1
|
Aladia AH, Hamdan S, Alkheder A. First documented case of Smith-Lemli-Opitz syndrome in Syria: clinical presentation, diagnosis, and experimental management with simvastatin. Oxf Med Case Reports 2024; 2024:omae129. [PMID: 39575090 PMCID: PMC11576548 DOI: 10.1093/omcr/omae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/16/2024] [Accepted: 08/25/2024] [Indexed: 11/24/2024] Open
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is a rare genetic disorder that affects cholesterol synthesis and causes various physical and mental abnormalities. The case is a 25-day-old male infant who presented with multiple congenital anomalies, such as microcephaly, facial dysmorphism, syndactyly, hypospadias, and other organ malformations. He also had severe vomiting, feeding difficulty, irritability, dehydration, and hyponatremia. Laboratory tests showed low serum cholesterol, in addition to genetic tests, confirming the diagnosis of SLOS. The infant was treated with simvastatin, which improved his irritability and was well tolerated. The paper discusses the clinical features, diagnosis, and management of SLOS, and highlights the importance of early recognition and intervention for this rare case. It is also considered the first documented case in Syria.
Collapse
Affiliation(s)
- Alwa Hussien Aladia
- Department of Pediatric, Children University Hospital, Faculty of Medicine, Damascus University, Damascus, Syria
- Department of Pediatric, Syrian Mouasat Association Hospital, Damascus, Syria
- Faculty of Medicine, Al- Baath University, Homs, Syria
| | - Samar Hamdan
- Department of Pediatric, Children University Hospital, Faculty of Medicine, Damascus University, Damascus, Syria
- Faculty of Medicine, Tishreen University, Lattakia, Syria
| | - Ahmad Alkheder
- Department of Otorhinolaryngology, Al Mouwasat University Hospital, Faculty of Medicine, Damascus University, Damascus, Syria
- Faculty of Medicine, Syrian Private University, Damascus, Syria
| |
Collapse
|
2
|
Ramachandra Rao S, Fliesler SJ. Bottlenecks in the Investigation of Retinal Sterol Homeostasis. Biomolecules 2024; 14:341. [PMID: 38540760 PMCID: PMC10968604 DOI: 10.3390/biom14030341] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 01/16/2025] Open
Abstract
Sterol homeostasis in mammalian cells and tissues involves balancing three fundamental processes: de novo sterol biosynthesis; sterol import (e.g., from blood-borne lipoproteins); and sterol export. In complex tissues, composed of multiple different cell types (such as the retina), import and export also may involve intratissue, intercellular sterol exchange. Disruption of any of these processes can result in pathologies that impact the normal structure and function of the retina. Here, we provide a brief overview of what is known currently about sterol homeostasis in the vertebrate retina and offer a proposed path for future experimental work to further our understanding of these processes, with relevance to the development of novel therapeutic interventions for human diseases involving defective sterol homeostasis.
Collapse
Affiliation(s)
- Sriganesh Ramachandra Rao
- Department of Ophthalmology (Ross Eye Institute), Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA;
| | - Steven J. Fliesler
- Department of Ophthalmology (Ross Eye Institute), Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA;
- Department of Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Research Service, VA Western New York Healthcare System, Buffalo, NY 14215, USA
| |
Collapse
|
3
|
Elias ER, Orth LE, Li A, Xu L, Jones SM, Rizzo WB. Cholic acid increases plasma cholesterol in Smith-Lemli-Opitz syndrome: A pilot study. Mol Genet Metab Rep 2024; 38:101030. [PMID: 38077958 PMCID: PMC10698565 DOI: 10.1016/j.ymgmr.2023.101030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 02/12/2024] Open
Abstract
Background Smith-Lemli-Opitz syndrome (SLOS) is an inherited disorder of cholesterol biosynthesis associated with congenital malformations, growth delay, intellectual disability and behavior problems. SLOS is caused by bi-allelic mutations in DHCR7, which lead to reduced activity of 7-dehydrocholesterol reductase that catalyzes the last step in cholesterol biosynthesis. Symptoms of SLOS are thought to be due to cholesterol deficiency and accumulation of its precursor 7-dehydrocholesterol (7-DHC) and 8-dehydrocholesterol (8-DHC), and toxic oxysterols. Therapy for SLOS often includes dietary cholesterol supplementation, but lipids are poorly absorbed from the diet, possibly due to impaired bile acid synthesis. We hypothesized that bile acid supplementation with cholic acid would improve dietary cholesterol absorption and raise plasma cholesterol levels. Methods Twelve SLOS subjects (10 M, 2F, ages 2-27 years) who had plasma cholesterol ≤125 mg/dL were treated with cholic acid (10 mg/kg/day) divided twice daily for 2 months. Plasma cholesterol, 7-DHC and 8-DHC were measured by GC-MS. Oxysterols were measured by ultra-high-performance LC-MS/MS. Data were analyzed using paired t-tests. Results At baseline, plasma cholesterol was 75 ± 24 mg/dL (mean ± SD; range 43-125, n = 12). After 2 months on cholic acid, mean plasma cholesterol increased to 97 ± 29 mg/dL (p = 0.011). Eleven of 12 subjects showed an increase in plasma cholesterol that varied from 3.8% to 85.7% (mean 38.7 ± 23.3%). 7-Hydroxycholesterol decreased by 20.6% on average (p = 0.013) but no significant changes were seen in 7-DHC or 8-DHC. Mean body weight tended to increase (3.6% p = 0.069). Subjects tolerated cholic acid well and experienced no drug-related adverse events. Conclusions In this pilot study, cholic acid supplementation was well tolerated and safe and resulted in an increase in plasma cholesterol in most SLOS subjects. Further controlled longitudinal studies are needed to look for the sustainability of the biochemical effect and possible clinical benefits.
Collapse
Affiliation(s)
- Ellen R. Elias
- Department of Pediatrics, Children's Hospital Colorado, Aurora, CO, USA
| | - Lucas E. Orth
- Department of Pharmacy, Children's Hospital Colorado, Aurora, CO, USA
| | - Amy Li
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Sara M. Jones
- Department of Pediatrics and Child Health Research Institute, University of Nebraska Medical Center and Children's Hospital and Medical Center, Omaha, NE, USA
| | - William B. Rizzo
- Department of Pediatrics and Child Health Research Institute, University of Nebraska Medical Center and Children's Hospital and Medical Center, Omaha, NE, USA
| |
Collapse
|
4
|
Holm A, Graus MS, Wylie-Sears J, Borgelt L, Heng Tan JW, Nasim S, Chung L, Jain A, Sun M, Sun L, Brouillard P, Lekwuttikarn R, Kozakewich H, Qi JY, Teng JC, Mulliken JB, Vikkula M, Francois M, Bischoff J. An endothelial SOX18-mevalonate pathway axis enables repurposing of statins for infantile hemangioma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577829. [PMID: 39026886 PMCID: PMC11257613 DOI: 10.1101/2024.01.29.577829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Infantile hemangioma (IH) is the most common tumor in children and a paradigm for pathological vasculogenesis, angiogenesis and regression. Propranolol is the mainstay of treatment for IH. It inhibits hemangioma vessel formation via a β-adrenergic receptor independent off-target effect of its R(+) enantiomer on the endothelial specific transcription factor sex-determining region Y (SRY) box transcription factor 18 (SOX18). Transcriptomic profiling of patient-derived hemangioma stem cells uncovered the mevalonate pathway (MVP) as a target of R(+) propranolol. Loss of SOX18 function confirmed R(+) propranolol mode of action on the MVP. Functional validation in preclinical IH models revealed that statins - targeting the MVP - are potent inhibitors of hemangioma vessel formation. We propose a novel SOX18-MVP-axis as a central regulator of IH pathogenesis and suggest statin repurposing to treat IH. Our findings reveal novel pleiotropic effects of beta-blockers and statins acting on the SOX18-MVP axis to disable an endothelial specific program in IH, which may impact other scenarios involving pathological vasculogenesis and angiogenesis. Graphical abstract
Collapse
|
5
|
Dave AM, Porter NA, Korade Z, Peeples ES. Effects of Neonatal Hypoxic-Ischemic Injury on Brain Sterol Synthesis and Metabolism. Neuropediatrics 2024; 55:23-31. [PMID: 37871611 DOI: 10.1055/s-0043-1776286] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
BACKGROUND Neonatal hypoxic-ischemic brain injury (HIBI) results from disruptions to blood supply and oxygen in the perinatal brain. The goal of this study was to measure brain sterol metabolites and plasma oxysterols after injury in a neonatal HIBI mouse model to assess for potential therapeutic targets in the brain biochemistry as well as potential circulating diagnostic biomarkers. METHODS Postnatal day 9 CD1-IGS mouse pups were randomized to HIBI induced by carotid artery ligation followed by 30 minutes at 8% oxygen or to sham surgery and normoxia. Brain tissue was collected for sterol analysis by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Plasma was collected for oxysterol analysis by LC-MS/MS. RESULTS There were minimal changes in brain sterol concentrations in the first 72 hours after HIBI. In severely injured brains, there was a significant increase in desmosterol, 7-DHC, 8-DHC, and cholesterol 24 hours after injury in the ipsilateral tissue. Lanosterol, 24-dehydrolathosterol, and 14-dehydrozymostenol decreased in plasma 24 hours after injury. Severe neonatal HIBI was associated with increased cholesterol and sterol precursors in the cortex at 24 hours after injury. CONCLUSIONS Differences in plasma oxysterols were seen at 24 hours but were not present at 30 minutes after injury, suggesting that these sterol intermediates would be of little value as early diagnostic biomarkers.
Collapse
Affiliation(s)
- Amanda M Dave
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Department of Pediatrics, Children's Hospital and Medical Center, Omaha, Nebraska, United States
- Child Health Research Institute, Omaha, Nebraska, United States
| | - Ned A Porter
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States
| | - Zeljka Korade
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Child Health Research Institute, Omaha, Nebraska, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Eric S Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Department of Pediatrics, Children's Hospital and Medical Center, Omaha, Nebraska, United States
- Child Health Research Institute, Omaha, Nebraska, United States
| |
Collapse
|
6
|
Navyasree KV, Ramesh ST, Umasankar PK. Cholesterol regulates insulin-induced mTORC1 signaling. J Cell Sci 2023; 136:jcs261402. [PMID: 37921368 DOI: 10.1242/jcs.261402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023] Open
Abstract
The rapid activation of the crucial kinase mechanistic target of rapamycin complex-1 (mTORC1) by insulin is key to cell growth in mammals, but the regulatory factors remain unclear. Here, we demonstrate that cholesterol plays a crucial role in the regulation of insulin-stimulated mTORC1 signaling. The rapid progression of insulin-induced mTORC1 signaling declines in sterol-depleted cells and restores in cholesterol-repleted cells. In insulin-stimulated cells, cholesterol promotes recruitment of mTORC1 onto lysosomes without affecting insulin-induced dissociation of the TSC complex from lysosomes, thereby enabling complete activation of mTORC1. We also show that under prolonged starvation conditions, cholesterol coordinates with autophagy to support mTORC1 reactivation on lysosomes thereby restoring insulin-responsive mTORC1 signaling. Furthermore, we identify that fibroblasts from individuals with Smith-Lemli-Opitz Syndrome (SLOS) and model HeLa-SLOS cells, which are deficient in cholesterol biosynthesis, exhibit defects in the insulin-mTORC1 growth axis. These defects are rescued by supplementation of exogenous cholesterol or by expression of constitutively active Rag GTPase, a downstream activator of mTORC1. Overall, our findings propose novel signal integration mechanisms to achieve spatial and temporal control of mTORC1-dependent growth signaling and their aberrations in disease.
Collapse
Affiliation(s)
- Kolaparamba V Navyasree
- Intracellular Trafficking Laboratory, Transdisciplinary Biology Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695014, India
- PhD Program, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shikha T Ramesh
- Intracellular Trafficking Laboratory, Transdisciplinary Biology Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695014, India
- PhD Program, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Perunthottathu K Umasankar
- Intracellular Trafficking Laboratory, Transdisciplinary Biology Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695014, India
| |
Collapse
|
7
|
Tkemaladze T, Bratland E, Bregvadze K, Shatirishvili T, Tatishvili N, Abzianidze E, Houge G, Douzgou S. MSMO1 deficiency: a potentially partially treatable, ultrarare neurodevelopmental disorder with psoriasiform dermatitis, alopecia and polydactyly. Clin Dysmorphol 2023; 32:97-105. [PMID: 37195326 DOI: 10.1097/mcd.0000000000000461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
MSMO1 deficiency (OMIM #616834) is an ultrarare autosomal recessive disorder of distal cholesterol metabolism with only five cases reported to date. The disorder is caused by missense variants in the MSMO1 gene encoding methylsterol monooxygenase 1, leading to the accumulation of methylsterols. Clinically, MSMO1 deficiency is characterized by growth and developmental delay, often in association with congenital cataracts, microcephaly, psoriasiform dermatitis and immune dysfunction. Treatment with oral and topical cholesterol supplements and statins was reported to improve the biochemical, immunological, and cutaneous findings, supporting a potential treatment following the precision diagnosis of MSMO1 deficiency. We describe two siblings from a consanguineous family presenting with novel clinical features of polydactyly, alopecia and spasticity. Whole-exome sequencing revealed a novel, homozygous c.548A > C, p.(Glu183Ala) variant. Based on previously published treatment algorithms, we initiated a modified dosage regime with systemic cholesterol supplementation, statins and bile acid along with topical application of a cholesterol/statin formulation. This resulted in a marked improvement of psoriasiform dermatitis and some hair growth.
Collapse
Affiliation(s)
- Tinatin Tkemaladze
- Department of Molecular and Medical Genetics, Tbilisi State Medical University
- Department of Child Neurology, M. Iashvili Children's Central Hospital, Tbilisi, Georgia
| | - Eirik Bratland
- Department of Medical Genetics, Haukeland University Hospital
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kakha Bregvadze
- Department of Molecular and Medical Genetics, Tbilisi State Medical University
| | - Teona Shatirishvili
- Department of Child Neurology, M. Iashvili Children's Central Hospital, Tbilisi, Georgia
| | - Nino Tatishvili
- Department of Child Neurology, M. Iashvili Children's Central Hospital, Tbilisi, Georgia
| | - Elene Abzianidze
- Department of Molecular and Medical Genetics, Tbilisi State Medical University
| | - Gunnar Houge
- Department of Medical Genetics, Haukeland University Hospital
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Sofia Douzgou
- Department of Medical Genetics, Haukeland University Hospital
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
8
|
Coupe S, Hertzog A, Foran C, Tolun AA, Suthern M, Chung CWT, Ellaway C. Keeping you on your toes: Smith-Lemli-Opitz Syndrome is an easily missed cause of developmental delays. Clin Case Rep 2023; 11:e6920. [PMID: 36814711 PMCID: PMC9939576 DOI: 10.1002/ccr3.6920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/10/2022] [Accepted: 12/28/2022] [Indexed: 02/22/2023] Open
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is a relatively common genetic cause of developmental delay and may only present in conjunction with 2,3 toe syndactyly. This case series illustrates a milder phenotype of SLOS, where the predominant findings are neurocognitive in the presence of 2,3 toe syndactyly.
Collapse
Affiliation(s)
- Simone Coupe
- NSW Biochemical Genetics ServiceThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
| | - Ashley Hertzog
- NSW Biochemical Genetics ServiceThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
- Faculty of Medicine and HealthUniversity of SydneyWestmeadNew South WalesAustralia
| | - Carolyn Foran
- NSW Biochemical Genetics ServiceThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
| | - Adviye Ayper Tolun
- NSW Biochemical Genetics ServiceThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
- Faculty of Medicine and HealthUniversity of SydneyWestmeadNew South WalesAustralia
| | - Megan Suthern
- Paediatric DepartmentWagga Wagga Base HospitalWagga WaggaNew South WalesAustralia
- Rural Clinical School, Faculty of Medicine and HealthUniversity of New South WalesWagga WaggaNew South WalesAustralia
| | - Clara W. T. Chung
- Department of Clinical GeneticsLiverpool HospitalLiverpoolNew South WalesAustralia
- School of Women's and Children's HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Carolyn Ellaway
- Faculty of Medicine and HealthUniversity of SydneyWestmeadNew South WalesAustralia
- Genetic Metabolic Disorders ServiceThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
| |
Collapse
|
9
|
Chattopadhyay A, Sharma A. Smith-Lemli-Opitz syndrome: A pathophysiological manifestation of the Bloch hypothesis. Front Mol Biosci 2023; 10:1120373. [PMID: 36714259 PMCID: PMC9878332 DOI: 10.3389/fmolb.2023.1120373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
The biosynthesis of cholesterol, an essential component of higher eukaryotic membranes, was worked out by Konrad Bloch (and Feodor Lynen) in the 1960s and they received the Nobel Prize around that time in recognition of their pioneering contributions. An elegant consequence of this was a hypothesis proposed by Konrad Bloch (the Bloch hypothesis) which suggests that each subsequent intermediate in the cholesterol biosynthesis pathway is superior in supporting membrane function in higher eukaryotes relative to its precursor. In this review, we discuss an autosomal recessive metabolic disorder, known as Smith-Lemli-Opitz syndrome (SLOS), associated with a defect in the Kandutsch-Russell pathway of cholesterol biosynthesis that results in accumulation of the immediate precursor of cholesterol in its biosynthetic pathway (7-dehydrocholesterol) and an altered cholesterol to total sterol ratio. Patients suffering from SLOS have several developmental, behavioral and cognitive abnormalities for which no drug is available yet. We characterize SLOS as a manifestation of the Bloch hypothesis and review its molecular etiology and current treatment. We further discuss defective Hedgehog signaling in SLOS and focus on the role of the serotonin1A receptor, a representative neurotransmitter receptor belonging to the GPCR family, in SLOS. Notably, ligand binding activity and cellular signaling of serotonin1A receptors are impaired in SLOS-like condition. Importantly, cellular localization and intracellular trafficking of the serotonin1A receptor (which constitute an important determinant of a GPCR cellular function) are compromised in SLOS. We highlight some of the recent developments and emerging concepts in SLOS pathobiology and suggest that novel therapies based on trafficking defects of target receptors could provide new insight into treatment of SLOS.
Collapse
Affiliation(s)
- Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India,Academy of Scientific and Innovative Research, Ghaziabad, India,*Correspondence: Amitabha Chattopadhyay,
| | - Ashwani Sharma
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
10
|
Daggubati V, Raleigh DR, Sever N. Sterol regulation of developmental and oncogenic Hedgehog signaling. Biochem Pharmacol 2022; 196:114647. [PMID: 34111427 PMCID: PMC8648856 DOI: 10.1016/j.bcp.2021.114647] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/03/2023]
Abstract
The Hedgehog (Hh) family of lipid-modified signaling proteins directs embryonic tissue patterning and postembryonic tissue homeostasis, and dysregulated Hh signaling drives familial and sporadic cancers. Hh ligands bind to and inhibit the tumor suppressor Patched and allow the oncoprotein Smoothened (SMO) to accumulate in cilia, which in turn activates the GLI family of transcription factors. Recent work has demonstrated that endogenous cholesterol and oxidized cholesterol derivatives (oxysterols) bind and modulate SMO activity. Here we discuss the myriad sterols that activate or inhibit the Hh pathway, with emphasis on endogenous 24(S),25-epoxycholesterol and 3β,5α-dihydroxycholest-7-en-6-one, and propose models of sterol regulation of SMO. Synthetic inhibitors of SMO have long been the focus of drug development efforts. Here, we discuss the possible utility of steroidal SMO ligands or inhibitors of enzymes involved in sterol metabolism as cancer therapeutics.
Collapse
Affiliation(s)
- Vikas Daggubati
- Departments of Radiation Oncology and Neurological Surgery, and Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA,Medical Scientist Training Program, University of California, San Francisco, CA, USA
| | - David R. Raleigh
- Departments of Radiation Oncology and Neurological Surgery, and Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - Navdar Sever
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA,Corresponding author: Navdar Sever, Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, LHRRB 405, Boston, MA 02115, USA, , Telephone: (617) 432-1612
| |
Collapse
|
11
|
Kempińska W, Korta K, Marchaj M, Paprocka J. Microcephaly in Neurometabolic Diseases. CHILDREN (BASEL, SWITZERLAND) 2022; 9:97. [PMID: 35053723 PMCID: PMC8774396 DOI: 10.3390/children9010097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 12/18/2022]
Abstract
Neurometabolic disorders are an important group of diseases that mostly occur in neonates and infants. They are mainly due to the lack or dysfunction of an enzyme or cofactors necessary for a specific biochemical reaction, which leads to a deficiency of essential metabolites in the brain. This, in turn, can cause certain neurometabolic diseases. Disruption of metabolic pathways, and the inhibition at earlier stages, may lead to the storage of reaction intermediates, which are often toxic to the developing brain. Symptoms are caused by the progressive deterioration of mental, motor, and perceptual functions. The authors review the diseases with microcephaly, which may be one of the most visible signs of neurometabolic disorders.
Collapse
Affiliation(s)
| | | | | | - Justyna Paprocka
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (W.K.); (K.K.); (M.M.)
| |
Collapse
|
12
|
Vallés AS, Barrantes FJ. Dysregulation of Neuronal Nicotinic Acetylcholine Receptor-Cholesterol Crosstalk in Autism Spectrum Disorder. Front Mol Neurosci 2021; 14:744597. [PMID: 34803605 PMCID: PMC8604044 DOI: 10.3389/fnmol.2021.744597] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a set of complex neurodevelopmental diseases that include impaired social interaction, delayed and disordered language, repetitive or stereotypic behavior, restricted range of interests, and altered sensory processing. The underlying causes of the core symptoms remain unclear, as are the factors that trigger their onset. Given the complexity and heterogeneity of the clinical phenotypes, a constellation of genetic, epigenetic, environmental, and immunological factors may be involved. The lack of appropriate biomarkers for the evaluation of neurodevelopmental disorders makes it difficult to assess the contribution of early alterations in neurochemical processes and neuroanatomical and neurodevelopmental factors to ASD. Abnormalities in the cholinergic system in various regions of the brain and cerebellum are observed in ASD, and recently altered cholesterol metabolism has been implicated at the initial stages of the disease. Given the multiple effects of the neutral lipid cholesterol on the paradigm rapid ligand-gated ion channel, the nicotinic acetylcholine receptor, we explore in this review the possibility that the dysregulation of nicotinic receptor-cholesterol crosstalk plays a role in some of the neurological alterations observed in ASD.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), Buenos Aires, Argentina
| | - Francisco J Barrantes
- Instituto de Investigaciones Biomédicas (BIOMED), UCA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
13
|
Anderson RH, Sochacki KA, Vuppula H, Scott BL, Bailey EM, Schultz MM, Kerkvliet JG, Taraska JW, Hoppe AD, Francis KR. Sterols lower energetic barriers of membrane bending and fission necessary for efficient clathrin-mediated endocytosis. Cell Rep 2021; 37:110008. [PMID: 34788623 PMCID: PMC8620193 DOI: 10.1016/j.celrep.2021.110008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/03/2021] [Accepted: 10/26/2021] [Indexed: 01/16/2023] Open
Abstract
Clathrin-mediated endocytosis (CME) is critical for cellular signal transduction, receptor recycling, and membrane homeostasis in mammalian cells. Acute depletion of cholesterol disrupts CME, motivating analysis of CME dynamics in the context of human disorders of cholesterol metabolism. We report that inhibition of post-squalene cholesterol biosynthesis impairs CME. Imaging of membrane bending dynamics and the CME pit ultrastructure reveals prolonged clathrin pit lifetimes and shallow clathrin-coated structures, suggesting progressive impairment of curvature generation correlates with diminishing sterol abundance. Sterol structural requirements for efficient CME include 3′ polar head group and B-ring conformation, resembling the sterol structural prerequisites for tight lipid packing and polarity. Furthermore, Smith-Lemli-Opitz fibroblasts with low cholesterol abundance exhibit deficits in CME-mediated transferrin internalization. We conclude that sterols lower the energetic costs of membrane bending during pit formation and vesicular scission during CME and suggest that reduced CME activity may contribute to cellular phenotypes observed within disorders of cholesterol metabolism. Anderson et al. demonstrate that sterol abundance and identity play a dominant role in facilitating clathrin-mediated endocytosis. Detailed analyses of clathrin-coated pits under sterol depletion support a requirement for sterol-mediated membrane bending during multiple stages of endocytosis, implicating endocytic dysfunction within the pathogenesis of disorders of cholesterol metabolism.
Collapse
Affiliation(s)
- Ruthellen H Anderson
- Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA; Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Kem A Sochacki
- Laboratory of Molecular Biophysics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Harika Vuppula
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA; BioSystems Networks and Translational Research Center, Brookings, SD 57007, USA
| | - Brandon L Scott
- Nanoscience and Nanoengineering, South Dakota School of Mines & Technology, Rapid City, SD 57701, USA
| | - Elizabeth M Bailey
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA; BioSystems Networks and Translational Research Center, Brookings, SD 57007, USA
| | - Maycie M Schultz
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Jason G Kerkvliet
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA; BioSystems Networks and Translational Research Center, Brookings, SD 57007, USA
| | - Justin W Taraska
- Laboratory of Molecular Biophysics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Adam D Hoppe
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA; BioSystems Networks and Translational Research Center, Brookings, SD 57007, USA.
| | - Kevin R Francis
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD 57104, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA.
| |
Collapse
|
14
|
Abstract
The aim of this paper is to present a patient with the Smith-Lemli-Opitz syndrome (SLOS), with an overview of the modality of diagnosis, and the treatment of the patient. Exome analysis showed two variants in exon 6 of the 7-dehydrocholesterol reductase (DHCR7) gene have been determined: missense variant 1) NM_001360.2: c.470T>C (p.Leu157Pro) and 2) nonsense variant c.452G>A (W151*). Therefore the DHCR7 genotype of the patient is NM_001360.2: c.[470T>C; c.452G>A]. The proband, aged 6 years, has global developmental retardation with missing contact gaze and lacking motor development for her age and with peripheral spastic-enhanced muscle tone, and is under the supervision of children neurologists, gastroenterologists, nephrologists and cardiologists.
Collapse
|
15
|
Sharma A, Kumar GA, Chattopadhyay A. Late endosomal/lysosomal accumulation of a neurotransmitter receptor in a cellular model of Smith-Lemli-Opitz syndrome. Traffic 2021; 22:332-344. [PMID: 34418249 DOI: 10.1111/tra.12811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022]
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is a congenital and developmental malformation syndrome associated with defective cholesterol biosynthesis. It is characterized by accumulation of 7-dehydrocholesterol (the immediate biosynthetic precursor of cholesterol in the Kandutsch-Russell pathway) and an altered cholesterol to total sterol ratio. Because SLOS is associated with neurological malfunction, exploring the function and trafficking of neuronal receptors and their interaction with membrane lipids under these conditions assume significance. In this work, we generated a cellular model of SLOS in HEK-293 cells stably expressing the human serotonin1A receptor (an important neurotransmitter G-protein coupled receptor) using AY 9944, an inhibitor for the enzyme 3β-hydroxy-steroid-∆7 -reductase (7-DHCR). Using a quantitative flow cytometry based assay, we show that the plasma membrane population of serotonin1A receptors was considerably reduced under these conditions without any change in total cellular expression of the receptor. Interestingly, the receptors were trafficked to sterol-enriched LysoTracker positive compartments, which accumulated under these conditions. To the best of our knowledge, our results constitute one of the first reports demonstrating intracellular accumulation and misregulated traffic of a neurotransmitter GPCR in SLOS-like conditions. We believe these results assume relevance in our overall understanding of the molecular basis underlying the functional relevance of neurotransmitter receptors in SLOS.
Collapse
Affiliation(s)
- Ashwani Sharma
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - G Aditya Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
16
|
Koczok K, Horváth L, Korade Z, Mezei ZA, Szabó GP, Porter NA, Kovács E, Mirnics K, Balogh I. Biochemical and Clinical Effects of Vitamin E Supplementation in Hungarian Smith-Lemli-Opitz Syndrome Patients. Biomolecules 2021; 11:biom11081228. [PMID: 34439893 PMCID: PMC8393612 DOI: 10.3390/biom11081228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022] Open
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is a severe monogenic disorder resulting in low cholesterol and high 7-dehydrocholesterol (7-DHC) levels. 7-DHC-derived oxysterols likely contribute to disease pathophysiology, and thus antioxidant treatment might be beneficial because of high oxidative stress. In a three-year prospective study, we investigated the effects of vitamin E supplementation in six SLOS patients already receiving dietary cholesterol treatment. Plasma vitamin A and E concentrations were determined by the high-performance liquid chromatography (HPLC) method. At baseline, plasma 7-DHC, 8-dehydrocholesterol (8-DHC) and cholesterol levels were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. The clinical effect of the supplementation was assessed by performing structured parental interviews. At baseline, patients were characterized by low or low-normal plasma vitamin E concentrations (7.19-15.68 μmol/L), while vitamin A concentrations were found to be normal or high (1.26-2.68 μmol/L). Vitamin E supplementation resulted in correction or significant elevation of plasma vitamin E concentration in all patients. We observed reduced aggression, self-injury, irritability, hyperactivity, attention deficit, repetitive behavior, sleep disturbance, skin photosensitivity and/or eczema in 3/6 patients, with notable individual variability. Clinical response to therapy was associated with a low baseline 7-DHC + 8-DHC/cholesterol ratio (0.2-0.4). We suggest that determination of vitamin E status is important in SLOS patients. Supplementation of vitamin E should be considered and might be beneficial.
Collapse
Affiliation(s)
- Katalin Koczok
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.K.); (E.K.)
| | - László Horváth
- Department of Pharmaceutical Surveillance and Economics, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary;
| | - Zeljka Korade
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Zoltán András Mezei
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Gabriella P. Szabó
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Ned A. Porter
- Department of Chemistry, Vanderbilt University, Nashville, TN 37240, USA;
| | - Eszter Kovács
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.K.); (E.K.)
| | - Károly Mirnics
- Departments of Psychiatry, Biochemistry & Molecular Biology, Pharmacology & Experimental Neuroscience and Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68106, USA;
| | - István Balogh
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.K.); (E.K.)
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: ; Tel.: +36-52-340-006
| |
Collapse
|
17
|
Kothandapani A, Jefcoate CR, Jorgensen JS. Cholesterol Contributes to Male Sex Differentiation Through Its Developmental Role in Androgen Synthesis and Hedgehog Signaling. Endocrinology 2021; 162:6204698. [PMID: 33784378 PMCID: PMC8168945 DOI: 10.1210/endocr/bqab066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 12/17/2022]
Abstract
Two specialized functions of cholesterol during fetal development include serving as a precursor to androgen synthesis and supporting hedgehog (HH) signaling activity. Androgens are produced by the testes to facilitate masculinization of the fetus. Recent evidence shows that intricate interactions between the HH and androgen signaling pathways are required for optimal male sex differentiation and defects of either can cause birth anomalies indicative of 46,XY male variations of sex development (VSD). Further, perturbations in cholesterol synthesis can cause developmental defects, including VSD, that phenocopy those caused by disrupted androgen or HH signaling, highlighting the functional role of cholesterol in promoting male sex differentiation. In this review, we focus on the role of cholesterol in systemic androgen and local HH signaling events during fetal masculinization and their collective contributions to pediatric VSD.
Collapse
Affiliation(s)
- Anbarasi Kothandapani
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- Correspondence: Anbarasi Kothandapani, PhD, Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Dr, Madison, WI 53705, USA. E-mail:
| | - Colin R Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | - Joan S Jorgensen
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- Correspondence: Joan S. Jorgensen, DVM, PhD, Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Dr, Madison, WI 53705, USA. E-mail:
| |
Collapse
|
18
|
Transcriptomic Changes Associated with Loss of Cell Viability Induced by Oxysterol Treatment of a Retinal Photoreceptor-Derived Cell Line: An In Vitro Model of Smith-Lemli-Opitz Syndrome. Int J Mol Sci 2021; 22:ijms22052339. [PMID: 33652836 PMCID: PMC7956713 DOI: 10.3390/ijms22052339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 11/17/2022] Open
Abstract
Smith–Lemli–Opitz Syndrome (SLOS) results from mutations in the gene encoding the enzyme DHCR7, which catalyzes conversion of 7-dehydrocholesterol (7DHC) to cholesterol (CHOL). Rats treated with a DHCR7 inhibitor serve as a SLOS animal model, and exhibit progressive photoreceptor-specific cell death, with accumulation of 7DHC and oxidized sterols. To understand the basis of this cell type specificity, we performed transcriptomic analyses on a photoreceptor-derived cell line (661W), treating cells with two 7DHC-derived oxysterols, which accumulate in tissues and bodily fluids of SLOS patients and in the rat SLOS model, as well as with CHOL (negative control), and evaluated differentially expressed genes (DEGs) for each treatment. Gene enrichment analysis and compilation of DEG sets indicated that endoplasmic reticulum stress, oxidative stress, DNA damage and repair, and autophagy were all highly up-regulated pathways in oxysterol-treated cells. Detailed analysis indicated that the two oxysterols exert their effects via different molecular mechanisms. Changes in expression of key genes in highlighted pathways (Hmox1, Ddit3, Trib3, and Herpud1) were validated by immunofluorescence confocal microscopy. The results extend our understanding of the pathobiology of retinal degeneration and SLOS, identifying potential new druggable targets for therapeutic intervention into these and other related orphan diseases.
Collapse
|
19
|
Zalewski CK, Sydlowski SA, King KA, Bianconi S, Dang Do A, Porter FD, Brewer CC. Auditory phenotype of Smith-Lemli-Opitz syndrome. Am J Med Genet A 2021; 185:1131-1141. [PMID: 33529473 DOI: 10.1002/ajmg.a.62087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 11/11/2022]
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive multiple congenital malformation and intellectual disability syndrome resulting from variants in DHCR7. Auditory characteristics of persons with SLOS have been described in limited case reports but have not been systematically evaluated. The objective of this study is to describe the auditory phenotype in SLOS. Age- and ability-appropriate hearing evaluations were conducted on 32 patients with SLOS. A subset of 21 had auditory brainstem response testing, from which an auditory neural phenotype is described. Peripheral or retrocochlear auditory dysfunction was observed in at least one ear of 65.6% (21) of the patients in our SLOS cohort. The audiometric phenotype was heterogeneous and included conductive, mixed, and sensorineural hearing loss. The most common presentation was a slight to mild conductive hearing loss, although profound sensorineural hearing loss was also observed. Abnormal auditory brainstem responses indicative of retrocochlear dysfunction were identified in 21.9% of the patients. Many were difficult to test behaviorally and required objective assessment methods to estimate hearing sensitivity. Individuals with SLOS are likely to have hearing loss that may impact communication, including speech and language development. Routine audiologic surveillance should be conducted to ensure prompt management of hearing loss.
Collapse
Affiliation(s)
| | - Sarah A Sydlowski
- NIDCD, National Institutes of Health, Bethesda, Maryland, USA.,Cleveland Clinic Head & Neck Institute, Cleveland, Ohio, USA
| | - Kelly A King
- NIDCD, National Institutes of Health, Bethesda, Maryland, USA
| | - Simona Bianconi
- NICHD, National Institutes of Health, Bethesda, Maryland, USA
| | - An Dang Do
- NICHD, National Institutes of Health, Bethesda, Maryland, USA
| | - Forbes D Porter
- NICHD, National Institutes of Health, Bethesda, Maryland, USA
| | - Carmen C Brewer
- NIDCD, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Fliesler SJ. EDITOR'S PERSPECTIVE: On the verge of translation: Combined cholesterol-antioxidant supplementation as a potential therapeutic intervention for Smith-Lemli-Opitz syndrome. Exp Eye Res 2020; 202:108390. [PMID: 33307076 DOI: 10.1016/j.exer.2020.108390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Steven J Fliesler
- Departments of Ophthalmology and Biochemistry and the Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo- the State University of New York, Buffalo, NY, 14215-1129, USA; Research Service, Western New York Healthcare System, Buffalo, NY, 14215-1129, USA.
| |
Collapse
|
21
|
Delvecchio M, Rapone B, Simonetti S, Fecarotta S, De Carlo G, Favoino E, Loverro MT, Romano AMI, Taurino F, Di Naro E, Gnoni A. Dietary cholesterol supplementation and inhibitory factor 1 serum levels in two dizygotic Smith-Lemli-Opitz syndrome twins: a case report. Ital J Pediatr 2020; 46:161. [PMID: 33115520 PMCID: PMC7594264 DOI: 10.1186/s13052-020-00924-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/19/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Smith-Lemli-Opitz syndrome (SLOS) is a rare genetic neurodevelopmental disorder caused by the defect in the 7-dehydrocholesterol reductase. This defect leads to the deficiency of cholesterol biosynthesis with accumulation of 7-dehydrocholesterol. Inhibitory factor 1 (IF1) is a well-known mitochondrial protein. Recently, it has been discovered in the human serum where it is reported to be involved in the HDL-cholesterol intake. Here we report the IF1 presence in the serum of two paediatric SLOS dizygotic twins treated with dietary cholesterol supplementation. CASE PRESENTATION The patients showed a typical phenotype. They started dietary supplementation with cholesterol when 2 months old. The cholesterol intake was periodically titrated on the basis of weight increase and the twin 1 required a larger supplementation than the twin 2 during the follow-up. When 6.4-year-old, they underwent IF1 assay that was 7-fold increased in twin 2 compared to twin 1 (93.0 pg/ml vs 13.0 pg/ml, respectively). CONCLUSIONS We report, for the first time, the presence of circulating IF1 in the serum of SLOS patients, showing different levels among them. Our findings confirm that IF1 could be a novel research target in cholesterol-related disorders and also in SLOS, and could contribute to the general debate on IF1 as a new modulator of cholesterol levels.
Collapse
Affiliation(s)
- Maurizio Delvecchio
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children's Hospital, Bari, Italy
| | - Biagio Rapone
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Simonetta Simonetti
- Regional Centre for Neonatal Screening, Children Hospital "Giovanni XXIII", Bari, Italy
| | - Simona Fecarotta
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Graziana De Carlo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Elvira Favoino
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Teresa Loverro
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Anna Maria Isdraele Romano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Federica Taurino
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Edoardo Di Naro
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Antonio Gnoni
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
22
|
Ballout RA, Bianconi S, Livinski A, Fu Y, Remaley AT, Porter FD. Statins for Smith-Lemli-Opitz syndrome. Cochrane Database Syst Rev 2020; 2020:CD013521. [PMID: 32132878 PMCID: PMC7055734 DOI: 10.1002/14651858.cd013521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This is a protocol for a Cochrane Review (Intervention). The objectives are as follows: 1. To evaluate the efficacy of statin therapy in reducing the frequency or severity of the neurobehavioral abnormalities seen in people with SLOS (e.g. aggression, anxiety, irritability, self-mutilation, autistic behaviors, sleep disturbances, etc.) (Wassif 2017). 2. To evaluate the potential effects of statin therapy on survival.
Collapse
Affiliation(s)
- Rami A Ballout
- National Heart, Lung and Blood Institute, NIHLipoprotein Metabolism Section, Translational Vascular Medicine Branch10 Center Drive, Bldg 10, Rm 5D11BethesdaMDUSA20892
| | - Simona Bianconi
- NIHNational Institute of Child Health and Development10 Center Drive, Building 10, CRC‐ 2‐5132BethesdaUSAMD 20892
| | - Alicia Livinski
- National Institutes of Health Library, Office of Research ServicesDivision of Library ServicesBldg 10, Room 1L19B, MSC 1150BethesdaMarylandUSAMD 20892‐1150
| | - Yi‐Ping Fu
- National Heart, Lung, and Blood Institute, NIHOffice of Biostatistics Research6701 Rockledge Drive, RKL2 Rm9195BethesdaUSAMD 20892
| | - Alan T Remaley
- National Heart, Lung and Blood Institute, NIHLipoprotein Metabolism Laboratory, Translational Vascular Medicine BranchBethesdaUSAMD 20892
| | - Forbes D Porter
- Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of HealthDivision of Translational Research10 Center DriveBethesdaMarylandUSA20892
| | | |
Collapse
|
23
|
Zhou H, Gong Y, Wu Q, Ye X, Yu B, Lu C, Jiang W, Ye J, Fu Z. Rare Diseases Related with Lipoprotein Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:171-188. [PMID: 32705600 DOI: 10.1007/978-981-15-6082-8_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rare diseases are gathering increasing attention in last few years, not only for its effects on innovation scientific research, but also for its propounding influence on common diseases. One of the most famous milestones made by Michael Brown and Joseph Goldstein in metabolism field is the discovery of the defective gene in familial hypercholesterolemia, a rare human genetic disease manifested with extreme high level of serum cholesterol (Goldstein JL, Brown MS, Proc Natl Acad Sci USA 70:2804-2808, 1973; Brown MS, Dana SE, Goldstein JL, J Biol Chem 249:789-796, 1974). Follow-up work including decoding the gene function, mapping-related pathways, and screening therapeutic targets are all based on the primary finding (Goldstein JL, Brown MS Arterioscler Thromb Vasc Biol 29:431-438, 2009). A series of succession win the two brilliant scientists the 1985 Nobel Prize, and bring about statins widely used for lipid management and decreasing cardiovascular disease risks. Translating the clinical extreme phenotypes into laboratory bench work has turned out to be the first important step in the paradigm conducting translational and precise medical research. Here we review the main categories of rare disorders related with lipoprotein metabolism, aiming to strengthen the notion that human rare inheritable genetic diseases would be the window to know ourselves better, to treat someone more efficiently, and to lead a healthy life longer. Few rare diseases related with lipoprotein metabolism were clustered into six sections based on changes in lipid profile, namely, hyper- or hypocholesterolemia, hypo- or hyperalphalipoproteinemia, abetalipoproteinemia, hypobetalipoproteinemia, and sphingolipid metabolism diseases. Each section consists of a brief introduction, followed by a summary of well-known disease-causing genes in one table, and supplemented with one or two diseases as example for detailed description. Here we aimed to raise more attention on rare lipoprotein metabolism diseases, calling for more work from basic research and clinical trials.
Collapse
Affiliation(s)
- Hongwen Zhou
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yingyun Gong
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qinyi Wu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xuan Ye
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Baowen Yu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenyan Lu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wanzi Jiang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingya Ye
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenzhen Fu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Chen L, Chen XW, Huang X, Song BL, Wang Y, Wang Y. Regulation of glucose and lipid metabolism in health and disease. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1420-1458. [PMID: 31686320 DOI: 10.1007/s11427-019-1563-3] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/15/2019] [Indexed: 02/08/2023]
Abstract
Glucose and fatty acids are the major sources of energy for human body. Cholesterol, the most abundant sterol in mammals, is a key component of cell membranes although it does not generate ATP. The metabolisms of glucose, fatty acids and cholesterol are often intertwined and regulated. For example, glucose can be converted to fatty acids and cholesterol through de novo lipid biosynthesis pathways. Excessive lipids are secreted in lipoproteins or stored in lipid droplets. The metabolites of glucose and lipids are dynamically transported intercellularly and intracellularly, and then converted to other molecules in specific compartments. The disorders of glucose and lipid metabolism result in severe diseases including cardiovascular disease, diabetes and fatty liver. This review summarizes the major metabolic aspects of glucose and lipid, and their regulations in the context of physiology and diseases.
Collapse
Affiliation(s)
- Ligong Chen
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China.
| | - Xiao-Wei Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Yiguo Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
25
|
Allen LB, Genaro-Mattos TC, Porter NA, Mirnics K, Korade Z. Desmosterolosis and desmosterol homeostasis in the developing mouse brain. J Inherit Metab Dis 2019; 42:934-943. [PMID: 30891795 PMCID: PMC6739189 DOI: 10.1002/jimd.12088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/14/2019] [Indexed: 01/04/2023]
Abstract
Cholesterol serves as a building material for cellular membranes and plays an important role in cellular metabolism. The brain relies on its own cholesterol biosynthesis, which starts during embryonic development. Cholesterol is synthesized from two immediate precursors, desmosterol and 7-dehydrocholesterol (7-DHC). Mutations in the DHCR24 enzyme, which converts desmosterol into cholesterol, lead to desmosterolosis, an autosomal recessive developmental disorder. In this study, we assessed the brain content of desmosterol, 7-DHC, and cholesterol from development to adulthood, and analyzed the biochemical, molecular, and anatomical consequences of Dhcr24 mutations on the sterol profile in a mouse model of desmosterolosis and heterozygous Dhcr24+/- carriers. Our HPLC-MS/MS studies revealed that by P0 desmosterol almost entirely replaced cholesterol in the Dhcr24-KO brain. The greatly elevated desmosterol levels were also present in the Dhcr24-Het brains irrespective of maternal genotype, persisting into adulthood. Furthermore, Dhcr24-KO mice brains showed complex changes in expression of lipid and sterol transcripts, nuclear receptors, and synaptic plasticity transcripts. Cultured Dhcr24-KO neurons showed increased arborization, which was also present in the Dhcr24-KO mouse brains. Finally, we observed a shared pathophysiological mechanism between the mouse models of desmosterolosis and Smith-Lemli-Opitz syndrome (a genetic disorder of conversion of 7-DHC to cholesterol).
Collapse
Affiliation(s)
- Luke B. Allen
- Department of Pediatrics, Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
| | - Thiago C. Genaro-Mattos
- Munroe-Meyer Institute, Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
| | - Ned A. Porter
- Department of Chemistry, Vanderbilt Institute of Chemical Biology and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN
| | - Károly Mirnics
- Munroe-Meyer Institute, Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
| | - Zeljka Korade
- Department of Pediatrics, Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
- Corresponding Author: Zeljka Korade, DVM, PhD, ; 982165 Nebraska Medicine Center, Omaha, 68198-2165
| |
Collapse
|
26
|
Zamudio Moya F, Sagarra Mur D, Pereira de Vicente M. Síndrome de Collet-Sicard secundario a infección por virus de la influenza A (H1N1). Neurologia 2019; 34:418-419. [DOI: 10.1016/j.nrl.2016.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/26/2016] [Accepted: 09/30/2016] [Indexed: 11/26/2022] Open
|
27
|
Collet-Sicard syndrome secondary to viral infection with influenza A (H1N1). NEUROLOGÍA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.nrleng.2016.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
28
|
Fliesler SJ, Peachey NS, Herron J, Hines KM, Weinstock NI, Ramachandra Rao S, Xu L. Prevention of Retinal Degeneration in a Rat Model of Smith-Lemli-Opitz Syndrome. Sci Rep 2018; 8:1286. [PMID: 29352199 PMCID: PMC5775248 DOI: 10.1038/s41598-018-19592-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/04/2018] [Indexed: 12/20/2022] Open
Abstract
Smith-Lemli-Opitz Syndrome (SLOS) is a recessive human disease caused by defective cholesterol (CHOL) synthesis at the level of DHCR7 (7-dehydrocholesterol reductase), which normally catalyzes the conversion of 7-dehydrocholesterol (7DHC) to CHOL. Formation and abnormal accumulation of 7DHC and 7DHC-derived oxysterols occur in SLOS patients and in rats treated with the DHCR7 inhibitor AY9944. The rat SLOS model exhibits progressive and irreversible retinal dysfunction and degeneration, which is only partially ameliorated by dietary CHOL supplementation. We hypothesized that 7DHC-derived oxysterols are causally involved in this retinal degeneration, and that blocking or reducing their formation should minimize the phenotype. Here, using the SLOS rat model, we demonstrate that combined dietary supplementation with CHOL plus antioxidants (vitamins E and C, plus sodium selenite) provides better outcomes than dietary CHOL supplementation alone with regard to preservation of retinal structure and function and lowering 7DHC-derived oxysterol formation. These proof-of-principle findings provide a translational, pre-clinical framework for designing clinical trials using CHOL-antioxidant combination therapy as an improved therapeutic intervention over the current standard of care for the treatment of SLOS.
Collapse
Affiliation(s)
- Steven J Fliesler
- Research Service, VA Western New York Healthcare System, Buffalo, NY, USA.
- Departments of Ophthalmology and Biochemistry, and Neuroscience Program, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo- The State University of New York (SUNY), Buffalo, NY, USA.
- SUNY Eye Institute, Buffalo, NY, USA.
| | - Neal S Peachey
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Josi Herron
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Kelly M Hines
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Nadav I Weinstock
- Hunter James Kelly Research Institute, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo- The State University of New York (SUNY), Buffalo, NY, USA
| | - Sriganesh Ramachandra Rao
- Research Service, VA Western New York Healthcare System, Buffalo, NY, USA
- Departments of Ophthalmology and Biochemistry, and Neuroscience Program, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo- The State University of New York (SUNY), Buffalo, NY, USA
- SUNY Eye Institute, Buffalo, NY, USA
| | - Libin Xu
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA.
| |
Collapse
|
29
|
Rong S, McDonald JG, Engelking LJ. Cholesterol auxotrophy and intolerance to ezetimibe in mice with SREBP-2 deficiency in the intestine. J Lipid Res 2017. [PMID: 28630260 DOI: 10.1194/jlr.m077610] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
SREBP-2 activates transcription of all genes needed for cholesterol biosynthesis. To study SREBP-2 function in the intestine, we generated a mouse model (Vil-BP2-/- ) in which Cre recombinase ablates SREBP-2 in intestinal epithelia. Intestines of Vil-BP2-/- mice had reduced expression of genes required for sterol synthesis, in vivo sterol synthesis rates, and epithelial cholesterol contents. On a cholesterol-free diet, the mice displayed chronic enteropathy with histological abnormalities of both villi and crypts, growth restriction, and reduced survival that was prevented by supplementation of cholesterol in the diet. Likewise, SREBP-2-deficient enteroids required exogenous cholesterol for growth. Blockade of luminal cholesterol uptake into enterocytes with ezetimibe precipitated acutely lethal intestinal damage in Vil-BP2-/- mice, highlighting the critical interplay in the small intestine of sterol absorption via NPC1L1 and sterol synthesis via SREBP-2 in sustaining the intestinal mucosa. These data show that the small intestine requires SREBP-2 to drive cholesterol synthesis that sustains the intestinal epithelia when uptake of cholesterol from the gut lumen is not available, and provide a unique example of cholesterol auxotrophy expressed in an intact, adult mammal.
Collapse
Affiliation(s)
- Shunxing Rong
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Jeffrey G McDonald
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046.,Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Luke J Engelking
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046 .,Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| |
Collapse
|
30
|
Tamura M, Isojima T, Kasama T, Mafune R, Shimoda K, Yasudo H, Tanaka H, Takahashi C, Oka A, Kitanaka S. Novel DHCR7 mutation in a case of Smith-Lemli-Opitz syndrome showing 46,XY disorder of sex development. Hum Genome Var 2017; 4:17015. [PMID: 28503313 PMCID: PMC5425407 DOI: 10.1038/hgv.2017.15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/14/2017] [Accepted: 03/05/2017] [Indexed: 01/29/2023] Open
Abstract
Smith-Lemli-Opitz syndrome is an autosomal recessive disease caused by mutations in 7-dehydrocholesterol reductase (DHCR7), which is rarely observed in Japan. We report a Japanese case with 46,XY disorder of sex development and Y-shaped 2-3 toe syndactyly. DHCR7 gene analysis revealed compound heterozygous mutations including the novel mutation H442R. Early diagnosis led to starting cholesterol treatment at an early age.
Collapse
Affiliation(s)
- Mayuko Tamura
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Tsuyoshi Isojima
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Kasama
- Research Center for Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyō, Japan
| | - Ryo Mafune
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Konomi Shimoda
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroki Yasudo
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Tanaka
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chie Takahashi
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akira Oka
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sachiko Kitanaka
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
31
|
Sharif NF, Korade Z, Porter NA, Harrison FE. Oxidative stress, serotonergic changes and decreased ultrasonic vocalizations in a mouse model of Smith-Lemli-Opitz syndrome. GENES BRAIN AND BEHAVIOR 2017; 16:619-626. [PMID: 28220990 DOI: 10.1111/gbb.12376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 12/25/2022]
Abstract
Smith-Lemli-Opitz syndrome is an inherited monogenic disorder in which mutations to the 7-dehydrocholesterol (7-DHC) reductase (Dhcr7) gene lead to deficits in cholesterol synthesis. As a result, many patients suffer from gross physiological and neurological deficits. The purpose of this study was to identify a potential abnormal behavioral phenotype in a compound mutant mouse model for Smith-Lemli-Opitz disease (Dhcr7 Δ3-5/T93M ) to further validate the model and to provide potential targets for future therapeutic interventions. We also sought to identify some of the underlying changes in brain function that may be responsible for behavioral differences among groups. The Dhcr7 compound mutant mice were smaller than their single mutant littermates. Both single and compound heterozygous mice made fewer ultrasonic vocalizations when separated from the dam, which may suggest a communication deficit in these animals. Striking increases of the highly oxidizable 7-DHC were observed in the compound mutant mice. 7-Dehydrocholesterol is the precursor to cholesterol and builds up because of decreased function of the mutated Dhcr7 enzyme. Additionally, several differences were noted in the serotonergic system including increased expression of the serotonin transporter and increased uptake of serotonin by isolated synaptosomes. We propose that changes to the oxidative environment during development can have a significant impact on the development of serotonergic function and that this contributes to behavioral differences observed in the mutant mice.
Collapse
Affiliation(s)
- N F Sharif
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Z Korade
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA.,Present address: Department of Pediatrics, Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - N A Porter
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - F E Harrison
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
32
|
Prabhu AV, Luu W, Li D, Sharpe LJ, Brown AJ. DHCR7: A vital enzyme switch between cholesterol and vitamin D production. Prog Lipid Res 2016; 64:138-151. [PMID: 27697512 DOI: 10.1016/j.plipres.2016.09.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 01/07/2023]
Abstract
The conversion of 7-dehydrocholesterol to cholesterol, the final step of cholesterol synthesis in the Kandutsch-Russell pathway, is catalyzed by the enzyme 7-dehydrocholesterol reductase (DHCR7). Homozygous or compound heterozygous mutations in DHCR7 lead to the developmental disease Smith-Lemli-Opitz syndrome, which can also result in fetal mortality, highlighting the importance of this enzyme in human development and survival. Besides serving as a substrate for DHCR7, 7-dehydrocholesterol is also a precursor of vitamin D via the action of ultraviolet light on the skin. Thus, DHCR7 exerts complex biological effects, involved in both cholesterol and vitamin D production. Indeed, we argue that DHCR7 can act as a switch between cholesterol and vitamin D synthesis. This review summarizes current knowledge about the critical enzyme DHCR7, highlighting recent findings regarding its structure, transcriptional and post-transcriptional regulation, and its links to vitamin D synthesis. Greater understanding about DHCR7 function, regulation and its place within cellular metabolism will provide important insights into its biological roles.
Collapse
Affiliation(s)
- Anika V Prabhu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Winnie Luu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Dianfan Li
- National Center for Protein Sciences, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
33
|
Cologna SM, Shieh C, Toth CL, Cougnoux A, Burkert KR, Bianconi SE, Wassif CA, Porter FD. Altered cerebrospinal fluid proteins in Smith-Lemli-Opitz syndrome patients. Am J Med Genet A 2016; 170:2060-2068. [PMID: 27148958 DOI: 10.1002/ajmg.a.37720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/13/2016] [Indexed: 11/09/2022]
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive, multiple malformation syndrome with neurocognitive impairment. SLOS arises from mutations in the 7-dehydrocholesterol reductase gene which results in impaired enzymatic conversion of 7-dehydrocholesterol to cholesterol. In the current work, we sought to measure proteins that were altered in the cerebrospinal fluid from SLOS patients compared to pediatric controls. Using a multi-analyte antibody-based assay, we found that 12 proteins are altered in SLOS patients. Validation studies were carried out and the findings from this study suggest alterations in extracellular matrix remodeling and further evidence of oxidative stress within the disease pathophysiology. The results of this study will be used to explore biological pathways altered in SLOS and identifies a set of CSF proteins that can be evaluated as biomarkers in future therapeutic trials. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stephanie M Cologna
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA.,Current Location: Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Christine Shieh
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Cynthia L Toth
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Antony Cougnoux
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Kathryn R Burkert
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Simona E Bianconi
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Christopher A Wassif
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Forbes D Porter
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| |
Collapse
|
34
|
Zschocke J. Erbliche Stoffwechselkrankheiten – eine Übersicht. MED GENET-BERLIN 2015. [DOI: 10.1007/s11825-015-0062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Zusammenfassung
Klinisches Bild, Diagnose und Therapie der erblichen Stoffwechselkrankheiten lassen sich am besten aus den spezifischen betroffenen Stoffwechselwegen ableiten, welche durch die einzelne, meist enzymatische Störung betroffen sind. Dabei lassen sich die Störungen des Intermediärstoffwechsels, welche den Stoffwechsel der Aminosäuren, Kohlenhydrate und Fettsäuren sowie den mitochondrialen Energiestoffwechsel betreffen, von anderen Stoffwechselstörungen abgrenzen. Die Intermediärstoffwechselstörungen zeigen meist eine Manifestation erst nach der Geburt, nicht selten akute Stoffwechselentgleisungen, und können oft durch metabolische Interventionen behandelt werden. Sie werden durch die üblichen klinisch-chemischen Basisuntersuchungen und einige selektive Screeninganalysen erfasst, die allgemein unter dem Begriff „Stoffwechseldiagnostik“ subsumiert werden. Die anderen Stoffwechselkrankheiten verursachen sehr unterschiedliche, oft für den betroffenen Stoffwechselweg typische klinische Symptome und können vielfach durch Screeningtests nachgewiesen werden, die spezifisch angefordert werden müssen. Die verschiedenen Krankheitsgruppen mit den wichtigsten einzelnen Störungen werden in dem vorliegenden Artikel zusammenfassend dargestellt.
Collapse
Affiliation(s)
- Johannes Zschocke
- Aff1 grid.5361.1 0000000088532677 Sektion für Humangenetik Medizinische Universität Innsbruck Peter-Mayr-Str. 1 6020 Innsbruck Österreich
| |
Collapse
|
35
|
Pasta S, Akhile O, Tabron D, Ting F, Shackleton C, Watson G. Delivery of the 7-dehydrocholesterol reductase gene to the central nervous system using adeno-associated virus vector in a mouse model of Smith-Lemli-Opitz Syndrome. Mol Genet Metab Rep 2015; 4:92-98. [PMID: 26347274 PMCID: PMC4559272 DOI: 10.1016/j.ymgmr.2015.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Smith Lemli Opitz syndrome (SLOS) is an inherited malformation and mental retardation metabolic disorder with no cure. Mutations in the last enzyme of the cholesterol biosynthetic pathway, 7-dehydrocholesterol reductase (DHCR7), lead to cholesterol insufficiency and accumulation of its dehyrdocholesterol precursors, and contribute to its pathogenesis. The central nervous system (CNS) constitutes a major pathophysiological component of this disorder and remains unamenable to dietary cholesterol therapy due to the impenetrability of the blood brain barrier (BBB). The goal of this study was to restore sterol homeostasis in the CNS. To bypass the BBB, gene therapy using an adeno-associated virus (AAV-8) vector carrying a functional copy of the DHCR7 gene was administered by intrathecal (IT) injection directly into the cerebrospinal fluid of newborn mice. Two months post-treatment, vector DNA and DHCR7 expression was observed in the brain and a corresponding improvement of sterol levels seen in the brain and spinal cord. Interestingly, sterol levels in the peripheral nervous system also showed a similar improvement. This study shows that IT gene therapy can have a positive biochemical effect on sterol homeostasis in the central and peripheral nervous systems in a SLOS animal model. A single dose delivered three days after birth had a sustained effect into adulthood, eight weeks post-treatment. These observations pave the way for further studies to understand the effect of biochemical improvement of sterol levels on neuronal function, to provide a greater understanding of neuronal cholesterol homeostasis, and to develop potential therapies.
Collapse
Affiliation(s)
- Saloni Pasta
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland CA 94609
| | - Omoye Akhile
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland CA 94609
| | - Dorothy Tabron
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland CA 94609
| | - Flora Ting
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland CA 94609
| | - Cedric Shackleton
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland CA 94609
| | - Gordon Watson
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland CA 94609
| |
Collapse
|
36
|
Abstract
Making the diagnosis of genetic syndromes in the neonatal period can be challenging, as limited information concerning growth and development is available. The pattern of dysmorphic features and malformations is, therefore, correspondingly more important in syndrome recognition. The authors provide specific examples of the differences in the presentation for selected syndromes between the newborn period and later childhood. The purpose is to describe the variation in presentation that can occur with chronologic age and to aid in the early diagnosis of these conditions.
Collapse
|
37
|
Platt FM, Wassif C, Colaco A, Dardis A, Lloyd-Evans E, Bembi B, Porter FD. Disorders of cholesterol metabolism and their unanticipated convergent mechanisms of disease. Annu Rev Genomics Hum Genet 2015; 15:173-94. [PMID: 25184529 DOI: 10.1146/annurev-genom-091212-153412] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cholesterol plays a key role in many cellular processes, and is generated by cells through de novo biosynthesis or acquired from exogenous sources through the uptake of low-density lipoproteins. Cholesterol biosynthesis is a complex, multienzyme-catalyzed pathway involving a series of sequentially acting enzymes. Inherited defects in genes encoding cholesterol biosynthetic enzymes or other regulators of cholesterol homeostasis result in severe metabolic diseases, many of which are rare in the general population and currently without effective therapy. Historically, these diseases have been viewed as discrete disorders, each with its own genetic cause and distinct pathogenic cascades that lead to its specific clinical features. However, studies have recently shown that three of these diseases have an unanticipated mechanistic convergence. This surprising finding is not only shedding light on details of cellular cholesterol homeostasis but also suggesting novel approaches to therapy.
Collapse
Affiliation(s)
- Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom;
| | | | | | | | | | | | | |
Collapse
|
38
|
Altered lipid subfraction profile and impaired antioxidant defense of high-density lipoprotein in Smith-Lemli-Opitz syndrome. Pediatr Res 2015; 77:703-9. [PMID: 25668223 DOI: 10.1038/pr.2015.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/07/2014] [Indexed: 11/09/2022]
Abstract
BACKGROUND Smith-Lemli-Opitz syndrome (SLOS) is a rare disease caused by biallelic mutation in the 7-dehydrocholesterol (7DHC) reductase gene. High oxidizability of 7DHC and the appearance of small-sized low-density lipoprotein (LDL) subfractions indicate increased endogenous oxidative stress that is counterbalanced by natural antioxidant defense mechanisms including the high-density lipoprotein (HDL)-associated paraoxonase-1 (PON1) enzyme. PON1 prevents lipoproteins from oxidative modifications; however, PON1 activity and the distribution of lipoprotein subfractions have not been studied in SLOS. METHODS 7DHC levels and PON1 arylesterase activities were measured spectrophotometrically in 11 SLOS patients and 10 healthy children. Lipoprotein subfractions were detected by polyacrylamide gel electrophoresis. RESULTS Compared to controls, there was a shift towards the small-dense LDL subfraction and the large HDL subfraction in SLOS. PON1 arylesterase activity was significantly decreased in SLOS patients and correlated negatively with the proportion of small-dense LDL subfraction and the proportion of large HDL subfraction. Significant positive correlations were detected between PON1 arylesterase activity and the ratios of intermediate and small HDL subfractions. CONCLUSIONS Decreased PON1 activity and the deleterious shift in the distribution of lipoprotein subfractions may contribute to the impaired antioxidant status observed in SLOS. Monitoring of serum PON1 arylesterase activity may be a complementary biomarker in SLOS.
Collapse
|
39
|
Kelly MN, Tuli SY, Tuli SS, Stern MA, Giordano BP. Brothers with Smith-Lemli-Opitz syndrome. J Pediatr Health Care 2015; 29:97-103. [PMID: 24954735 DOI: 10.1016/j.pedhc.2014.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/10/2014] [Accepted: 04/24/2014] [Indexed: 12/13/2022]
Abstract
Abnormal cholesterol metabolism is the cause of SLOS, with low cholesterol levels and elevated levels of cholesterol precursors thought to contribute to the clinical findings in this syndrome. Management of SLOS involves early intervention with appropriate therapies for identified disabilities, genetic counseling for families, nutritional consultations, educational interventions, and behavioral management. Although no randomized dietary studies have been conducted, cholesterol supplementation continues to be a common recommendation for persons with SLOS, because it may result in clinical improvement and has few adverse effects (Nowaczyk, 2013). Even with early detection and treatment (e.g., sibling B in this case report), persons with SLOS often have significant behavioral issues and cognitive and developmental delays that require a team approach by parents, educators, specialists, and primary care providers.
Collapse
|
40
|
DeAngelis AM, Roy-O'Reilly M, Rodriguez A. Genetic alterations affecting cholesterol metabolism and human fertility. Biol Reprod 2014; 91:117. [PMID: 25122065 DOI: 10.1095/biolreprod.114.119883] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) represent genetic variations among individuals in a population. In medicine, these small variations in the DNA sequence may significantly impact an individual's response to certain drugs or influence the risk of developing certain diseases. In the field of reproductive medicine, a significant amount of research has been devoted to identifying polymorphisms which may impact steroidogenesis and fertility. This review discusses current understanding of the effects of genetic variations in cholesterol metabolic pathways on human fertility that bridge novel linkages between cholesterol metabolism and reproductive health. For example, the role of the low-density lipoprotein receptor (LDLR) in cellular metabolism and human reproduction has been well studied, whereas there is now an emerging body of research on the role of the high-density lipoprotein (HDL) receptor scavenger receptor class B type I (SR-BI) in human lipid metabolism and female reproduction. Identifying and understanding how polymorphisms in the SCARB1 gene or other genes related to lipid metabolism impact human physiology is essential and will play a major role in the development of personalized medicine for improved diagnosis and treatment of infertility.
Collapse
Affiliation(s)
| | | | - Annabelle Rodriguez
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
41
|
Fliesler SJ. Antioxidants: The Missing Key to Improved Therapeutic Intervention in Smith-Lemli-Opitz Syndrome? ACTA ACUST UNITED AC 2013; 2:119. [PMID: 24533230 PMCID: PMC3925008 DOI: 10.4172/2161-1041.1000119] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Smith-Lemli-Opitz Syndrome (SLOS) is a recessive hereditary disease caused by an enzymatic defect in the biosynthesis of cholesterol. To date, the therapeutic standard of care for this disease has been cholesterol supplementation therapy. However, the efficacy of this treatment is extremely variable and, in many if not most cases, is poor. Results of studies using animal models of SLOS have suggested that cholesterol deficiencyand/or the aberrant accumulation of the immediate precursor of cholesterol (7-dehydrocholesterol (7DHC)), per se, may not be the sole culprits in the pathobiology of this disease. Rather, cytotoxic oxysterol by-products derived specifically from 7DHC are thought to be additional, significant, causative players in the disease mechanism. Based in large measure upon such studies, a recent clinical trial, comparing the therapeutic efficacyof cholesterol supplementation alone vs. combined cholesterol-antioxidant supplementation in SLOS patients, has provided extremely encouraging results that tend to both validate the proposed role of oxysterols in the pathobiology of SLOS as well as indicate an improved treatment for this and related diseases.
Collapse
Affiliation(s)
- Steven J Fliesler
- VA Western New York Healthcare System; Departments of Ophthalmology and Biochemistry, State University of New York- University at Buffalo; and the SUNY Eye Institute, Buffalo, New York, USA
| |
Collapse
|