1
|
Jitsamai W, Kesdangsakonwut S, Srirat T, Taweethavonsawat P. Case Report: Molecular and Pathological Investigations of Zoonotic Anatrichosoma Spp.-Induced Ulcerative Pododermatitis in a Domestic Cat in Thailand. Front Vet Sci 2021; 8:759814. [PMID: 34722714 PMCID: PMC8551767 DOI: 10.3389/fvets.2021.759814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/20/2021] [Indexed: 12/02/2022] Open
Abstract
Anatrichosoma spp. is a group of trichuroid nematodes that mainly infect non-human primates and domestic cats. The lifecycle of these nematodes remains unclear. In non-human primates, Anatrichosoma spp. were found in the nasal cavity. However, ulcerative dermatitis has been reported in infected cats. An adult, intact, female domestic short-haired cat was presented with ulcerative pododermatitis of all limbs. Punch biopsy was performed at the edge of the ulcerative wound for histopathological investigation and showed necrosis and infiltration of inflammatory cells around the nematode-like lesion. Eggs with Capillaria-like characteristics were present. Tissue sections were subjected to DNA extraction and PCR targeting 18S rRNA, using primers designed from Anatrichosoma 18S rRNA. The phylogenetic tree revealed that DNA obtained from the lesion of the domestic cat was grouped with Anatrichosoma spp. from the olive glass mouse (Abothirx olivacea), Capillaria plica and Eucoleus aerophilus, both from the red fox (Vulpes Vulpes). The study is the first report of feline anatrichosomiasis in Thailand, and we present both pathological findings and molecular evidence. The cat was successfully treated with emodepsine/praziquantel. The skin lesion recovered within 3 days after anthelmintic treatment. Because Anatrichosoma spp. have been reported in humans, the zoonotic potential of this parasite should be considered.
Collapse
Affiliation(s)
- Wanarit Jitsamai
- Parasitology Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sawang Kesdangsakonwut
- Pathology Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Thanakorn Srirat
- Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Khon Kean University, Khon Kaen, Thailand
| | - Piyanan Taweethavonsawat
- Parasitology Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Biomarkers in Animal Parasitology Research Group, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Sirima C, Bizet C, Hamou H, Červená B, Lemarcis T, Esteban A, Peeters M, Mpoudi Ngole E, Mombo IM, Liégeois F, Petrželková KJ, Boussinesq M, Locatelli S. Soil-transmitted helminth infections in free-ranging non-human primates from Cameroon and Gabon. Parasit Vectors 2021; 14:354. [PMID: 34225777 PMCID: PMC8259424 DOI: 10.1186/s13071-021-04855-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Zoonotic diseases are a serious threat to both public health and animal conservation. Most non-human primates (NHP) are facing the threat of forest loss and fragmentation and are increasingly living in closer spatial proximity to humans. Humans are infected with soil-transmitted helminths (STH) at a high prevalence, and bidirectional infection with NHP has been observed. The aim of this study was to determine the prevalence, genetic diversity, distribution and presence of co-infections of STH in free-ranging gorillas, chimpanzees and other NHP species, and to determine the potential role of these NHP as reservoir hosts contributing to the environmental sustenance of zoonotic nematode infections in forested areas of Cameroon and Gabon. METHODS A total of 315 faecal samples from six species of NHPs were analysed. We performed PCR amplification, sequencing and maximum likelihood analysis of DNA fragments of the internal transcribed spacer 2 (ITS2) nuclear ribosomal DNA to detect the presence and determine the genetic diversity of Oesophagostomum spp., Necator spp. and Trichuris spp., and of targeted DNA fragments of the internal transcribed spacer 1 (ITS1) to detect the presence of Ascaris spp. RESULTS Necator spp. infections were most common in gorillas (35 of 65 individuals), but also present in chimpanzees (100 of 222 individuals) and in one of four samples from greater spot-nosed monkeys. These clustered with previously described type II and III Necator spp. Gorillas were also the most infected NHP with Oesophagostomum (51/65 individuals), followed by chimpanzees (157/222 individuals), mandrills (8/12 samples) and mangabeys (7/12 samples), with O. stephanostomum being the most prevalent species. Oesophagostomum bifurcum was detected in chimpanzees and a red-capped mangabey, and a non-classified Oesophagostomum species was detected in a mandrill and a red-capped mangabey. In addition, Ternidens deminutus was detected in samples from one chimpanzee and three greater spot-nosed monkeys. A significant relative overabundance of co-infections with Necator and Oesophagostomum was observed in chimpanzees and gorillas. Trichuris sp. was detected at low prevalence in a gorilla, a chimpanzee and a greater spot-nosed monkey. No Ascaris was observed in any of the samples analysed. CONCLUSIONS Our results on STH prevalence and genetic diversity in NHP from Cameroon and Gabon corroborate those obtained from other wild NHP populations in other African countries. Future research should focus on better identifying, at a molecular level, the species of Necator and Oesophagostomum infecting NHP and determining how human populations may be affected by increased proximity resulting from encroachment into sylvatic STH reservoir habitats.
Collapse
Affiliation(s)
- C. Sirima
- Institut de Recherche Pour Le Développement (IRD), UMI 233-TransVIHMI-INSERM U1175–University of Montpellier, Montpellier, France
| | - C. Bizet
- Institut de Recherche Pour Le Développement (IRD), UMI 233-TransVIHMI-INSERM U1175–University of Montpellier, Montpellier, France
| | - H. Hamou
- Institut de Recherche Pour Le Développement (IRD), UMI 233-TransVIHMI-INSERM U1175–University of Montpellier, Montpellier, France
| | - B. Červená
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - T. Lemarcis
- Institut de Recherche Pour Le Développement (IRD), UMI 233-TransVIHMI-INSERM U1175–University of Montpellier, Montpellier, France
| | - A. Esteban
- Institut de Recherche Pour Le Développement (IRD), UMI 233-TransVIHMI-INSERM U1175–University of Montpellier, Montpellier, France
| | - M. Peeters
- Institut de Recherche Pour Le Développement (IRD), UMI 233-TransVIHMI-INSERM U1175–University of Montpellier, Montpellier, France
| | - E. Mpoudi Ngole
- Projet Prévention du Sida Au Cameroun (PRESICA) and Virology Laboratory IMPM/IRD, Yaoundé, Cameroon
| | - I. M. Mombo
- Centre Interdisciplinaire de Recherches Médicales de Franceville, BP 769, Franceville, Gabon
| | - F. Liégeois
- Present Address: Institut de Recherche Pour Le Développement (IRD), Maladies Infectieuses Et Vecteurs : Écologie, Génétique, Évolution et Contrôle (MIVEGEC), IRD 224-CNRS 5290–University of Montpellier, Montpellier, France
| | - K. J. Petrželková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - M. Boussinesq
- Institut de Recherche Pour Le Développement (IRD), UMI 233-TransVIHMI-INSERM U1175–University of Montpellier, Montpellier, France
| | - S. Locatelli
- Institut de Recherche Pour Le Développement (IRD), UMI 233-TransVIHMI-INSERM U1175–University of Montpellier, Montpellier, France
- Present Address: Institut de Recherche Pour Le Développement (IRD), Maladies Infectieuses Et Vecteurs : Écologie, Génétique, Évolution et Contrôle (MIVEGEC), IRD 224-CNRS 5290–University of Montpellier, Montpellier, France
| |
Collapse
|
3
|
Population history of chimpanzees introduced to Lake Victoria's Rubondo Island. Primates 2021; 62:253-265. [PMID: 33532941 DOI: 10.1007/s10329-020-00884-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
Between 1966 to 1969, Bernhard Grzimek (Frankfurt Zoological Society, FZS) introduced chimpanzees (Pan troglodytes) previously held in European institutions to Rubondo Island in Lake Victoria in Tanzania. Earlier publications report various numbers of released animals and that all founders originated from West Africa. We revise these assumptions through consultation of archived FZS records and genetic analyses of surviving descendants. Accordingly, 17 chimpanzees were transported to Africa in four waves, with male-female ratios of 3:8, 1:0, 1:0 and 2:2; one female died in transit. Thus, 16 chimpanzees were released in total. FZS and studbook records allocate a West African provenance to only 19% of the founders and a generic "Africa" origin to 56%. Still, studbook records render it unlikely that any of the founders were captive-born. In addition, our genetic analyses based on biological samples from the current descendants trace the geographical origin of their ancestors back to West Africa (P. t. verus) and Central Africa (P. t. troglodytes). Based on counts of individuals and night nests, we estimate that the population, since 1969, grew to around 35 individuals in 2014 (annual increase 3.3%). Thus, chimpanzees released onto a large forested island free from predators or hunting pressure, habitat destruction and conspecific competition can form a self-sustaining island population without human support.
Collapse
|
4
|
Parasitic Infections in African Humans and Non-Human Primates. Pathogens 2020; 9:pathogens9070561. [PMID: 32664573 PMCID: PMC7400533 DOI: 10.3390/pathogens9070561] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 01/04/2023] Open
Abstract
Different protozoa and metazoa have been detected in great apes, monkeys and humans with possible interspecies exchanges. Some are either nonpathogenic or their detrimental effects on the host are not yet known. Others lead to serious diseases that can even be fatal. Their survey remains of great importance for public health and animal conservation. Fecal samples from gorillas (Gorilla gorilla) and humans living in same area in the Republic of Congo, chimpanzees (Pan troglodytes) from Senegal and one other from the Republic of Congo, Guinea baboons (Papio papio) from Senegal, hamadryas baboons (Papio hamadryas) from Djibouti and Barbary macaques (Macaca sylvanus) from Algeria, were collected. DNA was extracted and screened using specific qPCR assays for the presence of a large number of helminths and protozoa. Positive samples were then amplified in standard PCRs and sequenced when possible. Overall, infection rate was 36.5% in all non-human primates (NHPs) and 31.6% in humans. Great apes were more often infected (63.6%) than monkeys (7.3%). At least twelve parasite species, including ten nematodes and two protozoa were discovered in NHPs and five species, including four nematodes and a protozoan in humans. The prevalences of Giarida lamblia, Necator americanus, Enterobius vermicularis, Strongyloides stercoralis were similar between gorillas and human community co-habiting the same forest ecosystem in the Republic of Congo. In addition, human specific Mansonella perstans (5.1%) and other Mansonella spp. (5.1%) detected in these gorillas suggest a possible cross-species exchange. Low prevalence (2%) of Ascaris lumbricoides, Enterobius vermicularis, Strongyloides stercoralis were observed in chimpanzees, as well as a high prevalence of Abbreviata caucasica (57.1%), which should be considered carefully as this parasite can affect other NHPs, animals and humans. The Barbary macaques were less infected (7.2%) and Oesophagostomum muntiacum was the main parasite detected (5.8%). Finally, we report the presence of Pelodera sp. and an environmental Nematoda DNAs in chimpanzee feces, Nematoda sp. and Bodo sp. in gorillas, as well as DNA of uncharacterized Nematoda in apes and humans, but with a relatively lower prevalence in humans. Prevalence of extraintestinal parasites remains underestimated since feces are not the suitable sampling methods. Using non-invasive sampling (feces) we provide important information on helminths and protozoa that can infect African NHPs and human communities living around them. Public health and animal conservation authorities need to be aware of these infections, as parasites detected in African NHPs could affect both human and other animals’ health.
Collapse
|
5
|
A Review of Strongyloides spp. Environmental Sources Worldwide. Pathogens 2019; 8:pathogens8030091. [PMID: 31252665 PMCID: PMC6789455 DOI: 10.3390/pathogens8030091] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 01/14/2023] Open
Abstract
Strongyloides spp. are parasitic nematodes that are transmitted through the environment and are capable of causing disease. These nematodes affect an estimated 3–300 million humans worldwide. Identifying the environmental reservoirs of Strongyloides spp. is essential for the development of appropriate control strategies. This systematic literature review examined all published studies that identified Strongyloidesstercoralis, Strongyloidesfuelleborni, Strongyloidesfuellebornikellyi, and Strongyloides spp. from an environmental source. Most studies detected the nematode from dog and primate fecal samples. Other environmental sources identified were ruminants, cats, rodents, insects, water, soil, as well as fruit and vegetables. Most studies used microscopy-based identification techniques; however, several employed molecular-based techniques, which have become increasingly popular for the detection of Strongyloides spp. A limitation identified was a lack of studies that comprehensively screened all potential environmental samples in a region. Future research should undertake this holistic screening process to identify which environmental reservoirs pose the greatest significance to human health. Potential controls can be identified through the identification of environmental sources. Understanding where Strongyloides spp. is commonly found within the environment of endemic areas will inform environmental control strategies to reduce this neglected disease.
Collapse
|
6
|
McLennan MR, Hasegawa H, Bardi M, Huffman MA. Gastrointestinal parasite infections and self-medication in wild chimpanzees surviving in degraded forest fragments within an agricultural landscape mosaic in Uganda. PLoS One 2017; 12:e0180431. [PMID: 28692673 PMCID: PMC5503243 DOI: 10.1371/journal.pone.0180431] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 06/15/2017] [Indexed: 12/25/2022] Open
Abstract
Monitoring health in wild great apes is integral to their conservation and is especially important where they share habitats with humans, given the potential for zoonotic pathogen exchange. We studied the intestinal parasites of wild chimpanzees (Pan troglodytes schweinfurthii) inhabiting degraded forest fragments amid farmland and villages in Bulindi, Uganda. We first identified protozoan and helminth parasites infecting this population. Sixteen taxa were demonstrated microscopically (9 protozoa, 5 nematodes, 1 cestode, and 1 trematode). DNA sequence analysis enabled more precise identification of larval nematodes (e.g. Oesophagostomum stephanostomum, O. bifurcum, Strongyloides fuelleborni, Necator sp. Type II) and tapeworm proglottids (genus Bertiella). To better understand the ecology of infections, we used multidimensional scaling analysis to reveal general patterns of association among parasites, climate, and whole leaf swallowing-a prevalent self-medicative behaviour at Bulindi linked to control of nodular worms (Oesophagostomum spp.). Prevalence of parasites varied with climate in diverse ways. For example, Oesophagostomum sp. was detected in faeces at higher frequencies with increasing rainfall but was most clearly associated with periods of low temperature. Certain parasites occurred together within chimpanzee hosts more or less frequently than expected by chance. For example, the commensal ciliate Troglodytella abrassarti was negatively associated with Balantidium coli and Oesophagostomum sp., possibly because the latter taxa make the large intestine less suitable for T. abrassarti. Whole leaves in faeces showed independent associations with the prevalence of Oesophagostomum sp., Strongyloides sp., and hookworm by microscopic examination, and with egestion of adult O. stephanostomum by macroscopic inspection. All parasites identified to species or genus have been reported in wild chimpanzees inhabiting less-disturbed environments than Bulindi. Nevertheless, several disease-causing taxa infecting these chimpanzees are potentially transmissible between apes and humans (e.g. rhabditoid and strongyle nematodes), underscoring the importance of identifying and reducing risks of pathogen exchange in shared landscapes.
Collapse
Affiliation(s)
- Matthew R. McLennan
- Anthropology Centre for Conservation, Environment and Development, Oxford Brookes University, Oxford, United Kingdom
- Bulindi Chimpanzee and Community Project, Hoima, Uganda
| | - Hideo Hasegawa
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Hasama, Yufu, Oita, Japan
- Department of Biology, Faculty of Medicine, Oita University, Hasama, Yufu, Oita, Japan
| | - Massimo Bardi
- Department of Psychology and Behavioral Neuroscience, Randolph-Macon College, Ashland, Virginia, United States of America
| | | |
Collapse
|
7
|
Kouassi RYW, McGraw SW, Yao PK, Abou-Bacar A, Brunet J, Pesson B, Bonfoh B, N’goran EK, Candolfi E. Diversity and prevalence of gastrointestinal parasites in seven non-human primates of the Taï National Park, Côte d'Ivoire. Parasite 2015; 22:1. [PMID: 25619957 PMCID: PMC4306024 DOI: 10.1051/parasite/2015001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/14/2015] [Indexed: 11/14/2022] Open
Abstract
Parasites and infectious diseases are well-known threats to primate populations. The main objective of this study was to provide baseline data on fecal parasites in the cercopithecid monkeys inhabiting Côte d'Ivoire's Taï National Park. Seven of eight cercopithecid species present in the park were sampled: Cercopithecus diana, Cercopithecus campbelli, Cercopithecus petaurista, Procolobus badius, Procolobus verus, Colobus polykomos, and Cercocebus atys. We collected 3142 monkey stool samples between November 2009 and December 2010. Stool samples were processed by direct wet mount examination, formalin-ethyl acetate concentration, and MIF (merthiolate, iodine, formalin) concentration methods. Slides were examined under microscope and parasite identification was based on the morphology of cysts, eggs, and adult worms. A total of 23 species of parasites was recovered including 9 protozoa (Entamoeba coli, Entamoeba histolytica/dispar, Entamoeba hartmanni, Endolimax nana, Iodamoeba butschlii, Chilomastix mesnili, Giardia sp., Balantidium coli, and Blastocystis sp.), 13 nematodes (Oesophagostomum sp., Ancylostoma sp., Anatrichosoma sp., Capillariidae Gen. sp. 1, Capillariidae Gen. sp. 2, Chitwoodspirura sp., Subulura sp., spirurids [cf Protospirura muricola], Ternidens sp., Strongyloides sp., Trichostrongylus sp., and Trichuris sp.), and 1 trematode (Dicrocoelium sp.). Diversity indices and parasite richness were high for all monkey taxa, but C. diana, C. petaurista, C. atys, and C. campbelli exhibited a greater diversity of parasite species and a more equitable distribution. The parasitological data reported are the first available for these cercopithecid species within Taï National Park.
Collapse
Affiliation(s)
- Roland Yao Wa Kouassi
-
Unité de Formation et de Recherche Biosciences, Université Félix Houphouët Boigny 22 BP 770 Abidjan 22 Côte d’Ivoire
-
Centre Suisse de Recherches Scientifiques en Côte d’Ivoire 01 BP 1303 Abidjan 01 Côte d’Ivoire
-
Laboratoire de Parasitologie et de Mycologie Médicale, Plateau Technique de Microbiologie, Hôpitaux Universitaires de Strasbourg 1 rue Koeberlé 67000
Strasbourg France
-
Institut de Parasitologie et de Pathologie Tropicale, EA 7292, Fédération de Médecine Translationnelle, Université de Strasbourg 3 rue Koeberlé 67000
Strasbourg France
| | - Scott William McGraw
-
Department of Anthropology, Ohio State University, 4064 Smith Laboratory 174 West 18th Avenue Columbus Ohio
43210 USA
| | - Patrick Kouassi Yao
-
Unité de Formation et de Recherche Biosciences, Université Félix Houphouët Boigny 22 BP 770 Abidjan 22 Côte d’Ivoire
| | - Ahmed Abou-Bacar
-
Laboratoire de Parasitologie et de Mycologie Médicale, Plateau Technique de Microbiologie, Hôpitaux Universitaires de Strasbourg 1 rue Koeberlé 67000
Strasbourg France
-
Institut de Parasitologie et de Pathologie Tropicale, EA 7292, Fédération de Médecine Translationnelle, Université de Strasbourg 3 rue Koeberlé 67000
Strasbourg France
| | - Julie Brunet
-
Laboratoire de Parasitologie et de Mycologie Médicale, Plateau Technique de Microbiologie, Hôpitaux Universitaires de Strasbourg 1 rue Koeberlé 67000
Strasbourg France
-
Laboratoire de Parasitologie, Faculté de Pharmacie, Université de Strasbourg 74 route du Rhin 67401
Illkirch cedex France
-
Institut de Parasitologie et de Pathologie Tropicale, EA 7292, Fédération de Médecine Translationnelle, Université de Strasbourg 3 rue Koeberlé 67000
Strasbourg France
| | - Bernard Pesson
-
Laboratoire de Parasitologie et de Mycologie Médicale, Plateau Technique de Microbiologie, Hôpitaux Universitaires de Strasbourg 1 rue Koeberlé 67000
Strasbourg France
| | - Bassirou Bonfoh
-
Centre Suisse de Recherches Scientifiques en Côte d’Ivoire 01 BP 1303 Abidjan 01 Côte d’Ivoire
| | - Eliezer Kouakou N’goran
-
Unité de Formation et de Recherche Biosciences, Université Félix Houphouët Boigny 22 BP 770 Abidjan 22 Côte d’Ivoire
| | - Ermanno Candolfi
-
Laboratoire de Parasitologie et de Mycologie Médicale, Plateau Technique de Microbiologie, Hôpitaux Universitaires de Strasbourg 1 rue Koeberlé 67000
Strasbourg France
-
Institut de Parasitologie et de Pathologie Tropicale, EA 7292, Fédération de Médecine Translationnelle, Université de Strasbourg 3 rue Koeberlé 67000
Strasbourg France
| |
Collapse
|
8
|
Assessment of gastrointestinal parasites in wild chimpanzees (Pan troglodytes troglodytes) in southeast Cameroon. Parasitol Res 2014; 113:2541-50. [PMID: 24781023 DOI: 10.1007/s00436-014-3904-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/09/2014] [Indexed: 01/23/2023]
Abstract
We tested 114 faecal samples from wild simian immunodeficiency virus (SIV)-positive (n = 43) and SIV-negative (n = 71) chimpanzees (Pan troglodytes troglodytes) in southeast Cameroon for the presence of gastrointestinal parasites by direct smear. We observed cysts from different protozoa (Entamoeba coli and Entamoeba histolytica / Entamoeba dispar, Endolimax nana, Iodamoeba butschlii, Chilomastix mesnili, Balantidium coli and Blastocystis cells) and trophozoites from Troglodytella abrassarti and Balantidium coli. Eggs from different helminths (strongylids, Ascaris lumbricoides, Abbreviata caucasica, Trichuris sp., Capillaria sp., Enterobius anthropopeci, Bertiella sp., Hymenolepis diminuta and an undetermined fluke) were also observed. Finally, we observed eggs that could not be properly identified and classified. We did not observe any differences between the SIV+ and SIV- samples except for the unidentified eggs. The studied chimpanzees were highly parasitised by strongylid (85.1% of prevalence), Troglodytella (43.8%) and Blastocystis (2.9%), and the frequency of the other parasites ranged from 0.9 to 8.8%. These high levels of parasite infections could represent an additional burden in a population where there is a high rate of the SIV virus in circulation.
Collapse
|
9
|
Gillespie TR, Lonsdorf EV, Canfield EP, Meyer DJ, Nadler Y, Raphael J, Pusey AE, Pond J, Pauley J, Mlengeya T, Travis DA. Demographic and ecological effects on patterns of parasitism in eastern chimpanzees (Pan troglodytes schweinfurthii) in Gombe National Park, Tanzania. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2010; 143:534-44. [PMID: 20623606 PMCID: PMC4048996 DOI: 10.1002/ajpa.21348] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
From January 2006 to January 2008, we collected 1,045 fecal samples from 90 individually-recognized, free-ranging, eastern chimpanzees (Pan troglodytes schweinfurthii) inhabiting Gombe National Park, Tanzania to determine how patterns of parasitism are affected by demographic and ecological covariates. Seventeen parasite species were recovered, including eight nematodes (Oesophagostomum sp., Necator sp., Probstmayria gombensis, Strongyloides fulleborni, Ascaris sp., Trichuris sp., Abbreviata caucasica, and an unidentified strongyle), 1 cestode (Bertiella sp.), 1 trematode (Dicrocoeliidae), and 7 protozoa (Entamoeba coli, Entamoeba histolytica/dispar, Iodamoeba bütschlii, Troglodytella abrassarti, Troglocorys cava, Balantidium coli, and an unidentified protozoa). Significant differences were observed in interannual infection prevalence and parasite richness between 2006 and 2007. Intercommunity comparisons demonstrated higher prevalence of parasites for the Mitumba compared with Kasekela chimpanzee community. Prevalence of several parasites was strongly correlated with monthly rainfall patterns for both 2006 and 2007. Subadult chimpanzees had lower prevalence for most parasite species compared with adults in both years and also yielded a lower average parasite species richness. No significant differences were observed between males and females in prevalence in 2006. However, in 2007 the prevalence of S. fulleborni and I. bütschlii were higher in males than in females. Parasite prevalence and richness were substantially higher in this multiyear study compared with previous short-term studies of the gastrointestinal parasites of Gombe chimpanzees. This coupled with the significant interannual and interseasonal variation, demonstrated in this study, emphasizes the importance of multiyear monitoring with adequate sample size to effectively determine patterns of parasitism in wild primate populations.
Collapse
Affiliation(s)
- Thomas R Gillespie
- Department of Environmental Studies and Program in Population Biology, Ecology, and Evolution, Emory University, Atlanta, GA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|