre for Psychiatry, Division of Brain Sciences, Imperial College London, London, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Declan G Murphy
- Department of Forensic and Neurodevelopmental Sciences and Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Jacqueline Borg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden.,Center of Neurodevelopmental Disorders at Karolinska Institutet (KIND), Pediatric Neuropsychiatry Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Kizner V, Naujock M, Fischer S, Jäger S, Reich S, Schlotthauer I, Zuckschwerdt K, Geiger T, Hildebrandt T, Lawless N, Macartney T, Dorner-Ciossek C, Gillardon F. CRISPR/Cas9-mediated Knockout of the Neuropsychiatric Risk Gene KCTD13 Causes Developmental Deficits in Human Cortical Neurons Derived from Induced Pluripotent Stem Cells. Mol Neurobiol 2019; 57:616-634. [PMID: 31402430 DOI: 10.1007/s12035-019-01727-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/31/2019] [Indexed: 02/08/2023]
Abstract
The human KCTD13 gene is located within the 16p11.2 locus and copy number variants of this locus are associated with a high risk for neuropsychiatric diseases including autism spectrum disorder and schizophrenia. Studies in zebrafish point to a role of KCTD13 in proliferation of neural precursor cells which may contribute to macrocephaly in 16p11.2 deletion carriers. KCTD13 is highly expressed in the fetal human brain and in mouse cortical neurons, but its contribution to the development and function of mammalian neurons is not completely understood. In the present study, we deleted the KCTD13 gene in human-induced pluripotent stem cells (iPSCs) using CRISPR/Cas9 nickase. Following neural differentiation of KCTD13 deficient and isogenic control iPSC lines, we detected a moderate but significant inhibition of DNA synthesis and proliferation in KCTD13 deficient human neural precursor cells. KCTD13 deficient cortical neurons derived from iPSCs showed decreased neurite formation and reduced spontaneous network activity. RNA-sequencing and pathway analysis pointed to a role for ERBB signaling in these phenotypic changes. Consistently, activating and inhibiting ERBB kinases rescued and aggravated, respectively, impaired neurite formation. In contrast to findings in non-neuronal human HeLa cells, we did not detect an accumulation of the putative KCTD13/Cullin-3 substrate RhoA, and treatment with inhibitors of RhoA signaling did not rescue decreased neurite formation in human KCTD13 knockout neurons. Taken together, our data provide insight into the role of KCTD13 in neurodevelopmental disorders, and point to ERBB signaling as a potential target for neuropsychiatric disorders associated with KCTD13 deficiency.
Collapse
Affiliation(s)
- Valeria Kizner
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany
| | - Maximilian Naujock
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany
| | - Sandra Fischer
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany
| | - Stefan Jäger
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany
| | - Selina Reich
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany
| | - Ines Schlotthauer
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany
| | - Kai Zuckschwerdt
- Target Discovery Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany
| | - Tobias Geiger
- Cardio-metabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany
| | - Tobias Hildebrandt
- Target Discovery Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany
| | - Nathan Lawless
- Target Discovery Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany
| | - Thomas Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee, DD1 5EH, UK
| | - Cornelia Dorner-Ciossek
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany
| | - Frank Gillardon
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany.
| |
Collapse
|
19
|
Arbogast T, Razaz P, Ellegood J, McKinstry SU, Erdin S, Currall B, Aneichyk T, Lerch JP, Qiu LR, Rodriguiz RM, Henkelman RM, Talkowski ME, Wetsel WC, Golzio C, Katsanis N. Kctd13-deficient mice display short-term memory impairment and sex-dependent genetic interactions. Hum Mol Genet 2019; 28:1474-1486. [PMID: 30590535 PMCID: PMC6489413 DOI: 10.1093/hmg/ddy436] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/12/2018] [Accepted: 12/14/2018] [Indexed: 01/31/2023] Open
Abstract
The 16p11.2 BP4-BP5 deletion and duplication syndromes are associated with a complex spectrum of neurodevelopmental phenotypes that includes developmental delay and autism spectrum disorder, with a reciprocal effect on head circumference, brain structure and body mass index. Mouse models of the 16p11.2 copy number variant have recapitulated some of the patient phenotypes, while studies in flies and zebrafish have uncovered several candidate contributory genes within the region, as well as complex genetic interactions. We evaluated one of these loci, KCTD13, by modeling haploinsufficiency and complete knockout in mice. In contrast to the zebrafish model, and in agreement with recent data, we found normal brain structure in heterozygous and homozygous mutants. However, recapitulating previously observed genetic interactions, we discovered sex-specific brain volumetric alterations in double heterozygous Kctd13xMvp and Kctd13xLat mice. Behavioral testing revealed a significant deficit in novel object recognition, novel location recognition and social transmission of food preference in Kctd13 mutants. These phenotypes were concomitant with a reduction in density of mature spines in the hippocampus, but potentially independent of RhoA abundance, which was unperturbed postnatally in our mutants. Furthermore, transcriptome analyses from cortex and hippocampus highlighted the dysregulation of pathways important in neurodevelopment, the most significant of which was synaptic formation. Together, these data suggest that KCTD13 contributes to the neurocognitive aspects of patients with the BP4-BP5 deletion, likely through genetic interactions with other loci.
Collapse
Affiliation(s)
- Thomas Arbogast
- Center for Human Disease Modeling and Department of Cell Biology, Duke University, Durham, NC, USA
| | - Parisa Razaz
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jacob Ellegood
- Mouse Imaging Center, the Hospital for Sick Children, Toronto, ON, Canada
| | - Spencer U McKinstry
- Center for Human Disease Modeling and Department of Cell Biology, Duke University, Durham, NC, USA
| | - Serkan Erdin
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Benjamin Currall
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tanya Aneichyk
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jason P Lerch
- Mouse Imaging Center, the Hospital for Sick Children, Toronto, ON, Canada
| | - Lily R Qiu
- Mouse Imaging Center, the Hospital for Sick Children, Toronto, ON, Canada
| | - Ramona M Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC, USA
| | - R M Henkelman
- Mouse Imaging Center, the Hospital for Sick Children, Toronto, ON, Canada
| | - Michael E Talkowski
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - William C Wetsel
- Department of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC, USA
- Departments of Neurobiology and Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Christelle Golzio
- UMR 7104/INSERM U1258 and Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Nicholas Katsanis
- Center for Human Disease Modeling and Department of Cell Biology, Duke University, Durham, NC, USA
| |
Collapse
|
20
|
Major Vault Protein, a Candidate Gene in 16p11.2 Microdeletion Syndrome, Is Required for the Homeostatic Regulation of Visual Cortical Plasticity. J Neurosci 2018. [PMID: 29540554 DOI: 10.1523/jneurosci.2034-17.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microdeletion of a region in chromosome 16p11.2 increases susceptibility to autism. Although this region contains exons of 29 genes, disrupting only a small segment of the region, which spans five genes, is sufficient to cause autistic traits. One candidate gene in this critical segment is MVP, which encodes for the major vault protein (MVP) that has been implicated in regulation of cellular transport mechanisms. MVP expression levels in MVP+/- mice closely phenocopy those of 16p11.2 mutant mice, suggesting that MVP+/- mice may serve as a model of MVP function in 16p11.2 microdeletion. Here we show that MVP regulates the homeostatic component of ocular dominance (OD) plasticity in primary visual cortex. MVP+/- mice of both sexes show impairment in strengthening of open-eye responses after several days of monocular deprivation (MD), whereas closed-eye responses are weakened as normal, resulting in reduced overall OD plasticity. The frequency of miniature EPSCs (mEPSCs) in pyramidal neurons is decreased in MVP+/- mice after extended MD, suggesting a reduction of functional synapses. Correspondingly, upregulation of surface GluA1 AMPA receptors is reduced in MVP+/- mice after extended MD, and is accompanied by altered expression of STAT1 and phosphorylated ERK, which have been previously implicated in OD plasticity. Normalization of STAT1 levels by introducing STAT1 shRNA rescues surface GluA1 and open-eye responses, implicating STAT1 as a downstream effector of MVP. These findings demonstrate a specific role for MVP as a key molecule influencing the homeostatic component of activity-dependent synaptic plasticity, and potentially the corresponding phenotypes of 16p11.2 microdeletion syndrome.SIGNIFICANCE STATEMENT Major vault protein (MVP), a candidate gene in 16p11.2 microdeletion syndrome, has been implicated in the regulation of several cellular processes including transport mechanisms and scaffold signaling. However, its role in brain function and plasticity remains unknown. In this study, we identified MVP as an important regulator of the homeostatic component of experience-dependent plasticity, via regulation of STAT1 and ERK signaling. This study helps reveal a new mechanism for an autism-related gene in brain function, and suggests a broader role for neuro-immune interactions in circuit level plasticity. Importantly, our findings might explain specific components of the pathophysiology of 16p11.2 microdeletion syndrome.
Collapse
|
21
|
Stoppel LJ, Kazdoba TM, Schaffler MD, Preza AR, Heynen A, Crawley JN, Bear MF. R-Baclofen Reverses Cognitive Deficits and Improves Social Interactions in Two Lines of 16p11.2 Deletion Mice. Neuropsychopharmacology 2018; 43:513-524. [PMID: 28984295 PMCID: PMC5770771 DOI: 10.1038/npp.2017.236] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/16/2017] [Accepted: 09/25/2017] [Indexed: 12/24/2022]
Abstract
Human chromosome 16p11.2 microdeletion is among the most common gene copy number variations (CNVs) known to confer risk for intellectual disability (ID) and autism spectrum disorder (ASD) and affects an estimated 3 in 10 000 people. Caused by a single copy deletion of ~27 genes, 16p11.2 microdeletion syndrome is characterized by ID, impaired language, communication and socialization skills, and ASD. Studies in animal models where a single copy of the syntenic 16p11.2 region has been deleted have revealed morphological, behavioral, and electrophysiological abnormalities. Previous studies suggested the possibility of some overlap in the mechanisms of pathophysiology in 16p11.2 microdeletion syndrome and fragile X syndrome. Improvements in fragile X phenotypes have been observed following chronic treatment with R-baclofen, a selective agonist of GABAB receptors. We were therefore motivated to investigate the effects of chronic oral R-baclofen administration in two independently generated mouse models of 16p11.2 microdeletion syndrome. In studies performed across two independent laboratories, we found that chronic activation of GABAB receptors improved performance on a series of cognitive and social tasks known to be impaired in two different 16p11.2 deletion mouse models. Our findings suggest that R-baclofen may have clinical utility for some of the core symptoms of human 16p11.2 microdeletion syndrome.
Collapse
Affiliation(s)
- Laura J Stoppel
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tatiana M Kazdoba
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Melanie D Schaffler
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Anthony R Preza
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnold Heynen
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacqueline N Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Mark F Bear
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
22
|
Gilbert J, Man HY. Fundamental Elements in Autism: From Neurogenesis and Neurite Growth to Synaptic Plasticity. Front Cell Neurosci 2017; 11:359. [PMID: 29209173 PMCID: PMC5701944 DOI: 10.3389/fncel.2017.00359] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/31/2017] [Indexed: 01/12/2023] Open
Abstract
Autism spectrum disorder (ASD) is a set of neurodevelopmental disorders with a high prevalence and impact on society. ASDs are characterized by deficits in both social behavior and cognitive function. There is a strong genetic basis underlying ASDs that is highly heterogeneous; however, multiple studies have highlighted the involvement of key processes, including neurogenesis, neurite growth, synaptogenesis and synaptic plasticity in the pathophysiology of neurodevelopmental disorders. In this review article, we focus on the major genes and signaling pathways implicated in ASD and discuss the cellular, molecular and functional studies that have shed light on common dysregulated pathways using in vitro, in vivo and human evidence. HighlightsAutism spectrum disorder (ASD) has a prevalence of 1 in 68 children in the United States. ASDs are highly heterogeneous in their genetic basis. ASDs share common features at the cellular and molecular levels in the brain. Most ASD genes are implicated in neurogenesis, structural maturation, synaptogenesis and function.
Collapse
Affiliation(s)
- James Gilbert
- Department of Biology, Boston University, Boston, MA, United States
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, United States.,Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
23
|
Kctd13 deletion reduces synaptic transmission via increased RhoA. Nature 2017; 551:227-231. [PMID: 29088697 DOI: 10.1038/nature24470] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 10/04/2017] [Indexed: 11/08/2022]
Abstract
Copy-number variants of chromosome 16 region 16p11.2 are linked to neuropsychiatric disorders and are among the most prevalent in autism spectrum disorders. Of many 16p11.2 genes, Kctd13 has been implicated as a major driver of neurodevelopmental phenotypes. The function of KCTD13 in the mammalian brain, however, remains unknown. Here we delete the Kctd13 gene in mice and demonstrate reduced synaptic transmission. Reduced synaptic transmission correlates with increased levels of Ras homolog gene family, member A (RhoA), a KCTD13/CUL3 ubiquitin ligase substrate, and is reversed by RhoA inhibition, suggesting increased RhoA as an important mechanism. In contrast to a previous knockdown study, deletion of Kctd13 or kctd13 does not increase brain size or neurogenesis in mice or zebrafish, respectively. These findings implicate Kctd13 in the regulation of neuronal function relevant to neuropsychiatric disorders and clarify the role of Kctd13 in neurogenesis and brain size. Our data also reveal a potential role for RhoA as a therapeutic target in disorders associated with KCTD13 deletion.
Collapse
|
24
|
Schwartz DD, Katzenstein JM, Highley EJ, Stabley DL, Sol-Church K, Gripp KW, Axelrad ME. Age-related differences in prevalence of autism spectrum disorder symptoms in children and adolescents with Costello syndrome. Am J Med Genet A 2017; 173:1294-1300. [PMID: 28374929 DOI: 10.1002/ajmg.a.38174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 01/12/2017] [Accepted: 01/18/2017] [Indexed: 11/11/2022]
Abstract
Dysregulation of the mitogen activated protein kinase (MAPK) pathway in Costello syndrome (CS) may contribute to increased risk for autism-spectrum disorder (ASD). We examined prevalence of ASD symptoms in 14 individuals (six females) age 1-18 years with molecularly confirmed CS. Caregivers completed the Modified Checklist for Autism in Toddlers (M-CHAT) for ages 0-4 years (n = 7), and the Social Communication Questionnaire (SCQ) for ages 4 and older (n = 7). Age was associated with meeting ASD criteria: 5/7 (71.4%) younger children met the ASD cut-off on the MCHAT, compared to 0/7 older children on the SCQ. The following medical and developmental factors were strongly associated with ASD criteria on the M-CHAT: having a gastrostomy tube at time of assessment, not eating solid food, not walking, and not being toilet trained. Two children who met stricter ASD criteria had significantly lower adaptive functioning and were physically much more impaired. Among older participants, SCQ subscale scores in communication, socialization, and repetitive behavior domains were comparable to the typically-developing normative sample. ASD symptoms were highly elevated in younger CS individuals. Older children did not differ from typically developing samples in prevalence of ASD symptoms. CS individuals may appear to fall on the autism spectrum in early childhood due to severe feeding and orthopedic problems that improve by age four, suggesting many of these children may eventually emerge out of an ASD presentation.
Collapse
Affiliation(s)
- David D Schwartz
- Section of Psychology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Jennifer M Katzenstein
- Department of Psychology, Johns Hopkins Medicine, All Children's Hospital, St. Petersburg, Florida
| | | | - Deborah L Stabley
- Biomedical Research, A. I. DuPont Hospital for Children, Wilmington, Delaware
| | - Katia Sol-Church
- Biomedical Research, A. I. DuPont Hospital for Children, Wilmington, Delaware
| | - Karen W Gripp
- Medical Genetics, A. I. DuPont Hospital for Children, Wilmington, Delaware
| | - Marni E Axelrad
- Section of Psychology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
25
|
Zhang C, Shen Y. A Cell Type-Specific Expression Signature Predicts Haploinsufficient Autism-Susceptibility Genes. Hum Mutat 2017; 38:204-215. [PMID: 27860035 PMCID: PMC5865588 DOI: 10.1002/humu.23147] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/12/2016] [Accepted: 11/13/2016] [Indexed: 12/22/2022]
Abstract
Recent studies have identified many genes with rare de novo mutations in autism, but a limited number of these have been conclusively established as disease-susceptibility genes due to the lack of recurrence and confounding background mutations. Such extreme genetic heterogeneity severely limits recurrence-based statistical power even in studies with a large sample size. Here, we use cell-type specific expression profiles to differentiate mutations in autism patients from those in unaffected siblings. We report a gene expression signature in different neuronal cell types shared by genes with likely gene-disrupting (LGD) mutations in autism cases. This signature reflects haploinsufficiency of risk genes enriched in transcriptional and post-transcriptional regulators, with the strongest positive associations with specific types of neurons in different brain regions, including cortical neurons, cerebellar granule cells, and striatal medium spiny neurons. When used to prioritize genes with a single LGD mutation in cases, a D-score derived from the signature achieved a precision of 40% as compared with the 15% baseline with a minimal loss in sensitivity. An ensemble model combining D-score with mutation intolerance metrics from Exome Aggregation Consortium further improved the precision to 60%, resulting in 117 high-priority candidates. These prioritized lists can facilitate identification of additional autism-susceptibility genes.
Collapse
Affiliation(s)
- Chaolin Zhang
- Department of Systems Biology, Columbia University, New York NY
10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia
University, New York NY 10032, USA
- Center for Motor Neuron Biology and Disease, Columbia University,
New York NY 10032, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University, New York NY
10032, USA
- Department of Biomedical Informatics, Columbia University, New York
NY 10032, USA
- JP Sulzberger Genome Center, Columbia University, New York NY 10032,
USA
| |
Collapse
|
26
|
Kusenda M, Vacic V, Malhotra D, Rodgers L, Pavon K, Meth J, Kumar RA, Christian SL, Peeters H, Cho SS, Addington A, Rapoport JL, Sebat J. The Influence of Microdeletions and Microduplications of 16p11.2 on Global Transcription Profiles. J Child Neurol 2015; 30:1947-53. [PMID: 26391891 PMCID: PMC4739844 DOI: 10.1177/0883073815602066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 12/16/2022]
Abstract
Copy number variants (CNVs) of a 600 kb region on 16p11.2 are associated with neurodevelopmental disorders and changes in brain volume. The authors hypothesize that abnormal brain development associated with this CNV can be attributed to changes in transcriptional regulation. The authors determined the effects of 16p11.2 dosage on gene expression by transcription profiling of lymphoblast cell lines derived from 6 microdeletion carriers, 15 microduplication carriers and 15 controls. Gene dosage had a significant influence on the transcript abundance of a majority (20/34) of genes within the CNV region. In addition, a limited number of genes were dysregulated in trans. Genes most strongly correlated with patient head circumference included SULT1A, KCTD13, and TMEM242. Given the modest effect of 16p11.2 copy number on global transcriptional regulation in lymphocytes, larger studies utilizing neuronal cell types may be needed in order to elucidate the signaling pathways that influence brain development in this genetic disorder.
Collapse
Affiliation(s)
- Mary Kusenda
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA,Department of Biology, Chemistry and Environmental Studies, Molloy College, Rockville Centre, New York 11571, USA
| | - Vladimir Vacic
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Dheeraj Malhotra
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA,Beyster Center for Genomics of Psychiatric Diseases, Department of Psychiatry, and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Linda Rodgers
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Kevin Pavon
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Jennifer Meth
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Ravinesh A. Kumar
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | | | - Hilde Peeters
- Laboratory for Genetics of Human Development, Department of Human Genetics, Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Netherlands
| | - Shawn S. Cho
- Beyster Center for Genomics of Psychiatric Diseases, Department of Psychiatry, and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Anjene Addington
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Judith L. Rapoport
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Jonathan Sebat
- Beyster Center for Genomics of Psychiatric Diseases, Department of Psychiatry, and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
27
|
A Potential Contributory Role for Ciliary Dysfunction in the 16p11.2 600 kb BP4-BP5 Pathology. Am J Hum Genet 2015; 96:784-96. [PMID: 25937446 DOI: 10.1016/j.ajhg.2015.04.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 04/02/2015] [Indexed: 12/21/2022] Open
Abstract
The 16p11.2 600 kb copy-number variants (CNVs) are associated with mirror phenotypes on BMI, head circumference, and brain volume and represent frequent genetic lesions in autism spectrum disorders (ASDs) and schizophrenia. Here we interrogated the transcriptome of individuals carrying reciprocal 16p11.2 CNVs. Transcript perturbations correlated with clinical endophenotypes and were enriched for genes associated with ASDs, abnormalities of head size, and ciliopathies. Ciliary gene expression was also perturbed in orthologous mouse models, raising the possibility that ciliary dysfunction contributes to 16p11.2 pathologies. In support of this hypothesis, we found structural ciliary defects in the CA1 hippocampal region of 16p11.2 duplication mice. Moreover, by using an established zebrafish model, we show genetic interaction between KCTD13, a key driver of the mirrored neuroanatomical phenotypes of the 16p11.2 CNV, and ciliopathy-associated genes. Overexpression of BBS7 rescues head size and neuroanatomical defects of kctd13 morphants, whereas suppression or overexpression of CEP290 rescues phenotypes induced by KCTD13 under- or overexpression, respectively. Our data suggest that dysregulation of ciliopathy genes contributes to the clinical phenotypes of these CNVs.
Collapse
|
28
|
Abstract
Deletions and duplications of the recurrent ~600 kb chromosomal BP4-BP5 region of 16p11.2 are associated with a broad variety of neurodevelopmental outcomes including autism spectrum disorder. A clue to the pathogenesis of the copy number variant (CNV)'s effect on the brain is that the deletion is associated with a head size increase, whereas the duplication is associated with a decrease. Here we analyzed brain structure in a clinically ascertained group of human deletion (N = 25) and duplication (N = 17) carriers from the Simons Variation in Individuals Project compared with age-matched controls (N = 29 and 33, respectively). Multiple brain measures showed increased size in deletion carriers and reduced size in duplication carriers. The effects spanned global measures of intracranial volume, brain size, compartmental measures of gray matter and white matter, subcortical structures, and the cerebellum. Quantitatively, the largest effect was on the thalamus, but the collective results suggest a pervasive rather than a selective effect on the brain. Detailed analysis of cortical gray matter revealed that cortical surface area displays a strong dose-dependent effect of CNV (deletion > control > duplication), whereas average cortical thickness is less affected. These results suggest that the CNV may exert its opposing influences through mechanisms that influence early stages of embryonic brain development.
Collapse
|
29
|
Brain-expressed exons under purifying selection are enriched for de novo mutations in autism spectrum disorder. Nat Genet 2014; 46:742-7. [PMID: 24859339 DOI: 10.1038/ng.2980] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 04/10/2014] [Indexed: 02/08/2023]
Abstract
A universal challenge in genetic studies of autism spectrum disorders (ASDs) is determining whether a given DNA sequence alteration will manifest as disease. Among different population controls, we observed, for specific exons, an inverse correlation between exon expression level in brain and burden of rare missense mutations. For genes that harbor de novo mutations predicted to be deleterious, we found that specific critical exons were significantly enriched in individuals with ASD relative to their siblings without ASD (P < 1.13 × 10(-38); odds ratio (OR) = 2.40). Furthermore, our analysis of genes with high exonic expression in brain and low burden of rare mutations demonstrated enrichment for known ASD-associated genes (P < 3.40 × 10(-11); OR = 6.08) and ASD-relevant fragile-X protein targets (P < 2.91 × 10(-157); OR = 9.52). Our results suggest that brain-expressed exons under purifying selection should be prioritized in genotype-phenotype studies for ASD and related neurodevelopmental conditions.
Collapse
|
30
|
Huguet G, Nava C, Lemière N, Patin E, Laval G, Ey E, Brice A, Leboyer M, Szepetowski P, Gillberg C, Depienne C, Delorme R, Bourgeron T. Heterogeneous pattern of selective pressure for PRRT2 in human populations, but no association with autism spectrum disorders. PLoS One 2014; 9:e88600. [PMID: 24594579 PMCID: PMC3940422 DOI: 10.1371/journal.pone.0088600] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/11/2014] [Indexed: 11/22/2022] Open
Abstract
Inherited and de novo genomic imbalances at chromosome 16p11.2 are associated with autism spectrum disorders (ASD), but the causative genes remain unknown. Among the genes located in this region, PRRT2 codes for a member of the synaptic SNARE complex that allows the release of synaptic vesicles. PRRT2 is a candidate gene for ASD since homozygote mutations are associated with intellectual disability and heterozygote mutations cause benign infantile seizures, paroxysmal dyskinesia, or hemiplegic migraine. Here, we explored the contribution of PRRT2 mutations in ASD by screening its coding part in a large sample of 1578 individuals including 431 individuals with ASD, 186 controls and 961 individuals from the human genome Diversity Panel. We detected 24 nonsynonymous variants, 1 frameshift (A217PfsX8) and 1 in-frame deletion of 6 bp (p.A361_P362del). The frameshift mutation was observed in a control with no history of neurological or psychiatric disorders. The p.A361_P362del was observed in two individuals with autism from sub-Saharan African origin. Overall, the frequency of PRRT2 deleterious variants was not different between individuals with ASD and controls. Remarkably, PRRT2 displays a highly significant excess of nonsynonymous (pN) vs synonymous (pS) mutations in Asia (pN/pS = 4.85) and Europe (pN/pS = 1.62) compared with Africa (pN/pS = 0.26; Asia vs Africa: P = 0.000087; Europe vs Africa P = 0.00035; Europe vs Asia P = P = 0.084). We also showed that whole genome amplification performed through rolling cycle amplification could artificially introduce the A217PfsX8 mutation indicating that this technology should not be performed prior to PRRT2 mutation screening. In summary, our results do not support a role for PRRT2 coding sequence variants in ASD, but provide an ascertainment of its genetic variability in worldwide populations that should help researchers and clinicians to better investigate the role of PRRT2 in human diseases.
Collapse
Affiliation(s)
- Guillaume Huguet
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- CNRS URA 2182 ‘Genes, synapses and cognition’, Institut Pasteur, Paris, France
- University Denis Diderot Paris 7, Paris, France
| | - Caroline Nava
- INSERM, U975—CRICM, Institut du cerveau et de la moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Paris, France
- CNRS 7225—CRICM, Hôpital Pitié-Salpêtrière, Paris, France
- Université Pierre et Marie Curie-Paris-6 (UPMC), UMR_S 975, Paris, France
- Département de Génétique et de Cytogénétique, Unité fonctionnelle de génétique clinique, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Nathalie Lemière
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- CNRS URA 2182 ‘Genes, synapses and cognition’, Institut Pasteur, Paris, France
- University Denis Diderot Paris 7, Paris, France
| | - Etienne Patin
- Unit of Human Evolutionary Genetics, Institut Pasteur, Paris, France
| | - Guillaume Laval
- Unit of Human Evolutionary Genetics, Institut Pasteur, Paris, France
| | - Elodie Ey
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- CNRS URA 2182 ‘Genes, synapses and cognition’, Institut Pasteur, Paris, France
- University Denis Diderot Paris 7, Paris, France
| | - Alexis Brice
- INSERM, U975—CRICM, Institut du cerveau et de la moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Paris, France
- CNRS 7225—CRICM, Hôpital Pitié-Salpêtrière, Paris, France
- Université Pierre et Marie Curie-Paris-6 (UPMC), UMR_S 975, Paris, France
- Département de Génétique et de Cytogénétique, Unité fonctionnelle de neurogénétique moléculaire et cellulaire, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Marion Leboyer
- INSERM, U955, Psychiatry Genetic team, Creteil, France
- Fondation FondaMental, Créteil, France
| | - Pierre Szepetowski
- INSERM, UMR_S901, Marseille, France
- Aix-Marseille University, Marseille, France
- Mediterranean Institute of Neurobiology (INMED), Marseille, France
| | - Christopher Gillberg
- Gillberg Neuropsychiatry Centre, University of Gothenburg, Göteborg, Sweden
- Institute of Neuroscience and Physiology, Department of Pharmacology, Gothenburg University, Gothenburg, Sweden
- Institute of Child Health, University College London, London, United Kingdom
| | - Christel Depienne
- INSERM, U975—CRICM, Institut du cerveau et de la moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Paris, France
- CNRS 7225—CRICM, Hôpital Pitié-Salpêtrière, Paris, France
- Université Pierre et Marie Curie-Paris-6 (UPMC), UMR_S 975, Paris, France
- Département de Génétique et de Cytogénétique, Unité fonctionnelle de neurogénétique moléculaire et cellulaire, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Richard Delorme
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- CNRS URA 2182 ‘Genes, synapses and cognition’, Institut Pasteur, Paris, France
- Fondation FondaMental, Créteil, France
- Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital, Department of Child and Adolescent Psychiatry, Paris, France
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- CNRS URA 2182 ‘Genes, synapses and cognition’, Institut Pasteur, Paris, France
- University Denis Diderot Paris 7, Paris, France
- Fondation FondaMental, Créteil, France
- * E-mail:
| |
Collapse
|
31
|
Golzio C, Katsanis N. Genetic architecture of reciprocal CNVs. Curr Opin Genet Dev 2013; 23:240-8. [PMID: 23747035 DOI: 10.1016/j.gde.2013.04.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/22/2013] [Accepted: 04/26/2013] [Indexed: 10/26/2022]
Abstract
Copy number variants (CNVs) represent a frequent type of lesion in human genetic disorders that typically affects numerous genes simultaneously. This has raised the challenge of understanding which genes within a CNV drive clinical phenotypes. Although CNVs can arise by multiple mechanisms, a subset is driven by local genomic architecture permissive to recombination events that can lead to both deletions and duplications. Phenotypic analyses of patients with such reciprocal CNVs have revealed instances in which the phenotype is either identical or mirrored; strikingly, molecular studies have shown that such phenotypes are often driven by reciprocal dosage defects of the same transcript. Here we explore how these observations can help the dissection of CNVs and inform the genetic architecture of CNV-induced disorders.
Collapse
Affiliation(s)
- Christelle Golzio
- Center for Human Disease Modeling, Duke University, Durham 27710, USA
| | | |
Collapse
|
32
|
Tucker T, Giroux S, Clément V, Langlois S, Friedman JM, Rousseau F. Prevalence of selected genomic deletions and duplications in a French-Canadian population-based sample of newborns. Mol Genet Genomic Med 2013; 1:87-97. [PMID: 24498606 PMCID: PMC3865573 DOI: 10.1002/mgg3.12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 04/11/2013] [Accepted: 04/16/2013] [Indexed: 12/23/2022] Open
Abstract
Chromosomal microarray analysis has identified many novel microdeletions or microduplications that produce neurodevelopmental disorders with a recognizable clinical phenotype and that are not observed in normal individuals. However, imbalance of other genomic regions is associated with a variable phenotype with intellectual disability (ID) or autism in some individuals but are also observed in completely normal individuals. Several large studies have reported the prevalence of copy number (CN) variants in people with particular features (e.g., ID, autism, schizophrenia, or epilepsy); few studies have investigated the prevalence of genomic CN changes in the general population. We used a high-throughput method to screen 6813 consecutive cord blood samples from a predominantly French–Canadian population to assess genomic CN in five genomic regions: 1p36, 15q11-q13, 16p11.2, 16p11.2-p12.2, and 22q11.2. We identified one deletion and one duplication within 1p36, two deletions of 15q11-q13, eight deletions of 16p11.2-p12.2, two deletions and five duplications of 16p11.2, and six duplications of 22q11.2. This study provides estimates of the frequency of CN variants in an unselected population. Our findings have important implications for genetic counseling.
Collapse
Affiliation(s)
- Tracy Tucker
- Department of Medical Genetics, University of British Columbia Vancouver, British Columbia, Canada
| | - Sylvie Giroux
- Centre de Recherche du CHU de Québec-Hôpital St-François d'Assise Québec, Québec City, Canada
| | - Valérie Clément
- Centre de Recherche du CHU de Québec-Hôpital St-François d'Assise Québec, Québec City, Canada
| | - Sylvie Langlois
- Department of Medical Genetics, University of British Columbia Vancouver, British Columbia, Canada ; Child and Family Research Institute Vancouver, British Columbia, Canada
| | - Jan M Friedman
- Department of Medical Genetics, University of British Columbia Vancouver, British Columbia, Canada ; Child and Family Research Institute Vancouver, British Columbia, Canada
| | - François Rousseau
- Centre de Recherche du CHU de Québec-Hôpital St-François d'Assise Québec, Québec City, Canada ; Department of Molecular Biology, Medical Biochemistry, and Pathology, Université Laval Québec, Québec City, Canada
| |
Collapse
|
33
|
Zufferey F, Sherr EH, Beckmann ND, Hanson E, Maillard AM, Hippolyte L, Macé A, Ferrari C, Kutalik Z, Andrieux J, Aylward E, Barker M, Bernier R, Bouquillon S, Conus P, Delobel B, Faucett WA, Goin-Kochel RP, Grant E, Harewood L, Hunter JV, Lebon S, Ledbetter DH, Martin CL, Männik K, Martinet D, Mukherjee P, Ramocki MB, Spence SJ, Steinman KJ, Tjernagel J, Spiro JE, Reymond A, Beckmann JS, Chung WK, Jacquemont S. A 600 kb deletion syndrome at 16p11.2 leads to energy imbalance and neuropsychiatric disorders. J Med Genet 2013; 49:660-8. [PMID: 23054248 PMCID: PMC3494011 DOI: 10.1136/jmedgenet-2012-101203] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background The recurrent ∼600 kb 16p11.2 BP4-BP5 deletion is among the most frequent known genetic aetiologies of autism spectrum disorder (ASD) and related neurodevelopmental disorders. Objective To define the medical, neuropsychological, and behavioural phenotypes in carriers of this deletion. Methods We collected clinical data on 285 deletion carriers and performed detailed evaluations on 72 carriers and 68 intrafamilial non-carrier controls. Results When compared to intrafamilial controls, full scale intelligence quotient (FSIQ) is two standard deviations lower in carriers, and there is no difference between carriers referred for neurodevelopmental disorders and carriers identified through cascade family testing. Verbal IQ (mean 74) is lower than non-verbal IQ (mean 83) and a majority of carriers require speech therapy. Over 80% of individuals exhibit psychiatric disorders including ASD, which is present in 15% of the paediatric carriers. Increase in head circumference (HC) during infancy is similar to the HC and brain growth patterns observed in idiopathic ASD. Obesity, a major comorbidity present in 50% of the carriers by the age of 7 years, does not correlate with FSIQ or any behavioural trait. Seizures are present in 24% of carriers and occur independently of other symptoms. Malformations are infrequently found, confirming only a few of the previously reported associations. Conclusions The 16p11.2 deletion impacts in a quantitative and independent manner FSIQ, behaviour and body mass index, possibly through direct influences on neural circuitry. Although non-specific, these features are clinically significant and reproducible. Lastly, this study demonstrates the necessity of studying large patient cohorts ascertained through multiple methods to characterise the clinical consequences of rare variants involved in common diseases.
Collapse
Affiliation(s)
- Flore Zufferey
- Service de Génétique Médicale, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Blaker-Lee A, Gupta S, McCammon JM, De Rienzo G, Sive H. Zebrafish homologs of genes within 16p11.2, a genomic region associated with brain disorders, are active during brain development, and include two deletion dosage sensor genes. Dis Model Mech 2012; 5:834-51. [PMID: 22566537 PMCID: PMC3484866 DOI: 10.1242/dmm.009944] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 04/25/2012] [Indexed: 01/19/2023] Open
Abstract
Deletion or duplication of one copy of the human 16p11.2 interval is tightly associated with impaired brain function, including autism spectrum disorders (ASDs), intellectual disability disorder (IDD) and other phenotypes, indicating the importance of gene dosage in this copy number variant region (CNV). The core of this CNV includes 25 genes; however, the number of genes that contribute to these phenotypes is not known. Furthermore, genes whose functional levels change with deletion or duplication (termed 'dosage sensors'), which can associate the CNV with pathologies, have not been identified in this region. Using the zebrafish as a tool, a set of 16p11.2 homologs was identified, primarily on chromosomes 3 and 12. Use of 11 phenotypic assays, spanning the first 5 days of development, demonstrated that this set of genes is highly active, such that 21 out of the 22 homologs tested showed loss-of-function phenotypes. Most genes in this region were required for nervous system development - impacting brain morphology, eye development, axonal density or organization, and motor response. In general, human genes were able to substitute for the fish homolog, demonstrating orthology and suggesting conserved molecular pathways. In a screen for 16p11.2 genes whose function is sensitive to hemizygosity, the aldolase a (aldoaa) and kinesin family member 22 (kif22) genes were identified as giving clear phenotypes when RNA levels were reduced by ∼50%, suggesting that these genes are deletion dosage sensors. This study leads to two major findings. The first is that the 16p11.2 region comprises a highly active set of genes, which could present a large genetic target and might explain why multiple brain function, and other, phenotypes are associated with this interval. The second major finding is that there are (at least) two genes with deletion dosage sensor properties among the 16p11.2 set, and these could link this CNV to brain disorders such as ASD and IDD.
Collapse
Affiliation(s)
- Alicia Blaker-Lee
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Sunny Gupta
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Jasmine M. McCammon
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Gianluca De Rienzo
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Hazel Sive
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
35
|
|
36
|
KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11.2 copy number variant. Nature 2012; 485:363-7. [PMID: 22596160 PMCID: PMC3366115 DOI: 10.1038/nature11091] [Citation(s) in RCA: 294] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 03/27/2012] [Indexed: 12/15/2022]
|
37
|
A genetic model for neurodevelopmental disease. Curr Opin Neurobiol 2012; 22:829-36. [PMID: 22560351 PMCID: PMC3437230 DOI: 10.1016/j.conb.2012.04.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 02/16/2012] [Accepted: 04/05/2012] [Indexed: 12/20/2022]
Abstract
The genetic basis of neurodevelopmental and neuropsychiatric diseases has been advanced by the discovery of large and recurrent copy number variants significantly enriched in cases when compared to controls. The pattern of this variation strongly implies that rare variants contribute significantly to neurological disease; that different genes will be responsible for similar diseases in different families; and that the same 'primary' genetic lesions can result in a different disease outcome depending potentially on the genetic background. Next-generation sequencing technologies are beginning to broaden the spectrum of disease-causing variation and provide specificity by pinpointing both genes and pathways for future diagnostics and therapeutics.
Collapse
|
38
|
Coe BP, Girirajan S, Eichler EE. The genetic variability and commonality of neurodevelopmental disease. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2012; 160C:118-29. [PMID: 22499536 PMCID: PMC4114147 DOI: 10.1002/ajmg.c.31327] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite detailed clinical definition and refinement of neurodevelopmental disorders and neuropsychiatric conditions, the underlying genetic etiology has proved elusive. Recent genetic studies have revealed some common themes: considerable locus heterogeneity, variable expressivity for the same mutation, and a role for multiple disruptive events in the same individual affecting genes in common pathways. Recurrent copy number variation (CNV), in particular, has emphasized the importance of either de novo or essentially private mutations creating imbalances for multiple genes. CNVs have foreshadowed a model where the distinction between milder neuropsychiatric conditions from those of severe developmental impairment may be a consequence of increased mutational burden affecting more genes.
Collapse
Affiliation(s)
- Bradley P Coe
- Department of Genome Sciences and Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, WA, USA
| | | | | |
Collapse
|
39
|
Deak KL, Horn SR, Rehder CW. The evolving picture of microdeletion/microduplication syndromes in the age of microarray analysis: variable expressivity and genomic complexity. Clin Lab Med 2011; 31:543-64, viii. [PMID: 22118736 DOI: 10.1016/j.cll.2011.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several new microdeletion and microduplication syndromes have been discovered in a genotype-first approach. Many of these disorders are caused by nonallelic homologous recombination between blocks of segmental duplication. The authors describe 9 regions for which copy number alteration is proposed to cause an abnormal phenotype. Some of these disorders have been observed in affected individuals and individuals lacking a clearly abnormal phenotype. These deletions and duplications are thought to be contributory, but not always sufficient, to elicit an abnormal outcome. Additional studies are necessary to further evaluate the penetrance and delineate the clinical spectrum associated with many of these newly described disorders.
Collapse
Affiliation(s)
- Kristen L Deak
- Department of Pathology, Duke University, Durham, NC, USA
| | | | | |
Collapse
|
40
|
Mental retardation and autism associated with recurrent 16p11.2 microdeletion: incomplete penetrance and variable expressivity. J Appl Genet 2011; 52:443-9. [PMID: 21931978 DOI: 10.1007/s13353-011-0063-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/02/2011] [Accepted: 09/02/2011] [Indexed: 10/17/2022]
|