1
|
Miwa M, Hamazaki Y, Koda H, Nakamura K. Trigger of twin-fights in captive common marmosets. Am J Primatol 2023; 85:e23528. [PMID: 37301733 DOI: 10.1002/ajp.23528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/19/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Common marmosets usually give birth to twins and form a social group consisting of a breeding couple and pairs of same-aged siblings. The twins may engage in the first agonistic fights between them, twin-fights (TFs), during adolescence. This study investigated the TFs based on records accumulated in our captive colony over 12 years to elucidate the proximate causations that trigger the TFs. We aimed to determine whether the TF onset mainly depended on internal events (such as the onset of puberty) as previously suggested or external events (such as the birth of the younger siblings and the behavioral change of the group members). Although both events usually occur simultaneously, the birth control method (i.e., manipulation of ovulation and interbirth-intervals by prostaglandin administration to females) could temporally separate these events. A comparison of the onset day and occurrence rate with or without the birth control procedure revealed that TFs were triggered by a combination of internal and external events, that is, external events were the predominant triggers of TF, under the influence of internal events. The timing of TF onset was significantly delayed when the birth of the younger siblings was delayed and the twins grew older under the birth-controlled condition, suggesting that the birth of younger siblings and related behavioral changes of group members, as well as twins' developmental maturation, could trigger TF. Higher TF rates between same-sex twins were consistent with previous studies, reflecting the characteristics of same-sex directed aggression in callitrichines.
Collapse
Affiliation(s)
- Miki Miwa
- Department of Cognitive and Behavioral Sciences, Cognitive Neuroscience Section, Primate Research Institute, Kyoto University, Kyoto, Japan
| | - Yusuke Hamazaki
- Department of Cognitive and Behavioral Sciences, Cognitive Neuroscience Section, Primate Research Institute, Kyoto University, Kyoto, Japan
| | - Hiroki Koda
- Department of Cognitive and Behavioral Sciences, Cognitive Neuroscience Section, Primate Research Institute, Kyoto University, Kyoto, Japan
| | - Katsuki Nakamura
- Department of Cognitive and Behavioral Sciences, Cognitive Neuroscience Section, Primate Research Institute, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Epelbaum J, Terrien J. Mini-review: Aging of the neuroendocrine system: Insights from nonhuman primate models. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100:109854. [PMID: 31891735 DOI: 10.1016/j.pnpbp.2019.109854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 12/27/2019] [Indexed: 01/29/2023]
Abstract
The neuroendocrine system (NES) plays a crucial role in synchronizing the physiology and behavior of the whole organism in response to environmental constraints. The NES consists of a hypothalamic-pituitary-target organ axis that acts in coordination to regulate growth, reproduction, stress and basal metabolism. The growth (or somatotropic), hypothalamic-pituitary-gonadal (HPG), hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-thyroid (HPT) axes are therefore finely tuned by the hypothalamus through the successive release of hypothalamic and pituitary hormones to control the downstream physiological functions. These functions rely on a complex set of mechanisms requiring tight synchronization between peripheral organs and the hypothalamic-pituitary complex, whose functionality can be altered during aging. Here, we review the results of research on the effects of aging on the NES of nonhuman primate (NHP) species in wild and captive conditions. A focus on the age-related dysregulation of the master circadian pacemaker, which, in turn, alters the synchronization of the NES with the organism environment, is proposed. Finally, practical and ethical considerations of using NHP models to test the effects of nutrition-based or hormonal treatments to combat the deterioration of the NES are discussed.
Collapse
Affiliation(s)
- Jacques Epelbaum
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, 1 Avenue du Petit Château, 91800 Brunoy, France; Unité Mixte de Recherche en Santé 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Jérémy Terrien
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, 1 Avenue du Petit Château, 91800 Brunoy, France.
| |
Collapse
|
3
|
Kotani M, Shimono K, Yoneyama T, Nakako T, Matsumoto K, Ogi Y, Konoike N, Nakamura K, Ikeda K. An eye tracking system for monitoring face scanning patterns reveals the enhancing effect of oxytocin on eye contact in common marmosets. Psychoneuroendocrinology 2017; 83:42-48. [PMID: 28586711 DOI: 10.1016/j.psyneuen.2017.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022]
Abstract
Eye tracking systems are used to investigate eyes position and gaze patterns presumed as eye contact in humans. Eye contact is a useful biomarker of social communication and known to be deficient in patients with autism spectrum disorders (ASDs). Interestingly, the same eye tracking systems have been used to directly compare face scanning patterns in some non-human primates to those in human. Thus, eye tracking is expected to be a useful translational technique for investigating not only social attention and visual interest, but also the effects of psychiatric drugs, such as oxytocin, a neuropeptide that regulates social behavior. In this study, we report on a newly established method for eye tracking in common marmosets as unique New World primates that, like humans, use eye contact as a mean of communication. Our investigation was aimed at characterizing these primates face scanning patterns and evaluating the effects of oxytocin on their eye contact behavior. We found that normal common marmosets spend more time viewing the eyes region in common marmoset's picture than the mouth region or a scrambled picture. In oxytocin experiment, the change in eyes/face ratio was significantly greater in the oxytocin group than in the vehicle group. Moreover, oxytocin-induced increase in the change in eyes/face ratio was completely blocked by the oxytocin receptor antagonist L-368,899. These results indicate that eye tracking in common marmosets may be useful for evaluating drug candidates targeting psychiatric conditions, especially ASDs.
Collapse
Affiliation(s)
- Manato Kotani
- Higher Brain Function Research, Sumitomo Dainippon Pharma, Co., Ltd., 33-94 Enoki-cho, Suita, Osaka, 564-0053, Japan
| | - Kohei Shimono
- Molecular Pathophysiology Research, Drug Research Division, Sumitomo Dainippon Pharma, Co., Ltd., 3-1-98 Kasugadenaka, Konohana-ku, Osaka, 554-0022, Japan
| | - Toshihiro Yoneyama
- Omics Group, Genomic Science Laboratories, Drug Research Division, Sumitomo Dainippon Pharma, Co., Ltd., 3-1-98 Kasugadenaka, Konohana-ku, Osaka, 554-0022, Japan
| | - Tomokazu Nakako
- Higher Brain Function Research, Sumitomo Dainippon Pharma, Co., Ltd., 33-94 Enoki-cho, Suita, Osaka, 564-0053, Japan
| | - Kenji Matsumoto
- Higher Brain Function Research, Sumitomo Dainippon Pharma, Co., Ltd., 33-94 Enoki-cho, Suita, Osaka, 564-0053, Japan
| | - Yuji Ogi
- Higher Brain Function Research, Sumitomo Dainippon Pharma, Co., Ltd., 33-94 Enoki-cho, Suita, Osaka, 564-0053, Japan
| | - Naho Konoike
- Department of Neuroscience, Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi, 484-8506, Japan
| | - Katsuki Nakamura
- Department of Neuroscience, Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi, 484-8506, Japan
| | - Kazuhito Ikeda
- Higher Brain Function Research, Sumitomo Dainippon Pharma, Co., Ltd., 33-94 Enoki-cho, Suita, Osaka, 564-0053, Japan.
| |
Collapse
|
4
|
Bradley BJ, Snowdon CT, McGrew WC, Lawler RR, Guevara EE, McIntosh A, O'Connor T. Non-human primates avoid the detrimental effects of prenatal androgen exposure in mixed-sex litters: combined demographic, behavioral, and genetic analyses. Am J Primatol 2016; 78:1304-1315. [PMID: 27434275 DOI: 10.1002/ajp.22583] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 11/10/2022]
Abstract
Producing single versus multiple births has important life history trade-offs, including the potential benefits and risks of sharing a common in utero environment. Sex hormones can diffuse through amniotic fluid and fetal membranes, and females with male littermates risk exposure to high levels of fetal testosterone, which are shown to have masculinizing effects and negative fitness consequences in many mammals. Whereas most primates give birth to single offspring, several New World monkey and strepsirrhine species regularly give birth to small litters. We examined whether neonatal testosterone exposure might be detrimental to females in mixed-sex litters by compiling data from long-term breeding records for seven primate species (Saguinus oedipus; Varecia variegata, Varecia rubra, Microcebus murinis, Mirza coquereli, Cheirogaleus medius, Galago moholi). Litter sex ratios did not differ from the expected 1:2:1 (MM:MF:FF for twins) and 1:2:2:1 (MMM:MMF:MFF:FFF for triplets). Measures of reproductive success, including female survivorship, offspring-survivorship, and inter-birth interval, did not differ between females born in mixed-sex versus all-female litters, indicating that litter-producing non-human primates, unlike humans and rodents, show no signs of detrimental effects from androgen exposure in mixed sex litters. Although we found no evidence for CYP19A1 gene duplications-a hypothesized mechanism for coping with androgen exposure-aromatase protein evolution shows patterns of convergence among litter-producing taxa. That some primates have effectively found a way to circumvent a major cost of multiple births has implications for understanding variation in litter size and life history strategies across mammals.
Collapse
Affiliation(s)
- Brenda J Bradley
- Department of Anthropology, The George Washington University, Washington, District of Columbia. .,Department of Anthropology, Yale University, New Haven, Connecticut.
| | - Charles T Snowdon
- Department of Psychology, University of Wisconsin, Madison, Wisconsin
| | - William C McGrew
- Department of Archaeology & Anthropology, University of Cambridge, Cambridge, United Kingdom
| | - Richard R Lawler
- Department of Sociology and Anthropology, James Madison University, Harrisonburg, Virginia
| | - Elaine E Guevara
- Department of Anthropology, Yale University, New Haven, Connecticut
| | - Annick McIntosh
- Department of Anthropology, Yale University, New Haven, Connecticut
| | - Timothy O'Connor
- Institute for Genome Sciences and Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland.,University of Maryland at College Park, College Park, Maryland
| |
Collapse
|
5
|
Mitchell JF, Leopold DA. The marmoset monkey as a model for visual neuroscience. Neurosci Res 2015; 93:20-46. [PMID: 25683292 PMCID: PMC4408257 DOI: 10.1016/j.neures.2015.01.008] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/16/2015] [Accepted: 01/16/2015] [Indexed: 11/26/2022]
Abstract
The common marmoset (Callithrix jacchus) has been valuable as a primate model in biomedical research. Interest in this species has grown recently, in part due to the successful demonstration of transgenic marmosets. Here we examine the prospects of the marmoset model for visual neuroscience research, adopting a comparative framework to place the marmoset within a broader evolutionary context. The marmoset's small brain bears most of the organizational features of other primates, and its smooth surface offers practical advantages over the macaque for areal mapping, laminar electrode penetration, and two-photon and optical imaging. Behaviorally, marmosets are more limited at performing regimented psychophysical tasks, but do readily accept the head restraint that is necessary for accurate eye tracking and neurophysiology, and can perform simple discriminations. Their natural gaze behavior closely resembles that of other primates, with a tendency to focus on objects of social interest including faces. Their immaturity at birth and routine twinning also makes them ideal for the study of postnatal visual development. These experimental factors, together with the theoretical advantages inherent in comparing anatomy, physiology, and behavior across related species, make the marmoset an excellent model for visual neuroscience.
Collapse
Affiliation(s)
- Jude F Mitchell
- Brain and Cognitive Sciences Department, Meliora Hall, University of Rochester, Rochester, NY 14627, USA.
| | - David A Leopold
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA; Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Dettmer AM. The integrative biology of reproductive functioning in nonhuman primates. Am J Primatol 2012; 75:197-201. [PMID: 22826005 DOI: 10.1002/ajp.22054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 05/31/2012] [Accepted: 06/06/2012] [Indexed: 11/10/2022]
Abstract
At the 34th annual meeting of the American Society of Primatologists in 2011, the society organized an interdisciplinary symposium entitled, "Reproductive Function & Dysfunction in Nonhuman Primates." The articles in this special section, excluding this introduction, represent the findings presented by four of the five speakers in that symposium. The data presented highlight the myriad factors that contribute to primate reproductive function and dysfunction, including hormones, genes, maternal variance, environmental factors, social relationships, and strategic interactions. Collectively, these articles emphasize the integrative nature of primate reproductive function, and highlight the importance of the nonhuman primate as a model for human reproductive function and dysfunction in humans.
Collapse
Affiliation(s)
- Amanda M Dettmer
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|