1
|
Beaucage N, Singh Z, Bourdon J, Collins SK. Tuning Co-Operative Energy Transfer in Copper(I) Complexes Using Two-Photon Absorbing Diimine-Based Ligand Sensitizers. Angew Chem Int Ed Engl 2024:e202412606. [PMID: 39292148 DOI: 10.1002/anie.202412606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
Photocatalysis mediated by low energy light wavelengths has potential to enable safer, sustainable synthetic methods. A phenanthroline-derived ligand bathocupSani, with a large two-photon absorption (TPA) cross section was used to construct a heteroleptic complex [Cu(bathocupSani)(DPEPhos)]BF4 and a homoleptic complex [Cu(bathocupSani)2]BF4. The ligand and the respective homoleptic complex with copper exhibit two-photon upconversion with an anti-Stokes shift of 1.2 eV using red light. The complex [Cu(bathocupSani)2]BF4 promoted energy transfer photocatalysis enabling oxidative dimerization of benzylic amines, sulfide oxidation, phosphine oxidation, boronic acid oxidation and atom-transfer radical addition.
Collapse
Affiliation(s)
- Noémie Beaucage
- Noémie Beaucage, Dr. Zujhar Singh, Jérémie Bourdon and Prof. Dr. Shawn K. Collins, Department of Chemistry and Centre for Green Chemistry and Catalysis, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal
| | - Zujhar Singh
- Noémie Beaucage, Dr. Zujhar Singh, Jérémie Bourdon and Prof. Dr. Shawn K. Collins, Department of Chemistry and Centre for Green Chemistry and Catalysis, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal
| | - Jérémie Bourdon
- Noémie Beaucage, Dr. Zujhar Singh, Jérémie Bourdon and Prof. Dr. Shawn K. Collins, Department of Chemistry and Centre for Green Chemistry and Catalysis, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal
| | - Shawn K Collins
- Noémie Beaucage, Dr. Zujhar Singh, Jérémie Bourdon and Prof. Dr. Shawn K. Collins, Department of Chemistry and Centre for Green Chemistry and Catalysis, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal
| |
Collapse
|
2
|
Zhao Y, Li L, Zang J, Young DJ, Ren ZG, Li HY, Yu L, Bian GQ, Li HX. Modulating β-Keto-enamine-Based Covalent Organic Frameworks for Photocatalytic Atom-Transfer Radical Addition Reaction. Chemistry 2024; 30:e202400377. [PMID: 38403857 DOI: 10.1002/chem.202400377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
The atom-transfer radical addition (ATRA) reaction simultaneously forges carbon-carbon and carbon-halogen bonds. However, frequently-used photosensitizers such as precious transition metal complexes, or organic dyes have limitations in terms of their potential toxicity and recyclability. Three β-ketoenamine-linked covalent organic frameworks (COFs) from 1,3,5-triformylphloroglucinol and 1,4-phenylenediamines with variable transient photocurrent and photocatalytic activity have been prepared. A COF bearing electron-deficient Cl atoms displayed the highest photocatalytic activity toward the ATRA reaction of polyhalogenated alkanes to give halogenated olefins under visible light at room temperature. This heterogeneous photocatalyst exhibited good functional group tolerance and could be recycled without significant loss of activity.
Collapse
Affiliation(s)
- Yuting Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Lei Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Jiyuan Zang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - David J Young
- Glasgow College, UESTC, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Zhi-Gang Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hai-Yan Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Lei Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Guo-Qing Bian
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hong-Xi Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
3
|
Yan CY, Wu ZW, He XY, Ma YH, Peng XR, Wang L, Yang QQ. Visible-Light-Induced Tandem Radical Brominative Addition/Cyclization of Activated Alkynes with CBr 4 for the Synthesis of 3-Bromocoumarins. J Org Chem 2023; 88:647-652. [PMID: 36480338 DOI: 10.1021/acs.joc.2c01721] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A visible-light-induced tandem radical brominative addition/spiro-cyclization/1,2-ester migration of activated alkynes with CBr4 is developed. This protocol features good functional group tolerance, operational simplicity, and mild reaction conditions without the use of catalysts and external additives, providing easy access to valuable 3-bromocoumarins in generally high yields.
Collapse
Affiliation(s)
- Chen-Yang Yan
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China
| | - Zheng-Wei Wu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China
| | - Xiao-Yu He
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China
| | - Yu-Hong Ma
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China
| | - Xiao-Rong Peng
- GongAn County People's Hospital, No. 119, Chanling Avenue, Douhudi Town, Gongan County, Jingzhou, Hubei 434300, P. R. China
| | - Long Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China.,Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Qing-Qing Yang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China.,Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| |
Collapse
|
4
|
Beaudelot J, Oger S, Peruško S, Phan TA, Teunens T, Moucheron C, Evano G. Photoactive Copper Complexes: Properties and Applications. Chem Rev 2022; 122:16365-16609. [PMID: 36350324 DOI: 10.1021/acs.chemrev.2c00033] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Photocatalyzed and photosensitized chemical processes have seen growing interest recently and have become among the most active areas of chemical research, notably due to their applications in fields such as medicine, chemical synthesis, material science or environmental chemistry. Among all homogeneous catalytic systems reported to date, photoactive copper(I) complexes have been shown to be especially attractive, not only as alternative to noble metal complexes, and have been extensively studied and utilized recently. They are at the core of this review article which is divided into two main sections. The first one focuses on an exhaustive and comprehensive overview of the structural, photophysical and electrochemical properties of mononuclear copper(I) complexes, typical examples highlighting the most critical structural parameters and their impact on the properties being presented to enlighten future design of photoactive copper(I) complexes. The second section is devoted to their main areas of application (photoredox catalysis of organic reactions and polymerization, hydrogen production, photoreduction of carbon dioxide and dye-sensitized solar cells), illustrating their progression from early systems to the current state-of-the-art and showcasing how some limitations of photoactive copper(I) complexes can be overcome with their high versatility.
Collapse
Affiliation(s)
- Jérôme Beaudelot
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Samuel Oger
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| | - Stefano Peruško
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Tuan-Anh Phan
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium.,Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000Mons, Belgium
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| |
Collapse
|
5
|
Engl S, Reiser O. Copper-photocatalyzed ATRA reactions: concepts, applications, and opportunities. Chem Soc Rev 2022; 51:5287-5299. [PMID: 35703016 DOI: 10.1039/d2cs00303a] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Atom transfer radical addition (ATRA) reactions are linchpin transformations in synthetic chemistry enabling the atom-economic difunctionalization of alkenes. Thereby a rich chemical space can be accessed through smart combinations of simple starting materials. Originally, these reactions required toxic and hazardous radical initiators or harsh thermal activation and thus, the recent resurgence and dramatic evolution of photocatalysis appeared as an attractive complement to catalyze such transformations in a mild and energy-efficient manner. Initially, this technique relied primarily on complexes of precious metals, such as ruthenium or iridium, to absorb the visible light. Hence, copper photocatalysis rapidly developed into a powerful alternative, not just from an economic point of view. Originally considered to be disadvantageous as a pathway for deactivation by quenching their excited state, the dynamic nature of Cu-complexes enables them to undergo facile ligand exchange and thus opens up special opportunities for transformations utilizing their inner-coordination sphere. Moreover, the ability of Cu(II), representing a persistent radical, to capture incipient radicals offers the possibility to access heretofore elusive two-component, but also three-component, ATRA reactions, not feasible with ruthenium or iridium catalysts. In this regard, the idea of using Cu(I)-substrate assemblies as active photocatalysts is an emerging field to achieve such 3-component coupling reactions even under enantioselective control, which is reflected by an increasing number of reports being covered in this review.
Collapse
Affiliation(s)
- Sebastian Engl
- Institut für Organische Chemie, Universitätsstraße 31, 93053 Regensburg, Germany.
| | - Oliver Reiser
- Institut für Organische Chemie, Universitätsstraße 31, 93053 Regensburg, Germany.
| |
Collapse
|
6
|
Banerjee A, Sarkar S, Shah JA, Frederiks NC, Bazan‐Bergamino EA, Johnson CJ, Ngai M. Excited‐State Copper Catalysis for the Synthesis of Heterocycles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Arghya Banerjee
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery the State University of New York at Stony Brook Stony Brook NY 11794 USA
| | - Satavisha Sarkar
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery the State University of New York at Stony Brook Stony Brook NY 11794 USA
| | - Jagrut A. Shah
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery the State University of New York at Stony Brook Stony Brook NY 11794 USA
| | - Nicoline C. Frederiks
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery the State University of New York at Stony Brook Stony Brook NY 11794 USA
| | - Emmanuel A. Bazan‐Bergamino
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery the State University of New York at Stony Brook Stony Brook NY 11794 USA
| | - Christopher J. Johnson
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery the State University of New York at Stony Brook Stony Brook NY 11794 USA
| | - Ming‐Yu Ngai
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery the State University of New York at Stony Brook Stony Brook NY 11794 USA
| |
Collapse
|
7
|
Banerjee A, Sarkar S, Shah JA, Frederiks NC, Bazan-Bergamino EA, Johnson CJ, Ngai MY. Excited-State Copper Catalysis for the Synthesis of Heterocycles. Angew Chem Int Ed Engl 2022; 61:e202113841. [PMID: 34783154 PMCID: PMC8761179 DOI: 10.1002/anie.202113841] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Indexed: 01/23/2023]
Abstract
Heterocycles are one of the largest groups of organic moieties with significant medicinal, chemical, and industrial applications. Herein, we report the discovery and development of visible-light-induced, synergistic excited-state copper catalysis using a combination of Cu(IPr)I as a catalyst and rac-BINAP as a ligand, which produces more than 10 distinct classes of heterocycles. The reaction tolerates a broad array of functional groups and complex molecular scaffolds, including derivatives of peptides, natural products, and marketed drugs. Preliminary mechanistic investigation suggests in situ generations of [Cu(BINAP)2 ]+ and [Cu(IPr)2 ]+ catalysts that work cooperatively under visible-light irradiation to facilitate catalytic carbo-aroylation of unactivated alkenes, affording a wide range of useful heterocycles.
Collapse
Affiliation(s)
- Arghya Banerjee
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, the State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - Satavisha Sarkar
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, the State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - Jagrut A. Shah
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, the State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - Nicoline C. Frederiks
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, the State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - Emmanuel A. Bazan-Bergamino
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, the State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - Christopher J. Johnson
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, the State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - Ming-Yu Ngai
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, the State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| |
Collapse
|
8
|
Ji X, Fu R, Wang S, Hao W, Jiang B. Visible-Light-Driven Photocatalytic Kharasch Reaction of Phenol/ Arylamine-Linked 1,6-Enynes with Perhalogenated Methane. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202211011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Chaibuth P, Chuaytanee N, Hojitsiriyanont J, Chainok K, Wacharasindhu S, Reiser O, Sukwattanasinitt M. Copper( ii) complexes of quinoline-based ligands for efficient photoredox catalysis of atom transfer radical addition (ATRA) reaction. NEW J CHEM 2022. [DOI: 10.1039/d2nj01218a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cu(ii)·1Q is efficient in ATRA reactions with perhaloalkanes, revealing the role of common additives (AIBN or inorganic base).
Collapse
Affiliation(s)
- Pawittra Chaibuth
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Institut für Organische Chemie Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Nontakarn Chuaytanee
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jutawat Hojitsiriyanont
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kittipong Chainok
- Materials and Textiles Technology, Faculty of Science and Technology, Thammasat University, Klong Luang, Pathum Thani 12120, Thailand
| | - Sumrit Wacharasindhu
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Oliver Reiser
- Institut für Organische Chemie Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | | |
Collapse
|
10
|
Bruschi C, Gui X, Salaeh‐arae N, Barchi T, Fuhr O, Lebedkin S, Klopper W, Bizzarri C. Versatile Heteroleptic Cu(I) Complexes Based on Quino(xa)‐line‐Triazole Ligands: from Visible‐Light Absorption and Cooperativity to Luminescence and Photoredox Catalysis. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cecilia Bruschi
- Institute of Organic Chemistry Karlsruhe Institute of Technology Fritz-Haber-Weg 6 76137 Karlsruhe Germany
| | - Xin Gui
- Institute of Physical Chemistry-Theoretical Chemistry Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 2 76131 Karlsruhe Germany
| | - Nasrin Salaeh‐arae
- Institute of Organic Chemistry Karlsruhe Institute of Technology Fritz-Haber-Weg 6 76137 Karlsruhe Germany
| | - Tobia Barchi
- Institute of Organic Chemistry Karlsruhe Institute of Technology Fritz-Haber-Weg 6 76137 Karlsruhe Germany
| | - Olaf Fuhr
- Institute of Nanotechnology Karlsruhe Institute of Technology Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Karlsruhe Nano MicroFacility (KNMF) Karlsruhe Institute of Technology Hermann-von Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Sergei Lebedkin
- Institute of Nanotechnology Karlsruhe Institute of Technology Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Wim Klopper
- Institute of Physical Chemistry-Theoretical Chemistry Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 2 76131 Karlsruhe Germany
| | - Claudia Bizzarri
- Institute of Organic Chemistry Karlsruhe Institute of Technology Fritz-Haber-Weg 6 76137 Karlsruhe Germany
| |
Collapse
|
11
|
Cruché C, Neiderer W, Collins SK. Heteroleptic Copper-Based Complexes for Energy-Transfer Processes: E → Z Isomerization and Tandem Photocatalytic Sequences. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01983] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Corentin Cruché
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3 Canada
| | - William Neiderer
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3 Canada
| | - Shawn K. Collins
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3 Canada
| |
Collapse
|
12
|
Sandoval-Pauker C, Molina-Aguirre G, Pinter B. Status report on copper (I) complexes in photoredox catalysis; photophysical and electrochemical properties and future prospects. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115105] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Zwettler N, Dupé A, Klokić S, Milinković A, Rodić D, Walg S, Neshchadin D, Belaj F, Mösch‐Zanetti NC. Hydroalkylation of Aryl Alkenes with Organohalides Catalyzed by Molybdenum Oxido Based Lewis Pairs. Adv Synth Catal 2020; 362:3170-3182. [PMID: 32982624 PMCID: PMC7497237 DOI: 10.1002/adsc.202000425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/09/2020] [Indexed: 11/08/2022]
Abstract
Three molybdenum(VI) dioxido complexes [MoO2(L)2] bearing Schiff base ligands were reacted with B(C6F5)3 to afford the corresponding adducts [MoO{OB(C6F5)3}(L)2], which were fully characterized. They exhibit Frustrated Lewis-Pairs reactivity when reacting with silanes. Especially, the [MoO{OB(C6F5)3}(L)2] complex with L=2,4-dimethyl-6-((phenylimino)methyl)phenol proved to be active as catalyst for the hydroalkylation of aryl alkenes with organohalides and for the Atom-Transfer Radical Addition (ATRA) of organohalides to aliphatic alkenes. A series of gem-dichloride and gem-dibromide compounds with potential for further derivatization were synthesized from simple alkenes and organohalides, like chloroform or bromoform, using low catalyst loading.
Collapse
Affiliation(s)
- Niklas Zwettler
- Institute of ChemistryUniversity of GrazSchubertstrasse 18010GrazAustria
| | - Antoine Dupé
- Institute of ChemistryUniversity of GrazSchubertstrasse 18010GrazAustria
| | - Sumea Klokić
- Institute of ChemistryUniversity of GrazSchubertstrasse 18010GrazAustria
| | - Angela Milinković
- Institute of ChemistryUniversity of GrazSchubertstrasse 18010GrazAustria
| | - Dado Rodić
- Institute of ChemistryUniversity of GrazSchubertstrasse 18010GrazAustria
| | - Simon Walg
- Institute of ChemistryUniversity of GrazSchubertstrasse 18010GrazAustria
| | - Dmytro Neshchadin
- Institute for Physical and Theoretical ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Ferdinand Belaj
- Institute of ChemistryUniversity of GrazSchubertstrasse 18010GrazAustria
| | | |
Collapse
|
14
|
Matsuo K, Yamaguchi E, Itoh A. In Situ-Generated Halogen-Bonding Complex Enables Atom Transfer Radical Addition (ATRA) Reactions of Olefins. J Org Chem 2020; 85:10574-10583. [DOI: 10.1021/acs.joc.0c01135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kazuki Matsuo
- Gifu Pharmaceutical University, 1-25-4, Daigaku-Nishi, Gifu, Gifu 501-1196, Japan
| | - Eiji Yamaguchi
- Gifu Pharmaceutical University, 1-25-4, Daigaku-Nishi, Gifu, Gifu 501-1196, Japan
| | - Akichika Itoh
- Gifu Pharmaceutical University, 1-25-4, Daigaku-Nishi, Gifu, Gifu 501-1196, Japan
| |
Collapse
|
15
|
Zhong M, Pannecoucke X, Jubault P, Poisson T. Recent advances in photocatalyzed reactions using well-defined copper(I) complexes. Beilstein J Org Chem 2020; 16:451-481. [PMID: 32273907 PMCID: PMC7113551 DOI: 10.3762/bjoc.16.42] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/12/2020] [Indexed: 12/17/2022] Open
Abstract
This review summarizes the recent advances in photocatalysis using copper complexes. Their applications in various reactions, such as ATRA, reduction, oxidation, proton-coupled electron transfer, and energy transfer reactions are discussed.
Collapse
Affiliation(s)
- Mingbing Zhong
- Normandie Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Xavier Pannecoucke
- Normandie Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Philippe Jubault
- Normandie Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Thomas Poisson
- Normandie Université, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris, France
| |
Collapse
|
16
|
Petzold D, Giedyk M, Chatterjee A, König B. A Retrosynthetic Approach for Photocatalysis. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901421] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Daniel Petzold
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Maciej Giedyk
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01‐224 Warsaw Poland
| | - Anamitra Chatterjee
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Burkhard König
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| |
Collapse
|
17
|
Giereth R, Mengele AK, Frey W, Kloß M, Steffen A, Karnahl M, Tschierlei S. Copper(I) Phosphinooxazoline Complexes: Impact of the Ligand Substitution and Steric Demand on the Electrochemical and Photophysical Properties. Chemistry 2020; 26:2675-2684. [PMID: 31747089 PMCID: PMC7065177 DOI: 10.1002/chem.201904379] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Indexed: 12/29/2022]
Abstract
A series of seven homoleptic CuI complexes based on hetero-bidentate P^N ligands was synthesized and comprehensively characterized. In order to study structure-property relationships, the type, size, number and configuration of substituents at the phosphinooxazoline (phox) ligands were systematically varied. To this end, a combination of X-ray diffraction, NMR spectroscopy, steady-state absorption and emission spectroscopy, time-resolved emission spectroscopy, quenching experiments and cyclic voltammetry was used to assess the photophysical and electrochemical properties. Furthermore, time-dependent density functional theory calculations were applied to also analyze the excited state structures and characteristics. Surprisingly, a strong dependency on the chirality of the respective P^N ligand was found, whereas the specific kind and size of the different substituents has only a minor impact on the properties in solution. Most importantly, all complexes except C3 are photostable in solution and show fully reversible redox processes. Sacrificial reductants were applied to demonstrate a successful electron transfer upon light irradiation. These properties render this class of photosensitizers as potential candidates for solar energy conversion issues.
Collapse
Affiliation(s)
- Robin Giereth
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Alexander K Mengele
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Wolfgang Frey
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Marvin Kloß
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Andreas Steffen
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Michael Karnahl
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Stefanie Tschierlei
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
18
|
Bag D, Kour H, Sawant SD. Photo-induced 1,2-carbohalofunctionalization of C–C multiple bonds via ATRA pathway. Org Biomol Chem 2020; 18:8278-8293. [PMID: 33006347 DOI: 10.1039/d0ob01454k] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Carbohalofunctionalization of C–C multiple bonds via atom transfer radical processes constitutes an efficient method for the construction of halogenated building blocks with complete atom economy. This review summarizes the recent advancements.
Collapse
Affiliation(s)
- Debojyoti Bag
- Medicinal Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu
- India
| | - Harpreet Kour
- Medicinal Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu
- India
| | - Sanghapal D. Sawant
- Medicinal Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu
- India
| |
Collapse
|
19
|
Xu J. Single Unit Monomer Insertion: A Versatile Platform for Molecular Engineering through Radical Addition Reactions and Polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01365] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jiangtao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
20
|
Engl S, Reiser O. Making Copper Photocatalysis Even More Robust and Economic: Photoredox Catalysis with [CuII
(dmp)2
Cl]Cl. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900839] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sebastian Engl
- Institute of Organic Chemistry; University of Regensburg; Universitätsstr. 31 93053 Regensburg Germany
| | - Oliver Reiser
- Institute of Organic Chemistry; University of Regensburg; Universitätsstr. 31 93053 Regensburg Germany
| |
Collapse
|
21
|
Weng WZ, Liang H, Liu RZ, Ji YX, Zhang B. Visible-Light-Promoted Manganese-Catalyzed Atom Transfer Radical Cyclization of Unactivated Alkyl Iodides. Org Lett 2019; 21:5586-5590. [PMID: 31241973 DOI: 10.1021/acs.orglett.9b01918] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An expedient visible-light-promoted atom transfer radical cyclization (ATRC) reaction of unactivated alkyl iodides facilitated by earth-abundant and inexpensive manganese catalysis is described. The practical protocol shows a broad substrate scope and good functional-group tolerance, allowing for the preparation of synthetically valuable alkenyl iodides and diquinanes under simple and mild reaction conditions. Notably, the method provides a net redox-neutral strategy for ATRC reactions that avoids classic hydrogen atom transfer mechanism.
Collapse
Affiliation(s)
- Wei-Zhi Weng
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tongjia Xiang , Nanjing 210009 , China
| | - Hao Liang
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tongjia Xiang , Nanjing 210009 , China
| | - Run-Zhou Liu
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tongjia Xiang , Nanjing 210009 , China
| | - Yun-Xing Ji
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tongjia Xiang , Nanjing 210009 , China
| | - Bo Zhang
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tongjia Xiang , Nanjing 210009 , China
| |
Collapse
|
22
|
Holler M, Delavaux‐Nicot B, Nierengarten J. Topological and Steric Constraints to Stabilize Heteroleptic Copper(I) Complexes Combining Phenanthroline Ligands and Phosphines. Chemistry 2019; 25:4543-4550. [DOI: 10.1002/chem.201805671] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Michel Holler
- Laboratoire de Chimie des Matériaux MoléculairesUniversité de Strasbourg et CNRS (LIMA-UMR 7042), École Européenne de Chimie, Polymères et Matériaux (ECPM) 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| | - Béatrice Delavaux‐Nicot
- Laboratoire de Chimie de Coordination du CNRS (UPR 8241)Université de Toulouse (UPS, INPT) 205 Route de Narbonne 31077 Toulouse Cedex 04 France
| | - Jean‐François Nierengarten
- Laboratoire de Chimie des Matériaux MoléculairesUniversité de Strasbourg et CNRS (LIMA-UMR 7042), École Européenne de Chimie, Polymères et Matériaux (ECPM) 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| |
Collapse
|