1
|
Masithi P, Bhana AD, Venter GA, Su H, Spicer CD, Petersen WF, Hunter R. Cinchona Organocatalyzed Enantioselective Amination for Quaternized Serines as Tertiary Amides. Org Lett 2024; 26:9162-9167. [PMID: 39414395 PMCID: PMC11519915 DOI: 10.1021/acs.orglett.4c03650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024]
Abstract
Herein, we describe a Cinchona-aminocatalyzed enantioselective α-hydrazination of an α-formyl amide for the production of protected quaternized serines as tertiary amides with ee's of generally >98% and ≤99% yields. The proposed TS model supported by density functional theory calculations involves a quinuclidinium ion Brønsted acid-assisted delivery of DtBAD, which occurs from the Re face of an H-bonded enaminone when using a 9S-cinchonamine catalyst, resulting in a hydrazide with the R-configuration as determined by X-ray analysis.
Collapse
Affiliation(s)
- Phathutshedzo Masithi
- Department
of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Ashlyn D. Bhana
- Department
of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Gerhard A. Venter
- Department
of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Hong Su
- Department
of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | | | - Wade F. Petersen
- Department
of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Roger Hunter
- Department
of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| |
Collapse
|
2
|
Liu Y, Chen H, Wang X. Synergistic Homogeneous Asymmetric Cu Catalysis with Pd Nanoparticle Catalysis in Stereoselective Coupling of Alkynes with Aldimine Esters. J Am Chem Soc 2024; 146:28427-28436. [PMID: 39356822 DOI: 10.1021/jacs.4c09983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Understanding the nature of a transition-metal-catalyzed process, including catalyst evolution and the real active species, is rather challenging yet of great importance for the rational design and development of novel catalysts, and this is even more difficult for a bimetallic catalytic system. Pd(0)/carboxylic acid combined system-catalyzed allylic alkylation reaction of alkynes has been used as an atom-economical protocol for the synthesis of allylic products. However, the asymmetric version of this reaction is still rather limited, and the in-depth understanding of the nature of active Pd species is still elusive. Herein we report an enantioselective coupling between readily available aldimine esters and alkynes using a synergistic Cu/Pd catalyst system, affording a diverse set of α-quaternary allyl amino ester derivatives in good yields with excellent enantioselectivities. Mechanistic studies indicated that it is most likely a synergistic asymmetric molecular Cu catalysis with Pd nanoparticle catalysis. The Pd catalyst precursor is transformed to soluble Pd nanoparticles in situ, which are responsible for activating the alkyne to an electrophilic allylic Pd intermediate, while the chiral Cu complex of the aldimine ester enolate provides chiral induction and works in synergy with the Pd nanoparticles.
Collapse
Affiliation(s)
- Yong Liu
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hongda Chen
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024 China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
3
|
Zuo QM, Wu MY, Han LB, Yang SD. Chiral α-Aminophosphonates as Ligands in Copper-Catalyzed Asymmetric Oxidative Coupling of 2-Naphthols. Org Lett 2024; 26:5274-5279. [PMID: 38885640 DOI: 10.1021/acs.orglett.4c01582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Chiral α-aminophosphonates with adjacent carbon and phosphonate stereogenic centers have been employed as ligands in the copper-catalyzed oxidative coupling of 2-naphthols, resulting in the production of chiral BINOLs in favorable yields and moderate to good enantiomeric excess. This represents the first application of chiral P-based ligands to enable such a transformation. The synthesis of these chiral α-aminophosphonate ligands offers a significant advantage over approaches that typically necessitate elaborate synthetic processes for chiral ligand production.
Collapse
Affiliation(s)
- Qian-Ming Zuo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu 730000, China
| | - Ming-Ying Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu 730000, China
| | - Li-Biao Han
- Research Center of Advanced Catalytic Materials and Functional Molecular Synthesis, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
- ZhejiangYangfan New Materials Company, Ltd., Shangyu, Zhejiang 312369, China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu 730000, China
| |
Collapse
|
4
|
Yamaguchi A, Obiya N, Arichi N, Oishi S, Ohno H, Inuki S. Synthesis of labionin and avionin precursors via a nitrogen-centred-radical-triggered 1,5-HAT reaction of Tris derivatives. Org Biomol Chem 2024; 22:2049-2055. [PMID: 38362729 DOI: 10.1039/d3ob02037a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Labionin and avionin are non-proteinogenic amino acids containing 2,4-diamino-2-(mercaptomethyl)pentanedioic acid that forms the core structures of spirocyclic peptides including labyrinthopeptin A2 and microvionin, respectively. We have developed a diastereoselective synthetic route to labionin and avionin precursors. This route highlights the formation of the quaternary carbon stereocenter of an α,α-disubstituted amino acid via a regioselective 1,5-HAT reaction of a Tris derivative.
Collapse
Affiliation(s)
- Ayuta Yamaguchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Naoki Obiya
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Norihito Arichi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
5
|
Lu J, Li Z, Deng L. Deoxygenative Nucleophilic Phosphonation and Electrophilic Alkylation of Secondary Amides: A Facile Access to Quaternary α-Aminophosphonates. J Am Chem Soc 2024; 146:4357-4362. [PMID: 38334815 DOI: 10.1021/jacs.3c14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The widespread occurrence and synthetic accessibility of amides render them valuable precursors for the synthesis of diverse nitrogen-containing compounds. Herein, we present a metal-free and streamlined synthetic strategy for the synthesis of quaternary α-aminophosphonates. This approach involves sequential deoxygenative nucleophilic phosphonation and versatile electrophilic alkylation of secondary amides in a one-pot fashion. Notably, this method enables the direct bis-functionalization of secondary amides with both nucleophiles and electrophiles for the first time, with simple derivatization leading to valuable free α-aminophosphonates by hydrolysis. The protocol has the advantages of operational simplicity, broad functional-group compatibility, environmental friendliness, and scalability to multigram quantities.
Collapse
Affiliation(s)
- Jiaxiang Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
| | - Zhenghua Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
| | - Li Deng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
| |
Collapse
|
6
|
Varga PR, Keglevich G. The Last Decade of Optically Active α-Aminophosphonates. Molecules 2023; 28:6150. [PMID: 37630402 PMCID: PMC10459122 DOI: 10.3390/molecules28166150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
α-Aminophosphonates and related compounds are important due to their real and potential biological activity. α-Aminophosphonates may be prepared by the Kabachnik-Fields condensation of oxo compounds, amines and dialkyl phosphites, or by the aza-Pudovik addition of the same P-reagents to imines. In this review, the methods that allow for the synthesis of α-aminophosphonates with optical activity are surveyed. On the one hand, optically active catalysts or ligands may induce enantioselectivity during the Kabachnik-Fields reaction. On the other hand, asymmetric catalysis during the aza-Pudovik reaction, or hydrogenations of iminophosphonates, may prove to be a useful tool. Lastly yet importantly, it is possible to start from optically active reagents that may be associated with diastereoselectivity. The "green" aspects of the different syntheses are also considered.
Collapse
Affiliation(s)
| | - György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary;
| |
Collapse
|
7
|
Yamada K, Kondo Y, Kitamura A, Kadota T, Morimoto H, Ohshima T. Organocatalytic Direct Enantioselective Hydrophosphonylation of N-Unsubstituted Ketimines for the Synthesis of α-Aminophosphonates. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Koki Yamada
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1 Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuta Kondo
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1 Higashi-ku, Fukuoka 812-8582, Japan
| | - Akihiko Kitamura
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1 Higashi-ku, Fukuoka 812-8582, Japan
| | - Tetsuya Kadota
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1 Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroyuki Morimoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1 Higashi-ku, Fukuoka 812-8582, Japan
| | - Takashi Ohshima
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1 Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
8
|
Lin W, You L, Yuan W, He C. Cu-Catalyzed Enantioselective Hydrogermylation: Asymmetric Synthesis of Unnatural β-Germyl α-Amino Acids. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Weidong Lin
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lijun You
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wei Yuan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
9
|
Kondo Y, Hirazawa Y, Kadota T, Yamada K, Morisaki K, Morimoto H, Ohshima T. One-Pot Catalytic Synthesis of α-Tetrasubstituted Amino Acid Derivatives via In Situ Generation of N-Unsubstituted Ketimines. Org Lett 2022; 24:6594-6598. [PMID: 36053018 DOI: 10.1021/acs.orglett.2c02587] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A one-pot catalytic synthesis of α-tetrasubstituted amino acid derivatives via in situ generation of N-unsubstituted ketimines is reported. Because of the irreversible formation of N-unsubstituted ketimines, the yields were higher than those generated under the conventional one-pot reaction conditions. This process prevents the need to isolate unstable N-unsubstituted ketimines with alkyl substituents and streamlines the synthesis of highly congested α-amino acid derivatives.
Collapse
Affiliation(s)
- Yuta Kondo
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshinobu Hirazawa
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tetsuya Kadota
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Koki Yamada
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazuhiro Morisaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroyuki Morimoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takashi Ohshima
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
10
|
Natarajan K, Sharma S, Irfana Jesin CP, Kataria R, Nandi GC. One-pot synthesis of α-sulfoximinophosphonate via Kabachnik-Fields reaction. Org Biomol Chem 2022; 20:7036-7039. [PMID: 36040442 DOI: 10.1039/d2ob01355j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we disclose a novel approach for the synthesis of hitherto unknown α-sulfoximinophosphonate via the Kabachnik-Fields reaction of aldehyde, dialkylphosphite and sulfoximine in the presence of InCl3 in THF at 70 °C. α-Sulfoximinophosphonate is synthesized in good yields and its synthetic utilities are proved by functionalizing bromine through the Pd-catalyzed Suzuki-Miyaura cross-coupling reaction and reduction of a nitro group through the Béchamp reduction.
Collapse
Affiliation(s)
- K Natarajan
- Department of Chemistry, National Institute of Technology-Tiruchirappalli 620015, Tamil Nadu, India.
| | - Suraj Sharma
- Department of Chemistry, National Institute of Technology-Tiruchirappalli 620015, Tamil Nadu, India.
| | - C P Irfana Jesin
- Department of Chemistry, National Institute of Technology-Tiruchirappalli 620015, Tamil Nadu, India.
| | - Ramesh Kataria
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India
| | - Ganesh Chandra Nandi
- Department of Chemistry, National Institute of Technology-Tiruchirappalli 620015, Tamil Nadu, India.
| |
Collapse
|
11
|
Catalyst-free nitration of the aliphatic C-H bonds of tertiary β-keto esters with tert-butyl nitrite: access to α-quaternary α-amino acid precursors. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Cheng X, Shen C, Dong XQ, Wang CJ. Iridium-catalyzed asymmetric double allylic alkylation of azlactone: efficient access to chiral α-amino acid derivatives. Chem Commun (Camb) 2022; 58:3142-3145. [PMID: 35174829 DOI: 10.1039/d2cc00328g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An unprecedented Ir-catalyzed enantioselective double allylic alkylation of less bulky cyclic imine glycinate (azlactone) was rationally designed and developed, providing various bisallylated chiral amino acid derivatives. Control experiments revealed that this transformation proceeds in a sequential manner featuring quasi-dynamic kinetic resolution of the initially-formed monoallylation intermediates.
Collapse
Affiliation(s)
- Xiang Cheng
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, 230021, China
| | - Chong Shen
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, 230021, China
| | - Xiu-Qin Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China. .,Suzhou Institute of Wuhan University, Suzhou, Jiangsu, 215123, P. R. China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, 230021, China
| |
Collapse
|
13
|
Li M, Chen Y, Yan Y, Liu M, Huang M, Li W, Cao L, Zhang X. Organocatalytic asymmetric synthesis of quaternary α-isoxazole–α-alkynyl amino acid derivatives. Org Biomol Chem 2022; 20:8849-8854. [DOI: 10.1039/d2ob01746f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Chiral phosphoric acid catalyzed enantioselective addition of 5-amino-isoxazoles with β,γ-alkynyl-α-ketimino esters provided good yields and excellent enantioselectivities.
Collapse
Affiliation(s)
- Min Li
- Department of Chemistry, Xihua University, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yihua Chen
- Department of Chemistry, Xihua University, China
| | - Yingkun Yan
- Department of Chemistry, Xihua University, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Liu
- Department of Chemistry, Xihua University, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Huang
- Department of Chemistry, Xihua University, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenzhe Li
- Department of Chemistry, Xihua University, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lianyi Cao
- Department of Chemistry, Xihua University, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomei Zhang
- Department of Chemistry, Xihua University, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Niu R, He Y, Lin JB. Catalytic asymmetric synthesis of α-stereogenic carboxylic acids: recent advances. Org Biomol Chem 2021; 20:37-54. [PMID: 34854454 DOI: 10.1039/d1ob02038b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chiral carboxylic acids bearing an α-stereogenic center constitute the backbone of many natural products and therapeutic reagents as well as privileged chiral ligands and catalysts. Hence, it is not surprising that a large number of elegant catalytic asymmetric strategies have been developed toward the efficient synthesis of α-chiral carboxylic acids, such as α-hydroxy acids and α-amino acids. In this review, the recent advances in asymmetric synthesis of α-stereogenic free carboxylic acids via organocatalysis and transition metal catalysis are summarized (mainly from 2010 to 2020). The content is organized by the reaction type of the carboxyl source involved, including asymmetric functionalization of substituted carboxylic acids, cyclic anhydrides, α-keto acids, substituted α,β-unsaturated acids and so on. We hope that this review will motivate further interest in catalytic asymmetric synthesis of chiral α-substituted carboxylic acids.
Collapse
Affiliation(s)
- Rui Niu
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China.
| | - Yi He
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China.
| | - Jun-Bing Lin
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China.
| |
Collapse
|
15
|
Fedyk A, Slobodyanyuk EY, Stotska O, Vashchenko BV, Volochnyuk DM, Sibgatulin DA, Tolmachev AA, Grygorenko OO. Heteroaliphatic Dimethylphosphine Oxide Building Blocks: Synthesis and Physico‐Chemical Properties. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Andrii Fedyk
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Murmanska Street 5 Kyiv 02660 Ukraine
| | - Evgeniy Y. Slobodyanyuk
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Murmanska Street 5 Kyiv 02660 Ukraine
| | - Olha Stotska
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Bohdan V. Vashchenko
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Dmitriy M. Volochnyuk
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Murmanska Street 5 Kyiv 02660 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | | | - Andrey A. Tolmachev
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
16
|
Chassillan L, Yamashita Y, Yoo WJ, Toffano M, Guillot R, Kobayashi S, Vo-Thanh G. Enantioselective hydrophosphonylation of N-Boc imines using chiral guanidine-thiourea catalysts. Org Biomol Chem 2021; 19:10560-10564. [PMID: 34870670 DOI: 10.1039/d1ob01953h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The enantioselective hydrophosphonylation of N-Boc imines was investigated using a new family of pseudo-symmetric guanidine-thiourea catalysts, providing α-amino phosphonates in moderate to high yields with good enantioselectivity. The catalyst was heterogenized by polymerization with styrene and the resulting catalyst was applied to reactions under continuous-flow conditions.
Collapse
Affiliation(s)
- Louis Chassillan
- Université Paris-Saclay, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405 Orsay, France. .,Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Yasuhiro Yamashita
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Woo-Jin Yoo
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Martial Toffano
- Université Paris-Saclay, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405 Orsay, France.
| | - Régis Guillot
- Université Paris-Saclay, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405 Orsay, France.
| | - Shū Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Giang Vo-Thanh
- Université Paris-Saclay, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405 Orsay, France.
| |
Collapse
|
17
|
Han J, Lyutenko NV, Sorochinsky AE, Okawara A, Konno H, White S, Soloshonok VA. Tailor-Made Amino Acids in Pharmaceutical Industry: Synthetic Approaches to Aza-Tryptophan Derivatives. Chemistry 2021; 27:17510-17528. [PMID: 34913215 DOI: 10.1002/chem.202102485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/24/2021] [Indexed: 12/22/2022]
Abstract
Over the recent years there has been a noticeable upsurge of interest in aza-analogs of tryptophan which are isosteric to the latter and found numerous applications in medicinal, bioorganic chemistry, and peptide research. In the present review article, five aza-tryptophan derivatives are profiled, including aza-substitution in the positions 2, on the five-membered ring, as well as in positions 4, 5, 6, and 7 on the six-membered ring. A detailed and comprehensive literature overview of the synthetic methods for the preparation of these aza-tryptophans is presented and general facets of the biological properties and most promising applications are discussed.
Collapse
Affiliation(s)
- Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Nataliya V Lyutenko
- Department of Fine Organic Synthesis V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, The National Academy of Sciences of Ukraine, 1 Murmanska str., Kyiv, 02094, Ukraine
| | - Alexander E Sorochinsky
- Department of Fine Organic Synthesis V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, The National Academy of Sciences of Ukraine, 1 Murmanska str., Kyiv, 02094, Ukraine
| | - Ayaka Okawara
- Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Hiroyuki Konno
- Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Sarah White
- Oakwood Chemical, Inc., 730 Columbia Hwy. N, Estill, SC, 29918, USA
| | - Vadim A Soloshonok
- Department of Organic Chemistry I Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain
| |
Collapse
|
18
|
Abstract
Classical amination methods involve the reaction of a nitrogen nucleophile with an electrophilic carbon center; however, in recent years, umpoled strategies have gained traction where the nitrogen source acts as an electrophile. A wide range of electrophilic aminating agents are now available, and these underpin a range of powerful C-N bond-forming processes. In this Review, we highlight the strategic use of electrophilic aminating agents in total synthesis.
Collapse
Affiliation(s)
- Lauren G. O'Neil
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - John F. Bower
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| |
Collapse
|
19
|
Affiliation(s)
- Lauren G. O'Neil
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - John F. Bower
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| |
Collapse
|
20
|
Struble TJ, Smajlagic I, Foy H, Dudding T, Johnston JN. DFT-Based Stereochemical Rationales for the Bifunctional Brønsted Acid/Base-Catalyzed Diastereodivergent and Enantioselective aza-Henry Reactions of α-Nitro Esters. J Org Chem 2021; 86:15606-15617. [PMID: 34669416 DOI: 10.1021/acs.joc.1c02112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A pair of chiral bis(amidine) [BAM] proton complexes provide reagent (catalyst)-controlled, highly diastereo- and enantioselective direct aza-Henry reactions leading to α-alkyl-substituted α,β-diamino esters. A C2-symmetric ligand provides high anti-selectivity, while a nonsymmetric congener exhibits syn-selectivity in this example of diastereodivergent, enantioselective catalysis. A detailed computational analysis is reported for the first time, one that supports distinct models for selectivity resulting from the more hindered binding cavity of the C1-symmetric ligand. Binding in this congested pocket accommodates four hydrogen bond contacts among ligands and substrates, ultimately favoring a pre-syn arrangement highlighted by pyridinium-azomethine activation and quinolinium-nitronate activation. The complementary transition states reveal a wide range of alternatives. Comparing the C1- and C2-symmetric catalysts highlights distinct electrophile binding orientations despite their common hydrogen bond donor-acceptor features. Among the factors driving unusual high syn-diastereoselection are favorable dispersion forces that leverage the anthracenyl substituent of the C1-symmetric ligand.
Collapse
Affiliation(s)
- Thomas J Struble
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ivor Smajlagic
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Hayden Foy
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Travis Dudding
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Jeffrey N Johnston
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
21
|
Liu A, Han J, Nakano A, Konno H, Moriwaki H, Abe H, Izawa K, Soloshonok VA. New pharmaceuticals approved by FDA in 2020: Small-molecule drugs derived from amino acids and related compounds. Chirality 2021; 34:86-103. [PMID: 34713503 DOI: 10.1002/chir.23376] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/09/2021] [Accepted: 09/26/2021] [Indexed: 12/24/2022]
Abstract
Amino acids (AAs) play an important role in the modern health industry as key synthetic precursors for pharmaceuticals, biomaterials, biosensors, and drug delivery systems. Currently, over 30% of small-molecule drugs contain residues of tailor-made AAs or derived from them amino-alcohols and di-amines. In this review article, we profile 12 AA-derived new pharmaceuticals approved by the FDA in 2020. These newly introduced drugs include Tazverik (epithelioid sarcoma), Gemtesa (overactive bladder), Zeposia (multiple sclerosis), Byfavo (induction and maintenance of procedural sedation), Cu 64 dotatate, and Gallium 68 PSMA-11 (both PET imaging), Rimegepant (acute migraine), Zepzelca (lung cancer), Remdesivir (COVID-19), Amisulpride (nausea and vomiting), Setmelanotide (obesity), and Lonafarnib (progeria syndrome). For each compound, we describe the spectrum of biological activity, medicinal chemistry discovery, and synthetic preparation.
Collapse
Affiliation(s)
- Aiyao Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Arina Nakano
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| | | | | | | | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
22
|
Sercel ZP, Sun AW, Stoltz BM. Synthesis of Enantioenriched gem-Disubstituted 4-Imidazolidinones by Palladium-Catalyzed Decarboxylative Asymmetric Allylic Alkylation. Org Lett 2021; 23:6348-6351. [PMID: 34346221 DOI: 10.1021/acs.orglett.1c02134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A variety of enantioenriched gem-disubstituted 4-imidazolidinones were prepared in up to >99% yield and 95% ee by the Pd-catalyzed decarboxylative asymmetric allylic alkylation of imidazolidinone-derived β-amidoesters. In the process of preparing these substrates, a rapid synthetic route to 4-imidazolidinone derivatives was developed, beginning from 2-thiohydantoin. The orthogonality of the benzoyl imide and tert-butyl carbamate groups used to protect these nitrogen-rich products was demonstrated, enabling potential applications in drug design.
Collapse
Affiliation(s)
- Zachary P Sercel
- Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Alexander W Sun
- Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Brian M Stoltz
- Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
23
|
Nagaoka K, Nakano A, Han J, Sakamoto T, Konno H, Moriwaki H, Abe H, Izawa K, Soloshonok VA. Comparative study of different chiral ligands for dynamic kinetic resolution of amino acids. Chirality 2021; 33:685-702. [PMID: 34402557 DOI: 10.1002/chir.23350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 11/05/2022]
Abstract
Dynamic kinetic resolution (DKR) of unprotected amino acids (AAs), via intermediate formation of Ni(II) complexes, is currently a leading methodology for preparation of natural and tailor-made AAs in enantiomerically pure form. In this work, we conduct a comparative case study of synthetic performance of four different ligands in DKR of six AAs representing aryl-, benzyl-, alkyl-, and long alkyl-type derivatives. The results of this study allow for rational selection of ligand/AA type to develop a practical procedure for preparation of target enantiomerically pure AAs.
Collapse
Affiliation(s)
- Keita Nagaoka
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, Japan
| | - Arina Nakano
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, Japan
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | | | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, Japan
| | | | | | | | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
24
|
Lu B, Liang X, Zhang J, Wang Z, Peng Q, Wang X. Dirhodium(II)/Xantphos-Catalyzed Relay Carbene Insertion and Allylic Alkylation Process: Reaction Development and Mechanistic Insights. J Am Chem Soc 2021; 143:11799-11810. [PMID: 34296866 DOI: 10.1021/jacs.1c05701] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although dirhodium-catalyzed multicomponent reactions of diazo compounds, nucleophiles and electrophiles have achieved great advance in organic synthesis, the introduction of allylic moiety as the third component via allylic metal intermediate remains a formidable challenge in this area. Herein, an attractive three-component reaction of readily accessible amines, diazo compounds, and allylic compounds enabled by a novel dirhodium(II)/Xantphos catalysis is disclosed, affording various architecturally complex and functionally diverse α-quaternary α-amino acid derivatives in good yields with high atom and step economy. Mechanistic studies indicate that the transformation is achieved through a relay dirhodium(II)-catalyzed carbene insertion and allylic alkylation process, in which the catalytic properties of dirhodium are effectively modified by the coordination with Xantphos, leading to good activity in the catalytic allylic alkylation process.
Collapse
Affiliation(s)
- Bin Lu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xinyi Liang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jinyu Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zijian Wang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
25
|
Meng B, Shi Q, Meng Y, Chen J, Cao W, Wu X. Asymmetric catalytic alkynylation of thiazolones and azlactones for synthesis of quaternary α-amino acid precursors. Org Biomol Chem 2021; 19:5087-5092. [PMID: 34037046 DOI: 10.1039/d1ob00582k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Asymmetric alkynylation of thiazolones and azlactones with alkynylbenziodoxolones as the electrophilic alkyne source catalyzed by thiourea phosphonium salt is described. By using thiazolones as nucleophiles, the desired alkyne functionalized thiazolones were obtained in 55-89% yields with 31-86% ee. Azlactones gave the desired products in comparable yields with lower enantioselectivities. Ring-opening of the alkynylation products led to α,α-disubstituted α-amino acid derivatives efficiently without loss of enantioselectivity.
Collapse
Affiliation(s)
- Beibei Meng
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Qian Shi
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Yuan Meng
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Jie Chen
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Weiguo Cao
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Xiaoyu Wu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| |
Collapse
|
26
|
Inuki S, Ohno H. Total Syntheses of Myriocin, Mycestericins and Sphingofungin E: Sphingosine Analogues Containing a β, β′-Dihydroxy α-Amino Acid Framework. CHEM LETT 2021. [DOI: 10.1246/cl.210133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
27
|
Maestro A, del Corte X, López-Francés A, Martínez de Marigorta E, Palacios F, Vicario J. Asymmetric Synthesis of Tetrasubstituted α-Aminophosphonic Acid Derivatives. Molecules 2021; 26:3202. [PMID: 34071844 PMCID: PMC8199250 DOI: 10.3390/molecules26113202] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022] Open
Abstract
Due to their structural similarity with natural α-amino acids, α-aminophosphonic acid derivatives are known biologically active molecules. In view of the relevance of tetrasubstituted carbons in nature and medicine and the strong dependence of the biological activity of chiral molecules into their absolute configuration, the synthesis of α-aminophosphonates bearing tetrasubstituted carbons in an asymmetric fashion has grown in interest in the past few decades. In the following lines, the existing literatures for the synthesis of optically active tetrasubstituted α-aminophosphonates are summarized, comprising diastereoselective and enantioselective approaches.
Collapse
Affiliation(s)
- Aitor Maestro
- Departamento de Química Orgánica I, Centro de Investigación y Estudios Avanzados “Lucio Lascaray”-Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.M.); (X.d.C.); (A.L.-F.); (E.M.d.M.)
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Xabier del Corte
- Departamento de Química Orgánica I, Centro de Investigación y Estudios Avanzados “Lucio Lascaray”-Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.M.); (X.d.C.); (A.L.-F.); (E.M.d.M.)
| | - Adrián López-Francés
- Departamento de Química Orgánica I, Centro de Investigación y Estudios Avanzados “Lucio Lascaray”-Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.M.); (X.d.C.); (A.L.-F.); (E.M.d.M.)
| | - Edorta Martínez de Marigorta
- Departamento de Química Orgánica I, Centro de Investigación y Estudios Avanzados “Lucio Lascaray”-Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.M.); (X.d.C.); (A.L.-F.); (E.M.d.M.)
| | - Francisco Palacios
- Departamento de Química Orgánica I, Centro de Investigación y Estudios Avanzados “Lucio Lascaray”-Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.M.); (X.d.C.); (A.L.-F.); (E.M.d.M.)
| | - Javier Vicario
- Departamento de Química Orgánica I, Centro de Investigación y Estudios Avanzados “Lucio Lascaray”-Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.M.); (X.d.C.); (A.L.-F.); (E.M.d.M.)
| |
Collapse
|
28
|
Kadota T, Sawa M, Kondo Y, Morimoto H, Ohshima T. Catalytic Enantioselective Strecker Reaction of Isatin-Derived N-Unsubstituted Ketimines. Org Lett 2021; 23:4553-4558. [PMID: 34029103 DOI: 10.1021/acs.orglett.1c01194] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A catalytic enantioselective Strecker reaction of isatin-derived N-unsubstituted ketimines directly afforded the N-unprotected α-aminonitriles with a tetrasubstituted carbon stereocenter in up to 99% ee without requiring protection/deprotection steps. One-pot Strecker reactions from the parent carbonyl compounds were also realized with comparable yields and enantioselectivities. Direct transformations of the N-unprotected α-aminonitrile products streamlined the synthesis of unnatural amino acid derivatives and achieved the shortest one-pot stereoselective routes to a biologically active compound reported to date.
Collapse
Affiliation(s)
- Tetsuya Kadota
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1 Higashi-ku, Fukuoka 812-8582, Japan
| | - Masanao Sawa
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1 Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuta Kondo
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1 Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroyuki Morimoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1 Higashi-ku, Fukuoka 812-8582, Japan
| | - Takashi Ohshima
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1 Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
29
|
Panahi F, Khosravi H, Bauer F, Breit B. Asymmetric hydroalkylation of alkynes and allenes with imidazolidinone derivatives: α-alkenylation of α-amino acids. Chem Sci 2021; 12:7388-7392. [PMID: 34163828 PMCID: PMC8171337 DOI: 10.1039/d1sc00240f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/21/2021] [Indexed: 01/20/2023] Open
Abstract
This work reports a new method for the synthesis of quaternary α-alkenyl substituted amino acids by the enantio- and diastereoselective addition of imidazolidinone derivatives to alkynes and allenes. Further hydrolysis of the imidazolidinone products under acidic conditions afforded biologically relevant amino acid derivatives. This method is geometry-selective (E-isomer), enantio- and diastereoselective, and products were obtained in good to excellent yields. The utility of this new methodology is proved by its operational simplicity and the successful accomplishment of gram-scale reactions. Experimental and computational studies suggest the key role of Li in terms of selectivity and support the proposed reaction mechanism.
Collapse
Affiliation(s)
- Farhad Panahi
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg Albertstraße 21 79104 Freiburg im Breisgau Germany
| | - Hormoz Khosravi
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg Albertstraße 21 79104 Freiburg im Breisgau Germany
| | - Felix Bauer
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg Albertstraße 21 79104 Freiburg im Breisgau Germany
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg Albertstraße 21 79104 Freiburg im Breisgau Germany
| |
Collapse
|
30
|
Han J, Konno H, Sato T, Soloshonok VA, Izawa K. Tailor-made amino acids in the design of small-molecule blockbuster drugs. Eur J Med Chem 2021; 220:113448. [PMID: 33906050 DOI: 10.1016/j.ejmech.2021.113448] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
The role of amino acids (AAs) in modern health industry is well-appreciated. Residues of individual AAs, or their chemical modifications, such as diamines and amino alcohols, are frequently found in the structures of modern pharmaceuticals. The goal of this review article, is to emphasize that, currently, tailor-made AAs serve as key structural features in many most successful pharmaceuticals, so-called blockbuster drugs. In the present article, we profile 14 small-molecule drugs, underscoring the breadth of structural variety of AAs applications in numerous therapeutic areas. For each compound, we provide spectrum of biological activity, medicinal chemistry discovery, and synthetic approaches.
Collapse
Affiliation(s)
- Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan
| | - Tatsunori Sato
- Hamari Chemicals Ltd., 1-19-40, Nankokita, Suminoe-ku, Osaka, 559-0034, Japan
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain.
| | - Kunisuke Izawa
- Hamari Chemicals Ltd., 1-19-40, Nankokita, Suminoe-ku, Osaka, 559-0034, Japan.
| |
Collapse
|
31
|
Feng S, Buchwald SL. CuH-Catalyzed Regio- and Enantioselective Hydrocarboxylation of Allenes: Toward Carboxylic Acids with Acyclic Quaternary Centers. J Am Chem Soc 2021; 143:4935-4941. [PMID: 33761252 PMCID: PMC8058699 DOI: 10.1021/jacs.1c01880] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report a method to prepare α-chiral carboxylic acid derivatives, including those bearing all-carbon quaternary centers, through an enantioselective CuH-catalyzed hydrocarboxylation of allenes with a commercially available fluoroformate. A broad range of heterocycles and functional groups on the allenes were tolerated in this protocol, giving enantioenriched α-quaternary and tertiary carboxylic acid derivatives in good yields with exclusive branched regioselectivity. The synthetic utility of this approach was further demonstrated by derivatization of the products to afford biologically important compounds, including the antiplatelet drug indobufen.
Collapse
Affiliation(s)
- Sheng Feng
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
32
|
García-Urricelqui A, de Cózar A, Mielgo A, Palomo C. Probing α-Amino Aldehydes as Weakly Acidic Pronucleophiles: Direct Access to Quaternary α-Amino Aldehydes by an Enantioselective Michael Addition Catalyzed by Brønsted Bases. Chemistry 2021; 27:2483-2492. [PMID: 33034390 DOI: 10.1002/chem.202004468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 12/20/2022]
Abstract
The high tendency of α-amino aldehydes to undergo 1,2-additions and their relatively low stability under basic conditions have largely prevented their use as pronucleophiles in the realm of asymmetric catalysis, particularly for the production of quaternary α-amino aldehydes. Herein, it is demonstrated that the chemistry of α-amino aldehydes may be expanded beyond these limits by documenting the first direct α-alkylation of α-branched α-amino aldehydes with nitroolefins. The reaction produces densely functionalized products bearing up to two, quaternary and tertiary, vicinal stereocenters with high diastereo- and enantioselectivity. DFT modeling leads to the proposal that intramolecular hydrogen bonding between the NH group and the carbonyl oxygen atom in the starting α-amino aldehyde is key for reaction stereocontrol.
Collapse
Affiliation(s)
- Ane García-Urricelqui
- Departamento de Química Orgánica I, Universidad del País Vasco UPV/EHU, Manuel Lardizábal 3, 20018, San Sebastián, Spain
| | - Abel de Cózar
- Departamento de Química Orgánica I, Universidad del País Vasco UPV/EHU, Manuel Lardizábal 3, 20018, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Antonia Mielgo
- Departamento de Química Orgánica I, Universidad del País Vasco UPV/EHU, Manuel Lardizábal 3, 20018, San Sebastián, Spain
| | - Claudio Palomo
- Departamento de Química Orgánica I, Universidad del País Vasco UPV/EHU, Manuel Lardizábal 3, 20018, San Sebastián, Spain
| |
Collapse
|
33
|
Wang N, Xu J, Mei H, Moriwaki H, Izawa K, Soloshonok VA, Han J. Electrochemical Approaches for Preparation of Tailor-Made Amino Acids. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202102043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Li K, Lu Y. Phosphine-catalyzed γ-addition of nitroacetates to allenoates for enantioselective creation of α,α-disubstituted α-amino acid precursors. Org Chem Front 2021. [DOI: 10.1039/d1qo01016f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Enantioselective γ-addition of readily available α-substituted nitroacetates to allenoates has been achieved.
Collapse
Affiliation(s)
- Kaizhi Li
- Biophamaceutical Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yixin Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian, 350207, China
| |
Collapse
|
35
|
Xu Z, Shen C, Zhang H, Wang P, Dong K. Constructing chiral aza-quaternary carbon centers by enantioselective carbonylative Heck reaction of o-iodoanilines with allenes. Org Chem Front 2021. [DOI: 10.1039/d0qo01486a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The construction of chiral aza-quaternary C-centers via C–N bond formation is achieved by a Pd-catalysed asymmetric carbonylative Heck reaction of o-iodoanilines with allenes, providing chiral dihydroquinolinone derivatives with moderate to high yield and enantiomeric ratio.
Collapse
Affiliation(s)
- Zhengshuai Xu
- Chang-Kung Chuang Institute
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Chaoren Shen
- Chang-Kung Chuang Institute
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Hongru Zhang
- Chang-Kung Chuang Institute
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Peng Wang
- Chang-Kung Chuang Institute
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Kaiwu Dong
- Chang-Kung Chuang Institute
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| |
Collapse
|
36
|
Cao H, Li J, Zhang F, Cahard D, Ma J. Asymmetric Synthesis of Chiral Amino Carboxylic‐Phosphonic Acid Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hao‐Qiang Cao
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 People's Republic of China
| | - Jun‐Kuan Li
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 People's Republic of China
| | - Fa‐Guang Zhang
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 People's Republic of China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Binhai New City Fuzhou 350207 People's Republic of China
| | - Dominique Cahard
- CNRS UMR 6014 COBRA Normandie Université 76821 Mont Saint Aignan France
| | - Jun‐An Ma
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 People's Republic of China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Binhai New City Fuzhou 350207 People's Republic of China
| |
Collapse
|
37
|
Shigeno Y, Han J, Soloshonok VA, Moriwaki H, Fujiwara W, Konno H. Asymmetric synthesis of (S)-3-methyleneglutamic acid and its N-Fmoc derivative via Michael addition-elimination reaction of chiral glycine Ni (II) complex with enol tosylates. Chirality 2020; 33:115-123. [PMID: 33368628 DOI: 10.1002/chir.23291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 01/05/2023]
Abstract
The use of chiral Ni (II)-complexes of glycine Schiff bases has recently emerged as a leading methodology for asymmetric synthesis of structurally diverse Tailor-Made Amino Acids™, playing a key role in the design of modern pharmaceuticals. Here, we report first example of enantioselective preparation of (S)-3-methyleneglutamic acid and its N-Fmoc derivative via a new type of Michael addition-elimination reaction between chiral nucleophilic glycine equivalent and enol tosylates. This reaction was found to proceed with excellent yield (91%) and diastereoselectivity (>99/1 de) allowing straightforward asymmetric synthesis of (S)-3-methyleneglutamic acid derivatives and analogues. The observed results bode well for general application of this Ni (II) complex approach for preparation and biological studies of this previously unknown type of Tailor-Made Amino Acids™.
Collapse
Affiliation(s)
- Yuhei Shigeno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | | | - Wataru Fujiwara
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| |
Collapse
|
38
|
Affiliation(s)
- Liang Wei
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Chun‐Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
- State Key Laboratory of Elemento‐organic Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
39
|
Beaudegnies R, Lamberth C. A general synthesis of novel acyclic chiral α-tertiary amines. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Yin Z, Hu W, Zhang W, Konno H, Moriwaki H, Izawa K, Han J, Soloshonok VA. Tailor-made amino acid-derived pharmaceuticals approved by the FDA in 2019. Amino Acids 2020; 52:1227-1261. [PMID: 32880009 DOI: 10.1007/s00726-020-02887-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
Amino acids (AAs) are among a handful of paramount classes of compounds innately involved in the origin and evolution of all known life-forms. Along with basic scientific explorations, the major goal of medicinal chemistry research in the area of tailor-made AAs is the development of more selective and potent pharmaceuticals. The growing acceptance of peptides and peptidomimetics as drugs clearly indicates that AA-based molecules become the most successful structural motif in the modern drug design. In fact, among 24 small-molecule drugs approved by FDA in 2019, 13 of them contain a residue of AA or di-amines or amino-alcohols, which are commonly considered to be derived from the parent AAs. In the present review article, we profile 13 new tailor-made AA-derived pharmaceuticals introduced to the market in 2019. Where it is possible, we will discuss the development form drug-candidates, total synthesis, with emphasis on the core-AA, therapeutic area, and the mode of biological activity.
Collapse
Affiliation(s)
- Zizhen Yin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Wenfei Hu
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA, 02125, USA
| | - Wei Zhang
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA, 02125, USA.
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan
| | - Hiroki Moriwaki
- Hamari Chemicals Ltd, 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan
| | - Kunisuke Izawa
- Hamari Chemicals Ltd, 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain. .,Basque Foundation for Science, IKERBASQUE, Alameda Urquijo 36-5, Plaza Bizkaia, 48011, Bilbao, Spain.
| |
Collapse
|
41
|
Liu J, Han J, Izawa K, Sato T, White S, Meanwell NA, Soloshonok VA. Cyclic tailor-made amino acids in the design of modern pharmaceuticals. Eur J Med Chem 2020; 208:112736. [PMID: 32966895 DOI: 10.1016/j.ejmech.2020.112736] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022]
Abstract
Tailor-made AAs are indispensable components of modern medicinal chemistry and are becoming increasingly prominent in new drugs. In fact, about 30% of small-molecule pharmaceuticals contain residues of tailor-made AAs or structurally related diamines and amino-alcohols. Cyclic tailor-made AAs present a particular value to rational structural design by virtue of their local conformational constraints and are widely used in lead optimization programs. The present review article highlights 34 compounds, all of which are derived from cyclic AAs, representing recently-approved, small-molecule pharmaceuticals as well as promising drug candidates currently in various phases of clinical study. For each compound, the discussion includes the discovery, therapeutic profile and optimized synthesis, with a focus on the preparation of cyclic tailor-made AA as the principal structural feature. The present review article is intended to serve as a reference source for organic, medicinal and process chemists along with other professionals working in the fields of drug design and pharmaceutical discovery.
Collapse
Affiliation(s)
- Jiang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Kunisuke Izawa
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan.
| | - Tatsunori Sato
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan
| | - Sarah White
- Oakwood Chemical, Inc, 730 Columbia Hwy. N, Estill, SC, 29918, USA
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, PO Box, 4000, Princeton, NJ, 08543 4000, United States
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain.
| |
Collapse
|
42
|
Hou KQ, Zhou F, Chen XP, Ge Y, Chan ASC, Xiong XF. Asymmetric Synthesis of Oxindole-Derived Vicinal Tetrasubstituted Acyclic Amino Acid Derivatives by the Mannich-Type Reaction. J Org Chem 2020; 85:9661-9671. [PMID: 32603113 DOI: 10.1021/acs.joc.0c00981] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The catalytic asymmetric Mannich-type reaction of 3-hydroxy/3-aminooxindoles with 2-aminoacrylates to afford oxindole-derived acyclic amino acid derivatives bearing vicinal tetrasubstituted stereocenters is reported. (DHQ)2PHAL (4g) and quinine-derived squaramide (4d) were identified as efficient catalysts. Transformations of the Mannich-type reaction products highlight the utility of this synthetic strategy.
Collapse
Affiliation(s)
- Ke-Qiang Hou
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Feng Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xue-Ping Chen
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yang Ge
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Albert S C Chan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiao-Feng Xiong
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
43
|
Mei H, Han J, White S, Graham DJ, Izawa K, Sato T, Fustero S, Meanwell NA, Soloshonok VA. Tailor-Made Amino Acids and Fluorinated Motifs as Prominent Traits in Modern Pharmaceuticals. Chemistry 2020; 26:11349-11390. [PMID: 32359086 DOI: 10.1002/chem.202000617] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/23/2020] [Indexed: 12/11/2022]
Abstract
Structural analysis of modern pharmaceutical practices allows for the identification of two rapidly growing trends: the introduction of tailor-made amino acids and the exploitation of fluorinated motifs. Curiously, the former represents one of the most ubiquitous classes of naturally occurring compounds, whereas the latter is the most xenobiotic and comprised virtually entirely of man-made derivatives. Herein, 39 selected compounds, featuring both of these traits in the same molecule, are profiled. The total synthesis, source of the corresponding amino acids and fluorinated residues, and medicinal chemistry aspects and biological properties of the molecules are discussed.
Collapse
Affiliation(s)
- Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P.R. China
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P.R. China
| | - Sarah White
- Oakwood Chemical, Inc., 730 Columbia Hwy. N, Estill, SC, 29918, USA
| | - Daniel J Graham
- Oakwood Chemical, Inc., 730 Columbia Hwy. N, Estill, SC, 29918, USA
| | - Kunisuke Izawa
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan
| | - Tatsunori Sato
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan
| | - Santos Fustero
- Departamento de Química Orgánica, Universidad de Valencia, 46100, Burjassot, Valencia, Spain
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, NJ, 08543-4000, USA
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain
| |
Collapse
|
44
|
Asymmetric Synthesis of Tailor-Made Amino Acids Using Chiral Ni(II) Complexes of Schiff Bases. An Update of the Recent Literature. Molecules 2020; 25:molecules25122739. [PMID: 32545684 PMCID: PMC7356839 DOI: 10.3390/molecules25122739] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 12/04/2022] Open
Abstract
Tailor-made amino acids are indispensable structural components of modern medicinal chemistry and drug design. Consequently, stereo-controlled preparation of amino acids is the area of high research activity. Over last decade, application of Ni(II) complexes of Schiff bases derived from glycine and chiral tridentate ligands has emerged as a leading methodology for the synthesis of various structural types of amino acids. This review article summarizes examples of asymmetric synthesis of tailor-made α-amino acids via the corresponding Ni(II) complexes, reported in the literature over the last four years. A general overview of this methodology is provided, with the emphasis given to practicality, scalability, cost-structure and recyclability of the chiral tridentate ligands.
Collapse
|
45
|
Wang M, Zhou M, Zhang L, Zhang Z, Zhang W. A step-economic and one-pot access to chiral C α-tetrasubstituted α-amino acid derivatives via a bicyclic imidazole-catalyzed direct enantioselective C-acylation. Chem Sci 2020; 11:4801-4807. [PMID: 34122937 PMCID: PMC8159231 DOI: 10.1039/d0sc00808g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cα-Tetrasubstituted α-amino acids are ubiquitous and unique structural units in bioactive natural products and pharmaceutical compounds. The asymmetric synthesis of these molecules has attracted a lot of attention, but a more efficient method is still greatly desired. Here we describe the first sequential four-step acylation reaction for the efficient synthesis of chiral Cα-tetrasubstituted α-amino acid derivatives from simple N-acylated amino acids via an auto-tandem catalysis using a single nucleophilic catalyst. The synthetic efficiency is improved via a direct enantioselective C-acylation; the methodology affords the corresponding Cα-tetrasubstituted α-amino acid derivatives with excellent enantioselectivities (up to 99% ee). This step-economic, one-pot, and auto-tandem strategy provides facile access to important chiral building blocks, such as peptides, serines, and oxazolines, which are often used in medicinal and synthetic chemistry. The first four-step sequential reaction for the synthesis of Cα-tetrasubstituted chiral α-amino acid derivatives via auto-tandem catalysis has been developed.![]()
Collapse
Affiliation(s)
- Mo Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University Shanghai 200240 China .,School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China
| | - Muxing Zhou
- School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China
| | - Lu Zhang
- School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China
| | - Zhenfeng Zhang
- School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University Shanghai 200240 China .,School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
46
|
Kuwano S, Nishida Y, Suzuki T, Arai T. Catalytic Asymmetric Mannich‐Type Reaction of Malononitrile with N‐Boc α‐Ketiminoesters Using Chiral Organic Base Catalyst with Halogen Bond Donor Functionality. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000092] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Satoru Kuwano
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of ScienceChiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Yuki Nishida
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of ScienceChiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Takumi Suzuki
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of ScienceChiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Takayoshi Arai
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of ScienceChiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| |
Collapse
|
47
|
Maestro A, Marigorta EM, Palacios F, Vicario J. α‐Iminophosphonates: Useful Intermediates for Enantioselective Synthesis of α‐Aminophosphonates. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Aitor Maestro
- Departamento de Química Orgánica I Centro de Investigación y Estudios Avanzados “Lucio Lascaray” Facultad de FarmaciaUniversidad del País Vasco UPV/EHU Paseo de la Universidad 7 01006 Vitoria-Gasteiz Spain
| | - Edorta Martinez Marigorta
- Departamento de Química Orgánica I Centro de Investigación y Estudios Avanzados “Lucio Lascaray” Facultad de FarmaciaUniversidad del País Vasco UPV/EHU Paseo de la Universidad 7 01006 Vitoria-Gasteiz Spain
| | - Francisco Palacios
- Departamento de Química Orgánica I Centro de Investigación y Estudios Avanzados “Lucio Lascaray” Facultad de FarmaciaUniversidad del País Vasco UPV/EHU Paseo de la Universidad 7 01006 Vitoria-Gasteiz Spain
| | - Javier Vicario
- Departamento de Química Orgánica I Centro de Investigación y Estudios Avanzados “Lucio Lascaray” Facultad de FarmaciaUniversidad del País Vasco UPV/EHU Paseo de la Universidad 7 01006 Vitoria-Gasteiz Spain
| |
Collapse
|
48
|
Lin Q, Hu B, Xu X, Dong S, Liu X, Feng X. Chiral N, N'-dioxide/Mg(OTf) 2 complex-catalyzed asymmetric [2,3]-rearrangement of in situ generated ammonium salts. Chem Sci 2020; 11:3068-3073. [PMID: 34122811 PMCID: PMC8157646 DOI: 10.1039/c9sc06342k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/18/2020] [Indexed: 11/21/2022] Open
Abstract
Catalytic enantioselective [2,3]-rearrangements of in situ generated ammonium ylides from glycine pyrazoleamides and allyl bromides were achieved by employing a chiral N,N'-dioxide/MgII complex as the catalyst. This protocol provided a facile and efficient synthesis route to a series of anti-α-amino acid derivatives in good yields with high stereoselectivities. Moreover, a possible catalytic cycle was proposed to illustrate the reaction process and the origin of stereoselectivity.
Collapse
Affiliation(s)
- Qianchi Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Bowen Hu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xi Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
49
|
Walęcka-Kurczyk A, Walczak K, Kuźnik A, Stecko S, Październiok-Holewa A. The Synthesis of α-Aminophosphonates via Enantioselective Organocatalytic Reaction of 1-( N-Acylamino)alkylphosphonium Salts with Dimethyl Phosphite. Molecules 2020; 25:E405. [PMID: 31963713 PMCID: PMC7024258 DOI: 10.3390/molecules25020405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 02/06/2023] Open
Abstract
α-Aminophosphonic acids are phosphorus analogues of α-amino acids. Compounds of this type find numerous applications in medicine and crop protection due to their unique biological activities. A crucial factor in these activities is the configuration of the stereoisomers. Only a few methods of stereoselective transformation of α-amino acids into their phosphorus analogues are known so far and all of them are based on asymmetric induction, thus involving the use of a chiral substrate. In contrast, we have focused our efforts on the development of an effective method for this type of transformation using a racemic mixture of starting N-protected α-amino acids and a chiral catalyst. Herein, a simple and efficient stereoselective organocatalytic α-amidoalkylation of dimethyl phosphite by 1-(N-acylamino)alkyltriphenylphosphonium salts to enantiomerically enriched α-aminophosphonates is reported. Using 5 mol% of chiral quinine- or hydroquinine-derived quaternary ammonium salts provides final products in very good yields up to 98% and with up to 92% ee. The starting phosphonium salts were easily obtained from α-amino acid derivatives by decarboxylative methoxylation and subsequent substitution with triphenylphosphonium tetrafluoroborate. The appropriate self-disproportionation of enantiomers (SDE) test for selected α-aminophosphonate derivatives via achiral flash chromatography was performed to confirm the reliability of the enantioselectivity results that were obtained.
Collapse
Affiliation(s)
- Alicja Walęcka-Kurczyk
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (A.W.-K.); (K.W.); (A.K.)
- Biotechnology Center of Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Krzysztof Walczak
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (A.W.-K.); (K.W.); (A.K.)
| | - Anna Kuźnik
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (A.W.-K.); (K.W.); (A.K.)
- Biotechnology Center of Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Sebastian Stecko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland;
| | - Agnieszka Październiok-Holewa
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (A.W.-K.); (K.W.); (A.K.)
- Biotechnology Center of Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| |
Collapse
|
50
|
Cativiela C, Ordóñez M, Viveros-Ceballos JL. Stereoselective synthesis of acyclic α,α-disubstituted α-amino acids derivatives from amino acids templates. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130875] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|