1
|
Li KX, Fan L, Wang H, Tian Y, Zhang S, Hu Q, Liu F, Chen H, Hou H. A synonymous mutation of rs1137070 cause the mice Maoa gene transcription and translation to decrease. Front Mol Neurosci 2024; 17:1406708. [PMID: 39359688 PMCID: PMC11446106 DOI: 10.3389/fnmol.2024.1406708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/03/2024] [Indexed: 10/04/2024] Open
Abstract
The Monoamine Oxidase-A (MAOA) EcoRV polymorphism (rs1137070) is a unique synonymous mutation (c.1409 T > C) within the MAOA gene, which plays a crucial role in Maoa gene expression and function. This study aimed to explore the relationship between the mouse Maoa rs1137070 genotype and differences in MAOA gene expression. Mice carrying the CC genotype of rs1137070 exhibited a significantly lower Maoa expression level, with an odds ratio of 2.44 compared to the T carriers. Moreover, the wild-type TT genotype of MAOA demonstrated elevated mRNA expression and a longer half-life. We also delved into the significant expression and structural disparities among genotypes. Furthermore, it was evident that different aspartic acid synonymous codons within Maoa influenced both MAOA expression and enzyme activity, highlighting the association between rs1137070 and MAOA. To substantiate these findings, a dual-luciferase reporter assay confirmed that GAC was more efficient than GAT binding. Conversely, the synonymous mutation altered Maoa gene expression in individual mice. An RNA pull-down assay suggested that this alteration could impact the interaction with RNA-binding proteins. In summary, our results illustrate that synonymous mutations can indeed regulate the downregulation of gene expression, leading to changes in MAOA function and their potential association with neurological-related diseases.
Collapse
Affiliation(s)
- Kai Xin Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Institute of Technical Biology and Agricultural Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Lei Fan
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Institute of Technical Biology and Agricultural Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Hongjuan Wang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
| | - Yushan Tian
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
| | - Sen Zhang
- Department of Bioengineering, School of Chemical Engineering, Northwest University, Xi’an, China
| | - Qingyuan Hu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Institute of Technical Biology and Agricultural Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Fanglin Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Institute of Technical Biology and Agricultural Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Huan Chen
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
| |
Collapse
|
2
|
Perić M, Horvatiček M, Tandl V, Bečeheli I, Majali-Martinez A, Desoye G, Štefulj J. Glucose, Insulin and Oxygen Modulate Expression of Serotonin-Regulating Genes in Human First-Trimester Trophoblast Cell Line ACH-3P. Biomedicines 2023; 11:1619. [PMID: 37371714 DOI: 10.3390/biomedicines11061619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Serotonin signaling plays an important role in regulating development and functions of the placenta. We hypothesized that metabolic disturbances associated with maternal obesity and/or gestational diabetes mellitus (GDM) affect placental serotonin homeostasis. Therefore, we examined the effects of high glucose (25 mM) and insulin (10 nM)-two hallmarks of maternal obesity and GDM-on mRNA expression of key regulators of serotonin homeostasis, including serotonin transporter (SERT), tryptophan hydroxylase 1 (TPH1), and monoamine oxidase A (MAOA), in the first-trimester trophoblast cell line ACH-3P, focusing on oxygen levels characteristic of early human placental development. Glucose downregulated expression of SERT and MAOA independently of oxygen level and upregulated expression of TPH1 at 6.5% oxygen but not at 2.5% oxygen. Compared to 6.5% oxygen, 2.5% oxygen upregulated SERT and downregulated TPH1 expression, with no effect on MAOA expression. Insulin upregulated SERT only at 2.5% oxygen but had no effect on TPH1 and MAOA expression. These results suggest that maternal metabolic alterations in early pregnancy may be a driving force for changes in placental serotonin homeostasis.
Collapse
Affiliation(s)
- Maja Perić
- Division of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Marina Horvatiček
- Division of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Veronika Tandl
- Department of Obstetrics and Gynecology, Medical University of Graz, A-8036 Graz, Austria
| | - Ivona Bečeheli
- Division of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Alejandro Majali-Martinez
- Department of Obstetrics and Gynecology, Medical University of Graz, A-8036 Graz, Austria
- Departamento de Medicina, Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, A-8036 Graz, Austria
| | - Jasminka Štefulj
- Division of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| |
Collapse
|
3
|
Shahcheraghi SH, Ayatollahi J, Lotfi M, Aljabali AAA, Al-Zoubi MS, Panda PK, Mishra V, Satija S, Charbe NB, Serrano-Aroca Á, Bahar B, Takayama K, Goyal R, Bhatia A, Almutary AG, Alnuqaydan AM, Mishra Y, Negi P, Courtney A, McCarron PA, Bakshi HA, Tambuwala MM. Gene Therapy for Neuropsychiatric Disorders: Potential Targets and Tools. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:51-65. [PMID: 35249508 DOI: 10.2174/1871527321666220304153719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/16/2022] [Accepted: 01/16/2022] [Indexed: 01/01/2023]
Abstract
Neuropsychiatric disorders that affect the central nervous system cause considerable pressures on the health care system and have a substantial economic burden on modern societies. The present treatments based on available drugs are mostly ineffective and often costly. The molecular process of neuropsychiatric disorders is closely connected to modifying the genetic structures inherited or caused by damage, toxic chemicals, and some current diseases. Gene therapy is presently an experimental concept for neurological disorders. Clinical applications endeavor to alleviate the symptoms, reduce disease progression, and repair defective genes. Implementing gene therapy in inherited and acquired neurological illnesses entails the integration of several scientific disciplines, including virology, neurology, neurosurgery, molecular genetics, and immunology. Genetic manipulation has the power to minimize or cure illness by inducing genetic alterations at endogenous loci. Gene therapy that involves treating the disease by deleting, silencing, or editing defective genes and delivering genetic material to produce therapeutic molecules has excellent potential as a novel approach for treating neuropsychiatric disorders. With the recent advances in gene selection and vector design quality in targeted treatments, gene therapy could be an effective approach. This review article will investigate and report the newest and the most critical molecules and factors in neuropsychiatric disorder gene therapy. Different genome editing techniques available will be evaluated, and the review will highlight preclinical research of genome editing for neuropsychiatric disorders while also evaluating current limitations and potential strategies to overcome genome editing advancements.
Collapse
Affiliation(s)
- Seyed H Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Jamshid Ayatollahi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Marzieh Lotfi
- Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alaa A A Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Mazhar S Al-Zoubi
- Yarmouk University, Faculty of Medicine, Department of Basic Medical Sciences, Irbid, Jordan
| | - Pritam K Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Nitin B Charbe
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX 78363, USA
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001 Valencia, Spain
| | - Bojlul Bahar
- Nutrition Sciences and Applied Food Safety Studies, Research Centre for Global Development, School of Sport & Health Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Kazuo Takayama
- Center for IPS Cell Research and Application, Kyoto University, Kyoto, 606-8397, Japan
| | - Rohit Goyal
- Neuropharmacology Laboratory, School of Pharmaceutical Sciences, Shoolini University, Post Box No. 9, Solan, Himachal Pradesh 173212, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Punjab 151001, India
| | - Abdulmajeed G Almutary
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Yachana Mishra
- Shri Shakti Degree College, Sankhahari, Ghatampur 209206, India
| | - Poonam Negi
- Shoolini University of Biotechnology and Management Sciences, Solan 173 212, India
| | - Aaron Courtney
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Paul A McCarron
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Hamid A Bakshi
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| |
Collapse
|
4
|
Ghamari R, Yazarlou F, Khosravizadeh Z, Moradkhani A, Abdollahi E, Alizadeh F. Serotonin transporter functional polymorphisms potentially increase risk of schizophrenia separately and as a haplotype. Sci Rep 2022; 12:1336. [PMID: 35079035 PMCID: PMC8789837 DOI: 10.1038/s41598-022-05206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/10/2022] [Indexed: 11/10/2022] Open
Abstract
Schizophrenia is a severe, disabling psychiatric disorder with unclear etiology. Family-based, twins, and adoption studies have shown that genetic factors have major contributions in schizophrenia occurrence. Until now, many studies have discovered the association of schizophrenia and its comorbid symptoms with functional polymorphisms that lie within serotonin reuptake pathway genes. Here, we aimed to investigate the association of three variable number tandem repeats (VNTR) functional polymorphisms in MAOA and SLC6A4 with schizophrenia in the Iranian population. Two hundred and forty-one subjects with schizophrenia and three hundred and seventy age and sex-matched healthy controls were genotyped for MAOA promoter uVNTR, 5-HTTLPR, and STin2 polymorphisms. Genotyping was performed by polymerase chain reaction (PCR) with locus-specific primers and running the PCR product on agarose 2.5% gel electrophoresis. Finally, the statistical inference was performed using R programming language and Haploview software. MAOA promoter uVNTR analysis of allele frequency showed no differences between schizophrenia subjects and healthy controls in both males and females and no significant differences were observed between female cases and female controls in MAOA promoter uVNTR 4 repeat frequency. Also, there were no differences between Schizophrenia and healthy control groups in 5-HTTLPR allele and genotype frequency but, 5-HTTLPR S allele carriers are significantly more frequent among cases. In addition, STin2.12 repeats were significantly more frequent among schizophrenia patients. Genotype comparison suggested that 5-HTTLPR S allele and STin2.12 repeat carriers were significantly more frequent among schizophrenia cases and being STin2.12 repeat carrier significantly increase the risk of schizophrenia occurrence. Besides, analysis of haplotype showed stronger linkage disequilibrium between 5-HTTLPR and STin2 haplotype block in cases than controls. These results suggest that SLC6A4 functional polymorphisms potentially could play a possible role as risk factors for the incidence of schizophrenia.
Collapse
Affiliation(s)
- Rana Ghamari
- Department of Genetics, Faculty of Biology, Kharazmi University, Tehran, Iran
| | - Fatemeh Yazarlou
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Khosravizadeh
- Clinical Research Development Unit, Infertility treatment clinic, Amiralmomenin Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Atefeh Moradkhani
- Department of Biology, Faculty of Science, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Elaheh Abdollahi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Alizadeh
- Department of Genomic Psychiatry and Behavioral Genomics (DGPBG), Roozbeh Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Differential Serotonin Uptake Mechanisms at the Human Maternal-Fetal Interface. Int J Mol Sci 2021; 22:ijms22157807. [PMID: 34360573 PMCID: PMC8346107 DOI: 10.3390/ijms22157807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/30/2022] Open
Abstract
Serotonin (5-HT) plays an extensive role during pregnancy in regulating both the placental physiology and embryonic/fetal development. The uptake of 5-HT into cells is central to the control of local concentrations of 5-HT near its molecular targets. Here, we investigated the mechanisms of 5-HT uptake into human primary placental cells and cord blood platelets, all isolated immediately after birth. Trophoblasts and cord blood platelets showed 5-HT uptake with similar Michaelis constant (Km) values (~0.6 μM), typical of the high-affinity serotonin transporter (SERT). The uptake of 5-HT into trophoblasts was efficiently inhibited by various SERT-targeting drugs. In contrast, the uptake of 5-HT into feto-placental endothelial cells was not inhibited by a SERT blocker and showed a Km value (~782 μM) in the low-affinity range. Consistent with this, SERT mRNAs were abundant in term trophoblasts but sparse in feto-placental endothelial cells, whereas the opposite was found for the low-affinity plasma membrane monoamine transporter (PMAT) mRNAs. Organic cation transporter (OCT) 1, 2, and 3 mRNAs were absent or sparse in both cell types. In summary, the results demonstrate, for the first time, the presence of functional 5-HT uptake systems in feto-placental endothelial cells and fetal platelets, cells that are in direct contact with fetal blood plasma. The data also highlight the sensitivity to various psychotropic drugs of 5-HT transport into trophoblasts facing the maternal blood. The multiple, high-, and low-affinity systems present for the cellular uptake of 5-HT underscore the importance of 5-HT homeostasis at the maternal-fetal interface.
Collapse
|
6
|
Tanifuji T, Okazaki S, Otsuka I, Horai T, Shinko Y, Kim S, Sora I, Hishimoto A. Association of Two Variable Number of Tandem Repeats in the Monoamine Oxidase A Gene Promoter with Schizophrenia. Neuropsychiatr Dis Treat 2021; 17:3315-3323. [PMID: 34795483 PMCID: PMC8593344 DOI: 10.2147/ndt.s338854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Monoamine oxidase-A (MAO-A) decomposes dopamine and serotonin, and decreased MAO-A expression increases monoamine levels and is related to the pathophysiology of schizophrenia. Previous studies have reported that variable number of tandem repeats (VNTR), namely, upstream (u)VNTR, and some single nucleotide polymorphisms (SNPs) in the MAOA gene are associated with schizophrenia. METHODS We investigated the two VNTRs and their related SNPs (rs6323 and rs1137070) in the MAOA gene promoter in 859 patients with schizophrenia and 826 healthy controls. Distal (d)VNTR and uVNTR were genotyped with fluorescence-based fragment polymerase chain reaction assays, and rs6323 and rs1137070 with TaqMan SNP genotyping assays. RESULTS Neither the genotype nor allelic frequency of the VNTRs or SNPs showed significant differences between the schizophrenia and control groups. On the other hand, analysis of the dVNTR-uVNTR-rs6323-rs1137070 haplotype showed significant association for nine repeats (9R)-3R-T-C in female patients (corrected p = 0.0006, odds ratio [confidence interval] = 2.17 [1.446-3.257]). CONCLUSION Our findings provide novel evidence that MAOA gene polymorphisms are associated with an increased risk of developing schizophrenia in females.
Collapse
Affiliation(s)
- Takaki Tanifuji
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Okazaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tadasu Horai
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yutaka Shinko
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Saehyeon Kim
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ichiro Sora
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Psychiatry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
7
|
Manzoor S, Hoda N. A comprehensive review of monoamine oxidase inhibitors as Anti-Alzheimer's disease agents: A review. Eur J Med Chem 2020; 206:112787. [PMID: 32942081 DOI: 10.1016/j.ejmech.2020.112787] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/22/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
Monoamine oxidases (MAO-A and MAO-B) are mammalian flavoenzyme, which catalyze the oxidative deamination of several neurotransmitters like norepinephrine, dopamine, tyramine, serotonin, and some other amines. The oxidative deamination produces several harmful side products like ammonia, peroxides, and aldehydes during the biochemical reaction. The concentration of biochemical neurotransmitter alteration in the brain by MAO is directly related with several neurological disorders like Alzheimer's disease and Parkinson's disease (PD). Activated MAO also contributes to the amyloid beta (Aβ) aggregation by two successive cleft β-secretase and γ-secretase of amyloid precursor protein (APP). Additionally, activated MAO is also involved in aggregation of neurofibrillary tangles and cognitive destruction through the cholinergic neuronal damage and disorder of the cholinergic system. MAO inhibition has general anti-Alzheimer's disease effect as a consequence of oxidative stress reduction prompted by MAO enzymes. In this review, we outlined and addressed recent understanding on MAO enzymes such as their structure, physiological function, catalytic mechanism, and possible therapeutic goals in AD. In addition, it also highlights the current development and discovery of potential MAO inhibitors (MAOIs) from various chemical scaffolds.
Collapse
Affiliation(s)
- Shoaib Manzoor
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
8
|
Latorre E, Mesonero JE, Harries LW. Alternative splicing in serotonergic system: Implications in neuropsychiatric disorders. J Psychopharmacol 2019; 33:1352-1363. [PMID: 31210090 DOI: 10.1177/0269881119856546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The serotonergic system is a key component of physiological brain function and is essential for proper neurological activity. Numerous neuropsychiatric disorders are associated with deregulation of the serotonergic system. Accordingly, many pharmacological treatments are focused on modulation of this system. While providing a promising line of therapeutic moderation, these approaches may be complicated due to the presence of alternative splicing events for key genes in this pathway. Alternative splicing is a co-transcriptional process by which different mRNA transcripts can be produced from the same gene. These different isoforms may have diverse activities and functions, and their relative balance is often critical for the maintenance of homeostasis. Alternative splicing greatly increases the production of proteins, augmenting cell plasticity, and provides an important control point for regulation of gene expression. AIM The objective of this narrative review is to discuss the potential impact of alternative splicing of different components of the serotonergic system and speculate on their involvement in several neuropsychiatric disorders. CONCLUSIONS The specific role of each isoform in disease and their relative activities in the signalling pathways involved are yet to be determined. We need to gain a better understanding of the basis of alternative isoforms of the serotonergic system in order to fully understand their impact and be able to develop new effective pharmacological isoform-specific targets.
Collapse
Affiliation(s)
- Eva Latorre
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
- Instituto Agroalimentario de Aragón - IA2 (Universidad de Zaragoza - CITA), Zaragoza, Spain
| | - Jose Emilio Mesonero
- Instituto Agroalimentario de Aragón - IA2 (Universidad de Zaragoza - CITA), Zaragoza, Spain
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain
| | - Lorna W Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
9
|
Shi R, Wu Q, Xin C, Yu H, Lim KL, Li X, Shi Z, Zhang CW, Qian L, Li L, Huang W. Structure-Based Specific Detection and Inhibition of Monoamine Oxidases and Their Applications in Central Nervous System Diseases. Chembiochem 2019; 20:1487-1497. [PMID: 30664830 DOI: 10.1002/cbic.201800813] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Indexed: 12/21/2022]
Abstract
Monoamine oxidases (MAOs) are the enzymes that catalyze the oxidation of monoamines, such as dopamine, norepinephrine, and serotonin, which serve as key neurotransmitters in the central nervous system (CNS). MAOs play important roles in maintaining the homeostasis of monoamines, and the aberrant expression or activation of MAOs underlies the pathogenesis of monoamine neurotransmitter disorders, including neuropsychiatric and neurodegenerative diseases. Clearly, detecting and inhibiting the activities of MAOs is of great value for the diagnosis and therapeutics of these diseases. Accordingly, many specific detection probes and inhibitors have been developed and substantially contributed to basic and clinical studies of these diseases. In this review, progress in the detecting and inhibiting of MAOs and their applications in mechanism exploration and treatment of neurotransmitter-related disorders is summarized. Notably, how the detection probes and inhibitors of MAOs were developed has been specifically addressed. It is hoped that this review will benefit the design of more effective and sensitive probes and inhibitors for MAOs, and eventually the treatment of monoamine neurotransmitter disorders.
Collapse
Affiliation(s)
- Riri Shi
- Key Laboratory of Flexible Electronics (KLOFE) and, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P.R. China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) and, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P.R. China
| | - Chenqi Xin
- Key Laboratory of Flexible Electronics (KLOFE) and, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P.R. China
| | - Houzhi Yu
- Department of Cardiology, Shandong Provincial Hospital affiliated to Shandong University, 324 Jingwu Road, Jinan, 250021, P.R. China
| | - Kah-Leong Lim
- Neuroscience Clinic, National Neuroscience Institute, 11 Jalan Tock Seng, Singapore, 308433, Singapore
| | - Xin Li
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P.R. China
| | - Zhenxiong Shi
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P.R. China
| | - Cheng-Wu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P.R. China
| | - Linghui Qian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P.R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P.R. China.,Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P.R. China
| |
Collapse
|
10
|
Peitl V, Štefanović M, Karlović D. Depressive symptoms in schizophrenia and dopamine and serotonin gene polymorphisms. Prog Neuropsychopharmacol Biol Psychiatry 2017; 77:209-215. [PMID: 28416295 DOI: 10.1016/j.pnpbp.2017.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/05/2017] [Accepted: 04/12/2017] [Indexed: 12/30/2022]
Abstract
Although depressive symptoms seem to be frequent in schizophrenia they have received significantly less attention than other symptom domains. As impaired serotonergic and dopaminergic neurotransmission is implicated in the pathogenesis of depression and schizophrenia this study sought to investigate the putative association between several functional gene polymorphisms (SERT 5-HTTLPR, MAO-A VNTR, COMT Val158Met and DAT VNTR) and schizophrenia. Other objectives of this study were to closely examine schizophrenia symptom domains by performing factor analysis of the two most used instruments in this setting (Positive and negative syndrome scale - PANSS and Calgary depression rating scale - CDSS) and to examine the influence of investigated gene polymorphisms on the schizophrenia symptom domains, focusing on depressive scores. A total of 591 participants were included in the study (300 schizophrenic patients and 291 healthy volunteers). 192 (64%) of schizophrenic patients had significant depressive symptoms. Genotype distribution revealed no significant differences regarding all investigated polymorphisms except the separate gender analysis for MAO-A gene polymorphism which revealed significantly more allele 3 carriers in schizophrenic males. Factor analysis of the PANSS scale revealed the existence of five separate factors (symptom domains), while the CDSS scale revealed two distinct factors. Several investigated gene polymorphisms (mostly SERT and MAO-A, but also COMT) significantly influenced two factors from the PANSS (aggressive/impulsive and negative symptoms) and one from the CDSS scale (suicidality), respectively. Depressive symptoms in schizophrenic patients may be influenced by functional gene polymorphisms, especially those implicated in serotonergic neurotransmission.
Collapse
Affiliation(s)
- Vjekoslav Peitl
- Department of Psychiatry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia; Catholic University of Croatia, Zagreb, Croatia
| | - Mario Štefanović
- Clinical Department of Chemistry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Dalibor Karlović
- Department of Psychiatry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia; Catholic University of Croatia, Zagreb, Croatia.
| |
Collapse
|
11
|
Cardoso MABS, do Nascimento TJ, Bernardo GP, Bernardo LP, Barbosa MMFL, Neto PJN, de Sousa DF, Júnior AGT, de Lima MAP, Moreira MM, de Sousa Gregório D, do Nascimento Santos LC, Rolim Neto ML. Are There Schizophrenia Genetic Markers and Mutations? A Systematic Review and Meta-Analyses. Health (London) 2017. [DOI: 10.4236/health.2017.95058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Fišar Z. Drugs related to monoamine oxidase activity. Prog Neuropsychopharmacol Biol Psychiatry 2016; 69:112-24. [PMID: 26944656 DOI: 10.1016/j.pnpbp.2016.02.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 02/07/2023]
Abstract
Progress in understanding the role of monoamine neurotransmission in pathophysiology of neuropsychiatric disorders was made after the discovery of the mechanisms of action of psychoactive drugs, including monoamine oxidase (MAO) inhibitors. The increase in monoamine neurotransmitter availability, decrease in hydrogen peroxide production, and neuroprotective effects evoked by MAO inhibitors represent an important approach in the development of new drugs for the treatment of mental disorders and neurodegenerative diseases. New drugs are synthesized by acting as multitarget-directed ligands, with MAO, acetylcholinesterase, and iron chelation as targets. Basic information is summarized in this paper about the drug-induced regulation of monoaminergic systems in the brain, with a focus on MAO inhibition. Desirable effects of MAO inhibition include increased availability of monoamine neurotransmitters, decreased oxidative stress, decreased formation of neurotoxins, induction of pro-survival genes and antiapoptotic factors, and improved mitochondrial functions.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic.
| |
Collapse
|
13
|
MAOA Variants and Genetic Susceptibility to Major Psychiatric Disorders. Mol Neurobiol 2015; 53:4319-27. [PMID: 26227907 DOI: 10.1007/s12035-015-9374-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/21/2015] [Indexed: 12/20/2022]
Abstract
Monoamine oxidase A (MAOA) is a mitochondrial enzyme involved in the metabolism of several biological amines such as dopamine, norepinephrine, and serotonin, which are important neurochemicals in the pathogenesis of major psychiatric illnesses. MAOA is regarded as a functional plausible susceptibility gene for psychiatric disorders, whereas previous hypothesis-driven association studies obtained controversial results, a reflection of small sample size, genetic heterogeneity, or true negative associations. In addition, MAOA is not analyzed in most of genome-wide association studies (GWAS) on psychiatric disorders, since it is located on Chromosome Xp11.3. Therefore, the effects of MAOA variants on genetic predisposition to psychiatric disorders remain obscure. To fill this gap, we collected psychiatric phenotypic (schizophrenia, bipolar disorder, and major depressive disorder) and genetic data in up to 18,824 individuals from diverse ethnic groups. We employed classical fixed (or random) effects inverse variance weighted methods to calculate summary odds ratios (OR) and 95 % confidence intervals (CI). We identified a synonymous SNP rs1137070 showing significant associations with major depressive disorder (p = 0.00067, OR = 1.263 for T allele) and schizophrenia (p = 0.0039, OR = 1.225 for T allele) as well as a broad spectrum of psychiatric phenotype (p = 0.000066, OR = 1.218 for T allele) in both males and females. The effect size was similar between different ethnic populations and different gender groups. Collectively, we confirmed that MAOA is a risk gene for psychiatric disorders, and our results provide useful information toward a better understanding of genetic mechanism involving MAOA underlying risk of complex psychiatric disorders.
Collapse
|
14
|
Eslami Amirabadi MR, Rajezi Esfahani S, Davari-Ashtiani R, Khademi M, Emamalizadeh B, Movafagh A, Sadr S, Arabgol F, Darvish H, Razjoyan K. Monoamine oxidase a gene polymorphisms and bipolar disorder in Iranian population. IRANIAN RED CRESCENT MEDICAL JOURNAL 2015; 17:e23095. [PMID: 25793118 PMCID: PMC4353216 DOI: 10.5812/ircmj.23095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 09/23/2014] [Accepted: 11/09/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND Bipolar disorder (BPD) is a common and severe mood disorder. Although genetic factors have important rolesin the etiology of bipolar disorder, no specific gene has been identified in relation to this disorder. Monoamine oxidase gene is suggested to be associated with bipolar disorder in many studies. OBJECTIVES This study aimed to investigatethe role of MAOA gene polymorphisms in the etiology of bipolar disorder in Iranian population. PATIENTS AND METHODS This study is a case-control study, with convenient sampling. Three common polymorphisms, a CA microsatellite, a VNTR, and a RFLP were typed in 156 bipolar patients and 173 healthy controls. Patients were chosen from Imam Hossein General Hospital, Psychiatry Ward (Tehran/Iran). Controlsamples for this study consisted of 173 healthy individuals recruitedby convenient sampling. Allelic distributions of these polymorphisms were analyzed in bipolar and control groups to investigate any association with MAOA gene. RESULTS Significant associations were observed regarding MAOA-CA (P = 0.016) and MAOA-VNTR (P = 0.004) polymorphisms in the bipolar females. There was no association between MAOA-RFLP and bipolar disorder. CONCLUSIONS The obtained results confirm some previous studies regardinga gender specific association of MAOA gene with the bipolar disorder.
Collapse
Affiliation(s)
| | - Sepideh Rajezi Esfahani
- Behavioral Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Rozita Davari-Ashtiani
- Department of Psychiatry, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Mojgan Khademi
- Department of Psychiatry, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Babak Emamalizadeh
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Movafagh
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Said Sadr
- Department of Psychiatry, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Fariba Arabgol
- Department of Psychiatry, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Hossein Darvish
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Authors: Katayoon Razjoyan, Department of Psychiatry, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran. Tel/fax: +98-2123872572, E-mail: ; Hossein Darvish, Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Tel/fax: +98-2123872572, E-mail: .
| | - Katayoon Razjoyan
- Department of Psychiatry, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
- Corresponding Authors: Katayoon Razjoyan, Department of Psychiatry, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran. Tel/fax: +98-2123872572, E-mail: ; Hossein Darvish, Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Tel/fax: +98-2123872572, E-mail: .
| |
Collapse
|
15
|
Naoi M, Riederer P, Maruyama W. Modulation of monoamine oxidase (MAO) expression in neuropsychiatric disorders: genetic and environmental factors involved in type A MAO expression. J Neural Transm (Vienna) 2015; 123:91-106. [PMID: 25604428 DOI: 10.1007/s00702-014-1362-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 12/27/2014] [Indexed: 12/18/2022]
Abstract
Monoamine oxidase types A and B (MAO-A, MAO-B) regulate the levels of monoamine neurotransmitters in the brain, and their dysfunction may be involved in the pathogenesis and influence the clinical phenotypes of neuropsychiatric disorders. Reversible MAO-A inhibitors, such as moclobemide and befloxatone, are currently employed in the treatment of emotional disorders by inhibiting the enzymatic degradation of dopamine, serotonin and norepinephrine in the central nervous system (CNS). It has been suggested that the irreversible MAO-B inhibitors selegiline and rasagiline exert a neuroprotective effect in Parkinson's and Alzheimer's diseases. This effect, however, is not related to their inhibition of MAO activity; in animal and cellular models, selegiline and rasagiline protect neuronal cells through their anti-apoptotic activity and induction of pro-survival genes. There is increasing evidence that MAO-A activity, but not that of MAO-B, is implicated in the pathophysiology of neurodegenerative disorders, but also in gene induction by MAO-B inhibitors; on the other hand, selegiline and rasagiline increase MAO-A mRNA, protein, and enzyme activity levels. Taken together, these results suggest that each MAO subtype exerts effects that modulate the expression and activity of the other isoenzyme. The roles of MAO-A and -B in the CNS should therefore be re-evaluated with respect to the "type-specificity" of their inhibitors, which may not be unconditional during chronic treatment. Mao-a expression, in particular, may be implicated in pathogenesis and phenotypes in neuropsychiatric disorders. MAO-A expression is modified by mao polymorphisms affecting its transcriptional efficiency, as well as by mutations and polymorphism of parkin, Sirt1, FOXO, microRNA, presenilin-1, and other regulatory proteins. In addition, childhood maltreatment has been shown to have an impact upon adolescent social behavior in children with mao-a polymorphisms of low transcriptional activity. Low MAO-A activity may increase the levels of serotonin and norepinephrine, resulting in disturbed neurotransmitter system development and behavior. This review discusses genetic and environmental factors involved in the regulation of MAO-A expression, in the contexts of neuropsychiatric function and of the regulation of neuronal survival and death.
Collapse
Affiliation(s)
- Makoto Naoi
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 470-0195, Japan.
| | - Peter Riederer
- Clinical Neurochemistry, National Parkinson's Foundation Centre of Excellence Laboratories, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - Wakako Maruyama
- Department of Cognitive Brain Science, National Research Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| |
Collapse
|
16
|
Park Y, Won S, Nam M, Chung JH, Kwack K. Interaction between MAOA and FOXP2 in association with autism and verbal communication in a Korean population. J Child Neurol 2014; 29:NP207-11. [PMID: 24356376 DOI: 10.1177/0883073813511301] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Expression levels of monoamine oxidase A (MAOA), the enzyme that related to monoamine neurotransmitters metabolism such as serotonin, are related to schizophrenia and autism spectrum disorder. Forkhead box protein P2 (FOXP2), a transcription factor, is associated with abnormal language development and is expressed in several areas of the central nervous system in response to serotonin. For this reason, we undertook interaction analysis between MAOA and FOXP2 in autism spectrum disorder, including testing the verbal communication score of the childhood autism rating scale. In interaction analysis, the FOXP2-TCGC (rs12531289-rs1350135-rs10230087-rs2061183) diplotype and MAOA-TCG (rs6323-rs1801291-rs3027407) haplotype were significantly associated with autism spectrum disorder in males. However, when the interaction term was omitted, neither MAOA nor FOXP2 was associated with autism spectrum disorder or verbal communication. These results indicate that language and speech ability is affected by an interaction between FOXP2 and MAOA, but not by either gene separately.
Collapse
Affiliation(s)
- YoungJoon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
| | - SeongSik Won
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
| | - Min Nam
- Seoul Metropolitan Children's Hospital, Heolleungno, Seocho-gu, Seoul, Korea
| | - Joo-Ho Chung
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul, Korea
| | - KyuBum Kwack
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
| |
Collapse
|
17
|
Godar SC, Bortolato M. Gene-sex interactions in schizophrenia: focus on dopamine neurotransmission. Front Behav Neurosci 2014; 8:71. [PMID: 24639636 PMCID: PMC3944784 DOI: 10.3389/fnbeh.2014.00071] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/19/2014] [Indexed: 02/02/2023] Open
Abstract
Schizophrenia is a severe mental disorder, with a highly complex and heterogenous clinical presentation. Our current perspectives posit that the pathogenic mechanisms of this illness lie in complex arrays of gene × environment interactions. Furthermore, several findings indicate that males have a higher susceptibility for schizophrenia, with earlier age of onset and overall poorer clinical prognosis. Based on these premises, several authors have recently begun exploring the possibility that the greater schizophrenia vulnerability in males may reflect specific gene × sex (G×S) interactions. Our knowledge on such G×S interactions in schizophrenia is still rudimentary; nevertheless, the bulk of preclinical evidence suggests that the molecular mechanisms for such interactions are likely contributed by the neurobiological effects of sex steroids on dopamine (DA) neurotransmission. Accordingly, several recent studies suggest a gender-specific association of certain DAergic genes with schizophrenia. These G×S interactions have been particularly documented for catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO), the main enzymes catalyzing DA metabolism. In the present review, we will outline the current evidence on the interactions of DA-related genes and sex-related factors, and discuss the potential molecular substrates that may mediate their cooperative actions in schizophrenia pathogenesis.
Collapse
Affiliation(s)
- Sean C Godar
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas Lawrence, KS, USA
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas Lawrence, KS, USA ; Consortium for Translational Research on Aggression and Drug Abuse, University of Kansas Lawrence, KS, USA
| |
Collapse
|
18
|
Association study between monoamine oxidase A (MAOA) gene polymorphisms and schizophrenia: lack of association with schizophrenia and possible association with affective disturbances of schizophrenia. Mol Biol Rep 2014; 41:3457-64. [PMID: 24510409 DOI: 10.1007/s11033-014-3207-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 01/27/2014] [Indexed: 10/25/2022]
Abstract
Monoamine oxidase A (MAOA) catalyzes monoamine neurotransmitters including dopamine, 5-hydroxytryptamine (5-HT, serotonin), and norepinephrine. MAOA also plays a key role in emotional regulation. The aim of this study was to investigate the associations between the exonic single nucleotide polymorphisms (SNPs) of the MAOA gene located on the X chromosome and schizophrenia. We also analyzed the relationships between these SNPs and the common clinical symptoms of schizophrenia such as persecutory delusion, auditory hallucinations, affective disturbances, and poor concentration. Two hundred seventy five Korean schizophrenia patients and 289 control subjects were recruited. Three SNPs [rs6323 (Arg294Arg), rs1137070 (Asp470Asp), and rs3027407 (3'-untranslated region)] of the MAOA gene were selected and genotyped by direct sequencing. The common clinical symptoms of schizophrenia according to the Operation Criteria Checklist were analyzed. Three examined SNPs showed no associations with male and female schizophrenia, respectively (p>0.05). In the analysis of the common clinical symptoms of schizophrenia patients, three examined SNPs were associated with affective disturbances, especially restricted affect and blunted affect in male schizophrenia, respectively (restricted affect, p=0.002, OR=2.71, 95% CI 1.45-5.00; blunted affect, p=0.009, OR 2.25, 95% CI 1.22-4.12). The SNPs were not associated with other clinical symptoms of schizophrenia (persecutory delusion, auditory hallucinations, and poor concentration). These results suggest that exonic SNPs (rs6323, rs1137070, and rs3027407) of the MAOA gene may be contributed to affective disturbances of Korean males schizophrenia, especially restricted affect and blunted affect.
Collapse
|
19
|
Deftereos SN, Dodou E, Andronis C, Persidis A. From depression to neurodegeneration and heart failure: re-examining the potential of MAO inhibitors. Expert Rev Clin Pharmacol 2013; 5:413-25. [PMID: 22943121 DOI: 10.1586/ecp.12.29] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Initially introduced in the 1950s for treating depression, monoamine oxidase (MAO) inhibitors were gradually abandoned, mainly owing to their potential for drug-drug and drug-food interactions, the most widely known being with tyramine-containing food (the 'cheese' effect). Since then, more selective MAO-A or MAO-B inhibitors have been developed with substantially reduced risks, and have been approved for the treatment of depression and Parkinson's disease, respectively. Recent research suggests that some of these drugs also have neuroprotective properties, while preclinical evidence expands the spectrum of potential indications to heart failure, renal diseases and multiple sclerosis. In this article, the authors review the relevance of MAO isoforms to disease, and they also outline current research and development efforts in this class of drugs, including newer multipotent compounds.
Collapse
|