1
|
Yılmaz Uzman C, Gürsoy S, Özkan B, Vuran G, Ayyıldız Emecen D, Köprülü Ö, Bilen MM, Hazan F. Clinical features and molecular genetics of patients with RASopathies: expanding the phenotype with rare genes and novel variants. Eur J Pediatr 2024; 184:108. [PMID: 39725732 DOI: 10.1007/s00431-024-05825-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/13/2024] [Accepted: 11/01/2024] [Indexed: 12/28/2024]
Abstract
The RASopathies are a group of disorders resulting from a germline variant in the genes encoding the Ras/mitogen-activated protein kinase pathway. These disorders include Noonan syndrome (NS), cardiofaciocutaneous syndrome (CFC), Costello syndrome (CS), Legius syndrome (LS), and neurofibromatosis type 1 (NF1), and have overlapping clinical features due to RAS/MAPK dysfunction. In this study, we aimed to describe the clinical and molecular features of patients exhibiting phenotypic manifestations consistent with RASopathies. The study included 149 patients from 146 unrelated families who were admitted between 2019 and 2023 with a clinical suspicion of RASopathy spectrum disorder. Clinical and laboratory characteristics of the patients at the time of the diagnosis were obtained from hospital records. Variant analysis of twenty-four RASopathy genes was performed using a targeted next-generation sequencing (NGS) panel, and the variants were classified according to American College of Medical Genetics and Genomics Standards and Guidelines recommendations. Pathogenic/likely pathogenic variants were detected in 39 out of 149 patients (26.1%). Thirty-two patients were diagnosed as NS (32/39; 82%). The variants detected in NS patients were PTPN11 (21/32; 65.6%), LZTR1 (3/32; 9.3%), SOS1 (2/32; 6.2%), RAF1 (2/32; 6.2%), RIT1 (2/32; 6.2%), KRAS (1/32; 3.1%), and RRAS (1/32; 3.1%) genes, respectively. The remaining patients were diagnosed with CS (2/39; 5.1%), NF1 (2/39; 5.1%), NF-NS (2/39; 5.1%), and CFC (1/39; 2.5%). We observed rare clinical findings including lymphangioma circumscriptum, Meckel's diverticulum, and omphalocele in three patients with PTPN11 gene variations. Additionally, we detected corpus callosum thickness in a patient with the SOS1 gene variant, which has not been previously described in NS. We also identified three novel variants in RIT1, BRAF, and NF1 genes. CONCLUSION In this study, we described rare clinical manifestations and detected three novel variants in NF1, BRAF, and RIT1 genes. We propose that NGS technology enables the detection of variants in rare genes responsible for the etiology of RASopathies. The study, therefore, not only contributes to the existing literature but also expands the spectrum of genotype and phenotype of RASopathies. WHAT IS KNOWN • RASopathies are a group of disorders caused by germline variants in genes involved in the Ras/mitogen-activated protein kinase (RAS/MAPK) pathway. • These disorders, including Noonan syndrome (NS), Cardiofaciocutaneous syndrome (CFC), Costello syndrome (CS), Legius syndrome, and Neurofibromatosis type 1 (NF1), share overlapping clinical features due to RAS/MAPK dysfunction. Molecular diagnosis of RASopathies is crucial for understanding the genetic basis and guiding clinical management, although the phenotype-genotype relationships remain incompletely defined. WHAT IS NEW • This study provides new insights into the molecular and clinical characteristics of RASopathies by examining 149 patients from 146 families, with a focus on the genetic variants found in 24 RASopathy-related genes. Three novel variants were identified in the RIT1, BRAF, and NF1 genes, expanding the genetic spectrum of RASopathies. • Additionally, rare clinical findings, such as lymphangioma circumscriptum and corpus callosum thickness, were reported in patients with PTPN11 and SOS1 gene variations, respectively. These observations contribute new phenotypic data to the existing body of knowledge.
Collapse
Affiliation(s)
- Ceren Yılmaz Uzman
- Department of Pediatric Genetics, Dr. Behçet Uz Children's Hospital, Izmir, Turkey.
| | - Semra Gürsoy
- Department of Pediatric Genetics, Dokuz Eylül University Faculty of Medicine, Izmir, Turkey
| | - Behzat Özkan
- Department of Pediatric Endocrinology, Dr. Behçet Uz Children's Hospital, Izmir, Turkey
| | - Gamze Vuran
- Department of Pediatric Cardiology, Dr. Behçet Uz Children's Hospital, Izmir, Turkey
| | | | - Özge Köprülü
- Department of Pediatric Endocrinology, Dr. Behçet Uz Children's Hospital, Izmir, Turkey
| | - Mertkan Mustafa Bilen
- Department of Pediatric Cardiology, Dr. Behçet Uz Children's Hospital, Izmir, Turkey
| | - Filiz Hazan
- Department of Medical Genetics, Dr. Behçet Uz Children's Hospital, Izmir, Turkey
| |
Collapse
|
2
|
Abe T, Morisaki K, Niihori T, Terao M, Takada S, Aoki Y. Dysregulation of RAS proteostasis by autosomal-dominant LZTR1 mutation induces Noonan syndrome-like phenotypes in mice. JCI Insight 2024; 9:e182382. [PMID: 39352760 PMCID: PMC11601938 DOI: 10.1172/jci.insight.182382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024] Open
Abstract
Leucine-zipper-like posttranslational regulator 1 (LZTR1) is a member of the BTB-Kelch superfamily, which regulates the RAS proteostasis. Autosomal dominant (AD) mutations in LZTR1 have been identified in patients with Noonan syndrome (NS), a congenital anomaly syndrome. However, it remains unclear whether LZTR1 AD mutations regulate the proteostasis of the RAS subfamily molecules or cause NS-like phenotypes in vivo. To elucidate the pathogenesis of LZTR1 mutations, we generated 2 LZTR1 mutation knock-in mice (Lztr1G245R/+ and Lztr1R409C/+), which correspond to the human p.G248R and p.R412C mutations, respectively. LZTR1-mutant male mice exhibit low birth weight, distinctive facial features, and cardiac hypertrophy. Cardiomyocyte size and the expression of RAS subfamily members, including MRAS and RIT1, were significantly increased in the left ventricles (LVs) of mutant male mice. LZTR1 AD mutants did not interact with RIT1 and functioned as dominant-negative forms of WT LZTR1. Multi-omics analysis revealed that the mitogen-activated protein kinase (MAPK) signaling pathway was activated in the LVs of mutant mice. Treatment with the MEK inhibitor trametinib ameliorated cardiac hypertrophy in mutant male mice. These results suggest that the MEK/ERK pathway is a therapeutic target for the NS-like phenotype resulting from dysfunction of RAS proteostasis by LZTR1 AD mutations.
Collapse
Affiliation(s)
- Taiki Abe
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan
| | - Kaho Morisaki
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan
| | - Tetsuya Niihori
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan
| | - Miho Terao
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
3
|
Draaisma F, Leenders EKSM, Erasmus CE, Braakman HMH, Burgers MCJ, Coppens CH, Rinne T, Zenker M, Tartaglia M, Reintjes W, Voermans NC, van Engelen BGM, van Alfen N, Draaisma JMT. Nerve enlargement in patients with Noonan syndrome: A retrospective cohort study. Am J Med Genet A 2024; 194:e63810. [PMID: 38958480 DOI: 10.1002/ajmg.a.63810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/08/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
Noonan syndrome (NS) is an autosomal dominant condition characterized by facial dysmorphism, congenital heart disease, development delay, growth retardation and lymphatic disease. It is caused by germline pathogenic variants in genes encoding proteins in the Ras/mitogen-activated protein kinase signaling pathway. Nerve enlargement is not generally considered as a feature of NS, although some cases have been reported. High-resolution nerve ultrasound enables detailed anatomical assessment of peripheral nerves and can show enlarged nerves. This retrospective cohort study aims to describe the sonographic findings of patients with NS performed during a 1-year time period. Data on the degree of enlargement, the relation to increasing age, pain in extremities, genotype on the gene level and clinical features were collected. Twenty-nine of 93 patients visiting the NS Center of Expertise of the Radboud University Medical Center Nijmegen underwent high-resolution ultrasound. In 24 patients (83%) nerve enlargement was found. Most of them experienced pain. We observed a weak correlation with increasing age and the degree of nerve enlargement but no association with pain, genotype at the gene level or clinical features. This study shows that patients with NS have a high predisposition for sonographic nerve enlargement and that the majority experience pain.
Collapse
Affiliation(s)
- Fieke Draaisma
- Department of Pediatrics, Radboud Institute for Health Sciences, Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Erika K S M Leenders
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Corrie E Erasmus
- Department of Pediatric Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Hilde M H Braakman
- Department of Pediatric Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Melanie C J Burgers
- Department of Pediatrics, Radboud Institute for Health Sciences, Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Catelijne H Coppens
- Department of Pediatrics, Radboud Institute for Health Sciences, Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Tuula Rinne
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Wesley Reintjes
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Nens van Alfen
- Department of Neurology, Clinical Neuromuscular Imaging Group, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Jos M T Draaisma
- Department of Pediatrics, Radboud Institute for Health Sciences, Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Mastromoro G, Santoro C, Motta M, Sorrentino U, Daniele P, Peduto C, Petrizzelli F, Tripodi M, Pinna V, Zanobio M, Rotundo G, Bellacchio E, Lepri F, Farina A, D'Asdia MC, Piceci-Sparascio F, Biagini T, Petracca A, Castori M, Melis D, Accadia M, Traficante G, Tarani L, Fontana P, Sirchia F, Paparella R, Currò A, Benedicenti F, Scala I, Dentici ML, Leoni C, Trevisan V, Cecconi A, Giustini S, Pizzuti A, Salviati L, Novelli A, Zampino G, Zenker M, Genuardi M, Digilio MC, Papi L, Perrotta S, Nigro V, Castellanos E, Mazza T, Trevisson E, Tartaglia M, Piluso G, De Luca A. Heterozygosity for loss-of-function variants in LZTR1 is associated with isolated multiple café-au-lait macules. Genet Med 2024; 26:101241. [PMID: 39140257 DOI: 10.1016/j.gim.2024.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
PURPOSE Pathogenic LZTR1 variants cause schwannomatosis and dominant/recessive Noonan syndrome (NS). We aim to establish an association between heterozygous loss-of-function LZTR1 alleles and isolated multiple café-au-lait macules (CaLMs). METHODS A total of 849 unrelated participants with multiple CaLMs, lacking pathogenic/likely pathogenic NF1 and SPRED1 variants, underwent RASopathy gene panel sequencing. Data on 125 individuals with heterozygous LZTR1 variants were collected for characterizing their clinical features and the associated molecular spectrum. In vitro functional assessment was performed on a representative panel of missense variants and small in-frame deletions. RESULTS Analysis revealed heterozygous LZTR1 variants in 6.0% (51/849) of participants, exceeding the general population prevalence. LZTR1-related CaLMs varied in number, displayed sharp or irregular borders, and were generally isolated but occasionally associated with features recurring in RASopathies. In 2 families, CaLMs and schwannomas co-occurred. The molecular spectrum mainly consisted of truncating variants, indicating loss-of-function. These variants substantially overlapped with those occurring in schwannomatosis and recessive NS. Functional characterization showed accelerated protein degradation or mislocalization, and failure to downregulate mitogen-activated protein kinase signaling. CONCLUSION Our findings expand the phenotypic variability associated with LZTR1 variants, which, in addition to conferring susceptibility to schwannomatosis and causing dominant and recessive NS, occur in individuals with isolated multiple CaLMs.
Collapse
Affiliation(s)
- Gioia Mastromoro
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy; Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Claudia Santoro
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli" Naples, Italy; Clinic of Child and Adolescent Neuropsychiatry, Department of Physical and Mental Health, and Preventive Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Marialetizia Motta
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Ugo Sorrentino
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padua, Italy
| | - Paola Daniele
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Cristina Peduto
- Department of Precision Medicine, University of Campania "Luigi Vanvitell," Naples, Italy; Department of Medical Genetics, AP-HP, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Francesco Petrizzelli
- Laboratory of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Martina Tripodi
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Valentina Pinna
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy; Cytogenetics and Molecolar Genetics, Unit, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mariateresa Zanobio
- Department of Precision Medicine, University of Campania "Luigi Vanvitell," Naples, Italy
| | - Giovannina Rotundo
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Emanuele Bellacchio
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Francesca Lepri
- Cytogenetics and Molecolar Genetics, Unit, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonella Farina
- Department of Precision Medicine, University of Campania "Luigi Vanvitell," Naples, Italy
| | - Maria Cecilia D'Asdia
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | - Tommaso Biagini
- Laboratory of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Antonio Petracca
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Marco Castori
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Daniela Melis
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Fisciano, Italy
| | - Maria Accadia
- Medical Genetics Service, Hospital "Cardinale G. Panico," Tricase, Italy
| | | | - Luigi Tarani
- Department of Pediatrics, Medical Faculty, Sapienza University of Rome, Rome, Italy
| | - Paolo Fontana
- Medical Genetics Unit - P.O. Gaetano Rummo-A.O.R.N. San Pio, Benevento, Italy
| | - Fabio Sirchia
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Medical Genetics Unit, IRCCS San Matteo Foundation, Pavia, Italy
| | - Roberto Paparella
- Department of Pediatrics, Medical Faculty, Sapienza University of Rome, Rome, Italy
| | - Aurora Currò
- Genetic Counseling Service, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - Francesco Benedicenti
- Genetic Counseling Service, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - Iris Scala
- Department of Maternal and Child Health, Section of Pediatrics, Federico II University, Naples, Italy
| | | | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Valentina Trevisan
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Antonella Cecconi
- Ambulatorio Integrato di Genetica Medica, USL Toscana Centro, Florence, Italy
| | - Sandra Giustini
- Unit of Dermatology, Department of Internal Medicine and Medical Specialties, "La Sapienza" University of Rome, Rome, Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padua, Italy
| | - Antonio Novelli
- Cytogenetics and Molecolar Genetics, Unit, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Maurizio Genuardi
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy; Medical Genetics Unit, Department of Laboratory and Infectious Science, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | | | - Laura Papi
- Department of Experimental and Clinical, Medical Genetics Unit, Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Silverio Perrotta
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli" Naples, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania "Luigi Vanvitell," Naples, Italy; Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Elisabeth Castellanos
- Clinical Genomics Research Group, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona, Barcelona, Spain; Clinical Genomics Unit, Clinical Genetics Service, Northern Metropolitan Clinical Laboratory, Germans Trias i Pujol University Hospital (HGTP), Can Ruti Campus, Badalona, Barcelona, Spain
| | - Tommaso Mazza
- Laboratory of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Eva Trevisson
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padua, Italy; Institute of Pediatric Research IRP, Fondazione Città della Speranza, Padua, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy.
| | - Giulio Piluso
- Department of Precision Medicine, University of Campania "Luigi Vanvitell," Naples, Italy
| | - Alessandro De Luca
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| |
Collapse
|
5
|
Barbero AIS, Valenzuela I, Fernández-Alvarez P, Vazquez É, Cueto-Gonzalez AM, Lasa-Aranzasti A, Trujillano L, Masotto B, Arumí EG, Tizzano EF. New Insights Into the Spectrum of RASopathies: Clinical and Genetic Data in a Cohort of 121 Spanish Patients. Am J Med Genet A 2024:e63905. [PMID: 39484914 DOI: 10.1002/ajmg.a.63905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/23/2024] [Accepted: 09/29/2024] [Indexed: 11/03/2024]
Abstract
Noonan syndrome and related disorders are a group of well-known genetic conditions caused by dysregulation of the Ras/mitogen-activated protein kinase (RAS/MAPK) pathway. Because of the overlap of clinical and molecular features, they are now called RASopathies. In this study, we retrospectively analyzed the clinical data of 121 patients with a molecularly confirmed diagnosis of RASopathy, describing frequencies for clinical features in all organ systems as well as molecular data. The most common clinical diagnosis was Noonan Syndrome and the most frequently affected gene was PTPN11 followed by SOS1, RAF1, LZTR1, and RIT1. All patients had distinctive craniofacial features indicative of the RASopathy spectrum but we report some atypical features regarding craniofacial shape, such as craniosynostosis and microcephaly. We also describe uncommon clinical characteristics such as aortic dilation, multivalvular heart disease, abnormalities of the posterior fossa, and uterine congenital anomalies in female patients. Furthermore, the presence of multiple giant cell granulomas was observed specifically in patients with SOS1 variants. This comprehensive evaluation allows broadening the phenotypic spectrum of our population and their correlation with the genotype, which are essential to improve the recognition and the follow up of RASopathies as a multisystemic disease.
Collapse
Affiliation(s)
- Ana Isabel Sánchez Barbero
- Department of Clinical and Molecular Genetics and Rare Disease Unit, Vall Hebron Research Institute, Barcelona, Spain
- Medicine Genetics Group, Vall Hebron Research Institute, Barcelona, Spain
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics and Rare Disease Unit, Vall Hebron Research Institute, Barcelona, Spain
- Medicine Genetics Group, Vall Hebron Research Institute, Barcelona, Spain
| | - Paula Fernández-Alvarez
- Department of Clinical and Molecular Genetics and Rare Disease Unit, Vall Hebron Research Institute, Barcelona, Spain
- Medicine Genetics Group, Vall Hebron Research Institute, Barcelona, Spain
| | - Élida Vazquez
- Department of Pediatric Radiology, Hospital Vall d'Hebron, Barcelona, Spain
| | - Anna Maria Cueto-Gonzalez
- Department of Clinical and Molecular Genetics and Rare Disease Unit, Vall Hebron Research Institute, Barcelona, Spain
- Medicine Genetics Group, Vall Hebron Research Institute, Barcelona, Spain
| | - Amaia Lasa-Aranzasti
- Department of Clinical and Molecular Genetics and Rare Disease Unit, Vall Hebron Research Institute, Barcelona, Spain
- Medicine Genetics Group, Vall Hebron Research Institute, Barcelona, Spain
| | - Laura Trujillano
- Department of Clinical and Molecular Genetics and Rare Disease Unit, Vall Hebron Research Institute, Barcelona, Spain
- Medicine Genetics Group, Vall Hebron Research Institute, Barcelona, Spain
| | - Bárbara Masotto
- Department of Clinical and Molecular Genetics and Rare Disease Unit, Vall Hebron Research Institute, Barcelona, Spain
- Medicine Genetics Group, Vall Hebron Research Institute, Barcelona, Spain
| | - Elena García Arumí
- Department of Clinical and Molecular Genetics and Rare Disease Unit, Vall Hebron Research Institute, Barcelona, Spain
- Medicine Genetics Group, Vall Hebron Research Institute, Barcelona, Spain
| | - Eduardo F Tizzano
- Department of Clinical and Molecular Genetics and Rare Disease Unit, Vall Hebron Research Institute, Barcelona, Spain
- Medicine Genetics Group, Vall Hebron Research Institute, Barcelona, Spain
| |
Collapse
|
6
|
Siqueiros-Sanchez M, Serur Y, McGhee CA, Smith TF, Green T. Social Communication in Ras Pathway Disorders: A Comprehensive Review From Genetics to Behavior in Neurofibromatosis Type 1 and Noonan Syndrome. Biol Psychiatry 2024:S0006-3223(24)01624-X. [PMID: 39366539 DOI: 10.1016/j.biopsych.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 10/06/2024]
Abstract
Neurofibromatosis type 1 (NF1) and Noonan syndrome (NS) are neurogenetic syndromes caused by pathogenetic variants encoding components of the Ras-ERK-MAPK (Ras/extracellular signal-regulated kinase/mitogen-activated protein kinase) signaling pathway (Ras pathway). NF1 and NS are associated with differences in social communication and related neuropsychiatric risks. During the last decade, there has been growing interest in Ras-linked syndromes as models to understand social communication deficits and autism spectrum disorder. We systematically review the literature between 2010 and 2023 focusing on the social communication construct of the Research Domain Criteria framework. We provide an integrative summary of the research on facial and nonfacial social communication processes in NF1 and NS across molecular, cellular, neural circuitry, and behavioral domains. At the molecular and cellular levels, dysregulation in the Ras pathway is intricately tied to variations in social communication through changes in GABAergic (gamma-aminobutyric acidergic), glutamatergic, and serotonergic transmission, as well as inhibitory/excitatory imbalance. Neural circuitry typically associated with learning, attention, and memory in NF1 and NS (e.g., corticostriatal connectivity) is also implicated in social communication. We highlight less-researched potential mechanisms for social communication, such as white matter connectivity and the default mode network. Finally, key gaps in NF1 and NS literature are identified, and a roadmap for future research is provided. By leveraging genetic syndrome research, we can understand the mechanisms associated with behaviors and psychiatric disorders.
Collapse
Affiliation(s)
- Monica Siqueiros-Sanchez
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California.
| | - Yaffa Serur
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Chloe A McGhee
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Taylor F Smith
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, California
| | - Tamar Green
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
7
|
Perri L, Viscogliosi G, Trevisan V, Brogna C, Chieffo DPR, Contaldo I, Alfieri P, Lentini N, Pastorino R, Zampino G, Leoni C. Parenting Stress Index in Caregivers of Individuals With Noonan Syndrome. Am J Med Genet B Neuropsychiatr Genet 2024:e33009. [PMID: 39333035 DOI: 10.1002/ajmg.b.33009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/29/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
Medical professionals frequently underestimate stress level of parents/caregivers of patients with rare disorders as RASopathies, the latter might experience elevated stress levels, with their own health frequently overlooked despite significant responsibilities and hurdles encountered. The aim of this study is to assess the stress experienced by parents of individuals with Noonan syndrome and related conditions. Forty-eight parents (20 fathers; 28 mothers), among the 31 recruited families, completed the Italian version of the Parenting Stress Index-Short Form. Our study shows abnormally elevated scores (≥ 85° percentile) in 35.4% of parents. Data retrieved from subscales reveal a perception of a difficult child in 25% of cases, a dysfunctional parental-child interaction in 20.8%, a general parental distress in 10.4% of cases, and an elevated overall stress in 18.8% of parents. Questionnaires as the Parenting Stress Index-Short Form are valuable tools to evaluate stress in parents/caregivers of children with RASopathies. Evaluation by professionals is fundamental to support parents and caregivers in managing stressors and to enhance their quality of life and relationships. To prevent stress escalation and parents' burnout, an early assessment to tailor a timely treatment should be introduced as soon as possible as good clinical practice.
Collapse
Affiliation(s)
- Lucrezia Perri
- Center for Rare Disease and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Germana Viscogliosi
- Center for Rare Disease and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Valentina Trevisan
- Center for Rare Disease and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Medical Genetics Unit, Department of Laboratory and Infectious Sciences, Fondazione Policlinico Univaersitario A. Gemelli, IRCCS, Rome, Italy
| | - Claudia Brogna
- Child Neurology and Psychiatric Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Univaersitario A. Gemelli, IRCCS, Rome, Italy
| | | | - Ilaria Contaldo
- Child Neurology and Psychiatric Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Univaersitario A. Gemelli, IRCCS, Rome, Italy
| | - Paolo Alfieri
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Nicolo' Lentini
- Section of Hygiene, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Roberta Pastorino
- Section of Hygiene, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Zampino
- Center for Rare Disease and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Chiara Leoni
- Center for Rare Disease and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| |
Collapse
|
8
|
Mardi S, Letafati A, Hosseini A, Faraji R, Hosseini P, Mozhgani SH. Analysis of the Main Checkpoints of the JNK-MAPK Pathway in HTLV-1-Associated Leukemia/Lymphoma via Boolean Network Simulation. Biochem Genet 2024:10.1007/s10528-024-10916-0. [PMID: 39320417 DOI: 10.1007/s10528-024-10916-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
The c-Jun N-terminal kinase (JNK) pathway is a signal transduction pathway that plays a critical role in cell growth and survival. Its dysregulation is related to various cancers, including adult T-cell leukemia/lymphoma (ATLL), an aggressive peripheral T-cell malignancy caused by human T-cell lymphotropic virus type 1 (HTLV-1) infection. There is currently no vaccine or definitive treatment for ATLL. This research aimed to identify the JNK-MAPK pathway checkpoints to identify possible therapeutic targets using Boolean network analysis. First, the genes involved in the JNK pathway and their interactions were identified and mapped. Next, a Boolean network analysis was performed using the R programming language, which suggested protein kinase B (AKT) and MAP kinase phosphatase (MKP) for further evaluation. Finally, to confirm the effect of these two genes, a clinical study was conducted among ATLL patients and healthy individuals. The quantitative real time polymerase chain reaction (qRT‒PCR) results revealed a statistically significant decrease in the expression of AKT and MKP in ATLL patients compared to normal controls. This highlights the potential role of these two genes as potential therapeutic targets in ATLL.
Collapse
Affiliation(s)
- Shayan Mardi
- Student Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Hosseini
- Department of Computer Engineering, Faculty of Engineering, Raja University, Qazvin, Iran
| | - Reza Faraji
- Department of Animal Sciences, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - Parastoo Hosseini
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed-Hamidreza Mozhgani
- Noncommunicable Disease Research Center, Alborz University of Medical Sciences, Karaj, Iran.
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
9
|
Arrabito M, Li Volsi N, La Rosa M, Samperi P, Pulvirenti G, Cannata E, Russo G, Di Cataldo A, Lo Nigro L. Transient Myeloproliferative Disorder (TMD), Acute Lymphoblastic Leukemia (ALL), and Juvenile Myelomonocytic Leukemia (JMML) in a Child with Noonan Syndrome: Sequential Occurrence, Single Center Experience, and Review of the Literature. Genes (Basel) 2024; 15:1191. [PMID: 39336782 PMCID: PMC11431238 DOI: 10.3390/genes15091191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Noonan syndrome (NS) is an autosomal dominant disorder that varies in severity and can involve multiple organ systems. In approximately 50% of cases, it is caused by missense mutations in the PTPN11 gene (12q24.13). NS is associated with a higher risk of cancer occurrence, specifically hematological disorders. Here, we report a case of a child who was diagnosed at birth with a transient myeloproliferative disorder (TMD). After two years, the child developed hyperdiploid B-cell precursor acute lymphoblastic leukemia (BCP-ALL), receiving a two-year course of treatment. During her continuous complete remission (CCR), a heterozygous germline mutation in the PTPN11 gene [c.218 C>T (p.Thr73lle)] was identified. At the age of ten, the child presented with massive splenomegaly, hyperleukocytosis, and thrombocytopenia, resulting in the diagnosis of juvenile myelomonocytic leukemia (JMML). After an initial response to antimetabolite therapy (6-mercaptopurine), she underwent haploidentical hematopoietic stem cell transplantation (HSCT) and is currently in complete remission. The goal of this review is to gain insight into the various hematological diseases associated with NS, starting from our unique case.
Collapse
Affiliation(s)
- Marta Arrabito
- Center of Pediatric Hematology Oncology, Azienda Policlinico di Catania, 95100 Catania, Italy; (M.A.); (N.L.V.); (P.S.); (E.C.); (G.R.); (A.D.C.)
- Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy
| | - Nicolò Li Volsi
- Center of Pediatric Hematology Oncology, Azienda Policlinico di Catania, 95100 Catania, Italy; (M.A.); (N.L.V.); (P.S.); (E.C.); (G.R.); (A.D.C.)
- School of Medical Genetics, University of Catania, 95100 Catania, Italy
| | - Manuela La Rosa
- Cytogenetic-Cytofluorimetric-Molecular Biology Lab, Center of Pediatric Hematology Oncology, Azienda Policlinico di Catania, Via Santa Sofia 78, 95123 Catania, Italy;
| | - Piera Samperi
- Center of Pediatric Hematology Oncology, Azienda Policlinico di Catania, 95100 Catania, Italy; (M.A.); (N.L.V.); (P.S.); (E.C.); (G.R.); (A.D.C.)
| | | | - Emanuela Cannata
- Center of Pediatric Hematology Oncology, Azienda Policlinico di Catania, 95100 Catania, Italy; (M.A.); (N.L.V.); (P.S.); (E.C.); (G.R.); (A.D.C.)
- Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy
| | - Giovanna Russo
- Center of Pediatric Hematology Oncology, Azienda Policlinico di Catania, 95100 Catania, Italy; (M.A.); (N.L.V.); (P.S.); (E.C.); (G.R.); (A.D.C.)
- Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy
- School of Pediatrics, University of Catania, 95100 Catania, Italy;
| | - Andrea Di Cataldo
- Center of Pediatric Hematology Oncology, Azienda Policlinico di Catania, 95100 Catania, Italy; (M.A.); (N.L.V.); (P.S.); (E.C.); (G.R.); (A.D.C.)
- Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy
- School of Pediatrics, University of Catania, 95100 Catania, Italy;
| | - Luca Lo Nigro
- Center of Pediatric Hematology Oncology, Azienda Policlinico di Catania, 95100 Catania, Italy; (M.A.); (N.L.V.); (P.S.); (E.C.); (G.R.); (A.D.C.)
- Cytogenetic-Cytofluorimetric-Molecular Biology Lab, Center of Pediatric Hematology Oncology, Azienda Policlinico di Catania, Via Santa Sofia 78, 95123 Catania, Italy;
| |
Collapse
|
10
|
Siqueiros-Sanchez M, Dai E, McGhee CA, McNab JA, Raman MM, Green T. Impact of pathogenic variants of the Ras-mitogen-activated protein kinase pathway on major white matter tracts in the human brain. Brain Commun 2024; 6:fcae274. [PMID: 39210910 PMCID: PMC11358645 DOI: 10.1093/braincomms/fcae274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/10/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Noonan syndrome and neurofibromatosis type 1 are genetic conditions linked to pathogenic variants in genes of the Ras-mitogen-activated protein kinase signalling pathway. Both conditions hyper-activate signalling of the Ras-mitogen-activated protein kinase pathway and exhibit a high prevalence of neuropsychiatric disorders. Further, animal models of Noonan syndrome and neurofibromatosis type 1 and human imaging studies show white matter abnormalities in both conditions. While these findings suggest Ras-mitogen-activated protein kinas pathway hyper-activation effects on white matter, it is unknown whether these effects are syndrome-specific or pathway-specific. To characterize the effect of Noonan syndrome and neurofibromatosis type 1 on human white matter's microstructural integrity and discern potential syndrome-specific influences on microstructural integrity of individual tracts, we collected diffusion-weighted imaging data from children with Noonan syndrome (n = 24), neurofibromatosis type 1 (n = 28) and age- and sex-matched controls (n = 31). We contrasted the clinical groups (Noonan syndrome or neurofibromatosis type 1) and controls using voxel-wise, tract-based and along-tract analyses. Outcomes included voxel-wise, tract-based and along-tract fractional anisotropy, axial diffusivity, radial diffusivity and mean diffusivity. Noonan syndrome and neurofibromatosis type 1 showed similar patterns of reduced fractional anisotropy and increased axial diffusivity, radial diffusivity, and mean diffusivity on white matter relative to controls and different spatial patterns. Noonan syndrome presented a more extensive spatial effect than neurofibromatosis type 1 on white matter integrity as measured by fractional anisotropy. Tract-based analysis also demonstrated differences in effect magnitude with overall lower fractional anisotropy in Noonan syndrome compared to neurofibromatosis type 1 (d = 0.4). At the tract level, Noonan syndrome-specific effects on fractional anisotropy were detected in association tracts (superior longitudinal, uncinate and arcuate fasciculi; P < 0.012), and neurofibromatosis type 1-specific effects were detected in the corpus callosum (P < 0.037) compared to controls. Results from along-tract analyses aligned with results from tract-based analyses and indicated that effects are pervasive along the affected tracts. In conclusion, we find that pathogenic variants in the Ras-mitogen-activated protein kinase pathway are associated with white matter abnormalities as measured by diffusion in the developing brain. Overall, Noonan syndrome and neurofibromatosis type 1 show common effects on fractional anisotropy and diffusion scalars, as well as specific unique effects, namely, on temporoparietal-frontal tracts (intra-hemispheric) in Noonan syndrome and on the corpus callosum (inter-hemispheric) in neurofibromatosis type 1. The observed specific effects not only confirm prior observations from independent cohorts of Noonan syndrome and neurofibromatosis type 1 but also inform on syndrome-specific susceptibility of individual tracts. Thus, these findings suggest potential targets for precise, brain-focused outcome measures for existing medications, such as MEK inhibitors, that act on the Ras-mitogen-activated protein kinase pathway.
Collapse
Affiliation(s)
- Monica Siqueiros-Sanchez
- Brain Imaging, Development and Genetic (BRIDGE) Lab, Stanford University School of Medicine, Palo Alto, CA 94306, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Erpeng Dai
- Department of Radiology, Stanford University, Stanford, CA 94305-5105, USA
| | - Chloe A McGhee
- Brain Imaging, Development and Genetic (BRIDGE) Lab, Stanford University School of Medicine, Palo Alto, CA 94306, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jennifer A McNab
- Department of Radiology, Stanford University, Stanford, CA 94305-5105, USA
| | - Mira M Raman
- Brain Imaging, Development and Genetic (BRIDGE) Lab, Stanford University School of Medicine, Palo Alto, CA 94306, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tamar Green
- Brain Imaging, Development and Genetic (BRIDGE) Lab, Stanford University School of Medicine, Palo Alto, CA 94306, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Faienza MF, Meliota G, Mentino D, Ficarella R, Gentile M, Vairo U, D’amato G. Cardiac Phenotype and Gene Mutations in RASopathies. Genes (Basel) 2024; 15:1015. [PMID: 39202376 PMCID: PMC11353738 DOI: 10.3390/genes15081015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Cardiac involvement is a major feature of RASopathies, a group of phenotypically overlapping syndromes caused by germline mutations in genes encoding components of the RAS/MAPK (mitogen-activated protein kinase) signaling pathway. In particular, Noonan syndrome (NS) is associated with a wide spectrum of cardiac pathologies ranging from congenital heart disease (CHD), present in approximately 80% of patients, to hypertrophic cardiomyopathy (HCM), observed in approximately 20% of patients. Genotype-cardiac phenotype correlations are frequently described, and they are useful indicators in predicting the prognosis concerning cardiac disease over the lifetime. The aim of this review is to clarify the molecular mechanisms underlying the development of cardiac diseases associated particularly with NS, and to discuss the main morphological and clinical characteristics of the two most frequent cardiac disorders, namely pulmonary valve stenosis (PVS) and HCM. We will also report the genotype-phenotype correlation and its implications for prognosis and treatment. Knowing the molecular mechanisms responsible for the genotype-phenotype correlation is key to developing possible targeted therapies. We will briefly address the first experiences of targeted HCM treatment using RAS/MAPK pathway inhibitors.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Giovanni Meliota
- Department of Pediatric Cardiology, Giovanni XXIII Pediatric Hospital, 70126 Bari, Italy; (G.M.); (U.V.)
| | - Donatella Mentino
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Romina Ficarella
- U.O.C. Laboratorio di Genetica Medica, PO Di Venere-ASL Bari, 70012 Bari, Italy; (R.F.); (M.G.)
| | - Mattia Gentile
- U.O.C. Laboratorio di Genetica Medica, PO Di Venere-ASL Bari, 70012 Bari, Italy; (R.F.); (M.G.)
| | - Ugo Vairo
- Department of Pediatric Cardiology, Giovanni XXIII Pediatric Hospital, 70126 Bari, Italy; (G.M.); (U.V.)
| | - Gabriele D’amato
- Neonatal Intensive Care Unit, Di Venere Hospital, 70012 Bari, Italy;
| |
Collapse
|
12
|
Stellacci E, Carter JN, Pannone L, Stevenson D, Moslehi D, Venanzi S, Bernstein JA, Tartaglia M, Martinelli S. Immunological and hematological findings as major features in a patient with a new germline pathogenic CBL variant. Am J Med Genet A 2024; 194:e63627. [PMID: 38613168 PMCID: PMC11223960 DOI: 10.1002/ajmg.a.63627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Casitas B-lineage lymphoma (CBL) encodes an adaptor protein with E3-ligase activity negatively controlling intracellular signaling downstream of receptor tyrosine kinases. Somatic CBL mutations play a driver role in a variety of cancers, particularly myeloid malignancies, whereas germline defects in the same gene underlie a RASopathy having clinical overlap with Noonan syndrome (NS) and predisposing to juvenile myelomonocytic leukemia and vasculitis. Other features of the disorder include cardiac defects, postnatal growth delay, cryptorchidism, facial dysmorphisms, and predisposition to develop autoimmune disorders. Here we report a novel CBL variant (c.1202G>T; p.Cys401Phe) occurring de novo in a subject with café-au-lait macules, feeding difficulties, mild dysmorphic features, psychomotor delay, autism spectrum disorder, thrombocytopenia, hepatosplenomegaly, and recurrent hypertransaminasemia. The identified variant affects an evolutionarily conserved residue located in the RING finger domain, a known mutational hot spot of both germline and somatic mutations. Functional studies documented enhanced EGF-induced ERK phosphorylation in transiently transfected COS1 cells. The present findings further support the association of pathogenic CBL variants with immunological and hematological manifestations in the context of a presentation with only minor findings reminiscent of NS or a clinically related RASopathy.
Collapse
Affiliation(s)
- Emilia Stellacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- These authors equally contributed to this work
| | - Jennefer N. Carter
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics - Medical Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- These authors equally contributed to this work
| | - Luca Pannone
- Molecular Genetics and Functional Genomics Research Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - David Stevenson
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics - Medical Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dorsa Moslehi
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, 94305, USA
| | - Serenella Venanzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Jonathan A. Bernstein
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics - Medical Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics Research Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
- These authors equally contributed to this work
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- These authors equally contributed to this work
| |
Collapse
|
13
|
Dentici ML, Niceta M, Lepri FR, Mancini C, Priolo M, Bonnard AA, Cappelletti C, Leoni C, Ciolfi A, Pizzi S, Cordeddu V, Rossi C, Ferilli M, Mucciolo M, Colona VL, Fauth C, Bellini M, Biasucci G, Sinibaldi L, Briuglia S, Gazzin A, Carli D, Memo L, Trevisson E, Schiavariello C, Luca M, Novelli A, Michot C, Sweertvaegher A, Germanaud D, Scarano E, De Luca A, Zampino G, Zenker M, Mussa A, Dallapiccola B, Cavé H, Digilio MC, Tartaglia M. Loss-of-function variants in ERF are associated with a Noonan syndrome-like phenotype with or without craniosynostosis. Eur J Hum Genet 2024; 32:954-963. [PMID: 38824261 PMCID: PMC11291927 DOI: 10.1038/s41431-024-01642-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/09/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Pathogenic, largely truncating variants in the ETS2 repressor factor (ERF) gene, encoding a transcriptional regulator negatively controlling RAS-MAPK signaling, have been associated with syndromic craniosynostosis involving various cranial sutures and Chitayat syndrome, an ultrarare condition with respiratory distress, skeletal anomalies, and facial dysmorphism. Recently, a single patient with craniosynostosis and a phenotype resembling Noonan syndrome (NS), the most common disorder among the RASopathies, was reported to carry a de novo loss-of-function variant in ERF. Here, we clinically profile 26 individuals from 15 unrelated families carrying different germline heterozygous variants in ERF and showing a phenotype reminiscent of NS. The majority of subjects presented with a variable degree of global developmental and/or language delay. Their shared facial features included absolute/relative macrocephaly, high forehead, hypertelorism, palpebral ptosis, wide nasal bridge, and low-set/posteriorly angulated ears. Stature was below the 3rd centile in two-third of the individuals, while no subject showed typical NS cardiac involvement. Notably, craniosynostosis was documented only in three unrelated individuals, while a dolichocephalic aspect of the skull in absence of any other evidence supporting a premature closing of sutures was observed in other 10 subjects. Unilateral Wilms tumor was diagnosed in one individual. Most cases were familial, indicating an overall low impact on fitness. Variants were nonsense and frameshift changes, supporting ERF haploinsufficiency. These findings provide evidence that heterozygous loss-of-function variants in ERF cause a "RASopathy" resembling NS with or without craniosynostosis, and allow a first dissection of the molecular circuits contributing to MAPK signaling pleiotropy.
Collapse
Affiliation(s)
- Maria Lisa Dentici
- Rare Diseases and Medical Genetics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Marcello Niceta
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | | | - Cecilia Mancini
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Manuela Priolo
- Medical and Molecular Genetics, Ospedale Cardarelli, 80131, Naples, Italy
| | - Adeline Alice Bonnard
- Service de de Génétique Moléculaire Hôpital Robert Debré, GHU AP-HP Nord - Université Paris Cité, INSERM UMR_S1131, Institut Universitaire d'Hématologie, Université Paris Cité, Paris-Cité, 75019, Paris, France
| | - Camilla Cappelletti
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
- Department of Biomedicine and Prevention, Università di Roma "Tor Vergata", 00133, Rome, Italy
| | - Chiara Leoni
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Simone Pizzi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Viviana Cordeddu
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Cesare Rossi
- Medical Genetics, IRCSS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Marco Ferilli
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Mafalda Mucciolo
- Translational Cytogenomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Vito Luigi Colona
- Rare Diseases and Medical Genetics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Christine Fauth
- Institute for Human Genetics, Medical University Innsbruck, 6020, Innsbruck, Austria
| | - Melissa Bellini
- Pediatrics and Neonatology, Gugliemo da Saliceto Hospital, 29121, Piacenza, Italy
| | - Giacomo Biasucci
- Pediatrics and Neonatology, Gugliemo da Saliceto Hospital, 29121, Piacenza, Italy
| | - Lorenzo Sinibaldi
- Rare Diseases and Medical Genetics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Silvana Briuglia
- Genetics and Pharmacogenetics, Ospedale Universitario "Gaetano Martino", 98125, Messina, Italy
| | - Andrea Gazzin
- Pediatric Clinical Genetics, Ospedale Pediatrico "Regina Margherita", 10126, Torino, Italy
| | - Diana Carli
- Department of Medical Sciences, Università of Torino, 10126, Torino, Italy
| | - Luigi Memo
- Medical Genetics, Institute for Maternal and Child Health-IRCCS, Burlo Garofolo, 34127, Trieste, Italy
| | - Eva Trevisson
- Department of Women's and Children's Health, Università di Padova, 35128, Padova, Italy
| | - Concetta Schiavariello
- Department of Pediatrics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Maria Luca
- Department of Medical Sciences, Università of Torino, 10126, Torino, Italy
| | - Antonio Novelli
- Translational Cytogenomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Caroline Michot
- Center for Skeletal Dysplasia, Necker-Enfants Malades Hospital, Paris Cité University, INSERM UMR 1163, Imagine Institute, 75015, Paris, France
| | - Anne Sweertvaegher
- Service de Pédiatrie, Centre hospitalier de Saint-Quentin, 02321, Saint-Quentin, France
| | - David Germanaud
- Département de Génétique, CEA Paris-Saclay, NeuroSpin, Gif-sur-Yvette, France
- Service de Génétique Clinique, AP-HP, Hôpital Robert-Debré, 75019, Paris, France
| | - Emanuela Scarano
- Department of Pediatrics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Alessandro De Luca
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni, Rotondo, Italy
| | - Giuseppe Zampino
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, 39120, Magdeburg, Germany
| | - Alessandro Mussa
- Department of Medical Sciences, Università of Torino, 10126, Torino, Italy
| | - Bruno Dallapiccola
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Helene Cavé
- Service de de Génétique Moléculaire Hôpital Robert Debré, GHU AP-HP Nord - Université Paris Cité, INSERM UMR_S1131, Institut Universitaire d'Hématologie, Université Paris Cité, Paris-Cité, 75019, Paris, France
| | - Maria Cristina Digilio
- Rare Diseases and Medical Genetics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy.
| |
Collapse
|
14
|
Gazzin A, Fornari F, Cardaropoli S, Carli D, Tartaglia M, Ferrero GB, Mussa A. Exploring New Drug Repurposing Opportunities for MEK Inhibitors in RASopathies: A Comprehensive Review of Safety, Efficacy, and Future Perspectives of Trametinib and Selumetinib. Life (Basel) 2024; 14:731. [PMID: 38929714 PMCID: PMC11204468 DOI: 10.3390/life14060731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The RASopathies are a group of syndromes caused by genetic variants that affect the RAS-MAPK signaling pathway, which is essential for cell response to diverse stimuli. These variants functionally converge towards the overactivation of the pathway, leading to various constitutional and mosaic conditions. These syndromes show overlapping though distinct clinical presentations and share congenital heart defects, hypertrophic cardiomyopathy (HCM), and lymphatic dysplasia as major clinical features, with highly variable prevalence and severity. Available treatments have mainly been directed to target the symptoms. However, repurposing MEK inhibitors (MEKis), which were originally developed for cancer treatment, to target evolutive aspects occurring in these disorders is a promising option. Animal models have shown encouraging results in treating various RASopathy manifestations, including HCM and lymphatic abnormalities. Clinical reports have also provided first evidence supporting the effectiveness of MEKi, especially trametinib, in treating life-threatening conditions associated with these disorders. Nevertheless, despite notable improvements, there are adverse events that occur, necessitating careful monitoring. Moreover, there is evidence indicating that multiple pathways can contribute to these disorders, indicating a current need to more accurate understand of the underlying mechanism of the disease to apply an effective targeted therapy. In conclusion, while MEKi holds promise in managing life-threatening complications of RASopathies, dedicated clinical trials are required to establish standardized treatment protocols tailored to take into account the individual needs of each patient and favor a personalized treatment.
Collapse
Affiliation(s)
- Andrea Gazzin
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy;
- Clinical Pediatrics Genetics Unit, Regina Margherita Children’s Hospital, 10126 Turin, Italy
| | - Federico Fornari
- Postgraduate School of Pediatrics, Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Simona Cardaropoli
- Postgraduate School of Pediatrics, Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Diana Carli
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy
| | | | - Alessandro Mussa
- Clinical Pediatrics Genetics Unit, Regina Margherita Children’s Hospital, 10126 Turin, Italy
- Postgraduate School of Pediatrics, Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| |
Collapse
|
15
|
Bonsor DA, Simanshu DK. RAS and SHOC2 Roles in RAF Activation and Therapeutic Considerations. ANNUAL REVIEW OF CANCER BIOLOGY 2024; 8:97-113. [PMID: 38882927 PMCID: PMC11178279 DOI: 10.1146/annurev-cancerbio-062822-030450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Mutations in RAS proteins play a pivotal role in the development of human cancers, driving persistent RAF activation and deregulating the Mitogen-Activated Protein Kinase (MAPK) signaling pathway. While progress has been made in targeting specific oncogenic RAS proteins, effective drug-based therapies for the majority of RAS mutations remain limited. Recent investigations on RAS-RAF complexes and the SHOC2-MRAS-PP1C holoenzyme complex have provided crucial insights into the structural and functional aspects of RAF activation within the MAPK signaling pathway. Moreover, these studies have also unveiled new blueprints for developing inhibitors allowing us to think beyond the current RAS and MEK inhibitors. In this review, we explore the roles of RAS and SHOC2 in activating RAF and discuss potential therapeutic strategies to target these proteins. A comprehensive understanding of the molecular interactions involved in RAF activation and their therapeutic implications holds the potential to drive innovative approaches in combating RAS/RAF-driven cancers.
Collapse
Affiliation(s)
- Daniel A. Bonsor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dhirendra K. Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
16
|
Bakalakos A, Monda E, Elliott PM. The Diagnostic and Therapeutic Implications of Phenocopies and Mimics of Hypertrophic Cardiomyopathy. Can J Cardiol 2024; 40:754-765. [PMID: 38447917 DOI: 10.1016/j.cjca.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a common myocardial disease defined by increased left ventricular wall thickness unexplained by loading conditions. HCM frequently is caused by pathogenic variants in sarcomeric protein genes, but several other syndromic, metabolic, infiltrative, and neuromuscular diseases can result in HCM phenocopies. This review summarizes the current understanding of these HCM mimics, highlighting their importance across the life course. The central role of a comprehensive, multiparametric diagnostic approach and the potential of precision medicine in tailoring treatment strategies are emphasized.
Collapse
Affiliation(s)
- Athanasios Bakalakos
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Emanuele Monda
- Institute of Cardiovascular Science, University College London, London, United Kingdom; Department of Translational Medical Sciences, Inherited and Rare Cardiovascular Diseases, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Perry Mark Elliott
- Institute of Cardiovascular Science, University College London, London, United Kingdom.
| |
Collapse
|
17
|
Ouboukss F, Adadi N, Amasdl S, Smaili W, Laarabi FZ, Lyahyai J, Sefiani A, Ratbi I. High frequency of hotspot mutation in PTPN11 gene among Moroccan patients with Noonan syndrome. J Appl Genet 2024; 65:303-308. [PMID: 37987971 DOI: 10.1007/s13353-023-00803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
Noonan syndrome (NS; OMIM 163950) is an autosomal dominant RASopathy with variable clinical expression and genetic heterogeneity. Clinical manifestations include characteristic facial features, short stature, and cardiac anomalies. Variants in protein-tyrosine phosphatase, non-receptor-type 11 (PTPN11), encoding SHP-2, account for about half of NS patients, SOS1 in approximately 13%, RAF1 in 10%, and RIT1 each in 9%. Other genes have been reported to cause NS in less than 5% of cases including SHOC2, RASA2, LZTR1, SPRED2, SOS2, CBL, KRAS, NRAS, MRAS, PRAS, BRAF, PPP1CB, A2ML1, MAP2K1, and CDC42. Several additional genes associated with a Noonan syndrome-like phenotype have been identified. Clinical presentation and variants in patients with Noonan syndrome are this study's objectives. We performed Sanger sequencing of PTPN11 hotspot (exons 3, 8, and 13). We report molecular analysis of 61 patients with NS phenotype belonging to 58 families. We screened for hotspot variants (exons 3, 8, and 13) in PTPN11 gene by Sanger sequencing. Twenty-seven patients were carrying heterozygous pathogenic variants of PTPN11 gene with a similar frequency (41.4%) compared to the literature. Our findings expand the variant spectrum of Moroccan patients with NS phenotype in whom the analysis of hotspot variants showed a high frequency of exons 3 and 8. This screening test allowed us to establish a molecular diagnosis in almost half of the patients with a good benefit-cost ratio, with appropriate management and genetic counseling.
Collapse
Affiliation(s)
- Fatima Ouboukss
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genomics Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco.
- Department of Medical Genetics, National Institute of Health in Rabat, BP 769 Agdal, 10 090, Rabat, Morocco.
| | - Najlae Adadi
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genomics Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco
- Department of Medical Genetics, National Institute of Health in Rabat, BP 769 Agdal, 10 090, Rabat, Morocco
| | - Saadia Amasdl
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genomics Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco
- Department of Medical Genetics, National Institute of Health in Rabat, BP 769 Agdal, 10 090, Rabat, Morocco
| | - Wiam Smaili
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genomics Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco
- Department of Medical Genetics, National Institute of Health in Rabat, BP 769 Agdal, 10 090, Rabat, Morocco
| | - Fatima Zahra Laarabi
- Department of Medical Genetics, National Institute of Health in Rabat, BP 769 Agdal, 10 090, Rabat, Morocco
| | - Jaber Lyahyai
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genomics Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco
| | - Abdelaziz Sefiani
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genomics Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco
- Department of Medical Genetics, National Institute of Health in Rabat, BP 769 Agdal, 10 090, Rabat, Morocco
| | - Ilham Ratbi
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, Genomics Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco
| |
Collapse
|
18
|
Fasano G, Petrini S, Bonavolontà V, Paradisi G, Pedalino C, Tartaglia M, Lauri A. Assessment of the FRET-based Teen sensor to monitor ERK activation changes preceding morphological defects in a RASopathy zebrafish model and phenotypic rescue by MEK inhibitor. Mol Med 2024; 30:47. [PMID: 38594640 PMCID: PMC11005195 DOI: 10.1186/s10020-024-00807-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND RASopathies are genetic syndromes affecting development and having variable cancer predisposition. These disorders are clinically related and are caused by germline mutations affecting key players and regulators of the RAS-MAPK signaling pathway generally leading to an upregulated ERK activity. Gain-of-function (GOF) mutations in PTPN11, encoding SHP2, a cytosolic protein tyrosine phosphatase positively controlling RAS function, underlie approximately 50% of Noonan syndromes (NS), the most common RASopathy. A different class of these activating mutations occurs as somatic events in childhood leukemias. METHOD Here, we evaluated the application of a FRET-based zebrafish ERK reporter, Teen, and used quantitative FRET protocols to monitor non-physiological RASopathy-associated changes in ERK activation. In a multi-level experimental workflow, we tested the suitability of the Teen reporter to detect pan-embryo ERK activity correlates of morphometric alterations driven by the NS-causing Shp2D61G allele. RESULTS Spectral unmixing- and acceptor photobleaching (AB)-FRET analyses captured pathological ERK activity preceding the manifestation of quantifiable body axes defects, a morphological pillar used to test the strength of SHP2 GoF mutations. Last, the work shows that by multi-modal FRET analysis, we can quantitatively trace back the modulation of ERK phosphorylation obtained by low-dose MEK inhibitor treatment to early development, before the onset of morphological defects. CONCLUSION This work proves the usefulness of FRET imaging protocols on both live and fixed Teen ERK reporter fish to readily monitor and quantify pharmacologically- and genetically-induced ERK activity modulations in early embryos, representing a useful tool in pre-clinical applications targeting RAS-MAPK signaling.
Collapse
Affiliation(s)
- Giulia Fasano
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, 00146, Italy
| | - Stefania Petrini
- Microscopy facility, Research laboratories, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, 00146, Italy
| | - Valeria Bonavolontà
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, 00146, Italy
| | - Graziamaria Paradisi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, 00146, Italy
- Department for Innovation in Biological Agro-food and Forest systems (DIBAF), University of Tuscia, Viterbo, 01100, Italy
| | - Catia Pedalino
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, 00146, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, 00146, Italy.
| | - Antonella Lauri
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, 00146, Italy.
| |
Collapse
|
19
|
Juchnewitsch AG, Pomm K, Dutta A, Tamp E, Valkna A, Lillepea K, Mahyari E, Tjagur S, Belova G, Kübarsepp V, Castillo-Madeen H, Riera-Escamilla A, Põlluaas L, Nagirnaja L, Poolamets O, Vihljajev V, Sütt M, Versbraegen N, Papadimitriou S, McLachlan RI, Jarvi KA, Schlegel PN, Tennisberg S, Korrovits P, Vigh-Conrad K, O’Bryan MK, Aston KI, Lenaerts T, Conrad DF, Kasak L, Punab M, Laan M. Undiagnosed RASopathies in infertile men. Front Endocrinol (Lausanne) 2024; 15:1312357. [PMID: 38654924 PMCID: PMC11035881 DOI: 10.3389/fendo.2024.1312357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/11/2024] [Indexed: 04/26/2024] Open
Abstract
RASopathies are syndromes caused by congenital defects in the Ras/mitogen-activated protein kinase (MAPK) pathway genes, with a population prevalence of 1 in 1,000. Patients are typically identified in childhood based on diverse characteristic features, including cryptorchidism (CR) in >50% of affected men. As CR predisposes to spermatogenic failure (SPGF; total sperm count per ejaculate 0-39 million), we hypothesized that men seeking infertility management include cases with undiagnosed RASopathies. Likely pathogenic or pathogenic (LP/P) variants in 22 RASopathy-linked genes were screened in 521 idiopathic SPGF patients (including 155 CR cases) and 323 normozoospermic controls using exome sequencing. All 844 men were recruited to the ESTonian ANDrology (ESTAND) cohort and underwent identical andrological phenotyping. RASopathy-specific variant interpretation guidelines were used for pathogenicity assessment. LP/P variants were identified in PTPN11 (two), SOS1 (three), SOS2 (one), LZTR1 (one), SPRED1 (one), NF1 (one), and MAP2K1 (one). The findings affected six of 155 cases with CR and SPGF, three of 366 men with SPGF only, and one (of 323) normozoospermic subfertile man. The subgroup "CR and SPGF" had over 13-fold enrichment of findings compared to controls (3.9% vs. 0.3%; Fisher's exact test, p = 5.5 × 10-3). All ESTAND subjects with LP/P variants in the Ras/MAPK pathway genes presented congenital genitourinary anomalies, skeletal and joint conditions, and other RASopathy-linked health concerns. Rare forms of malignancies (schwannomatosis and pancreatic and testicular cancer) were reported on four occasions. The Genetics of Male Infertility Initiative (GEMINI) cohort (1,416 SPGF cases and 317 fertile men) was used to validate the outcome. LP/P variants in PTPN11 (three), LZTR1 (three), and MRAS (one) were identified in six SPGF cases (including 4/31 GEMINI cases with CR) and one normozoospermic man. Undiagnosed RASopathies were detected in total for 17 ESTAND and GEMINI subjects, 15 SPGF patients (10 with CR), and two fertile men. Affected RASopathy genes showed high expression in spermatogenic and testicular somatic cells. In conclusion, congenital defects in the Ras/MAPK pathway genes represent a new congenital etiology of syndromic male infertility. Undiagnosed RASopathies were especially enriched among patients with a history of cryptorchidism. Given the relationship between RASopathies and other conditions, infertile men found to have this molecular diagnosis should be evaluated for known RASopathy-linked health concerns, including specific rare malignancies.
Collapse
Affiliation(s)
- Anna-Grete Juchnewitsch
- Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kristjan Pomm
- Andrology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Avirup Dutta
- Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Erik Tamp
- Centre of Pathology, East Tallinn Central Hospital, Tallinn, Estonia
| | - Anu Valkna
- Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kristiina Lillepea
- Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Eisa Mahyari
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | | | - Galina Belova
- Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Viljo Kübarsepp
- Department of Surgery, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Pediatric Surgery, Clinic of Surgery, Tartu University Hospital, Tartu, Estonia
| | - Helen Castillo-Madeen
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Antoni Riera-Escamilla
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Lisanna Põlluaas
- Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Liina Nagirnaja
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Olev Poolamets
- Andrology Clinic, Tartu University Hospital, Tartu, Estonia
| | | | - Mailis Sütt
- Andrology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Nassim Versbraegen
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
| | - Sofia Papadimitriou
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Science, Ghent University, Ghent, Belgium
| | - Robert I. McLachlan
- Hudson Institute of Medical Research and the Department of Obstetrics and Gynecology, Monash University, Clayton, VIC, Australia
| | - Keith A. Jarvi
- Division of Urology, Department of Surgery, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Peter N. Schlegel
- Department of Urology, Weill Cornell Medical College, New York, NY, United States
| | | | - Paul Korrovits
- Andrology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Katinka Vigh-Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Moira K. O’Bryan
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Kenneth I. Aston
- Andrology and IVF Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Tom Lenaerts
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
- Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Donald F. Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Beaverton, OR, United States
| | - Laura Kasak
- Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Margus Punab
- Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Andrology Clinic, Tartu University Hospital, Tartu, Estonia
- Department of Surgery, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Maris Laan
- Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
20
|
Shoji Y, Hata A, Maeyama T, Wada T, Hasegawa Y, Nishi E, Ida S, Etani Y, Niihori T, Aoki Y, Okamoto N, Kawai M. Genetic backgrounds and genotype-phenotype relationships in anthropometric parameters of 116 Japanese individuals with Noonan syndrome. Clin Pediatr Endocrinol 2024; 33:50-58. [PMID: 38572385 PMCID: PMC10985011 DOI: 10.1297/cpe.2024-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/02/2024] [Indexed: 04/05/2024] Open
Abstract
Noonan syndrome (NS) is caused by pathogenic variants in genes encoding components of the RAS/MAPK pathway and presents with a number of symptoms, including characteristic facial features, congenital heart diseases, and short stature. Advances in genetic analyses have contributed to the identification of pathogenic genes in NS as well as genotype-phenotype relationships; however, updated evidence for the detection rate of pathogenic genes with the inclusion of newly identified genes is lacking in Japan. Accordingly, we examined the genetic background of 116 individuals clinically diagnosed with NS and the frequency of short stature. We also investigated genotype-phenotype relationships in the context of body mass index (BMI). Genetic testing revealed the responsible variants in 100 individuals (86%), where PTPN11 variants were the most prevalent (43%) and followed by SOS1 (12%) and RIT1 (9%). The frequency of short stature was the lowest in subjects possessing RIT1 variants. No genotype-phenotype relationships in BMI were observed among the genotypes. In conclusion, this study provides evidence for the detection rate of pathogenic genes and genotype-phenotype relationships in Japanese patients with NS, which will be of clinical importance for accelerating our understanding of the genetic backgrounds of Japanese patients with NS.
Collapse
Affiliation(s)
- Yasuko Shoji
- Department of Gastroenterology and Endocrinology, Osaka Women's and Children's Hospital, Osaka, Japan
- Department of Epidemiology and Health Policy, University of Toyama, Toyama, Japan
| | - Ayaha Hata
- Department of Gastroenterology and Endocrinology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Takatoshi Maeyama
- Department of Gastroenterology and Endocrinology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Tamaki Wada
- Department of Gastroenterology and Endocrinology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Yuiko Hasegawa
- Department of Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Eriko Nishi
- Department of Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Shinobu Ida
- Department of Clinical Laboratory, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Yuri Etani
- Department of Gastroenterology and Endocrinology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Tetsuya Niihori
- Department of Medical Genetics, Tohoku University School of Medicine, Miyagi, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University School of Medicine, Miyagi, Japan
| | - Nobuhiko Okamoto
- Department of Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Masanobu Kawai
- Department of Gastroenterology and Endocrinology, Osaka Women's and Children's Hospital, Osaka, Japan
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka, Japan
| |
Collapse
|
21
|
Clark KJ, Lubin EE, Gonzalez EM, Sangree AK, Layo-Carris DE, Durham EL, Ahrens-Nicklas RC, Nomakuchi TT, Bhoj EJ. NeuroTri2-VISDOT: An open-access tool to harness the power of second trimester human single cell data to inform models of Mendelian neurodevelopmental disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578438. [PMID: 38352329 PMCID: PMC10862881 DOI: 10.1101/2024.02.01.578438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Whole exome and genome sequencing, coupled with refined bioinformatic pipelines, have enabled improved diagnostic yields for individuals with Mendelian conditions and have led to the rapid identification of novel syndromes. For many Mendelian neurodevelopmental disorders (NDDs), there is a lack of pre-existing model systems for mechanistic work. Thus, it is critical for translational researchers to have an accessible phenotype- and genotype-informed approach for model system selection. Single-cell RNA sequencing data can be informative in such an approach, as it can indicate which cell types express a gene of interest at the highest levels across time. For Mendelian NDDs, such data for the developing human brain is especially useful. A valuable single-cell RNA sequencing dataset of the second trimester developing human brain was produced by Bhaduri et al in 2021, but access to these data can be limited by computing power and the learning curve of single-cell data analysis. To reduce these barriers for translational research on Mendelian NDDs, we have built the web-based tool, Neurodevelopment in Trimester 2 - VIsualization of Single cell Data Online Tool (NeuroTri2-VISDOT), for exploring this single-cell dataset, and we have employed it in several different settings to demonstrate its utility for the translational research community.
Collapse
Affiliation(s)
- Kelly J. Clark
- Biomedical Graduate School, University of Pennsylvania, Perelman School of Medicine
- Children’s Hospital of Philadelphia
| | - Emily E. Lubin
- Biomedical Graduate School, University of Pennsylvania, Perelman School of Medicine
- Children’s Hospital of Philadelphia
| | - Elizabeth M. Gonzalez
- Biomedical Graduate School, University of Pennsylvania, Perelman School of Medicine
- Children’s Hospital of Philadelphia
| | - Annabel K. Sangree
- Biomedical Graduate School, University of Pennsylvania, Perelman School of Medicine
- Children’s Hospital of Philadelphia
| | | | | | - Rebecca C. Ahrens-Nicklas
- Children’s Hospital of Philadelphia
- Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine
| | | | - Elizabeth J. Bhoj
- Children’s Hospital of Philadelphia
- Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine
| |
Collapse
|
22
|
Serbinski CR, Vanderwal A, Chadwell SE, Sanchez AI, Hopkin RJ, Hufnagel RB, Weaver KN, Prada CE. Prenatal and infantile diagnosis of craniosynostosis in individuals with RASopathies. Am J Med Genet A 2024; 194:195-202. [PMID: 37774117 DOI: 10.1002/ajmg.a.63397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 10/01/2023]
Abstract
Fetuses with RASopathies can have a wide variety of anomalies including increased nuchal translucency, hydrops fetalis, and structural anomalies (typically cardiac and renal). There are few reports that describe prenatal-onset craniosynostosis in association with a RASopathy diagnosis. We present clinical and molecular characteristics of five individuals with RASopathy and craniosynostosis. Two were diagnosed with craniosynostosis prenatally, 1 was diagnosed as a neonate, and 2 had evidence of craniosynostosis noted as neonates without formal diagnosis until later. Two of these individuals have Noonan syndrome (PTPN11 and KRAS variants) and three individuals have Cardiofaciocutaneous syndrome (KRAS variants). Three individuals had single suture synostosis and two had multiple suture involvement. The most common sutures involved were sagittal (n = 3), followed by coronal (n = 3), and lambdoid (n = 2) sutures. This case series confirms craniosynostosis as one of the prenatal findings in individuals with RASopathies and emphasizes the importance of considering a RASopathy diagnosis in fetuses with multiple anomalies in combination with craniosynostosis.
Collapse
Affiliation(s)
- Carolyn R Serbinski
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - April Vanderwal
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Sarah E Chadwell
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ana Isabel Sanchez
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Robert J Hopkin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - K Nicole Weaver
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Carlos E Prada
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Fundación Cardiovascular de Colombia, Bucaramanga, Santander, Colombia
- Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
23
|
Onore ME, Caiazza M, Farina A, Scarano G, Budillon A, Borrelli RN, Limongelli G, Nigro V, Piluso G. A Novel Homozygous Loss-of-Function Variant in SPRED2 Causes Autosomal Recessive Noonan-like Syndrome. Genes (Basel) 2023; 15:32. [PMID: 38254922 PMCID: PMC10815364 DOI: 10.3390/genes15010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Noonan syndrome is an autosomal dominant developmental disorder characterized by peculiar facial dysmorphisms, short stature, congenital heart defects, and hypertrophic cardiomyopathy. In 2001, PTPN11 was identified as the first Noonan syndrome gene and is responsible for the majority of Noonan syndrome cases. Over the years, several other genes involved in Noonan syndrome (KRAS, SOS1, RAF1, MAP2K1, BRAF, NRAS, RIT1, and LZTR1) have been identified, acting at different levels of the RAS-mitogen-activated protein kinase pathway. Recently, SPRED2 was recognized as a novel Noonan syndrome gene with autosomal recessive inheritance, and only four families have been described to date. Here, we report the first Italian case, a one-year-old child with left ventricular hypertrophy, moderate pulmonary valve stenosis, and atrial septal defect, with a clinical suspicion of RASopathy supported by the presence of typical Noonan-like facial features and short stature. Exome sequencing identified a novel homozygous loss-of-function variant in the exon 3 of SPRED2 (NM_181784.3:c.325del; p.Arg109Glufs*7), likely causing nonsense-mediated decay. Our results and the presented clinical data may help us to further understand and dissect the genetic heterogeneity of Noonan syndrome.
Collapse
Affiliation(s)
- Maria Elena Onore
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.E.O.); (A.F.); (A.B.); (R.N.B.); (V.N.)
| | - Martina Caiazza
- Inherited and Rare Cardiovascular Diseases Unit, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (M.C.); (G.S.); (G.L.)
| | - Antonella Farina
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.E.O.); (A.F.); (A.B.); (R.N.B.); (V.N.)
| | - Gioacchino Scarano
- Inherited and Rare Cardiovascular Diseases Unit, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (M.C.); (G.S.); (G.L.)
- Medical Genetics Unit, AORN “San Pio”, Hospital “G. Rummo”, 82100 Benevento, Italy
| | - Alberto Budillon
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.E.O.); (A.F.); (A.B.); (R.N.B.); (V.N.)
| | - Rossella Nicoletta Borrelli
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.E.O.); (A.F.); (A.B.); (R.N.B.); (V.N.)
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Diseases Unit, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (M.C.); (G.S.); (G.L.)
- Institute of Cardiovascular Science, University College London and St. Bartholomew’s Hospital, London E1 4NS, UK
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.E.O.); (A.F.); (A.B.); (R.N.B.); (V.N.)
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Giulio Piluso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.E.O.); (A.F.); (A.B.); (R.N.B.); (V.N.)
| |
Collapse
|
24
|
Liu L, Hu C, Chen Z, Zhu S, Zhu L. Co-Occurring Thrombotic Thrombocytopenic Purpura and Autoimmune Hemolytic Anemia in a Child Carrying the Pathogenic SHOC2 c.4A>G (p.Ser2Gly) Variant. AMERICAN JOURNAL OF CASE REPORTS 2023; 24:e942377. [PMID: 38019730 PMCID: PMC10697549 DOI: 10.12659/ajcr.942377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/21/2023] [Accepted: 11/11/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND RASopathies involve mutations in genes that encode proteins participating in the RAS-mitogen-activated protein kinase pathway and are a collection of multisystem disorders that clinically overlap. Variants in the SHOC2 gene have been reported in Noonan-like syndrome, which include distinct facial features, short stature, congenital cardiac defects, developmental delays, bleeding disorders, and loose anagen hair. This report is of a 7-year-old girl with the c.4A>G (p.Ser2Gly) variant of the SHOC2 gene, consistent with Noonan-like syndrome, with loose anagen hair, presenting with thrombotic thrombocytopenic purpura and autoimmune hemolytic anemia. CASE REPORT The child had a medical history of 7 hospitalizations at our institution. At the age of 2 months, she underwent surgical correction for ventricular and atrial septal defects. At the age of 2 years, tonsil and adenoid removal surgery was performed, followed by surgery for otitis media at age 5 years. At 7 years, she was hospitalized for the simultaneous occurrence of thrombotic thrombocytopenic purpura and autoimmune hemolytic anemia. The patient displayed short stature and mild intellectual disability. Notable facial features included sparse hair, mild frontal bossing, and low-set ears. Antinuclear antibody levels demonstrated a significant gradual shift. Through trio whole-exome sequencing, a c.4A>G (p.Ser2Gly) variation in the SHOC2 gene was identified. CONCLUSIONS Given the clinical information and genetic testing results, the patient's condition appeared to closely be a type of RASopathy. This report has highlighted the importance of physical, developmental, and genetic testing in children presenting with dysmorphism, developmental delay, and hematological abnormalities.
Collapse
Affiliation(s)
- Lijun Liu
- Department of Pediatric Intensive Care Unit, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Chanchan Hu
- Department of Pediatric Intensive Care Unit, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Zhenjie Chen
- Department of Pediatric Intensive Care Unit, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Shuzhen Zhu
- Department of Emergency, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, PR China
| | - Lvchang Zhu
- Department of Pediatric Intensive Care Unit, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| |
Collapse
|
25
|
Scorrano G, David E, Calì E, Chimenz R, La Bella S, Di Ludovico A, Di Rosa G, Gitto E, Mankad K, Nardello R, Mangano GD, Leoni C, Ceravolo G. The Cardiofaciocutaneous Syndrome: From Genetics to Prognostic-Therapeutic Implications. Genes (Basel) 2023; 14:2111. [PMID: 38136934 PMCID: PMC10742720 DOI: 10.3390/genes14122111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Cardiofaciocutaneous (CFC) syndrome is one of the rarest RASopathies characterized by multiple congenital ectodermal, cardiac and craniofacial abnormalities with a mild to severe ocular, gastrointestinal and neurological involvement. It is an autosomal dominant syndrome, with complete penetrance, caused by heterozygous pathogenic variants in the genes BRAF, MAP2K1/MEK1, MAP2K2/MEK2, KRAS or, rarely, YWHAZ, all part of the RAS-MAPK pathway. This pathway is a signal transduction cascade that plays a crucial role in normal cellular processes such as cell growth, proliferation, differentiation, survival, metabolism and migration. CFC syndrome overlaps with Noonan syndrome, Costello syndrome, neurofibromatosis type 1 and Legius syndrome, therefore making the diagnosis challenging. Neurological involvement in CFC is more severe than in other RASopathies. Phenotypic variability in CFC patients is related to the specific gene affected, without a recognized genotype-phenotype correlation for distinct pathogenic variants. Currently, there is no specific treatment for CFC syndrome. Encouraging zebrafish model system studies suggested that, in the future, MEK inhibitors could be a suitable treatment of progressive phenotypes of CFC in children. A multidisciplinary care is necessary for appropriate medical management.
Collapse
Affiliation(s)
- Giovanna Scorrano
- Department of Pediatrics, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (G.S.); (A.D.L.)
| | - Emanuele David
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00161 Rome, Italy;
| | - Elisa Calì
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (E.C.); (G.C.)
| | - Roberto Chimenz
- Pediatric Nephrology and Dialysis Unit, University Hospital “G. Martino”, 98124 Messina, Italy;
| | - Saverio La Bella
- Department of Pediatrics, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (G.S.); (A.D.L.)
| | - Armando Di Ludovico
- Department of Pediatrics, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (G.S.); (A.D.L.)
| | - Gabriella Di Rosa
- Child Neuropsychiatry Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98124 Messina, Italy;
| | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98122 Messina, Italy;
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital for Children, London WC1N 3JH, UK;
| | - Rosaria Nardello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities, “G. D’Alessandro” University of Palermo, 90127 Palermo, Italy; (R.N.); (G.D.M.)
| | - Giuseppe Donato Mangano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities, “G. D’Alessandro” University of Palermo, 90127 Palermo, Italy; (R.N.); (G.D.M.)
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giorgia Ceravolo
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (E.C.); (G.C.)
| |
Collapse
|
26
|
Carcavilla A, Cambra A, Santomé JL, Seidel V, Cruz J, Alonso M, Pozo J, Valenzuela I, Guillén-Navarro E, Santos-Simarro F, González-Casado I, Rodríguez A, Medrano C, López-Siguero JP, Ezquieta B. Genotypic Findings in Noonan and Non-Noonan RASopathies and Patient Eligibility for Growth Hormone Treatment. J Clin Med 2023; 12:5003. [PMID: 37568403 PMCID: PMC10420167 DOI: 10.3390/jcm12155003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Molecular study has become an invaluable tool in the field of RASopathies. Treatment with recombinant human growth hormone is approved in Noonan syndrome but not in the other RASopathies. The aim of this study was to learn about the molecular base of a large cohort of patients with RASopathies, with particular emphasis on patients with pathogenic variants in genes other than PTPN11, and its potential impact on rGH treatment indication. We reviewed the clinical diagnosis and molecular findings in 451 patients with a genetically confirmed RASopathy. HRAS alterations were detected in only 2 out of 19 patients referred with a Costello syndrome suspicion, whereas pathogenic variants in RAF1 and SHOC2 were detected in 3 and 2, respectively. In 22 patients referred with a generic suspicion of RASopathy, including cardiofaciocutaneous syndrome, pathogenic alterations in classic Noonan syndrome genes (PTPN11, SOS1, RAF1, LZTR1, and RIT1) were found in 7 patients and pathogenic variants in genes associated with other RASopathies (HRAS, SHOC2, and PPPCB1) in 4. The correct nosological classification of patients with RASopathies is critical to decide whether they are candidates for treatment with rhGH. Our data illustrate the complexity of differential diagnosis in RASopathies, as well as the importance of genetic testing to guide the diagnostic orientation in these patients.
Collapse
Affiliation(s)
- Atilano Carcavilla
- Pediatric Endocrinology Department, Hospital Universitario La Paz, 28046 Madrid, Spain
- Multidisciplinary Unit for RASopathies, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Ana Cambra
- Molecular Diagnostics Laboratory, Department of Laboratory Medicine, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Gregorio Marañon Health Research Institute (IiSGM), 28009 Madrid, Spain
| | - José L. Santomé
- Molecular Diagnostics Laboratory, Department of Laboratory Medicine, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Gregorio Marañon Health Research Institute (IiSGM), 28009 Madrid, Spain
| | - Verónica Seidel
- Clinical Genetics Unit, Pediatrics Department, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Jaime Cruz
- Pediatrics Department, Hospital Universitario Doce de Octubre, 28041 Madrid, Spain
| | - Milagros Alonso
- Pediatrics Department, Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Jesús Pozo
- Pediatric Endocrinology Department, Hospital Universitario Niño Jesús, 28009 Madrid, Spain
| | - Irene Valenzuela
- Genetics Department, Hospital Universitario Vall D’Hebrón, 08035 Barcelona, Spain
| | | | - Fernando Santos-Simarro
- Multidisciplinary Unit for RASopathies, Hospital Universitario La Paz, 28046 Madrid, Spain
- Institute of Medical & Molecular Genetics, Hospital Universitario la Paz, 28046 Madrid, Spain
| | - Isabel González-Casado
- Pediatric Endocrinology Department, Hospital Universitario La Paz, 28046 Madrid, Spain
- Multidisciplinary Unit for RASopathies, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Amparo Rodríguez
- Gregorio Marañon Health Research Institute (IiSGM), 28009 Madrid, Spain
- Pediatric Endocrinology, Pediatrics Department, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Constancio Medrano
- Gregorio Marañon Health Research Institute (IiSGM), 28009 Madrid, Spain
- Pediatric Cardiology Department, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Juan Pedro López-Siguero
- Pediatric Endocrinology Department, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Begoña Ezquieta
- Molecular Diagnostics Laboratory, Department of Laboratory Medicine, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Gregorio Marañon Health Research Institute (IiSGM), 28009 Madrid, Spain
| |
Collapse
|
27
|
Patti G, Scaglione M, Maiorano NG, Rosti G, Divizia MT, Camia T, De Rose EL, Zucconi A, Casalini E, Napoli F, Di Iorgi N, Maghnie M. Abnormalities of pubertal development and gonadal function in Noonan syndrome. Front Endocrinol (Lausanne) 2023; 14:1213098. [PMID: 37576960 PMCID: PMC10422880 DOI: 10.3389/fendo.2023.1213098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Background Noonan syndrome (NS) is a genetic multisystem disorder characterised by variable clinical manifestations including dysmorphic facial features, short stature, congenital heart disease, renal anomalies, lymphatic malformations, chest deformities, cryptorchidism in males. Methods In this narrative review, we summarized the available data on puberty and gonadal function in NS subjects and the role of the RAS/mitogen-activated protein kinase (MAPK) signalling pathway in fertility. In addition, we have reported our personal experience on pubertal development and vertical transmission in NS. Conclusions According to the literature and to our experience, NS patients seem to have a delay in puberty onset compared to the physiological timing reported in healthy children. Males with NS seem to be at risk of gonadal dysfunction secondary not only to cryptorchidism but also to other underlying developmental factors including the MAP/MAPK pathway and genetics. Long-term data on a large cohort of males and females with NS are needed to better understand the impact of delayed puberty on adult height, metabolic profile and well-being. The role of genetic counselling and fertility related-issues is crucial.
Collapse
Affiliation(s)
- Giuseppa Patti
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Marco Scaglione
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Nadia Gabriella Maiorano
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Giulia Rosti
- Department of Clinical Genetics and Genomics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Maria Teresa Divizia
- Department of Clinical Genetics and Genomics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Tiziana Camia
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Elena Lucia De Rose
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Alice Zucconi
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Emilio Casalini
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Flavia Napoli
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Natascia Di Iorgi
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Mohamad Maghnie
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| |
Collapse
|
28
|
Priolo M, Mancini C, Radio FC, Chiriatti L, Ciolfi A, Cappelletti C, Cordeddu V, Pintomalli L, Brusco A, Mammi C, Tartaglia M. Natural history of MRAS-related Noonan syndrome: Evidence of mild adult-onset left ventricular hypertrophy and neuropsychiatric features. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2023. [PMID: 36734411 DOI: 10.1002/ajmg.c.32034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
Gain of function pathogenic variants in MRAS have been found in a small subset of pediatric subjects presenting with Noonan syndrome (NS) associated with hypertrophic cardiomyopathy (HCM) and moderate to severe intellectual disability. These variants are considered to confer a high-risk for the development of severe HCM with poor prognosis and fatal outcome. We report on the natural history of the first adult subject with NS carrying the recurrent pathogenic p.Thr68Ile amino acid substitution. Different from what had previously been observed, he presented with a mild, late-onset left ventricular hypertrophy, and a constellation of additional symptoms rarely seen in NS. The present case provides evidence that HCM does not represent an obligatory, early-onset and severe complication in subjects with MRAS variants. It also adds new data about late-onset features suggesting that other unexpected complications might be observed in adult subjects providing anticipatory guidance for individuals of all age.
Collapse
Affiliation(s)
- Manuela Priolo
- USD Genetica Medica, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Cecilia Mancini
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | - Luigi Chiriatti
- USD Genetica Medica, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Camilla Cappelletti
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Viviana Cordeddu
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Letizia Pintomalli
- USD Genetica Medica, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Corrado Mammi
- USD Genetica Medica, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| |
Collapse
|
29
|
Dobrigna M, Poëa-Guyon S, Rousseau V, Vincent A, Toutain A, Barnier JV. The molecular basis of p21-activated kinase-associated neurodevelopmental disorders: From genotype to phenotype. Front Neurosci 2023; 17:1123784. [PMID: 36937657 PMCID: PMC10017488 DOI: 10.3389/fnins.2023.1123784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Although the identification of numerous genes involved in neurodevelopmental disorders (NDDs) has reshaped our understanding of their etiology, there are still major obstacles in the way of developing therapeutic solutions for intellectual disability (ID) and other NDDs. These include extensive clinical and genetic heterogeneity, rarity of recurrent pathogenic variants, and comorbidity with other psychiatric traits. Moreover, a large intragenic mutational landscape is at play in some NDDs, leading to a broad range of clinical symptoms. Such diversity of symptoms is due to the different effects DNA variations have on protein functions and their impacts on downstream biological processes. The type of functional alterations, such as loss or gain of function, and interference with signaling pathways, has yet to be correlated with clinical symptoms for most genes. This review aims at discussing our current understanding of how the molecular changes of group I p21-activated kinases (PAK1, 2 and 3), which are essential actors of brain development and function; contribute to a broad clinical spectrum of NDDs. Identifying differences in PAK structure, regulation and spatio-temporal expression may help understanding the specific functions of each group I PAK. Deciphering how each variation type affects these parameters will help uncover the mechanisms underlying mutation pathogenicity. This is a prerequisite for the development of personalized therapeutic approaches.
Collapse
Affiliation(s)
- Manon Dobrigna
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Sandrine Poëa-Guyon
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Véronique Rousseau
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Aline Vincent
- Department of Genetics, EA7450 BioTARGen, University Hospital of Caen, Caen, France
| | - Annick Toutain
- Department of Genetics, University Hospital of Tours, UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
| | - Jean-Vianney Barnier
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
- *Correspondence: Jean-Vianney Barnier,
| |
Collapse
|