1
|
Kanarik M, Grimm O, Mota NR, Reif A, Harro J. ADHD co-morbidities: A review of implication of gene × environment effects with dopamine-related genes. Neurosci Biobehav Rev 2022; 139:104757. [PMID: 35777579 DOI: 10.1016/j.neubiorev.2022.104757] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 02/07/2023]
Abstract
ADHD is a major burden in adulthood, where co-morbid conditions such as depression, substance use disorder and obesity often dominate the clinical picture. ADHD has substantial shared heritability with other mental disorders, contributing to comorbidity. However, environmental risk factors exist but their interaction with genetic makeup, especially in relation to comorbid disorders, remains elusive. This review for the first time summarizes present knowledge on gene x environment (GxE) interactions regarding the dopamine system. Hitherto, mainly candidate (GxE) studies were performed, focusing on the genes DRD4, DAT1 and MAOA. Some evidence suggest that the variable number tandem repeats in DRD4 and MAOA may mediate GxE interactions in ADHD generally, and comorbid conditions specifically. Nevertheless, even for these genes, common variants are bound to suggest risk only in the context of gender and specific environments. For other polymorphisms, evidence is contradictory and less convincing. Particularly lacking are longitudinal studies testing the interaction of well-defined environmental with polygenic risk scores reflecting the dopamine system in its entirety.
Collapse
Affiliation(s)
- Margus Kanarik
- Chair of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Ravila 14A Chemicum, 50411 Tartu, Estonia
| | - Oliver Grimm
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Nina Roth Mota
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Jaanus Harro
- Chair of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Ravila 14A Chemicum, 50411 Tartu, Estonia; Psychiatry Clinic, North Estonia Medical Centre, Paldiski Road 52, 10614 Tallinn, Estonia.
| |
Collapse
|
2
|
Park CI, Kim HW, Hwang SS, Kang JI, Kim SJ. Influence of dopamine-related genes on craving, impulsivity, and aggressiveness in Korean males with alcohol use disorder. Eur Arch Psychiatry Clin Neurosci 2021; 271:865-872. [PMID: 31559529 DOI: 10.1007/s00406-019-01072-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/19/2019] [Indexed: 12/22/2022]
Abstract
Dopamine is a major neuromodulator that is acutely involved in various cognitive processes, reward-motivated behaviors, and impulsivity. Abnormality in dopaminergic neurotransmission is implicated in the pathophysiology of alcohol use disorder (AUD). The present study examined the genetic influence of dopamine system on problematic drinking, impulsivity, and aggressiveness in a Korean male population with AUD. Five single nucleotide polymorphisms (SNPs) (rs4532 in DRD1, rs2283265 in DRD2, rs6280 in DRD3, rs1800497 in ANKK1, and rs4680 in COMT) and a variable number of tandem repeats (VNTRs) in DAT1 in 295 male patients with AUD were genotyped. For AUD-related clinical characteristics, the Alcohol Use Disorders Identification Test and the Obsessive-Compulsive Drinking Scale (OCDS) were used to assess the severity of hazardous drinking and craving symptoms, respectively. Participants also completed the UPPS-P Impulsive Behavior Scale (UPPS-P) and Buss-Perry Aggression Questionnaire (BPAQ). Analyses were performed using R package SNPassoc; statistical significance was set as p < 0.0083 after Bonferroni correction. A significant association was detected between DRD3 SNP rs6280 and OCDS scores. In regard to impulsivity and aggressiveness, rs4532 of DRD1 was significantly associated with UPPS-P score. Also, rs4532 demonstrated a nominally significant association with BPAQ score, although it did not reach statistical significance after correction for multiple comparisons. Results of this study support the idea that genetic variations in the dopamine system may contribute to alcohol cravings and impulsivity in patients with AUD.
Collapse
Affiliation(s)
- Chun Il Park
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hae Won Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medical Education, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Syung Shick Hwang
- Graduate School, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jee In Kang
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Se Joo Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Stolf AR, Cupertino RB, Müller D, Sanvicente-Vieira B, Roman T, Vitola ES, Grevet EH, von Diemen L, Kessler FHP, Grassi-Oliveira R, Bau CHD, Rovaris DL, Pechansky F, Schuch JB. Effects of DRD2 splicing-regulatory polymorphism and DRD4 48 bp VNTR on crack cocaine addiction. J Neural Transm (Vienna) 2018; 126:193-199. [PMID: 30367264 DOI: 10.1007/s00702-018-1946-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/17/2018] [Indexed: 11/24/2022]
Abstract
There is evidence that dopamine receptors D2 (DRD2) and D4 (DRD4) polymorphisms may influence substance use disorders (SUD) susceptibility both individually and through their influence in the formation of DRD2-DRD4 heteromers. The dopaminergic role on the vulnerability to addiction appears to be influenced by sex. A cross-sectional study with 307 crack cocaine addicts and 770 controls was conducted. The influence of DRD2 rs2283265 and DRD4 48 bp VNTR in exon 3 variants, as well as their interaction on crack cocaine addiction susceptibility and severity were evaluated in women and men separately. An association between the DRD2 T allele and crack cocaine addiction was found in women. In this same group, interaction analysis demonstrated that the presence of DRD2-T allele and concomitant absence of DRD4-7R allele were associated with risk for crack cocaine addiction. No influence of DRD2 and DRD4 variants was observed in men regarding addiction severity. This study reinforces the role of dopaminergic genes in externalizing behaviors, especially the influence of DRD2-DRD4 interaction on SUD. This is the fourth sample that independently associated the DRD2-DRD4 interaction with SUD itself or related disorders. In addition, our findings point out to a potential difference of dopaminergic neurotransmission across sex influencing addiction susceptibility.
Collapse
Affiliation(s)
- Anderson R Stolf
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Renata B Cupertino
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diana Müller
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Breno Sanvicente-Vieira
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tatiana Roman
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo S Vitola
- ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Eugenio H Grevet
- ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Lisia von Diemen
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Felix H P Kessler
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claiton H D Bau
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Diego L Rovaris
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Flavio Pechansky
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jaqueline B Schuch
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Laboratory of Immunosenescence, Graduate Program in Biomedical Gerontology, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga, 6681, prédio 81, Porto Alegre, Rio Grande do Sul, CEP 90619-900, Brazil.
| |
Collapse
|
4
|
Arns M, Swanson JM, Arnold LE. ADHD Prevalence: Altitude or Sunlight? Better Understanding the Interrelations of Dopamine and the Circadian System. J Atten Disord 2018; 22:163-166. [PMID: 26341278 DOI: 10.1177/1087054715599574] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Martijn Arns
- 1 Research Institute Brainclinics, Nijmegen, The Netherlands.,2 Utrecht University, The Netherlands.,3 neuroCare group, Nijmegen, The Netherlands
| | | | | |
Collapse
|
5
|
Dick DM, Adkins AE, Kuo SIC. Genetic influences on adolescent behavior. Neurosci Biobehav Rev 2016; 70:198-205. [PMID: 27422449 PMCID: PMC5074858 DOI: 10.1016/j.neubiorev.2016.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/30/2016] [Accepted: 07/06/2016] [Indexed: 11/13/2022]
Abstract
Adolescence is a transitional, developmental phase with marked shifts in behavior, particularly as related to risk-taking and experimentation. Genetic influences on adolescent behavior also show marked changes across this developmental period; in fact, adolescence showcases the dynamic nature of genetic influences on human behavior. Using the twin studies literature on alcohol use and misuse, we highlight several principles of genetic influence on adolescent behavior. We illustrate how genetic influences change (increase) across adolescence, as individuals have more freedom to express their predispositions and to shape their social worlds. We show how there are multiple genetic pathways to risk, and how the environment can moderate the importance of genetic predispositions. Finally, we review the literature aimed at identifying specific genes involved in adolescent behavior and understanding how identified genes impact adolescent outcomes. Ultimately, understanding how genetic predispositions combine with environmental influences to impact pathways of risk and resilience should be translated into improved prevention and intervention efforts; this remains a rich area for future research.
Collapse
Affiliation(s)
- Danielle M Dick
- Department of Psychology, Virginia Commonwealth University, 806 W. Franklin Street, Richmond, VA 23284, United States; Department of African American Studies, Virginia Commonwealth University, 816 W. Franklin Street, Richmond, VA 23284, United States; Department of Human & Molecular Genetics, Virginia Commonwealth University, 1101 E. Marshall Street, Richmond, VA 23298, United States; College Behavioral and Emotional Health Institute, Virginia Commonwealth University, 816 W. Franklin Street, Richmond, VA 23284, United States.
| | - Amy E Adkins
- Department of Psychology, Virginia Commonwealth University, 806 W. Franklin Street, Richmond, VA 23284, United States; College Behavioral and Emotional Health Institute, Virginia Commonwealth University, 816 W. Franklin Street, Richmond, VA 23284, United States
| | - Sally I-Chun Kuo
- Department of Psychology, Virginia Commonwealth University, 806 W. Franklin Street, Richmond, VA 23284, United States
| |
Collapse
|
6
|
Breastfeeding duration and offspring conduct problems: The moderating role of genetic risk. Soc Sci Med 2016; 166:128-136. [PMID: 27551827 DOI: 10.1016/j.socscimed.2016.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 08/01/2016] [Accepted: 08/08/2016] [Indexed: 01/12/2023]
Abstract
RATIONALE A sizable body of research has examined associations between breastfeeding and various facets of offspring development, including childhood behavioral problems. Notwithstanding the number of studies on the topic, breastfeeding has not consistently been linked to child misbehaviors. Moreover, empirical examinations of whether breastfeeding is differentially predictive of conduct problems among individuals with varying degrees of genetic risk are lacking. OBJECTIVE The present study examines whether a short duration of breastfeeding and genetic risk interact to predict conduct problems during childhood. METHODS A genetically informative design is employed to examine a subsample of twins from the Early Childhood Longitudinal Study: Birth Cohort (ECLS-B), a nationally representative sample of American children. RESULTS The findings suggest that a shorter duration of breastfeeding only enhances the risk of offspring conduct problems among children who possess high levels of genetic risk. Conversely, longer breastfeeding durations were found to protect against childhood behavioral problems when genetic risk was high. CONCLUSIONS Indicators of genetic risk may help to distinguish individuals whose behavioral development is most sensitive to the duration of breastfeeding. Future research should seek to replicate and extend these findings by considering genetic factors as potential markers of differential susceptibility to breastfeeding duration.
Collapse
|
7
|
Stogner JM, Gibson CL. Genetic Modification of the Relationship between Parental Rejection and Adolescent Alcohol Use. Alcohol Alcohol 2016; 51:442-9. [PMID: 26755638 DOI: 10.1093/alcalc/agv136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 12/10/2015] [Indexed: 11/12/2022] Open
Abstract
AIMS Parenting practices are associated with adolescents' alcohol consumption, however not all youth respond similarly to challenging family situations and harsh environments. This study examines the relationship between perceived parental rejection and adolescent alcohol use, and specifically evaluates whether youth who possess greater genetic sensitivity to their environment are more susceptible to negative parental relationships. METHODS Analyzing data from the National Longitudinal Study of Adolescent Health, we estimated a series of regression models predicting alcohol use during adolescence. A multiplicative interaction term between parental rejection and a genetic index was constructed to evaluate this potential gene-environment interaction. RESULTS Results from logistic regression analyses show a statistically significant gene-environment interaction predicting alcohol use. The relationship between parental rejection and alcohol use was moderated by the genetic index, indicating that adolescents possessing more 'risk alleles' for five candidate genes were affected more by stressful parental relationships. CONCLUSIONS Feelings of parental rejection appear to influence the alcohol use decisions of youth, but they do not do so equally for all. Higher scores on the constructed genetic sensitivity measure are related to increased susceptibility to negative parental relationships.
Collapse
Affiliation(s)
- John M Stogner
- Department of Criminal Justice and Criminology, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Chris L Gibson
- Department of Sociology and Criminology & Law, University of Florida, PO Box 117330, Gainesville, FL 32611-7330, USA
| |
Collapse
|
8
|
Mota NR, Rovaris DL, Kappel DB, Picon FA, Vitola ES, Salgado CAI, Karam RG, Rohde LA, Grevet EH, Bau CHD. NCAM1-TTC12-ANKK1-DRD2 gene cluster and the clinical and genetic heterogeneity of adults with ADHD. Am J Med Genet B Neuropsychiatr Genet 2015; 168:433-444. [PMID: 25989041 DOI: 10.1002/ajmg.b.32317] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/07/2015] [Indexed: 12/23/2022]
Abstract
Dysfunctions of the dopaminergic system have been implicated on the etiology of Attention Deficit/Hyperactivity Disorder (ADHD). Meta-analyses addressing the association of the dopamine receptor D2 (DRD2) gene and ADHD were inconclusive due to excessive heterogeneity across studies. Both the great phenotypic heterogeneity of ADHD and the complexity of the genomic region where DRD2 is located could contribute to the inconsistent findings. Most previous DRD2 studies focused on the well-known Taq1A (rs1800497) SNP, which is actually placed in a neighbor gene (ANKK1). These two genes, together with NCAM1 and TTC12, form the NTAD gene cluster on Chr11q22-23. In order to address the reasons for the high heterogeneity previously reported on DRD2 effects on ADHD, this study investigates the role of NTAD variants on ADHD susceptibility in adults and on the modulation of comorbidity and personality profiles in these patients. Functional polymorphisms from NTAD were analyzed, both individually and in haplotypes, on a sample of 520 adults with ADHD and 630 non-ADHD controls. No direct association of NTAD variants with ADHD susceptibility itself was observed. However, different NTAD polymorphisms and haplotypes were associated to various phenotypes relevant to the clinical heterogeneity of ADHD, including Major Depressive Disorder, Generalized Anxiety Disorder, and Harm Avoidance and Persistence temperament scores. Therefore, these findings represent a possible explanation for the multiple conflicting findings regarding polymorphisms in this genomic region in psychiatry. The NTAD cluster may comprise a variety of independent molecular influences on various brain and behavior characteristics eventually associated with ADHD comorbidities and personality traits. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nina R Mota
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,ADHD Outpatient Program-Adult Division, Hospital de Clínicas, de Porto Alegre, Porto Alegre, Brazil
| | - Diego L Rovaris
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,ADHD Outpatient Program-Adult Division, Hospital de Clínicas, de Porto Alegre, Porto Alegre, Brazil
| | - Djenifer B Kappel
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,ADHD Outpatient Program-Adult Division, Hospital de Clínicas, de Porto Alegre, Porto Alegre, Brazil
| | - Felipe A Picon
- ADHD Outpatient Program-Adult Division, Hospital de Clínicas, de Porto Alegre, Porto Alegre, Brazil
| | - Eduardo S Vitola
- ADHD Outpatient Program-Adult Division, Hospital de Clínicas, de Porto Alegre, Porto Alegre, Brazil
| | - Carlos A I Salgado
- ADHD Outpatient Program-Adult Division, Hospital de Clínicas, de Porto Alegre, Porto Alegre, Brazil
| | - Rafael G Karam
- ADHD Outpatient Program-Adult Division, Hospital de Clínicas, de Porto Alegre, Porto Alegre, Brazil
| | - Luis A Rohde
- ADHD Outpatient Program-Adult Division, Hospital de Clínicas, de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eugenio H Grevet
- ADHD Outpatient Program-Adult Division, Hospital de Clínicas, de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Claiton H D Bau
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,ADHD Outpatient Program-Adult Division, Hospital de Clínicas, de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
9
|
Thanos PK, Roushdy K, Sarwar Z, Rice O, Ashby CR, Grandy DK. The effect of dopamine D4 receptor density on novelty seeking, activity, social interaction, and alcohol binge drinking in adult mice. Synapse 2015; 69:356-64. [PMID: 25914336 DOI: 10.1002/syn.21822] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/02/2015] [Accepted: 03/13/2015] [Indexed: 01/11/2023]
Abstract
The dopamine D4 receptor has been postulated to play a role in the pathophysiology of alcoholism. This study examined how varying levels of D4 expression and their associated behaviors in male and female mice correlate with future alcohol intake. We hypothesized that: (1) mice with low (Drd4(+/-) ) or deficient (Drd4(-/-) ) in D4 receptors would show enhanced ethanol consumption compared with control mice (Drd4(+/+) ), and (2) a specific phenotype in these mice is associated with future vulnerability for alcohol consumption. Individually housed mice were allowed free access to ethanol (20% vv) in the dark (DID). The behaviors measured in male and female mice were: novel object recognition, open-field locomotor activity, and social interaction. Correlation analyses showed that in male Drd4(-/-) mice (relative to Drd4(+/+) controls), anxiolytic behavior was significantly correlated with increased alcohol consumption. Also, in male Drd4(-/-) mice, there was a significant positive correlation between increased exploratory behavior and increased alcohol consumption. These findings were not observed in females. In conclusion, our data suggest that the dopamine D4 receptor gene has an important role in increased exploratory and anxiolytic behavior only in males and these behaviors were positively correlated with increased alcohol consumption. This interaction between sex hormones and dopamine D4 receptor genotype/function predicting future alcohol abuse and correlation with anxiolytic and exploratory behavior in male mice could have important implications for better understanding of vulnerabilities associated with addiction.
Collapse
Affiliation(s)
- Panayotis K Thanos
- Department of Psychology, Behavioral Neuropharmacology and Neuroimaging Lab, Stony Brook University, Stony Brook, New York
| | - Kareema Roushdy
- Department of Psychology, Behavioral Neuropharmacology and Neuroimaging Lab, Stony Brook University, Stony Brook, New York
| | - Zehan Sarwar
- Department of Psychology, Behavioral Neuropharmacology and Neuroimaging Lab, Stony Brook University, Stony Brook, New York
| | - Onarae Rice
- Department of Psychology, Furman University, Greenville, South Carolina
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. Johns University, Queens, New York
| | - David K Grandy
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon.,Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
10
|
Rovaris DL, Mota NR, da Silva BS, Girardi P, Victor MM, Grevet EH, Bau CH, Contini V. Should we keep on? Looking into pharmacogenomics of ADHD in adulthood from a different perspective. Pharmacogenomics 2015; 15:1365-81. [PMID: 25155937 DOI: 10.2217/pgs.14.95] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A considerable proportion of adults with attention-deficit/hyperactivity disorder (ADHD) do not respond to the treatment with methylphenidate. This scenario could be due to inherited interindividual differences that may alter pharmacologic treatment response. In this sense, in 2012 we conducted a systematic search on PUBMED-indexed literature for articles containing information about pharmacogenomics of ADHD in adults. Five studies were found on methylphenidate pharmacogenomics and the only significant association was reported by one particular study. However, this single association with the SLC6A3 gene was not replicated in two subsequent reports. In the present review, although we could not find additional pharmacogenomics studies, we discuss these up-to-date findings and suggest new approaches for this field. Additionally, using systeomic-oriented databases, we provide a broad picture of new possible candidate genes as well as potential gene-gene interactions to be investigated in pharmacogenomics of persistent ADHD.
Collapse
Affiliation(s)
- Diego L Rovaris
- Departament of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Alcohol use and alcohol use disorders are substantially heritable. Variants in genes coding for alcohol metabolic enzymes have long been known to influence consumption. More recent studies in family-based samples have implicated GABRA2, nicotinic receptor genes such as CHRNB3, and a number of other specific single genes as associated with alcohol use disorders. The growing use of genetic analyses, in particular studies using polygenic risk scores; neurobiologic pathways; and methods for quantifying gene × gene and gene × environment interactions have also contributed to an evolving understanding of the genetic architecture of alcohol use disorders. Additionally, the study of behavioral traits associated with alcohol dependence such as impulsivity and sensation seeking, and the influences of demographic factors (i.e., sex and ethnicity) have significantly enhanced the genetics of alcoholism literature. This article provides a brief overview of the current topically relevant findings in the field to date and includes areas of research still requiring attention.
Collapse
|