1
|
Technological Improvements in the Genetic Diagnosis of Rett Syndrome Spectrum Disorders. Int J Mol Sci 2021; 22:ijms221910375. [PMID: 34638716 PMCID: PMC8508637 DOI: 10.3390/ijms221910375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder that constitutes the second most common cause of intellectual disability in females worldwide. In the past few years, the advancements in genetic diagnosis brought by next generation sequencing (NGS), have made it possible to identify more than 90 causative genes for RTT and significantly overlapping phenotypes (RTT spectrum disorders). Therefore, the clinical entity known as RTT is evolving towards a spectrum of overlapping phenotypes with great genetic heterogeneity. Hence, simultaneous multiple gene testing and thorough phenotypic characterization are mandatory to achieve a fast and accurate genetic diagnosis. In this review, we revise the evolution of the diagnostic process of RTT spectrum disorders in the past decades, and we discuss the effectiveness of state-of-the-art genetic testing options, such as clinical exome sequencing and whole exome sequencing. Moreover, we introduce recent technological advancements that will very soon contribute to the increase in diagnostic yield in patients with RTT spectrum disorders. Techniques such as whole genome sequencing, integration of data from several “omics”, and mosaicism assessment will provide the tools for the detection and interpretation of genomic variants that will not only increase the diagnostic yield but also widen knowledge about the pathophysiology of these disorders.
Collapse
|
2
|
Fioriniello S, Csukonyi E, Marano D, Brancaccio A, Madonna M, Zarrillo C, Romano A, Marracino F, Matarazzo MR, D'Esposito M, Della Ragione F. MeCP2 and Major Satellite Forward RNA Cooperate for Pericentric Heterochromatin Organization. Stem Cell Reports 2021; 15:1317-1332. [PMID: 33296675 PMCID: PMC7724518 DOI: 10.1016/j.stemcr.2020.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022] Open
Abstract
Methyl-CpG binding protein 2 (MeCP2) has historically been linked to heterochromatin organization, and in mouse cells it accumulates at pericentric heterochromatin (PCH), closely following major satellite (MajSat) DNA distribution. However, little is known about the specific function of MeCP2 in these regions. We describe the first evidence of a role in neurons for MeCP2 and MajSat forward (MajSat-fw) RNA in reciprocal targeting to PCH through their physical interaction. Moreover, MeCP2 contributes to maintenance of PCH by promoting deposition of H3K9me3 and H4K20me3. We highlight that the MeCP2B isoform is required for correct higher-order PCH organization, and underline involvement of the methyl-binding and transcriptional repression domains. The T158 residue, which is commonly mutated in Rett patients, is directly involved in this process. Our findings support the hypothesis that MeCP2 and the MajSat-fw transcript are mutually dependent for PCH organization, and contribute to clarify MeCP2 function in the regulation of chromatin architecture.
Collapse
Affiliation(s)
- Salvatore Fioriniello
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples 80131, Italy
| | - Eva Csukonyi
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples 80131, Italy
| | - Domenico Marano
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples 80131, Italy
| | - Arianna Brancaccio
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples 80131, Italy
| | | | - Carmela Zarrillo
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples 80131, Italy
| | | | | | - Maria R Matarazzo
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples 80131, Italy
| | - Maurizio D'Esposito
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples 80131, Italy
| | | |
Collapse
|
3
|
Transcriptomic and Epigenomic Landscape in Rett Syndrome. Biomolecules 2021; 11:biom11070967. [PMID: 34209228 PMCID: PMC8301932 DOI: 10.3390/biom11070967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Rett syndrome (RTT) is an extremely invalidating, cureless, developmental disorder, and it is considered one of the leading causes of intellectual disability in female individuals. The vast majority of RTT cases are caused by de novo mutations in the X-linked Methyl-CpG binding protein 2 (MECP2) gene, which encodes a multifunctional reader of methylated DNA. MeCP2 is a master epigenetic modulator of gene expression, with a role in the organization of global chromatin architecture. Based on its interaction with multiple molecular partners and the diverse epigenetic scenario, MeCP2 triggers several downstream mechanisms, also influencing the epigenetic context, and thus leading to transcriptional activation or repression. In this frame, it is conceivable that defects in such a multifaceted factor as MeCP2 lead to large-scale alterations of the epigenome, ranging from an unbalanced deposition of epigenetic modifications to a transcriptional alteration of both protein-coding and non-coding genes, with critical consequences on multiple downstream biological processes. In this review, we provide an overview of the current knowledge concerning the transcriptomic and epigenomic alterations found in RTT patients and animal models.
Collapse
|
4
|
Sharifi O, Yasui DH. The Molecular Functions of MeCP2 in Rett Syndrome Pathology. Front Genet 2021; 12:624290. [PMID: 33968128 PMCID: PMC8102816 DOI: 10.3389/fgene.2021.624290] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
MeCP2 protein, encoded by the MECP2 gene, binds to DNA and affects transcription. Outside of this activity the true range of MeCP2 function is still not entirely clear. As MECP2 gene mutations cause the neurodevelopmental disorder Rett syndrome in 1 in 10,000 female births, much of what is known about the biologic function of MeCP2 comes from studying human cell culture models and rodent models with Mecp2 gene mutations. In this review, the full scope of MeCP2 research available in the NIH Pubmed (https://pubmed.ncbi.nlm.nih.gov/) data base to date is considered. While not all original research can be mentioned due to space limitations, the main aspects of MeCP2 and Rett syndrome research are discussed while highlighting the work of individual researchers and research groups. First, the primary functions of MeCP2 relevant to Rett syndrome are summarized and explored. Second, the conflicting evidence and controversies surrounding emerging aspects of MeCP2 biology are examined. Next, the most obvious gaps in MeCP2 research studies are noted. Finally, the most recent discoveries in MeCP2 and Rett syndrome research are explored with a focus on the potential and pitfalls of novel treatments and therapies.
Collapse
Affiliation(s)
- Osman Sharifi
- LaSalle Laboratory, Department of Medical Microbiology and Immunology, UC Davis School of Medicine, Davis, CA, United States
| | - Dag H Yasui
- LaSalle Laboratory, Department of Medical Microbiology and Immunology, UC Davis School of Medicine, Davis, CA, United States
| |
Collapse
|
5
|
D'Mello SR. MECP2 and the Biology of MECP2 Duplication Syndrome. J Neurochem 2021; 159:29-60. [PMID: 33638179 DOI: 10.1111/jnc.15331] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 11/27/2022]
Abstract
MECP2 duplication syndrome (MDS), a rare X-linked genomic disorder affecting predominantly males, is caused by duplication of the chromosomal region containing the methyl CpG binding protein-2 (MECP2) gene, which encodes methyl-CpG-binding protein 2 (MECP2), a multi-functional protein required for proper brain development and maintenance of brain function during adulthood. Disease symptoms include severe motor and cognitive impairment, delayed or absent speech development, autistic features, seizures, ataxia, recurrent respiratory infections and shortened lifespan. The cellular and molecular mechanisms by which a relatively modest increase in MECP2 protein causes such severe disease symptoms are poorly understood and consequently there are no treatments available for this fatal disorder. This review summarizes what is known to date about the structure and complex regulation of MECP2 and its many functions in the developing and adult brain. Additionally, recent experimental findings on the cellular and molecular underpinnings of MDS based on cell culture and mouse models of the disorder are reviewed. The emerging picture from these studies is that MDS is a neurodegenerative disorder in which neurons die in specific parts of the central nervous system, including the cortex, hippocampus, cerebellum and spinal cord. Neuronal death likely results from astrocytic dysfunction, including a breakdown of glutamate homeostatic mechanisms. The role of elevations in the expression of glial acidic fibrillary protein (GFAP) in astrocytes and the microtubule-associated protein, Tau, in neurons to the pathogenesis of MDS is discussed. Lastly, potential therapeutic strategies to potentially treat MDS are discussed.
Collapse
|
6
|
Quach TT, Stratton HJ, Khanna R, Kolattukudy PE, Honnorat J, Meyer K, Duchemin AM. Intellectual disability: dendritic anomalies and emerging genetic perspectives. Acta Neuropathol 2021; 141:139-158. [PMID: 33226471 PMCID: PMC7855540 DOI: 10.1007/s00401-020-02244-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Intellectual disability (ID) corresponds to several neurodevelopmental disorders of heterogeneous origin in which cognitive deficits are commonly associated with abnormalities of dendrites and dendritic spines. These histological changes in the brain serve as a proxy for underlying deficits in neuronal network connectivity, mostly a result of genetic factors. Historically, chromosomal abnormalities have been reported by conventional karyotyping, targeted fluorescence in situ hybridization (FISH), and chromosomal microarray analysis. More recently, cytogenomic mapping, whole-exome sequencing, and bioinformatic mining have led to the identification of novel candidate genes, including genes involved in neuritogenesis, dendrite maintenance, and synaptic plasticity. Greater understanding of the roles of these putative ID genes and their functional interactions might boost investigations into determining the plausible link between cellular and behavioral alterations as well as the mechanisms contributing to the cognitive impairment observed in ID. Genetic data combined with histological abnormalities, clinical presentation, and transgenic animal models provide support for the primacy of dysregulation in dendrite structure and function as the basis for the cognitive deficits observed in ID. In this review, we highlight the importance of dendrite pathophysiology in the etiologies of four prototypical ID syndromes, namely Down Syndrome (DS), Rett Syndrome (RTT), Digeorge Syndrome (DGS) and Fragile X Syndrome (FXS). Clinical characteristics of ID have also been reported in individuals with deletions in the long arm of chromosome 10 (the q26.2/q26.3), a region containing the gene for the collapsin response mediator protein 3 (CRMP3), also known as dihydropyrimidinase-related protein-4 (DRP-4, DPYSL4), which is involved in dendritogenesis. Following a discussion of clinical and genetic findings in these syndromes and their preclinical animal models, we lionize CRMP3/DPYSL4 as a novel candidate gene for ID that may be ripe for therapeutic intervention.
Collapse
Affiliation(s)
- Tam T Quach
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
- INSERM U1217/CNRS, UMR5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA
| | | | - Jérome Honnorat
- INSERM U1217/CNRS, UMR5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- SynatAc Team, Institut NeuroMyoGène, Lyon, France
| | - Kathrin Meyer
- The Research Institute of Nationwide Children Hospital, Columbus, OH, 43205, USA
- Department of Pediatric, The Ohio State University, Columbus, OH, 43210, USA
| | - Anne-Marie Duchemin
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
7
|
Good KV, Vincent JB, Ausió J. MeCP2: The Genetic Driver of Rett Syndrome Epigenetics. Front Genet 2021; 12:620859. [PMID: 33552148 PMCID: PMC7859524 DOI: 10.3389/fgene.2021.620859] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Mutations in methyl CpG binding protein 2 (MeCP2) are the major cause of Rett syndrome (RTT), a rare neurodevelopmental disorder with a notable period of developmental regression following apparently normal initial development. Such MeCP2 alterations often result in changes to DNA binding and chromatin clustering ability, and in the stability of this protein. Among other functions, MeCP2 binds to methylated genomic DNA, which represents an important epigenetic mark with broad physiological implications, including neuronal development. In this review, we will summarize the genetic foundations behind RTT, and the variable degrees of protein stability exhibited by MeCP2 and its mutated versions. Also, past and emerging relationships that MeCP2 has with mRNA splicing, miRNA processing, and other non-coding RNAs (ncRNA) will be explored, and we suggest that these molecules could be missing links in understanding the epigenetic consequences incurred from genetic ablation of this important chromatin modifier. Importantly, although MeCP2 is highly expressed in the brain, where it has been most extensively studied, the role of this protein and its alterations in other tissues cannot be ignored and will also be discussed. Finally, the additional complexity to RTT pathology introduced by structural and functional implications of the two MeCP2 isoforms (MeCP2-E1 and MeCP2-E2) will be described. Epigenetic therapeutics are gaining clinical popularity, yet treatment for Rett syndrome is more complicated than would be anticipated for a purely epigenetic disorder, which should be taken into account in future clinical contexts.
Collapse
Affiliation(s)
- Katrina V. Good
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - John B. Vincent
- Molecular Neuropsychiatry & Development (MiND) Lab, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
8
|
Khalili Alashti S, Fallahi J, Mohammadi S, Dehghanian F, Farbood Z, Masoudi M, Poorang S, Jokar A, Fardaei M. Two novel mutations in the MECP2 gene in patients with Rett syndrome. Gene 2020; 732:144337. [DOI: 10.1016/j.gene.2020.144337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/04/2019] [Accepted: 01/06/2020] [Indexed: 12/28/2022]
|
9
|
Vogel Ciernia A, Yasui DH, Pride MC, Durbin-Johnson B, Noronha AB, Chang A, Knotts TA, Rutkowsky JR, Ramsey JJ, Crawley JN, LaSalle JM. MeCP2 isoform e1 mutant mice recapitulate motor and metabolic phenotypes of Rett syndrome. Hum Mol Genet 2018; 27:4077-4093. [PMID: 30137367 PMCID: PMC6240741 DOI: 10.1093/hmg/ddy301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 01/27/2023] Open
Abstract
Mutations in the X-linked gene MECP2 cause the majority of Rett syndrome (RTT) cases. Two differentially spliced isoforms of exons 1 and 2 (MeCP2-e1 and MeCP2-e2) contribute to the diverse functions of MeCP2, but only mutations in exon 1, not exon 2, are observed in RTT. We previously described an isoform-specific MeCP2-e1-deficient male mouse model of a human RTT mutation that lacks MeCP2-e1 while preserving expression of MeCP2-e2. However, RTT patients are heterozygous females that exhibit delayed and progressive symptom onset beginning in late infancy, including neurologic as well as metabolic, immune, respiratory and gastrointestinal phenotypes. Consequently, we conducted a longitudinal assessment of symptom development in MeCP2-e1 mutant females and males. A delayed and progressive onset of motor impairments was observed in both female and male MeCP2-e1 mutant mice, including hind limb clasping and motor deficits in gait and balance. Because these motor impairments were significantly impacted by age-dependent increases in body weight, we also investigated metabolic phenotypes at an early stage of disease progression. Both male and female MeCP2-e1 mutants exhibited significantly increased body fat compared to sex-matched wild-type littermates prior to weight differences. Mecp2e1-/y males exhibited significant metabolic phenotypes of hypoactivity, decreased energy expenditure, increased respiratory exchange ratio, but decreased food intake compared to wild-type. Untargeted analysis of lipid metabolites demonstrated a distinguishable profile in MeCP2-e1 female mutant liver characterized by increased triglycerides. Together, these results demonstrate that MeCP2-e1 mutation in mice of both sexes recapitulates early and progressive metabolic and motor phenotypes of human RTT.
Collapse
Affiliation(s)
- Annie Vogel Ciernia
- Department of Medical Microbiology and Immunology, UC Davis School of Medicine, University of California, Davis, CA, USA
- UC Davis Genome Center, University of California, Davis, CA, USA
- UC Davis MIND Institute, University of California, Davis, CA, USA
| | - Dag H Yasui
- Department of Medical Microbiology and Immunology, UC Davis School of Medicine, University of California, Davis, CA, USA
| | - Michael C Pride
- UC Davis MIND Institute, University of California, Davis, CA, USA
- Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California, Davis, CA, USA
| | - Blythe Durbin-Johnson
- Department of Public Health Sciences, UC Davis School of Medicine, University of California, Davis, CA, USA
| | - Adriana B Noronha
- Department of Medical Microbiology and Immunology, UC Davis School of Medicine, University of California, Davis, CA, USA
| | - Alene Chang
- Department of Medical Microbiology and Immunology, UC Davis School of Medicine, University of California, Davis, CA, USA
| | - Trina A Knotts
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Jennifer R Rutkowsky
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Jon J Ramsey
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Jacqueline N Crawley
- UC Davis MIND Institute, University of California, Davis, CA, USA
- Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California, Davis, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, UC Davis School of Medicine, University of California, Davis, CA, USA
- UC Davis Genome Center, University of California, Davis, CA, USA
- UC Davis MIND Institute, University of California, Davis, CA, USA
| |
Collapse
|
10
|
Tokaji N, Ito H, Kohmoto T, Naruto T, Takahashi R, Goji A, Mori T, Toda Y, Saito M, Tange S, Masuda K, Kagami S, Imoto I. A rare male patient with classic Rett syndrome caused by MeCP2_e1 mutation. Am J Med Genet A 2018; 176:699-702. [DOI: 10.1002/ajmg.a.38595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 09/18/2017] [Accepted: 12/07/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Narumi Tokaji
- Departmentof Paediatrics, Graduate School of Biomedical Sciences; Tokushima University; Tokushima Japan
| | - Hiromichi Ito
- Departmentof Paediatrics, Graduate School of Biomedical Sciences; Tokushima University; Tokushima Japan
| | - Tomohiro Kohmoto
- Department of Human Genetics; Graduate School of Biomedical Sciences; Tokushima University; Tokushima Japan
| | - Takuya Naruto
- Department of Human Genetics; Graduate School of Biomedical Sciences; Tokushima University; Tokushima Japan
| | - Rizu Takahashi
- Department of Human Genetics; Graduate School of Biomedical Sciences; Tokushima University; Tokushima Japan
| | - Aya Goji
- Departmentof Paediatrics, Graduate School of Biomedical Sciences; Tokushima University; Tokushima Japan
| | - Tatsuo Mori
- Departmentof Paediatrics, Graduate School of Biomedical Sciences; Tokushima University; Tokushima Japan
| | - Yoshihiro Toda
- Departmentof Paediatrics, Graduate School of Biomedical Sciences; Tokushima University; Tokushima Japan
| | - Masako Saito
- Department of Human Genetics; Graduate School of Biomedical Sciences; Tokushima University; Tokushima Japan
| | - Shoichiro Tange
- Department of Human Genetics; Graduate School of Biomedical Sciences; Tokushima University; Tokushima Japan
| | - Kiyoshi Masuda
- Department of Human Genetics; Graduate School of Biomedical Sciences; Tokushima University; Tokushima Japan
| | - Shoji Kagami
- Departmentof Paediatrics, Graduate School of Biomedical Sciences; Tokushima University; Tokushima Japan
| | - Issei Imoto
- Department of Human Genetics; Graduate School of Biomedical Sciences; Tokushima University; Tokushima Japan
| |
Collapse
|
11
|
Gold WA, Christodoulou J. The Utility of Next-Generation Sequencing in Gene Discovery for Mutation-Negative Patients with Rett Syndrome. Front Cell Neurosci 2015; 9:266. [PMID: 26236194 PMCID: PMC4500929 DOI: 10.3389/fncel.2015.00266] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/29/2015] [Indexed: 01/13/2023] Open
Abstract
Rett syndrome (RTT) is a rare, severe disorder of neuronal plasticity that predominantly affects girls. Girls with RTT usually appear asymptomatic in the first 6–18 months of life, but gradually develop severe motor, cognitive, and behavioral abnormalities that persist for life. A predominance of neuronal and synaptic dysfunction, with altered excitatory–inhibitory neuronal synaptic transmission and synaptic plasticity, are overarching features of RTT in children and in mouse models. Over 90% of patients with classical RTT have mutations in the X-linked methyl-CpG-binding (MECP2) gene, while other genes, including cyclin-dependent kinase-like 5 (CDKL5), Forkhead box protein G1 (FOXG1), myocyte-specific enhancer factor 2C (MEF2C), and transcription factor 4 (TCF4), have been associated with phenotypes overlapping with RTT. However, there remain a proportion of patients who carry a clinical diagnosis of RTT, but who are mutation negative. In recent years, next-generation sequencing technologies have revolutionized approaches to genetic studies, making whole-exome and even whole-genome sequencing possible strategies for the detection of rare and de novo mutations, aiding the discovery of novel disease genes. Here, we review the recent progress that is emerging in identifying pathogenic variations, specifically from exome sequencing in RTT patients, and emphasize the need for the use of this technology to identify known and new disease genes in RTT patients.
Collapse
Affiliation(s)
- Wendy Anne Gold
- Western Sydney Genetics Program, New South Wales Centre for Rett Syndrome Research, Children's Hospital at Westmead , Sydney, NSW , Australia ; Discipline of Paediatrics and Child Health, University of Sydney , Sydney, NSW , Australia
| | - John Christodoulou
- Western Sydney Genetics Program, New South Wales Centre for Rett Syndrome Research, Children's Hospital at Westmead , Sydney, NSW , Australia ; Discipline of Paediatrics and Child Health, University of Sydney , Sydney, NSW , Australia ; Discipline of Genetic Medicine, Sydney Medical School, University of Sydney , Sydney, NSW , Australia
| |
Collapse
|
12
|
MECP2, a gene associated with Rett syndrome in humans, shows conserved coding regions, independent Alu insertions, and a novel transcript across primate evolution. BMC Genet 2015; 16:77. [PMID: 26148505 PMCID: PMC4493987 DOI: 10.1186/s12863-015-0240-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 06/25/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The methyl-CpG Binding Protein two gene (MECP2) encodes a multifunctional protein comprising two isoforms involved in nuclear organization and regulation of splicing and mRNA template activity. This gene is normally expressed in all tissues, with a higher expression level in the brain during neuronal maturation. Loss of MECP2 function is the primary cause of Rett syndrome (RTT) in humans, a dominant, X-linked disorder dramatically affecting neural and motor development. RESULTS We investigated the molecular evolution of MECP2 in several primate taxa including 36 species in 16 genera of neotropical (platyrrhine) primates. The coding region of the MECP2_e2 isoform showed a high level of evolutionary conservation among humans and other primates, with amino acid substitutions in 14 codons and one in-frame insertion of a single serine codon, between codons 357 and 358, in Ateles paniscus. Most substitutions occurred in noncritical regions of MECP2 and the majority of the algorithms used for analyzing selection did not provide evidence of positive selection. Conversely, we found 48 sites under negative selection in different regions, 23 of which were consistently found by three different algorithms. Similar to an inverted Alu insert found previously in a lesser ape at a parallel location, one Alu insertion of approximately 300 bp in Cebus and Sapajus was found in intron 3. Phylogenetic reconstruction of the intron 3 data provided a topology that was coincident with the consensus arrangement of the primate taxa. RNAseq data in the neotropical primate Callimico goeldii revealed a novel transcript consisting of a noncontinuous region of the human-homologous intron 2 in this species; this transcript accounted for two putative polypeptides. CONCLUSIONS Despite the remarkable evolutionary conservation of MECP2, one in-frame codon insertion was observed in A. paniscus, and one region of intron 3 was affected by a trans-specific Alu retrotransposition in two neotropical primate genera. Moreover, identification of novel MECP2 transcripts in Callimico suggests that part of a homologous human intronic region might be expressed, and that the potential open reading frame in this region might be a subject of interest in RTT patients who carry an apparently normal MECP2 sequence.
Collapse
|
13
|
Wu Y, Li SS, Jin X, Cui N, Zhang S, Jiang C. Optogenetic approach for functional assays of the cardiovascular system by light activation of the vascular smooth muscle. Vascul Pharmacol 2015; 71:192-200. [PMID: 25869510 DOI: 10.1016/j.vph.2015.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/16/2015] [Accepted: 03/29/2015] [Indexed: 01/12/2023]
Abstract
Cardiovascular diseases are the major challenge to modern medicine. Intervention to cardiovascular cells is crucial for treatment of the diseases. Here we report a novel intervention to vascular smooth muscle (VSM) cells by optogenetics. Channelrhodopsin in a tandem with YFP was selectively expressed in smooth muscle of transgenic mice in which YFP fluorescence was found in arterial walls of various tissues. In dissociated VSM cells from the mice blue light evoked inward currents, leading to depolarization and contraction. In isolated mesenteric arterial rings, optostimulation produced vasoconstriction that was reproducible, sustained, light intensity-dependent and comparable to popular vasoconstrictors. Blue light raised robustly coronary resistance without significant effects on heart rate and pulse pressure. Optostimulation produced renal vasoconstriction as well. The optical vasoconstriction had temporal resolutions less than 40s in these organs. These results indicate that optical vasoconstriction can be effectively produced in various organs with channelrhodopsin expression in VSM cells.
Collapse
Affiliation(s)
- Yang Wu
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA 30302, USA
| | - Shan-Shan Li
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA 30302, USA
| | - Xin Jin
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA 30302, USA
| | - Ningren Cui
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA 30302, USA
| | - Shuang Zhang
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA 30302, USA
| | - Chun Jiang
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA 30302, USA.
| |
Collapse
|
14
|
Orlic-Milacic M, Kaufman L, Mikhailov A, Cheung AYL, Mahmood H, Ellis J, Gianakopoulos PJ, Minassian BA, Vincent JB. Over-expression of either MECP2_e1 or MECP2_e2 in neuronally differentiated cells results in different patterns of gene expression. PLoS One 2014; 9:e91742. [PMID: 24699272 PMCID: PMC3974668 DOI: 10.1371/journal.pone.0091742] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/14/2014] [Indexed: 02/01/2023] Open
Abstract
Mutations in MECP2 are responsible for the majority of Rett syndrome cases. MECP2 is a regulator of transcription, and has two isoforms, MECP2_e1 and MECP2_e2. There is accumulating evidence that MECP2_e1 is the etiologically relevant variant for Rett. In this study we aim to detect genes that are differentially transcribed in neuronal cells over-expressing either of these two MECP2 isoforms. The human neuroblastoma cell line SK-N-SH was stably infected by lentiviral vectors over-expressing MECP2_e1, MECP2_e2, or eGFP, and were then differentiated into neurons. The same lentiviral constructs were also used to infect mouse Mecp2 knockout (Mecp2tm1.1Bird) fibroblasts. RNA from these cells was used for microarray gene expression analysis. For the human neuronal cells, ∼800 genes showed >three-fold change in expression level with the MECP2_e1 construct, and ∼230 with MECP2_e2 (unpaired t-test, uncorrected p value <0.05). We used quantitative RT-PCR to verify microarray results for 41 of these genes. We found significant up-regulation of several genes resulting from over-expression of MECP2_e1 including SRPX2, NAV3, NPY1R, SYN3, and SEMA3D. DOCK8 was shown via microarray and qRT-PCR to be upregulated in both SK-N-SH cells and mouse fibroblasts. Both isoforms up-regulated GABRA2, KCNA1, FOXG1 and FOXP2. Down-regulation of expression in the presence of MECP2_e1 was seen with UNC5C and RPH3A. Understanding the biology of these differentially transcribed genes and their role in neurodevelopment may help us to understand the relative functions of the two MECP2 isoforms, and ultimately develop a better understanding of RTT etiology and determine the clinical relevance of isoform-specific mutations.
Collapse
Affiliation(s)
- Marija Orlic-Milacic
- Molecular Neuropsychiatry & Development Lab, Campbell Family Mental Health Research Institute, The Centre for Addiction & Mental Health, Toronto, Ontario, Canada
| | - Liana Kaufman
- Molecular Neuropsychiatry & Development Lab, Campbell Family Mental Health Research Institute, The Centre for Addiction & Mental Health, Toronto, Ontario, Canada
| | - Anna Mikhailov
- Molecular Neuropsychiatry & Development Lab, Campbell Family Mental Health Research Institute, The Centre for Addiction & Mental Health, Toronto, Ontario, Canada
| | - Aaron Y. L. Cheung
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Huda Mahmood
- Molecular Neuropsychiatry & Development Lab, Campbell Family Mental Health Research Institute, The Centre for Addiction & Mental Health, Toronto, Ontario, Canada
| | - James Ellis
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Peter J. Gianakopoulos
- Molecular Neuropsychiatry & Development Lab, Campbell Family Mental Health Research Institute, The Centre for Addiction & Mental Health, Toronto, Ontario, Canada
| | - Berge A. Minassian
- Program in Genetics & Genomic Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - John B. Vincent
- Molecular Neuropsychiatry & Development Lab, Campbell Family Mental Health Research Institute, The Centre for Addiction & Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
15
|
Petazzi P, Akizu N, García A, Estarás C, Martínez de Paz A, Rodríguez-Paredes M, Martínez-Balbás MA, Huertas D, Esteller M. An increase in MECP2 dosage impairs neural tube formation. Neurobiol Dis 2014; 67:49-56. [PMID: 24657916 DOI: 10.1016/j.nbd.2014.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/25/2014] [Accepted: 03/13/2014] [Indexed: 01/23/2023] Open
Abstract
Epigenetic mechanisms are fundamental for shaping the activity of the central nervous system (CNS). Methyl-CpG binding protein 2 (MECP2) acts as a bridge between methylated DNA and transcriptional effectors responsible for differentiation programs in neurons. The importance of MECP2 dosage in CNS is evident in Rett Syndrome and MECP2 duplication syndrome, which are neurodevelopmental diseases caused by loss-of-function mutations or duplication of the MECP2 gene, respectively. Although many studies have been performed on Rett syndrome models, little is known about the effects of an increase in MECP2 dosage. Herein, we demonstrate that MECP2 overexpression affects neural tube formation, leading to a decrease in neuroblast proliferation in the neural tube ventricular zone. Furthermore, an increase in MECP2 dose provokes premature differentiation of neural precursors accompanied by greater cell death, resulting in a loss of neuronal populations. Overall, our data indicate that correct MECP2 expression levels are required for proper nervous system development.
Collapse
Affiliation(s)
- Paolo Petazzi
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908L'Hospitalet, Barcelona, Catalonia, Spain
| | - Naiara Akizu
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia, Spain
| | - Alejandra García
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia, Spain
| | - Conchi Estarás
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia, Spain
| | - Alexia Martínez de Paz
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908L'Hospitalet, Barcelona, Catalonia, Spain
| | - Manuel Rodríguez-Paredes
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908L'Hospitalet, Barcelona, Catalonia, Spain
| | - Marian A Martínez-Balbás
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia, Spain
| | - Dori Huertas
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908L'Hospitalet, Barcelona, Catalonia, Spain.
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908L'Hospitalet, Barcelona, Catalonia, Spain; Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| |
Collapse
|
16
|
Abstract
Rett syndrome (RTT) is a severe and progressive neurological disorder, which mainly affects young females. Mutations of the methyl-CpG binding protein 2 (MECP2) gene are the most prevalent cause of classical RTT cases. MECP2 mutations or altered expression are also associated with a spectrum of neurodevelopmental disorders such as autism spectrum disorders with recent links to fetal alcohol spectrum disorders. Collectively, MeCP2 relation to these neurodevelopmental disorders highlights the importance of understanding the molecular mechanisms by which MeCP2 impacts brain development, mental conditions, and compromised brain function. Since MECP2 mutations were discovered to be the primary cause of RTT, a significant progress has been made in the MeCP2 research, with respect to the expression, function and regulation of MeCP2 in the brain and its contribution in RTT pathogenesis. To date, there have been intensive efforts in designing effective therapeutic strategies for RTT benefiting from mouse models and cells collected from RTT patients. Despite significant progress in MeCP2 research over the last few decades, there is still a knowledge gap between the in vitro and in vivo research findings and translating these findings into effective therapeutic interventions in human RTT patients. In this review, we will provide a synopsis of Rett syndrome as a severe neurological disorder and will discuss the role of MeCP2 in RTT pathophysiology.
Collapse
|
17
|
Yasui DH, Gonzales ML, Aflatooni JO, Crary FK, Hu DJ, Gavino BJ, Golub MS, Vincent JB, Carolyn Schanen N, Olson CO, Rastegar M, Lasalle JM. Mice with an isoform-ablating Mecp2 exon 1 mutation recapitulate the neurologic deficits of Rett syndrome. Hum Mol Genet 2013; 23:2447-58. [PMID: 24352790 DOI: 10.1093/hmg/ddt640] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mutations in MECP2 cause the neurodevelopmental disorder Rett syndrome (RTT OMIM 312750). Alternative inclusion of MECP2/Mecp2 exon 1 with exons 3 and 4 encodes MeCP2-e1 or MeCP2-e2 protein isoforms with unique amino termini. While most MECP2 mutations are located in exons 3 and 4 thus affecting both isoforms, MECP2 exon 1 mutations but not exon 2 mutations have been identified in RTT patients, suggesting that MeCP2-e1 deficiency is sufficient to cause RTT. As expected, genetic deletion of Mecp2 exons 3 and/or 4 recapitulates RTT-like neurologic defects in mice. However, Mecp2 exon 2 knockout mice have normal neurologic function. Here, a naturally occurring MECP2 exon 1 mutation is recapitulated in a mouse model by genetic engineering. A point mutation in the translational start codon of Mecp2 exon 1, transmitted through the germline, ablates MeCP2-e1 translation while preserving MeCP2-e2 production in mouse brain. The resulting MeCP2-e1 deficient mice developed forelimb stereotypy, hindlimb clasping, excessive grooming and hypo-activity prior to death between 7 and 31 weeks. MeCP2-e1 deficient mice also exhibited abnormal anxiety, sociability and ambulation. Despite MeCP2-e1 and MeCP2-e2 sharing, 96% amino acid identity, differences were identified. A fraction of phosphorylated MeCP2-e1 differed from the bulk of MeCP2 in subnuclear localization and co-factor interaction. Furthermore, MeCP2-e1 exhibited enhanced stability compared with MeCP2-e2 in neurons. Therefore, MeCP2-e1 deficient mice implicate MeCP2-e1 as the sole contributor to RTT with non-redundant functions.
Collapse
Affiliation(s)
- Dag H Yasui
- Department of Medical Microbiology and Immunology, UC Davis, Davis, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kaddoum L, Panayotis N, Mazarguil H, Giglia-Mari G, Roux JC, Joly E. Isoform-specific anti-MeCP2 antibodies confirm that expression of the e1 isoform strongly predominates in the brain. F1000Res 2013; 2:204. [PMID: 24555100 PMCID: PMC3892919 DOI: 10.12688/f1000research.2-204.v1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2013] [Indexed: 12/23/2022] Open
Abstract
Rett syndrome is a neurological disorder caused by mutations in the
MECP2 gene. MeCP2 transcripts are alternatively spliced to generate two protein isoforms (MeCP2_e1 and MeCP2_e2) that differ at their N-termini. Whilst mRNAs for both forms are expressed ubiquitously, the one for
MeCP2_e1 is more abundant than for
MeCP2_e2 in the central nervous system. In transfected cells, both protein isoforms are nuclear and colocalize with densely methylated heterochromatic foci. With a view to understanding the physiological contribution of each isoform, and their respective roles in the pathogenesis of Rett syndrome, we set out to generate isoform-specific anti-MeCP2 antibodies. To this end, we immunized rabbits against the peptides corresponding to the short amino-terminal portions that are different between the two isoforms. The polyclonal antibodies thus obtained specifically detected their respective isoforms of MeCP2 in Neuro2a (N2A) cells transfected to express either form. Both antisera showed comparable sensitivities when used for Western blot or immunofluorescence, and were highly specific for their respective isoform. When those antibodies were used on mouse tissues, specific signals were easily detected for Mecp2_e1, whilst Mecp2_e2 was very difficult to detect by Western blot, and even more so by immunofluorescence. Our results thus suggest that brain cells express low amounts of the Mecp2-e2 isoform. Our findings are compatible with recent reports showing that MeCP2_e2 is dispensable for healthy brain function, and that it may be involved in the regulation of neuronal apoptosis and embryonic development.
Collapse
Affiliation(s)
- Lara Kaddoum
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, F-31077, France ; Université de Toulouse, UPS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, F-31077, France
| | - Nicolas Panayotis
- INSERM U910, Unité de Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine de La Timone, Marseille, F-13385, France ; Aix-Marseille Université, Faculté de Médecine de La Timone, Marseille, F-13385, France ; Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Honoré Mazarguil
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, F-31077, France ; Université de Toulouse, UPS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, F-31077, France
| | - Giuseppina Giglia-Mari
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, F-31077, France ; Université de Toulouse, UPS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, F-31077, France
| | - Jean Christophe Roux
- INSERM U910, Unité de Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine de La Timone, Marseille, F-13385, France ; Aix-Marseille Université, Faculté de Médecine de La Timone, Marseille, F-13385, France
| | - Etienne Joly
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, F-31077, France ; Université de Toulouse, UPS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, F-31077, France
| |
Collapse
|
19
|
Sheikh TI, Mittal K, Willis MJ, Vincent JB. A synonymous change, p.Gly16Gly in MECP2 Exon 1, causes a cryptic splice event in a Rett syndrome patient. Orphanet J Rare Dis 2013; 8:108. [PMID: 23866855 PMCID: PMC3729535 DOI: 10.1186/1750-1172-8-108] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/12/2013] [Indexed: 12/01/2022] Open
Abstract
Background Mutations in MECP2 are the main cause of Rett Syndrome. To date, no pathogenic synonymous MECP2 mutation has yet been identified. Here, we investigated a de novo synonymous variant c.48C>T (p.Gly16Gly) identified in a girl presenting with a typical RTT phenotype. Methods In silico analyses to predict the effects of sequence variation on mRNA splicing were employed, followed by sequencing and quantification of lymphocyte mRNAs from the subject for splice variants MECP2_E1 and MECP2_E2. Results Analysis of mRNA confirmed predictions that this synonymous mutation activates a splice-donor site at an early position in exon 1, leading to a deletion (r.[=, 48_63del]), codon frameshift and premature stop codon (p.Glu17Lysfs*16) for MECP2_E1. For MECP2_E2, the same premature splice site is used, but as this is located in the 5′untranslated region, no effect on the amino acid sequence is predicted. Quantitative analysis that specifically measured this cryptic splice variant also revealed a significant decrease in the quantity of the correct MECP2_E1 transcript, which indicates that this is the etiologically significant mutation in this patient. Conclusion These findings suggest that synonymous variants of MECP2 as well as other known disease genes—and de novo variants in particular— should be re-evaluated for potential effects on splicing.
Collapse
Affiliation(s)
- Taimoor I Sheikh
- Molecular Neuropsychiatry & Development Lab, Campbell Family Mental Health Research Institute, Centre for Addiction & Mental Health, Toronto, Canada
| | | | | | | |
Collapse
|
20
|
Zachariah RM, Olson CO, Ezeonwuka C, Rastegar M. Novel MeCP2 isoform-specific antibody reveals the endogenous MeCP2E1 expression in murine brain, primary neurons and astrocytes. PLoS One 2012. [PMID: 23185431 PMCID: PMC3501454 DOI: 10.1371/journal.pone.0049763] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rett Syndrome (RTT) is a severe neurological disorder in young females, and is caused by mutations in the X-linked MECP2 gene. MECP2/Mecp2 gene encodes for two protein isoforms; MeCP2E1 and MeCP2E2 that are identical except for the N-terminus region of the protein. In brain, MECP2E1 transcripts are 10X higher, and MeCP2E1 is suggested to be the relevant isoform for RTT. However, due to the unavailability of MeCP2 isoform-specific antibodies, the endogenous expression pattern of MeCP2E1 is unknown. To gain insight into the expression of MeCP2E1 in brain, we have developed an anti-MeCP2E1 antibody and validated its specificity in cells exogenously expressing individual MeCP2 isoforms. This antibody does not show any cross-reactivity with MeCP2E2 and detects endogenous MeCP2E1 in mice brain, with no signal in Mecp2tm1.1Bird y/− null mice. Additionally, we show the endogenous MeCP2E1 expression throughout different brain regions in adult mice, and demonstrate its highest expression in the brain cortex. Our results also indicate that MeCP2E1 is highly expressed in primary neurons, as compared to primary astrocytes. This is the first report of the endogenous MeCP2E1 expression at the protein levels, providing novel avenues for understanding different aspects of MeCP2 function.
Collapse
Affiliation(s)
- Robby M. Zachariah
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Carl O. Olson
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Chinelo Ezeonwuka
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mojgan Rastegar
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|