1
|
Rivero-Barbarroja G, López-Fernández J, Juárez-Gonzálvez I, Fernández-Clavero C, Di Giorgio C, Vélaz I, Garrido MJ, Benito JM, Ortiz Mellet C, Mendicuti F, Tros de Ilarduya C, García Fernández JM. β-Cyclodextrin-based geometrically frustrated amphiphiles as one-component, cell-specific and organ-specific nucleic acid delivery systems. Carbohydr Polym 2025; 347:122776. [PMID: 39487000 DOI: 10.1016/j.carbpol.2024.122776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 11/04/2024]
Abstract
We introduce an innovative β-cyclodextrin (βCD)-prototype for delivering nucleic acids: "geometrically frustrated amphiphiles (GFAs)." GFAs are designed with cationic centers evenly distributed across the primary O6 and secondary O2 positions of the βCD scaffold, while hydrophobic tails are anchored at the seven O3 positions. Such distribution of functional elements differs from Janus-type architectures and enlarges the capacity for accessing strictly monodisperse variants. Changes at the molecular level can then be correlated with preferred self-assembly and plasmid DNA (pDNA) co-assembly behaviors. Specifically, GFAs undergo pH-dependent transition between bilayered to monolayered vesicles or individual molecules. GFA-pDNA nanocomplexes exhibit topological and internal order characteristics that are also a function of the GFA molecular architecture. Notably, adjusting the pKa of the cationic heads and the hydrophilic-hydrophobic balance, pupa-like arrangements implying axial alignments of GFA units flanked by quasi-parallel pDNA segments are preferred. In vitro cell transfection studies revealed remarkable differences in relative performances, which corresponded to distinct organ targeting outcomes in vivo. This allowed for preferential delivery to the liver and lung, kidney or spleen. The results collectively highlight cyclodextrin-based GFAs as a promising class of molecular vectors capable of finely tuning cell and organ transfection selectivity.
Collapse
Affiliation(s)
| | - José López-Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, 41092 Sevilla, Spain
| | - Inmaculada Juárez-Gonzálvez
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31080 Pamplona, Spain
| | - Carlos Fernández-Clavero
- Departamento de Química Analítica, Química Física e Ingeniería Química and Instituto de Investigación Química "Andrés del Rio", Universidad de Alcalá, Spain
| | | | - Itziar Vélaz
- Department of Chemistry, School of Sciences, University of Navarra, 31080 Pamplona, Spain
| | - María J Garrido
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31080 Pamplona, Spain
| | - Juan M Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, 41092 Sevilla, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, 41012 Sevilla, Spain.
| | - Francisco Mendicuti
- Departamento de Química Analítica, Química Física e Ingeniería Química and Instituto de Investigación Química "Andrés del Rio", Universidad de Alcalá, Spain.
| | - Conchita Tros de Ilarduya
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31080 Pamplona, Spain.
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, 41092 Sevilla, Spain.
| |
Collapse
|
2
|
Lardy S, Lerda VL, Schmidt VA. Polarity-Driven Thiyl Radical-Catalyzed Aerobic Debenzylation of Ethers and Amines. J Org Chem 2024; 89:15062-15067. [PMID: 39380545 PMCID: PMC11494661 DOI: 10.1021/acs.joc.4c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
We report the use of a strongly electrophilic thiyl radical derived from commercially available pentafluorothiophenol as a demonstration of highly chemoselective H atom abstraction from electron-rich and relatively weak benzylic C-H bonds adjacent to the O and N atoms. This approach enables the selective oxidative removal of benzyl and p-methoxybenzyl groups from amines and ethers under ambient aerobic conditions.
Collapse
Affiliation(s)
- Samuel
W. Lardy
- Department of Chemistry and
Biochemistry, University of California San
Diego, La Jolla, California 92093, United States
| | - Victoria L. Lerda
- Department of Chemistry and
Biochemistry, University of California San
Diego, La Jolla, California 92093, United States
| | - Valerie A. Schmidt
- Department of Chemistry and
Biochemistry, University of California San
Diego, La Jolla, California 92093, United States
| |
Collapse
|
3
|
Deng Y, Huang J, Qian Y, Sun Z, Huang Q, Cao S. Facile Synthesis of β-trifluoromethyl thioethers via DBN-catalyzed Hydrothiolation of α-(Trifluoromethyl)styrenes with Thiols. Chem Asian J 2024; 19:e202400698. [PMID: 39039023 DOI: 10.1002/asia.202400698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
A very simple and atom-economical method for the synthesis of vicinal trifluoromethyl thioethers via DBN-catalyzed hydrothiolation of α-(trifluoromethyl)styrenes with thiols was reported. The reaction proceeded smoothly under mild reaction conditions and provided the β-CF3-thioethers in moderate to good yields in an anti-Markovnikov manner. Furthermore, this method features several remarkable advantages, such as the use of a catalytic amount of DBN, broad substrate scope, excellent functional group compatibility, and easy scalability.
Collapse
Affiliation(s)
- Yupian Deng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Jiaqi Huang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Yuhao Qian
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Zhudi Sun
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Qingchun Huang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Song Cao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| |
Collapse
|
4
|
Leier S, Wuest F. Innovative Peptide Bioconjugation Chemistry with Radionuclides: Beyond Classical Click Chemistry. Pharmaceuticals (Basel) 2024; 17:1270. [PMID: 39458911 PMCID: PMC11510044 DOI: 10.3390/ph17101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The incorporation of radionuclides into peptides and larger biomolecules requires efficient and sometimes biorthogonal reaction conditions, to which click chemistry provides a convenient approach. Methods: Traditionally, click-based radiolabeling techniques have focused on classical click chemistry, such as copper(I)-catalyzed alkyne-azide [3+2] cycloaddition (CuAAC), strain-promoted azide-alkyne [3+2] cycloaddition (SPAAC), traceless Staudinger ligation, and inverse electron demand Diels-Alder (IEDDA). Results: However, newly emerging click-based radiolabeling techniques, including tyrosine-click, sulfo-click, sulfur(VI) fluoride exchange (SuFEx), thiol-ene click, azo coupling, hydrazone formations, oxime formations, and RIKEN click offer valuable alternatives to classical click chemistry. Conclusions: This review will discuss the applications of these techniques in peptide radiochemistry.
Collapse
Affiliation(s)
- Samantha Leier
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2H1, Canada
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
5
|
Soyhan I, Polat T, Mozioglu E, Ozal Ildenız TA, Acikel Elmas M, Cebeci S, Unubol N, Gok O. Effective Immobilization of Novel Antimicrobial Peptides via Conjugation onto Activated Silicon Catheter Surfaces. Pharmaceutics 2024; 16:1045. [PMID: 39204390 PMCID: PMC11360073 DOI: 10.3390/pharmaceutics16081045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Antibiotic-resistant microorganisms have become a serious threat to public health, resulting in hospital infections, the majority of which are caused by commonly used urinary tract catheters. Strategies for preventing bacterial adhesion to the catheters' surfaces have been potentially shown as effective methods, such as coating thesurface with antimicrobial biomolecules. Here, novel antimicrobial peptides (AMPs) were designed as potential biomolecules to prevent antibiotic-resistant bacteria from binding to catheter surfaces. Thiolated AMPs were synthesized using solid-phase peptide synthesis (SPPS), and prep-HPLC was used to obtain AMPs with purity greater than 90%. On the other side, the silicone catheter surface was activated by UV/ozone treatment, followed by functionalization with allyl moieties for conjugation to the free thiol group of cystein in AMPs using thiol-ene click chemistry. Peptide-immobilized surfaces were found to become more resistant to bacterial adhesion while remaining biocompatible with mammalian cells. The presence and site of conjugation of peptide molecules were investigated by immobilizing them to catheter surfaces from both ends (C-Pep and Pep-C). It was clearly demonstrated that AMPs conjugated to the surface via theirN terminus have a higher antimicrobial activity. This strategy stands out for its effective conjugation of AMPs to silicone-based implant surfaces for the elimination of bacterial infections.
Collapse
Affiliation(s)
- Irem Soyhan
- Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, Atasehir, 34752 Istanbul, Turkey
| | - Tuba Polat
- Department of Medical Microbiology, Acibadem Mehmet Ali Aydinlar University, Atasehir, 34752 Istanbul, Turkey
| | - Erkan Mozioglu
- Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, Atasehir, 34752 Istanbul, Turkey
| | - Tugba Arzu Ozal Ildenız
- Department of Biomedical Engineering, Acibadem Mehmet Ali Aydinlar University, Atasehir, 34752 Istanbul, Turkey
| | - Merve Acikel Elmas
- Department of Histology and Embriology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Atasehir, 34752 Istanbul, Turkey
| | - Sinan Cebeci
- Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, Atasehir, 34752 Istanbul, Turkey
| | - Nihan Unubol
- Department of Medical Microbiology, Acibadem Mehmet Ali Aydinlar University, Atasehir, 34752 Istanbul, Turkey
- Medical Laboratory Technician Program, Vocational School of Health Services, Acıbadem Mehmet Ali Aydınlar University, Atasehir, 34752 Istanbul, Turkey
| | - Ozgul Gok
- Department of Biomedical Engineering, Acibadem Mehmet Ali Aydinlar University, Atasehir, 34752 Istanbul, Turkey
| |
Collapse
|
6
|
Makharadze D, Kantaria T, Yousef I, del Valle LJ, Katsarava R, Puiggalí J. PEGylated Micro/Nanoparticles Based on Biodegradable Poly(Ester Amides): Preparation and Study of the Core-Shell Structure by Synchrotron Radiation-Based FTIR Microspectroscopy and Electron Microscopy. Int J Mol Sci 2024; 25:6999. [PMID: 39000109 PMCID: PMC11241343 DOI: 10.3390/ijms25136999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Surface modification of drug-loaded particles with polyethylene glycol (PEG) chains is a powerful tool that promotes better transport of therapeutic agents, provides stability, and avoids their detection by the immune system. In this study, we used a new approach to synthesize a biodegradable poly(ester amide) (PEA) and PEGylating surfactant. These were employed to fabricate micro/nanoparticles with a core-shell structure. Nanoparticle (NP)-protein interactions and self-assembling were subsequently studied by synchrotron radiation-based FTIR microspectroscopy (SR-FTIRM) and transmission electron microscopy (TEM) techniques. The core-shell structure was identified using IR absorption bands of characteristic chemical groups. Specifically, the stretching absorption band of the secondary amino group (3300 cm-1) allowed us to identify the poly(ester amide) core, while the band at 1105 cm-1 (C-O-C vibration) was useful to demonstrate the shell structure based on PEG chains. By integration of absorption bands, a 2D intensity map of the particle was built to show a core-shell structure, which was further supported by TEM images.
Collapse
Affiliation(s)
- Davit Makharadze
- Departament de Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (D.M.); (L.J.d.V.)
| | - Temur Kantaria
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Tbilisi 0159, Georgia; (T.K.); (R.K.)
| | - Ibraheem Yousef
- ALBA Synchrotron Light Facility, Carrer de la Llum 2-26, Cerdanyola del Vallès, 08290 Barcelona, Spain;
| | - Luis J. del Valle
- Departament de Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (D.M.); (L.J.d.V.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Ramaz Katsarava
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Tbilisi 0159, Georgia; (T.K.); (R.K.)
| | - Jordi Puiggalí
- Departament de Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (D.M.); (L.J.d.V.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
| |
Collapse
|
7
|
Tang L, Shen C, Hao S, Dong K. A Type of Chiral C 2-Symmetric Arylthiol Catalyst for Highly Enantioselective Anti-Markovnikov Hydroamination. J Am Chem Soc 2024; 146:16248-16256. [PMID: 38808533 DOI: 10.1021/jacs.4c04596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The development of chiral hydrogen donor catalysts is fundamental in the expansion and innovation of asymmetric organocatalyzed reactions via an enantioselective hydrogen atom transfer (HAT) process. Herein, an unprecedented type of chiral C2-symmetric arylthiol catalysts derived from readily available enantiomeric lactate ester was developed. With these catalysts, an asymmetric anti-Markovnikov alkene hydroamination-cyclization reaction was established, affording a variety of pharmaceutically interesting 3-substituted piperidines with moderate to high enantioselectivity. Results of the designed control experiments and theoretical computation rationalized the origin of stereocontrol and disclosed the spatial effect of the moiety of chiral thiols on the enantioselectivity. We believed the facile synthesis, flexible tunability, and effective enantioselectivity-controlling capability of these catalysts would shed light on the development of versatile chiral HAT catalysts and related asymmetric reactions.
Collapse
Affiliation(s)
- Lin Tang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Chaoren Shen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shaoyu Hao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Kaiwu Dong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
8
|
Xie H, Breit B. Nickel-Catalyzed Regioselective Hydrothiolation of Allenes Enabled by Visible-Light Photoredox Catalysis. Org Lett 2024; 26:4438-4442. [PMID: 38767303 DOI: 10.1021/acs.orglett.4c01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Hydrothiolation presents an attractive way to transform allenes into allylic thioethers. Herein, we described an efficient visible-light photoredox-promoted nickel-catalyzed hydrothiolation of allenes with functionalized aromatic and aliphatic thiols. This synergistic catalytic system exhibits unprecedentedly high reactivities and regiocontrol for the construction of allylic thioethers, representing the unique synthetic utility of the earth-abundant Ni-catalyzed method compared with the related noble-metal-catalyzed allylation reactions.
Collapse
Affiliation(s)
- Hui Xie
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg im Breisgau, Germany
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
9
|
Ziyaei Halimehjani A, Dağalan Z, Marjani Z, Gündüz F, Daştan A, Nişancı B. Catalyst/Metal/Solvent-Free Markovnikov Hydrothiolation of Unactivated Alkenes with Dithiocarbamic Acids. J Org Chem 2024; 89:5353-5362. [PMID: 38564378 DOI: 10.1021/acs.joc.3c02722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Catalyst-free Markovnikov-selective hydrothiolation of unactivated alkenes still remains a great challenge. Herein, we develop a catalyst/metal/solvent-free methodology for the Markovnikov hydrothiolation of unactivated alkenes with in situ prepared dithiocarbamic acids, providing a wide array of alkyl dithiocarbamates. A variety of terminal, internal, cyclic, and acyclic unactivated alkenes were applied successfully in this protocol. This three-component thiol-ene reaction can be considered as a new family of click reactions.
Collapse
Affiliation(s)
| | - Ziya Dağalan
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum 25240, Turkey
| | - Zahra Marjani
- Faculty of Chemistry, Kharazmi University, 49 Mofateh Street, Tehran 15719-14911, Iran
| | - Figen Gündüz
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum 25240, Turkey
| | - Arif Daştan
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum 25240, Turkey
| | - Bilal Nişancı
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
10
|
Zhang RJ, Li XR, Liang RB, Xiao Y, Tong QX, Zhong JJ, Wu LZ. Thiyl Radical Trapped by Cobalt Catalysis: An Approach to Markovnikov Thiol-Ene Reaction. Org Lett 2024; 26:591-596. [PMID: 38214498 DOI: 10.1021/acs.orglett.3c03740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
In the presence of a thiyl radical species, the catalytic Markovnikov thiol-ene reaction is challenging because it prefers to proceed via a radical pathway, thereby leading to anti-Markovnikov selectivity. In this work, a rare example of thiyl radical engaged in Markovnikov thiol-ene reaction enabled by cobalt catalysis is reported. This protocol features the avoidance of unique oxidants, exclusive regioselectivity, and broad substrate scope. Scalable synthesis and late-stage modification of complex molecules demonstrate the practicability of the protocol.
Collapse
Affiliation(s)
- Rong-Jin Zhang
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Xiang-Rui Li
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Rong-Bin Liang
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Yonghong Xiao
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Qing-Xiao Tong
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Jian-Ji Zhong
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515063, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
11
|
Lipilin DL, Zubkov MO, Kosobokov MD, Dilman AD. Direct conversion of carboxylic acids to free thiols via radical relay acridine photocatalysis enabled by N-O bond cleavage. Chem Sci 2024; 15:644-650. [PMID: 38179514 PMCID: PMC10762721 DOI: 10.1039/d3sc05513b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Carboxylic acids and thiols are basic chemical compounds with diverse utility and widespread reactivity. However, the direct conversion of unprotected acids to thiols is hampered due to a fundamental problem - free thiols are incompatible with the alkyl radicals formed on decarboxylation of carboxylic acids. Herein, we describe a concept for the direct photocatalytic thiolation of unprotected acids allowing unprotected thiols and their derivatives to be obtained. The method is based on the application of a thionocarbonate reagent featuring the N-O bond. The reagent serves both for the rapid trapping of alkyl radicals and for the facile regeneration of the acridine-type photocatalyst.
Collapse
Affiliation(s)
- Dmitry L Lipilin
- N. D. Zelinsky Institute of Organic Chemistry Leninsky Prosp. 47 119991 Moscow Russian Federation
| | - Mikhail O Zubkov
- N. D. Zelinsky Institute of Organic Chemistry Leninsky Prosp. 47 119991 Moscow Russian Federation
| | - Mikhail D Kosobokov
- N. D. Zelinsky Institute of Organic Chemistry Leninsky Prosp. 47 119991 Moscow Russian Federation
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry Leninsky Prosp. 47 119991 Moscow Russian Federation
| |
Collapse
|
12
|
Maturi M, Spanu C, Maccaferri E, Locatelli E, Benelli T, Mazzocchetti L, Sambri L, Giorgini L, Franchini MC. (Meth)acrylate-Free Three-Dimensional Printing of Bio-Derived Photocurable Resins with Terpene- and Itaconic Acid-Derived Poly(ester-thioether)s. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:17285-17298. [PMID: 38099084 PMCID: PMC10716902 DOI: 10.1021/acssuschemeng.3c04576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023]
Abstract
Vat photopolymerization, a very efficient and precise object manufacturing technique, still strongly relies on the use of acrylate- and methacrylate-based formulations because of their low cost and high reactivity. However, the environmental impact of using fossil fuel-based, volatile, and toxic (meth)acrylic acid derivatives is driving the scientific community toward the development of alternatives that can match the mechanical performance and three-dimensional (3D) printing processability of traditional photocurable mixtures but are made from environmentally friendly building blocks. Herein, itaconic acid is polymerized with polyols derived from naturally occurring terpenes to produce photocurable poly(ester-thioether)s. The formulation of such polymers using itaconic acid-based reactive diluents allows the preparation of a series of (meth)acrylate-free photocurable resins, which can be 3D printed into solid objects. Extensive analysis has been conducted on the properties of photocured polymers including their thermal, thermomechanical, and mechanical characteristics. The findings suggest that these materials exhibit properties comparable to those of traditional alternatives that are created using harmful and toxic blends. Notably, the photocured polymers are composed of biobased constituents ranging from 75 to 90 wt %, which is among the highest values ever recorded for vat photopolymerization applications.
Collapse
Affiliation(s)
- Mirko Maturi
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Chiara Spanu
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Emanuele Maccaferri
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy
| | - Erica Locatelli
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Tiziana Benelli
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy
| | - Laura Mazzocchetti
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy
| | - Letizia Sambri
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Loris Giorgini
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy
| | - Mauro Comes Franchini
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| |
Collapse
|
13
|
Wunderlich H, Alvaro RAC, Wenschuh H, Schnatbaum K. New method for peptide purification based on selective removal of truncation peptide impurities after SPPS with orthogonal capping. J Pept Sci 2023; 29:e3496. [PMID: 37060350 DOI: 10.1002/psc.3496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/16/2023]
Abstract
Peptide purification by high-performance liquid chromatography (HPLC) is associated with high solvent consumption, relatively large effort and lack of efficient parallelization. As an alternative, many catch-and-release (c&r) purification methods have been developed over the last decades to enable the efficient parallel purification of peptides originating from solid-phase peptide synthesis (SPPS). However, with one exception, none of the c&r systems has been widely established in industry and academia until today. Herein, we present an entirely new chromatography-free purification concept for peptides synthesized on a solid support, termed reactive capping purification (RCP). The RCP method relies on the capping of truncation peptides arising from incomplete coupling of amino acids during SPPS with a reactive tag. The reactive tag contains a masked functionality that, upon liberation during cleavage from the resin, enables straightforward purification of the peptide by incubation with a resin-bound reactive moiety. In this work, two different reactive tags based on masked thiols were developed. Capping with these reactive tags during SPPS led to effective modification of truncated sequences and subsequent removal of the latter by chemoselective reaction with a maleimide-functionalized solid support. By introducing a suitable protecting group strategy, the thiol-based RCP method described here could also be successfully applied to a thiol-containing peptide. Finally, the purification of a 15-meric peptide by the RCP method was demonstrated. The developed method has low solvent consumption, has the potential for efficient parallelization, uses readily available reagents, and is experimentally simple to perform.
Collapse
Affiliation(s)
- Hendrik Wunderlich
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), Freising, Germany
| | | | | | | |
Collapse
|
14
|
Kaur A, Gautrot JE, Akutagawa K, Watson D, Bickley A, Busfield JJC. Thiyl radical induced cis/ trans isomerism in double bond containing elastomers. RSC Adv 2023; 13:23967-23975. [PMID: 37577099 PMCID: PMC10413178 DOI: 10.1039/d3ra04157c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023] Open
Abstract
This report presents an evaluation of thiyl radical-induced cis/trans isomerism in double bond-containing elastomers, such as natural, polychloroprene, and polybutadiene rubbers. The study aims to extensively investigate structural changes in polymers after functionalisation using thiol-ene chemistry, a useful click reaction for modifying polymers and developing materials with new functionalities. The paper reports on the use of different thiols, and cis/trans isomerism was detected through 1H NMR analysis, even at very low alkene/thiol mole ratios. The study finds that the configurational arrangements between non-functionalised elastomer units and thiolated units followed a trans-functionalised-cis units arrangement up to an alkene/thiol mole feed ratio of 0.3, while from 0.4 onward, a combination of trans-functionalised-cis and cis-functionalised-trans configurations are found. Additionally, it is observed that by increasing the level of functionalisation, the glass transition temperature of the resulting modified elastomer also increases. Overall, this study provides valuable insights into the effects of thiol-ene chemistry on the structure and properties of elastomers and could have important implications for the development of new materials with enhanced functionality.
Collapse
|
15
|
Zareh F, Gholinejad M, Sheibani H, Sansano JM. Palladium nanoparticles supported on ionic liquid and glucosamine-modified magnetic iron oxide as a catalyst in reduction reactions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:69362-69378. [PMID: 37133660 DOI: 10.1007/s11356-023-27231-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/22/2023] [Indexed: 05/04/2023]
Abstract
A magnetic nanocomposite comprising imidazolium ionic liquid and glucosamine is successfully synthesized and used for stabilization of Pd nanoparticles. This new material, Fe3O4@SiO2@IL/GA-Pd, is fully characterized and applied as a catalyst in the reduction of nitroaromatic compounds to desired amines at room temperature. Also, the reductive degradation of organic dyes such as methylene blue (MB), methyl orange (MO), and rhodamine B (RhB) is studied and compared with another previous publications. The survey of the stabilization of the palladium catalytic entities is described demonstrating the separation ability and recycling of them. In addition, TEM, XRD, and VSM analyses of the recycled catalyst confirmed its stability.
Collapse
Affiliation(s)
- Fatemeh Zareh
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, 76169, Iran
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gavazang, P. O. Box 45195-1159, Zanjan, 45137-66731, Iran
| | - Mohammad Gholinejad
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gavazang, P. O. Box 45195-1159, Zanjan, 45137-66731, Iran.
- Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | - Hassan Sheibani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, 76169, Iran
| | - José Miguel Sansano
- Departamento de Química Orgánica, Instituto de Síntesis Orgánica, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, 03690, Alicante, Spain
| |
Collapse
|
16
|
Sorrentino JP, Herrick RM, Abd El-Gaber MK, Abdelazem AZ, Kumar A, Altman RA. General Co-catalytic Hydrothiolation of gem-Difluoroalkenes. J Org Chem 2022; 87:16676-16690. [PMID: 36469658 PMCID: PMC9772298 DOI: 10.1021/acs.joc.2c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Regioselective functionalization of gem-difluoroalkenes enables convergent late-stage access to fluorinated functional groups, though most functionalization reactions proceed through defluorinative functionalization processes that deliver mono-fluorovinyl products. In contrast, fewer reactions undergo net hydrofunctionalization to generate difluorinated products. Herein, we report a photocatalytic hydrothiolation of gem-difluoroalkenes that enables access to a broad spectrum of α,α-difluoroalkylthioethers. Notably, the reaction successfully couples nonactivated substrates, which expands the scope of accessible molecules relative to previously reported reactions involving organo- or photocatalytic strategies. Further, this reaction successfully couples biologically relevant molecules under aqueous conditions, highlighting potential applications in both late-stage and biorthogonal functionalizations.
Collapse
Affiliation(s)
- Jacob P. Sorrentino
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States
| | - Ryan M. Herrick
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue University, West Lafayette, Indiana 47906, United States
| | - Mohammed K. Abd El-Gaber
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue University, West Lafayette, Indiana 47906, United States
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ahmed Z. Abdelazem
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue University, West Lafayette, Indiana 47906, United States
- Biotechnology & Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62517, Egypt
| | - Ankit Kumar
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue University, West Lafayette, Indiana 47906, United States
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Ryan A. Altman
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue University, West Lafayette, Indiana 47906, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
17
|
Quadrado RF, Macagnan KL, Moreira AS, Fajardo AR. Redox-responsive hydrogels of thiolated pectin as vehicles for the smart release of acetaminophen. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Liang Y, Jiao H, Zhang H, Wang YQ, Zhao X. Chiral Chalcogenide-Catalyzed Enantioselective Electrophilic Hydrothiolation of Alkenes. Org Lett 2022; 24:7210-7215. [PMID: 36154012 DOI: 10.1021/acs.orglett.2c03009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new strategy for the construction of chiral sulfides by catalytic enantioselective hydrothiolation of alkenes via an electrophilic pathway has been developed. Using this strategy, cyclic and acyclic unactivated alkenes efficiently afforded various chiral products in the presence of electrophilic sulfur reagents and silanes through chiral chalcogenide catalysis. The obtained products were easily transformed into other types of valuable chiral sulfur-containing compounds. Mechanistic studies revealed that the superior construction of chiral thiiranium ion intermediate is the key to achieving such a transformation.
Collapse
Affiliation(s)
- Yaoyu Liang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Hui Jiao
- Provincial Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Hang Zhang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - You-Qing Wang
- Provincial Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|
19
|
Beletskaya IP, Ananikov VP. Transition-Metal-Catalyzed C–S, C–Se, and C–Te Bond Formations via Cross-Coupling and Atom-Economic Addition Reactions. Achievements and Challenges. Chem Rev 2022; 122:16110-16293. [DOI: 10.1021/acs.chemrev.1c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Irina P. Beletskaya
- Chemistry Department, Lomonosov Moscow State University, Vorob’evy gory, Moscow 119899, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
20
|
Zareh F, Gholinejad M, Mostafavi A, Sheibani H. Pd Nanoparticles Decorated on Ionic Liquid Modified Magnetite Nanoparticles as a Recyclable and Active Nanocatalyst for Reduction of Nitro Compounds and Degradation of Organic Dyes. ChemistrySelect 2022. [DOI: 10.1002/slct.202201142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fatemeh Zareh
- Department of Chemistry Shahid Bahonar University of Kerman Kerman 76169 Iran
| | - Mohammad Gholinejad
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) P. O. Box 45195–1159, Gavazang Zanjan 45137–66731 Iran
- Research Center for Basic Sciences & Modern Technologies (RBST) Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Ali Mostafavi
- Department of Chemistry Shahid Bahonar University of Kerman Kerman 76169 Iran
| | - Hassan Sheibani
- Department of Chemistry Shahid Bahonar University of Kerman Kerman 76169 Iran
| |
Collapse
|
21
|
Facile synthesis of amine-substituted cyclosiloxanes via a photocatalytic thiol-ene reaction to generate ketoenamine-linked hybrid networks. Polym J 2022. [DOI: 10.1038/s41428-022-00678-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Pakuła D, Przekop RE, Brząkalski D, Frydrych M, Sztorch B, Marciniec B. Sulfur-Containing Silsesquioxane Derivatives Obtained by the Thiol-ene Reaction: Synthesis and Thermal Degradation. Chempluschem 2022; 87:e202200099. [PMID: 35670458 DOI: 10.1002/cplu.202200099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/06/2022] [Indexed: 02/03/2023]
Abstract
This article presents the synthesis of new derivatives of octa(3-thiopropyl)silsesquioxane (SSQ-8SH) via thiol-ene reaction with simple olefins bearing alkyl groups as well as methoxysilyl, substituted aryl or fluoroalkyl groups. All products were characterized by 1 H NMR, 13 C NMR, 29 Si NMR, FTIR, GPC, MALDI-TOF-MS, as well as thermal analysis (TGA) to confirm their structures, purity and thermal stability, and finally give some insight into their thermal degradation pathway. In some of the structures obtained, the T5% values take place at high temperatures and are close to 230 °C. The thiol-ene reaction allowed to obtain 7 new compounds with high yield (>92 %), no by-products and in a relatively short time (24 h). All products are characterized by high conversion >99 %. New derivatives can find potential use as modifiers of plastics to improve their certain properties for example hydrophobicity or thermo-oxidative stability.
Collapse
Affiliation(s)
- Daria Pakuła
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Robert E Przekop
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| | - Dariusz Brząkalski
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Miłosz Frydrych
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Bogna Sztorch
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| | - Bogdan Marciniec
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.,Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| |
Collapse
|
23
|
Ali HM, Soliman AG, Elfiky HGAG. SAR and QSAR of COVID-19 Main Protease–Inhibitor Interactions of Recently X-ray Crystalized Complexes. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, INDIA SECTION B: BIOLOGICAL SCIENCES 2022; 92:281-291. [PMID: 35194302 PMCID: PMC8831015 DOI: 10.1007/s40011-021-01338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 10/30/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
Abstract
COVID-19 is still widespread worldwide and up to now there is no established antiviral able to control the disease. Main protease is responsible for the viral replication and transcription; thus, its inhibition is a promising route to control virus proliferation. The present study aims to examine detail interactions between main protease and recently reported ninety-seven inhibitors with available X-ray crystallography to define factors enhance inhibition activity; thirty-two of most potent inhibitors were examined to identify sites and types of interaction. The study showed formation of covalent bond, H-bond and hydrophobic interaction with key residues in the active side. Covalent bond is observed in seventeen complexes, all of them by attack of the 145Cys thiol group on Michael acceptor, aldehyde or its hydrate, α-ketoamide, double bond or acetamide methyl group; the latter type requires H-bonding between acetamide carbonyl oxygen and at least one of 143Gly, 144Ser or 145Cys. Potent inhibitors, disulfiram and ebselen docked in the same binding site. Accordingly, factors identify inhibition include forming covalent bond and existing terminal hydrophobic groups and amidic or peptidomimetic structure. Binding affinity was found correlated with topological diameter up to 24 bond, molecular size, branching, polar surface area up to 199 Å2 and hydrophilicity.
Collapse
Affiliation(s)
- Hussein M. Ali
- Agricultural Biochemistry Department, Faculty of Agriculture, Ain Shams University, Shoubra El-Kheima, Cairo, Egypt
| | - Ahmed G. Soliman
- Agricultural Biochemistry Department, Faculty of Agriculture, Ain Shams University, Shoubra El-Kheima, Cairo, Egypt
| | - Hala G. A. G. Elfiky
- Agricultural Biochemistry Department, Faculty of Agriculture, Ain Shams University, Shoubra El-Kheima, Cairo, Egypt
| |
Collapse
|
24
|
Shape memory elastomers: A review of synthesis, design, advanced manufacturing, and emerging applications. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5652] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Kazybayeva DS, Irmukhametova GS, Khutoryanskiy VV. Thiol-Ene “Click Reactions” as a Promising Approach to Polymer Materials. POLYMER SCIENCE SERIES B 2022. [DOI: 10.1134/s1560090422010055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Liu Y, Katano M, Yingsukkamol PK, Takeda N, Unno M, Ouali A. Tricyclic 6–8–6 laddersiloxanes derived from all-cis-tetravinylcyclotetrasiloxanolate: Synthesis, characterization and reactivity. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
27
|
Shukla P, Singh M, Rai VK, Rai A. Regioselective installation of enolizable ketones and unprotected mercaptoacetic acid into olefins using GO as a phase transfer catalyst. NEW J CHEM 2022. [DOI: 10.1039/d1nj05870c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Unprecedented regioselective conjugate addition of enolizable ketones and unprotected mercaptoacetic acid to electron poor alkenes using GO as a phase transfer catalyst is reported in excellent yield of products (up to 92%) and recyclability of the catalyst up to five times.
Collapse
Affiliation(s)
- Prashant Shukla
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Manorama Singh
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur-495009, Chhattisgarh, India
| | - Vijai K. Rai
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur-495009, Chhattisgarh, India
| | - Ankita Rai
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
28
|
Samal S, Schmitt A, Thompson BC. Contrasting the Charge Carrier Mobility of Isotactic, Syndiotactic, and Atactic Poly(( N-carbazolylethylthio)propyl methacrylate). ACS Macro Lett 2021; 10:1493-1500. [PMID: 35549131 DOI: 10.1021/acsmacrolett.1c00622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Isotactic nonconjugated pendant electroactive polymers (NCPEPs) have recently shown potential to achieve comparable charge carrier mobilities with conjugated polymers. Here we report the broader influence of tacticity in NCPEPs, using poly((N-carbazolylethylthio)propyl methacrylate) (PCzETPMA) as a model polymer. We utilized the thiol-ene reaction as an efficient postpolymerization functionalization method to achieve pendant polymers with high isotacticity and syndiotacticity. We found that a stereoregular isotactic polymer showed ∼100 times increased hole mobility (μh) as compared to both atactic and low molecular weight syndiotactic PCzETPMA, achieving μh of 2.19 × 10-4 cm2 V-1 s-1 after annealing at 120 °C. High molecular weight syndiotactic PCzETPMA gave ∼10 times higher μh than its atactic counterpart, comparable to isotactic PCzETPMA after annealing at 150 °C. Importantly, high molecular weight syndiotactic PCzETPMA showed a dramatic increase in μh to 1.82 × 10-3 cm2 V-1 s-1 when measured after annealing at 210 °C, which surpassed the well-known conjugated polymer poly(3-hexylthiophene) (P3HT) (μh = 4.51 × 10-4 cm2 V-1 s-1). MD simulations indicated short-range π-π stacked ordering in the case of stereoregular isotactic and syndiotactic polymers. This work is the first report of charge carrier mobilities in syndiotactic NCPEPs and demonstrates that the tacticity, annealing conditions, and molecular weight of NCPEPs can strongly affect μh.
Collapse
Affiliation(s)
- Sanket Samal
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Alexander Schmitt
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Barry C Thompson
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| |
Collapse
|
29
|
The Very First Modification of Pleuromutilin and Lefamulin by Photoinitiated Radical Addition Reactions-Synthesis and Antibacterial Studies. Pharmaceutics 2021; 13:pharmaceutics13122028. [PMID: 34959310 PMCID: PMC8704873 DOI: 10.3390/pharmaceutics13122028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022] Open
Abstract
Pleuromutilin is a fungal diterpene natural product with antimicrobial properties, semisynthetic derivatives of which are used in veterinary and human medicine. The development of bacterial resistance to pleuromutilins is known to be very slow, which makes the tricyclic diterpene skeleton of pleuromutilin a very attractive starting structure for the development of new antibiotic derivatives that are unlikely to induce resistance. Here, we report the very first synthetic modifications of pleuromutilin and lefamulin at alkene position C19–C20, by two different photoinduced addition reactions, the radical thiol-ene coupling reaction, and the atom transfer radical additions (ATRAs) of perfluoroalkyl iodides. Pleuromutilin were modified with the addition of several alkyl- and aryl-thiols, thiol-containing amino acids and nucleoside and carbohydrate thiols, as well as perfluoroalkylated side chains. The antibacterial properties of the novel semisynthetic pleuromutilin derivatives were investigated on a panel of bacterial strains, including susceptible and multiresistant pathogens and normal flora members. We have identified some novel semisynthetic pleuromutilin and lefamulin derivatives with promising antimicrobial properties.
Collapse
|
30
|
Mondal S, Yashmin S, Khan AT. Synthesis of vinyl sulfides and thioethers via a hydrothiolation reaction of 4-hydroxydithiocoumarins and arylacetylenes/styrenes. Org Biomol Chem 2021; 19:9223-9230. [PMID: 34633026 DOI: 10.1039/d1ob01729b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The synthesis of vinyl sulfides (3a-m) and thioethers (7a-k), exclusive Markovnikov products, is reported by a copper(I) iodide catalyzed regioselective hydrothiolation reaction of terminal alkynes/alkenes and 4-hydroxydithiocoumarins. However, anti-Markovnikov hydrothiolation products (5a-f) were obtained in the case of 2-ethynylpyridine, with exclusive Z selectivity in good yields. The important aspects of this protocol are the absence of expensive metal complexes and additives to act as ligands, mild reaction conditions, high regioselectivity, good yields, and shorter reaction times.
Collapse
Affiliation(s)
- Santa Mondal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Sabina Yashmin
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Abu Taleb Khan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
31
|
Sau S, Pramanik M, Bal A, Mal P. Reported Catalytic Hydrofunctionalizations that Proceed in the Absence of Catalysts: The Importance of Control Experiments. CHEM REC 2021; 22:e202100208. [PMID: 34618401 DOI: 10.1002/tcr.202100208] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 01/23/2023]
Abstract
The enlarged landscape of catalysis lies in the heart of chemistry. As the journey has set a milestone in organic synthesis, its darker side has not entered into the limelight. Studies disclose that the reported reactions by using catalysts were also attainable in the absence of catalysts in many cases. This article presents a literature collection that includes the significance of control experiments in hydrofunctionalization reactions. Systematic analysis reveals that the catalysts are ambiguous and might be unessential in chemical reactions enlisted here.
Collapse
Affiliation(s)
- Sudip Sau
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| | - Milan Pramanik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| | - Ankita Bal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| |
Collapse
|
32
|
Yu X, Shen X, Liu S, Wang W, Wang Q, Liu J, Chen D. Mechanism of regioselectivity of rhodium-catalyzed hydrothiolation of 1,3-dienes: A computational study. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
33
|
Zhao Y, Rui J, Du Q, Chen R, Zhan Y, Zheng X, Wu X. Catalytic base-controlled regiodivergent heteronucleophilic hydrofunctionalization of β,γ-unsaturated amides. Chem Commun (Camb) 2021; 57:9756-9759. [PMID: 34477183 DOI: 10.1039/d1cc03440e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A general catalytic base-controlled regiodivergent nucleophilic hydrofunctionalization of both terminal and internal β,γ-unsaturated amides has been reported. The atom-economical addition of various S/P-based nucleophiles was also exclusively chemoselective. More than 60 branched or linear hetero-substituted aliphatic amides were synthesized from common starting materials under transition-metal-free conditions. Preliminary mechanistic studies are consistent with our proposed divergent catalytic cycles.
Collapse
Affiliation(s)
- Yao Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Jiacheng Rui
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Qiang Du
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Rizhi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ying Zhan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xintao Zheng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xiaojin Wu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
34
|
Gomez Fernandez MA, Nascimento de Oliveira M, Zanetti A, Schwertz G, Cossy J, Amara Z. Photochemical Hydrothiolation of Amorphadiene and Formal Synthesis of Artemisinin via a Pummerer Rearrangement. Org Lett 2021; 23:5593-5598. [PMID: 33900782 DOI: 10.1021/acs.orglett.1c00636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new access to artemisinin is reported based on a selective photochemical hydrothiolation of amorphadiene, a waste product of the industrial semisynthetic route. This study highlights the discovery of two distinctive activation pathways under solvent-free conditions or using a photocatalyst promoting H-abstraction. Subsequently, a chemoselective oxidation of the resulting photochemically generated thioether, followed by a Pummerer rearrangement, affords dihydroartemisinic aldehyde, a key intermediate in the synthesis of artemisinin.
Collapse
Affiliation(s)
- Mario Andrés Gomez Fernandez
- Equipe de Chimie Moléculaire, Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire, (GBCM), EA 7528, Conservatoire national des arts et métiers, HESAM Université, 2 rue Conté, 75003 Paris, France
| | - Marllon Nascimento de Oliveira
- Equipe de Chimie Moléculaire, Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire, (GBCM), EA 7528, Conservatoire national des arts et métiers, HESAM Université, 2 rue Conté, 75003 Paris, France
| | - Andrea Zanetti
- Molecular, Macromolecular Chemistry and Materials (C3M), ESPCI Paris/CNRS/PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Geoffrey Schwertz
- Molecular, Macromolecular Chemistry and Materials (C3M), ESPCI Paris/CNRS/PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Janine Cossy
- Molecular, Macromolecular Chemistry and Materials (C3M), ESPCI Paris/CNRS/PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Zacharias Amara
- Equipe de Chimie Moléculaire, Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire, (GBCM), EA 7528, Conservatoire national des arts et métiers, HESAM Université, 2 rue Conté, 75003 Paris, France
| |
Collapse
|
35
|
Shigeno M, Shishido Y, Hayashi K, Nozawa‐Kumada K, Kondo Y. KO‐
t
‐Bu Catalyzed Thiolation of
β
‐(Hetero)arylethyl Ethers via MeOH Elimination/hydrothiolation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science Tohoku University 6–3 Aoba Sendai 980-8578 Japan
| | - Yoshiteru Shishido
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science Tohoku University 6–3 Aoba Sendai 980-8578 Japan
| | - Kazutoshi Hayashi
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science Tohoku University 6–3 Aoba Sendai 980-8578 Japan
| | - Kanako Nozawa‐Kumada
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science Tohoku University 6–3 Aoba Sendai 980-8578 Japan
| | - Yoshinori Kondo
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science Tohoku University 6–3 Aoba Sendai 980-8578 Japan
| |
Collapse
|
36
|
Cristófalo AE, Cano ME, Uhrig ML. Synthesis of Thiodisaccharides Bearing N-Acetylhexosamine Residues: Challenges, Achievements and Perspectives. CHEM REC 2021; 21:2808-2836. [PMID: 34170606 DOI: 10.1002/tcr.202100146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 01/06/2023]
Abstract
Carbohydrate-protein interactions are involved in a myriad of biological processes. Thus, glycomimetics have arisen as one of the most promising synthetic targets to that end. Within the broad variety of glycomimetics, thiodisaccharides have proven to be excellent tools to study these processes, and even more, some of them unveiled interesting biological activities. This review brings together research made on the introduction of N-acetylhexosamine residues into thiodisaccharides to date, passing through classic substitution (as SN 2, thioglycosylation and ring-opening reactions) and addition (as thiol-ene coupling and Michael-type additions) reactions. Recent and interesting developments regarding addition reactions to vinyl azides, cross-coupling reactions and novel chemoenzymatic methods are also discussed.
Collapse
Affiliation(s)
- Alejandro E Cristófalo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales., Departamento de Química Orgánica, Intendente Güiraldes, 2160 (C1428EHA), Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | - María Emilia Cano
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales., Departamento de Química Orgánica, Intendente Güiraldes, 2160 (C1428EHA), Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | - María Laura Uhrig
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales., Departamento de Química Orgánica, Intendente Güiraldes, 2160 (C1428EHA), Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| |
Collapse
|
37
|
Carbajo‐Gordillo AI, González‐Cuesta M, Jiménez Blanco JL, Benito JM, Santana‐Armas ML, Carmona T, Di Giorgio C, Przybylski C, Ortiz Mellet C, Tros de Ilarduya C, Mendicuti F, García Fernández JM. Trifaceted Mickey Mouse Amphiphiles for Programmable Self-Assembly, DNA Complexation and Organ-Selective Gene Delivery. Chemistry 2021; 27:9429-9438. [PMID: 33882160 PMCID: PMC8361672 DOI: 10.1002/chem.202100832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Indexed: 12/15/2022]
Abstract
Instilling segregated cationic and lipophilic domains with an angular disposition in a trehalose-based trifaceted macrocyclic scaffold allows engineering patchy molecular nanoparticles leveraging directional interactions that emulate those controlling self-assembling processes in viral capsids. The resulting trilobular amphiphilic derivatives, featuring a Mickey Mouse architecture, can electrostatically interact with plasmid DNA (pDNA) and further engage in hydrophobic contacts to promote condensation into transfectious nanocomplexes. Notably, the topology and internal structure of the cyclooligosaccharide/pDNA co-assemblies can be molded by fine-tuning the valency and characteristics of the cationic and lipophilic patches, which strongly impacts the transfection efficacy in vitro and in vivo. Outstanding organ selectivities can then be programmed with no need of incorporating a biorecognizable motif in the formulation. The results provide a versatile strategy for the construction of fully synthetic and perfectly monodisperse nonviral gene delivery systems uniquely suited for optimization schemes by making cyclooligosaccharide patchiness the focus.
Collapse
Affiliation(s)
| | - Manuel González‐Cuesta
- Department of Organic ChemistryFaculty of ChemistryUniversity of SevillaC/ Prof García González 141012SevillaSpain
| | - José L. Jiménez Blanco
- Department of Organic ChemistryFaculty of ChemistryUniversity of SevillaC/ Prof García González 141012SevillaSpain
| | - Juan M. Benito
- Institute for Chemical ResearchIIQCSIC-Univ. SevillaC/ Américo Vespucio 4941092SevillaSpain
| | - María L. Santana‐Armas
- Department of Pharmaceutical Technology and ChemistrySchool of Pharmacy and NutritionUniversity of Navarra31080PamplonaSpain
| | - Thais Carmona
- Department of Analytical ChemistryPhysical Chemistry and Chemical EngineeringInstituto de Investigación Química “Andrés M. del Rio” (IQAR)University of AlcaláCampus Universitario Ctra. Madrid-Barcelona Km 33.60028871Alcalá de HenaresSpain
| | - Christophe Di Giorgio
- Institut de Chimie NiceUMR 7272Université Côte d'Azur28, Avenue de Valrose06108NiceFrance
| | - Cédric Przybylski
- CNRSInstitut Parisien de Chimie MoléculaireIPCMSorbonne UniversitéParisFrance
| | - Carmen Ortiz Mellet
- Department of Organic ChemistryFaculty of ChemistryUniversity of SevillaC/ Prof García González 141012SevillaSpain
| | - Conchita Tros de Ilarduya
- Department of Pharmaceutical Technology and ChemistrySchool of Pharmacy and NutritionUniversity of Navarra31080PamplonaSpain
| | - Francisco Mendicuti
- Department of Analytical ChemistryPhysical Chemistry and Chemical EngineeringInstituto de Investigación Química “Andrés M. del Rio” (IQAR)University of AlcaláCampus Universitario Ctra. Madrid-Barcelona Km 33.60028871Alcalá de HenaresSpain
| | | |
Collapse
|
38
|
Radical philicity and its role in selective organic transformations. Nat Rev Chem 2021; 5:486-499. [PMID: 37118440 DOI: 10.1038/s41570-021-00284-3] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 12/11/2022]
Abstract
Radical intermediates in organic chemistry lack a full octet of electrons and, thus, are commonly said to be electron deficient. By denotation, such a statement is technically correct; however, in modern literature, the term 'electron deficient' carries a connotation of electrophilicity. This lexical quirk leads one to predict that all radicals should behave as electrophiles, when this is not the case. Indeed, practitioners of radical chemistry have known for decades that many radicals behave as nucleophiles, sometimes strongly so. This Review aims to establish guidelines for understanding radical philicity by highlighting examples from recent literature as a demonstration of general reactivity paradigms across a series of different carbon-based and heteroatom-based radicals. We present strategies for predicting the philicity of a given radical on the basis of qualitative features of the radical's structure. Finally, we discuss the implications of radical philicity to selective hydrogen atom transfer.
Collapse
|
39
|
Sletten EM, Jaye JA. Simple Synthesis of Fluorinated Ene-Ynes via In Situ Generation of Allenes. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0037-1610774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractFluorination of small molecules is a key route toward modulating reactivity and bioactivity. The 1,3 ene-yne functionality is an important synthon towards complex products, as well as a common functionality in biologically active molecules. Here, we present a new synthetic route towards fluorinated ene-ynes from simple starting materials. We employ gas chromatography-mass spectrometry analysis to probe the sequential eliminations necessary for this transformation and observe an allene intermediate. The ene-yne products are sufficiently fluorous to enable purification via fluorous extraction. This methodology will allow facile access to functional, fluorous ene-ynes.
Collapse
|
40
|
Kharlampidi KE, Akhmadullin RM, Sirotkin AA, Akhmadullina AG. Liquid-Phase Adding of Mercaptans to Olefins in the Presence of a Heterogeneous Catalyst Based on Cu2O. CATALYSIS IN INDUSTRY 2021. [DOI: 10.1134/s2070050421010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Xiao Q, Zhang H, Li JH, Jian JX, Tong QX, Zhong JJ. Directing-Group-Assisted Markovnikov-Selective Hydrothiolation of Styrenes with Thiols by Photoredox/Cobalt Catalysis. Org Lett 2021; 23:3604-3609. [PMID: 33843237 DOI: 10.1021/acs.orglett.1c00999] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In contrast with the well-developed radical thiol-ene reaction to access anti-Markovnikov-type products, the research on the catalytic Markovnikov-selective hydrothiolation of alkenes is very restricted. Because of the catalyst poisoning of metal catalysts by organosulfur compounds, limited examples of transition-metal-catalyzed thiol-ene reactions have been reported. However, in this work, a directing-group-assisted hydrothiolation of styrenes with thiols by photoredox/cobalt catalysis is found to proceed smoothly to afford Markovnikov-type sulfides with excellent regioselectivity.
Collapse
Affiliation(s)
- Qian Xiao
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, and Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China.,School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, P. R. China
| | - Hong Zhang
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, and Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Jing-Hong Li
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, and Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Jing-Xin Jian
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, and Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Qing-Xiao Tong
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, and Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Jian-Ji Zhong
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, and Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| |
Collapse
|
42
|
Sunagawa DE, Ishida N, Iwamoto H, Ohashi M, Fruit C, Ogoshi S. Synthesis of Fluoroalkyl Sulfides via Additive-Free Hydrothiolation and Sequential Functionalization Reactions. J Org Chem 2021; 86:6015-6024. [PMID: 33781063 DOI: 10.1021/acs.joc.1c00361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A modular synthetic method, involving a hydrothiolation, silylation, and fluoroalkylation, for the construction of highly functionalized fluoroalkyl sulfides has been developed. The use of aprotic polar solvents enables the additive-free chemoselective hydrothiolation of tetrafluoroethylene, trifluorochloroethylene, and hexafluoropropene with various thiols. The stepwise functionalization reactions convert the hydrothiolated intermediates into the tetrafluoroethyl sulfides in high efficiency. The method avoids the use of the environmental pollutant Halon-2402, which was employed as a building block in a reported synthetic route.
Collapse
Affiliation(s)
- Denise E Sunagawa
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoyoshi Ishida
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroaki Iwamoto
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masato Ohashi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Corinne Fruit
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, F-76000 Rouen, France
| | - Sensuke Ogoshi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
43
|
Liu Y, Kigure M, Okawa R, Takeda N, Unno M, Ouali A. Synthesis and characterization of tetrathiol-substituted double-decker or ladder silsesquioxane nano-cores. Dalton Trans 2021; 50:3473-3478. [PMID: 33660737 DOI: 10.1039/d1dt00042j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tetra(3-mercaptopropyl)-silsesquioxanes with double-decker (DDSQ) or ladder nano-cores were easily prepared from the corresponding tetraallyl derivatives through fast and convenient thiol-ene reactions. An additional tetrathiol-DDSQ with more flexible arms was also synthesized in high yield from the corresponding tetrachloro-DDSQ derivative. The three novel tetrathiol silsesquioxanes described represent versatile building blocks for the preparation of hybrid organic-inorganic materials.
Collapse
Affiliation(s)
- Yujia Liu
- Gunma University Initiative for Advanced Research (GIAR)-International Open Laboratory with ICGM, France.
| | - Mana Kigure
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology. Gunma University, Kiryu 376-8515, Japan
| | - Riho Okawa
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology. Gunma University, Kiryu 376-8515, Japan
| | - Nobuhiro Takeda
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology. Gunma University, Kiryu 376-8515, Japan
| | - Masafumi Unno
- Gunma University Initiative for Advanced Research (GIAR)-International Open Laboratory with ICGM, France. and Department of Chemistry and Chemical Biology, Graduate School of Science and Technology. Gunma University, Kiryu 376-8515, Japan
| | - Armelle Ouali
- Gunma University Initiative for Advanced Research (GIAR)-International Open Laboratory with ICGM, France. and ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34296, France
| |
Collapse
|
44
|
Light and Hydrogels: A New Generation of Antimicrobial Materials. MATERIALS 2021; 14:ma14040787. [PMID: 33562335 PMCID: PMC7915775 DOI: 10.3390/ma14040787] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 01/17/2023]
Abstract
Nosocomial diseases are becoming a scourge in hospitals worldwide, and new multidrug-resistant microorganisms are appearing at the forefront, significantly increasing the number of deaths. Innovative solutions must emerge to prevent the imminent health crisis risk, and antibacterial hydrogels are one of them. In addition to this, for the past ten years, photochemistry has become an appealing green process attracting continuous attention from scientists in the scope of sustainable development, as it exhibits many advantages over other methods used in polymer chemistry. Therefore, the combination of antimicrobial hydrogels and light has become a matter of course to design innovative antimicrobial materials. In the present review, we focus on the use of photochemistry to highlight two categories of hydrogels: (a) antibacterial hydrogels synthesized via a free-radical photochemical crosslinking process and (b) chemical hydrogels with light-triggered antibacterial properties. Numerous examples of these new types of hydrogels are described, and some notions of photochemistry are introduced.
Collapse
|
45
|
Ahangarpour M, Kavianinia I, Harris PWR, Brimble MA. Photo-induced radical thiol-ene chemistry: a versatile toolbox for peptide-based drug design. Chem Soc Rev 2021; 50:898-944. [PMID: 33404559 DOI: 10.1039/d0cs00354a] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While the global market for peptide/protein-based therapeutics is witnessing significant growth, the development of peptide drugs remains challenging due to their low oral bioavailability, poor membrane permeability, and reduced metabolic stability. However, a toolbox of chemical approaches has been explored for peptide modification to overcome these obstacles. In recent years, there has been a revival of interest in photoinduced radical thiol-ene chemistry as a powerful tool for the construction of therapeutic peptides.
Collapse
Affiliation(s)
- Marzieh Ahangarpour
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | | | | | | |
Collapse
|
46
|
Li H, Ménard M, Vardanyan A, Charnay C, Raehm L, Oliviero E, Seisenbaeva GA, Pleixats R, Durand JO. Synthesis of triethoxysilylated cyclen derivatives, grafting on magnetic mesoporous silica nanoparticles and application to metal ion adsorption. RSC Adv 2021; 11:10777-10784. [PMID: 35423553 PMCID: PMC8695893 DOI: 10.1039/d1ra01581h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/29/2022] Open
Abstract
The synthesis through click chemistry of triethoxysilylated cyclen derivative-based ligands is described. Different methods were used such as the copper catalyzed Huisgen's reaction, or thiol–ene reaction for the functionalization of the cyclen scaffold with azidopropyltriethoxysilane or mercaptopropyltriethoxysilane, respectively. These ligands were then grafted on magnetic mesoporous silica nanoparticles (MMSN) for extraction and separation of Ni(ii) and Co(ii) metal ions from model solutions. The bare and ligand-modified MMSN materials revealed high adsorption capacity (1.0–2.13 mmol g−1) and quick adsorption kinetics, achieving over 80% of the total capacity in 1–2 hours. The adsorption of metal ions through ligand-functionalized magnetic mesoporous silica nanoparticles is described.![]()
Collapse
Affiliation(s)
- Hao Li
- ICGM
- Univ. Montpellier
- CNRS
- ENSCM
- 34095 Montpellier
| | | | - Ani Vardanyan
- Department of Molecular Sciences
- Swedish University of Agricultural Sciences
- 750 07 Uppsala
- Sweden
| | | | | | | | - Gulaim A. Seisenbaeva
- Department of Molecular Sciences
- Swedish University of Agricultural Sciences
- 750 07 Uppsala
- Sweden
| | - Roser Pleixats
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Universitat Autònoma de Barcelona
- Barcelona
- Spain
| | | |
Collapse
|
47
|
Anisimov AA, Temnikov MN, Krizhanovskiy I, Timoshina EI, Milenin SA, Peregudov AS, Dolgushin FM, Muzafarov AM. A thiol–ene click reaction with preservation of the Si–H bond: a new approach for the synthesis of functional organosilicon compounds. NEW J CHEM 2021. [DOI: 10.1039/d1nj00411e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This work presents an approach for the preparation of functional hydrosilanes.
Collapse
Affiliation(s)
- Anton A. Anisimov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) Russia
- Moscow
- Russian Federation
| | - Maxim N. Temnikov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) Russia
- Moscow
- Russian Federation
| | - Ilya Krizhanovskiy
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) Russia
- Moscow
- Russian Federation
| | - Ekaterina I. Timoshina
- Department of Chemistry
- M.V. Lomonosov Moscow State University
- 119991 Moscow
- Russian Federation
| | - Sergey A. Milenin
- Enikolopov Institute of Synthetic Polymeric Materials Russian Academy of Sciences (ISPM RAS)
- Moscow
- Russia
| | - Alexander S. Peregudov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) Russia
- Moscow
- Russian Federation
| | - Fedor M. Dolgushin
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) Russia
- Moscow
- Russian Federation
- Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences (IGIC RAS)
- Moscow
| | - Aziz M. Muzafarov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) Russia
- Moscow
- Russian Federation
- Enikolopov Institute of Synthetic Polymeric Materials Russian Academy of Sciences (ISPM RAS)
- Moscow
| |
Collapse
|
48
|
Beletskaya IP, Nájera C, Yus M. Catalysis and regioselectivity in hydrofunctionalization reactions of unsaturated carbon bonds. Part III. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4983] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The review addresses the possibility of obtaining Markovnikov and anti-Markovnikov isomers in the reactions of unsaturated hydrocarbons with organophosphorus and organosulfur compounds having P–H and S–H bonds using metal salts or complexes as catalysts.
The bibliography includes 247 references.
Collapse
|
49
|
Schmidt P, Kolb C, Reiser A, Philipp M, Godejohann M, Helmboldt H, Müller HC, Karaghiosoff K. Formation of a Thiol-Ene Addition Product of Asthma Medication Montelukast Caused by a Widespread Tin-Based Thermal Stabilizer. Chem Res Toxicol 2020; 33:2963-2971. [PMID: 33174429 DOI: 10.1021/acs.chemrestox.0c00261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the formation and characterization of two diastereomeric thiol-ene addition products of the asthma medication Montelukast within chewing tablets. Widespread tin-based thermal stabilizers dioctyltin bis(2-ethylhexyl thioglycolate) and monooctyltin tris(2-ethylhexyl thioglycolate), used in the manufacturing process of the medication's forming foil, were identified as the source of the thiol reactant, showing that these stabilizers may play a part in the degradation of Montelukast and APIs with functionalities similar to those of Montelukast, which should be considered during development of medication. The isolation and analysis of these impurities was performed by HPLC and UV-vis spectroscopy. HRMS and NMR data were collected to characterize and determine the structures of these compounds.
Collapse
Affiliation(s)
- Philipp Schmidt
- Department Chemie, Ludwig-Maximillians-Universität München, Butenandtstraße 5-13, Haus D, 81377 Munich, Germany
| | - Christine Kolb
- Analytical Development, Hexal AG, Industriestraße 25, 83607 Holzkirchen, Germany
| | - Andreas Reiser
- Analytical Development, Hexal AG, Industriestraße 25, 83607 Holzkirchen, Germany
| | - Markus Philipp
- Analytical Development, Hexal AG, Industriestraße 25, 83607 Holzkirchen, Germany
| | | | | | | | - Konstantin Karaghiosoff
- Department Chemie, Ludwig-Maximillians-Universität München, Butenandtstraße 5-13, Haus D, 81377 Munich, Germany
| |
Collapse
|
50
|
Carbajo-Gordillo AI, Jiménez Blanco JL, Benito JM, Lana H, Marcelo G, Di Giorgio C, Przybylski C, Hinou H, Ceña V, Ortiz Mellet C, Mendicuti F, Tros de Ilarduya C, García Fernández JM. Click Synthesis of Size- and Shape-Tunable Star Polymers with Functional Macrocyclic Cores for Synergistic DNA Complexation and Delivery. Biomacromolecules 2020; 21:5173-5188. [PMID: 33084317 DOI: 10.1021/acs.biomac.0c01283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The architectural perfection and multivalency of dendrimers have made them useful for biodelivery via peripheral functionalization and the adjustment of dendrimer generations. Modulation of the core-forming and internal matrix-forming structures offers virtually unlimited opportunities for further optimization, but only in a few cases this has been made compatible with strict diastereomeric purity over molecularly diverse series, low toxicity, and limited synthetic effort. Fully regular star polymers built on biocompatible macrocyclic platforms, such as hyperbranched cyclodextrins, offer advantages in terms of facile synthesis and flexible compositions, but core elaboration in terms of shape and function becomes problematic. Here we report the synthesis and characterization of star polymers consisting of functional trehalose-based macrocyclic cores (cyclotrehalans, CTs) and aminothiourea dendron arms, which can be efficiently synthesized from sequential click reactions of orthogonal monomers, display no cytotoxicity, and efficiently complex and deliver plasmid DNA in vitro and in vivo. When compared with some commercial cationic dendrimers or polymers, the new CT-scaffolded star polymers show better transfection efficiencies in several cell lines and structure-dependent cell selectivity patterns. Notably, the CT core could be predefined to exert Zn(II) complexing or molecular inclusion capabilities, which has been exploited to synergistically boost cell transfection by orders of magnitude and modulate the organ tropism in vivo.
Collapse
Affiliation(s)
- Ana I Carbajo-Gordillo
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - José L Jiménez Blanco
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, c/Profesor García González 1, 41012 Sevilla, Spain
| | - Juan M Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Hugo Lana
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31080 Pamplona, Spain
| | - Gema Marcelo
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Chemistry, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Christophe Di Giorgio
- Institut de Chimie Nice, UMR 7272, Université Côte d'Azur, 28 Avenue de Valrose, F-06108 Nice, France
| | - Cédric Przybylski
- CNRS, Institut Parisien de Chimie Moléculaire, IPCM, Sorbonne Université, Paris, France
| | - Hiroshi Hinou
- Graduate School and Faculty of Advanced Life Science, Laboratory of Advanced Chemical Biology, Hokkaido University, N21 W11, Sapporo 001-0021, Japan
| | - Valentín Ceña
- Unidad Asociada Neurodeath, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, c/Profesor García González 1, 41012 Sevilla, Spain
| | - Francisco Mendicuti
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Chemistry, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Conchita Tros de Ilarduya
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31080 Pamplona, Spain
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|